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Abstract

Volume difference inequalities are designed to estimate the difference between
volumes of two bodies in terms of the maximal or minimal difference between areas
of sections of these bodies. In this note we extend two such inequalities established in

[11] and [4] from the hyperplane case to the case of sections of arbitrary dimensions.
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1 Introduction

The following volume difference inequality was proved in [10] for £ = 1, and in [13]
for 1 <k <mn. Let 1 <k < n,let K be a generalized k-intersection body in R™ (we write
K € BP}; see definition in Section 2), and let L be any origin-symmetric star body L in
R"™ so that

max (|[KNF|—|LNF|) >0,

FeG'n,n—k

where G, ,_, is the Grassmannian of (n — k)-dimensional subspaces of R", and |- | stands
for volume of appropriate dimension. Then

K| — LI <, max ([KNF|—|LNF)), (1.1)
’ FGGn,nfk
where
n—k
k wn"
b = wsz,

and w, = |BY| is the volume of the unit Euclidean ball in R™. Note that ¢, € (1/y/e,1);
see, for example, [12, Lemma 2.1].

A volume difference inequality of a different kind was proved in [3] for £ = 1, and in
[4] for 1 <k <mn. Let 1 <k <mn, and let L be a generalized k-intersection body in R™.
Then, for any origin-symmetric star body K in R™ such that |[L N F| < |K N F| for all
Fe Gnm,k,

n—k n—k 1
K|% —|LI'» >cf—n—— i KNF|—|LNF 1.2
KI5 =L 2 o min (KOFI=[LOF),  (12)
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where ¢ > 0 is an absolute constant, L = L/|L|*/", M(L) = [, , ||0]|do(8), and o is the
normalized Lebesgue measure on the sphere. Note that when L is convex, has volume 1
and is in the minimal mean width position, then we have

1 vn

ML) =~ “log(e + 1)’

(1.3)

where ¢ is an absolute constant; see [1].

Volume difference inequalities estimate the error in computations of volume of a body
out of areas of its sections. They are closely related to Bourgain’s slicing problem and to
the Busemann-Petty problem; see [4] for details. We also refer to [4] for different extensions
of (1.1) and (1.2) to arbitrary star and convex bodies and to arbitrary measures in place
of volume. The paper [4] also provides volume difference inequalities for projections.

In the hyperplane case (k = 1), inequalities going in the opposite directions to (1.1)
and (1.2) were proved in [4, 11]. It was shown in [4, Theorem 1.9] that for any n > 5
there exist origin-symmetric convex bodies K, L in R" such that L C K and

|K|nT_1—|L|nT_1>c max, (|Kﬂ€ | — |Lﬂ§L|), (1.4)

1
VAM(L) 8
where ¢ > 0 is an absolute constant, and £+ is the central hyperplane in R” perpendicular

to &. The result in [11, Section 6] shows that for n > 5 there exist origin-symmetric convex
bodies K, L in R” such that L C K and

|K\”n — L] <cn1€m1n (|ng | — |LO§H). (1.5)

We call (1.5) and (1.4) reverse volume difference inequalities. Combined with (1.3),
these inequalities show that in the case & = 1 volume difference inequalities (1.1) and
(1.2) are optimal up to a logarithmic term. In this note we extend the reverse volume
difference inequalities to sections of codimensions 1 < k < n — 3.

2 Preliminaries

Let i € NU{0}. Let C*(S™') be the space of all i-smooth functions on the unit
sphere S"~! and let C(S™!) be the subspace of even functions in C?(S"~!). We denote
by C*(Gp.n_) the space of all --smooth functions on the Grassmann manifold G,, . of
(n — k)-dimensional subspaces of R".

A compact set K C R" is called star-shaped if it contains the origin as its interior
point, and oK C K for any a € (0,1). We say that K C R" is a star body if it is
star-shaped and its Minkowsk: functional

||z||x :=min{a > 0: 2 € aK}

is a continuous function on R™. If K is an origin-symmetric convex body, then the
Minkowski functional || - ||k is a norm on R™. We say that a star body K is i-smooth,



i € NU {0}, if the restriction of || - ||x to the unit sphere S™~! belongs to the class
CY (S, It || - || € C*(S™ 1) for all k € N, then the body K is called infinitely smooth.
The radial function of a star body K is defined by

p(z) = ||z||, for x € R x #0.

If z € S" ! then py(z) is the radius of K in the direction of .
Using polar coordinates, one can write volume of a star body K as

1 -n
K=+ [ lellea, 2.)
Sn—1

where df denotes the uniform measure on the sphere with density 1.

The main tool used in this paper is the Fourier transform of distribution; we refer
the reader to [2] for details. Denote by S(R™) the Schwartz space of rapidly decreasing
infinitely differentiable functions on R” (also referred to as test functions), and by S'(R")
the space of distributions on R™, the space of continuous linear functionals on S(R™).
The Fourier transform f of a distribution f is defined by < f , g0> = < f, gﬁ> for every test
function ¢. The Fourier transform is self-invertible up to a constant factor in the sense
that ()" = (2m)"p for any even test function ¢,

A distribution f on R is called even homogeneous of degree p € R, if

(r@re(2)) =lar(r.¢)

for every test function ¢ and every o € R,a # 0. The Fourier transform of an even
homogeneous distribution of degree p is an even homogeneous distribution of degree —n —
p. We call a distribution f positive definite, if for every test function

(f(z), 0% p(—x)) > 0.

By Schwartz’s generalization of Bochner’s theorem, a distribution f is positive definite if
and only if f is a positive distribution, i.e. < f g0> > 0 for every non-negative test function
¢ (see [9, Section 2.5] for details).

For an infinitely smooth star body K, the Fourier transform in the sense of distri-
butions of ||z|[%, —n < p < 0 is an infinitely smooth function g on S™~! extended to a
homogeneous function of the order —n — p on the whole of R™; see [9, Lemma 3.16]. When
we write (||z]|%)"(6), we mean g(6), for § € S"1.

We use the following version of Parseval’s formula on the sphere.

Proposition 2.1. (/9, Theorem 3.22]) Let K and L be two infinitely smooth origin-

symmetric star bodies in R™ and 0 < p <n. Then

LU @ 177 @ = o [ (ollsl a2

Sn—=

We also use a connection between the Fourier and Radon transforms.



Proposition 2.2. (/9, Theorem 3.24]) Let 1 < k < n, let ¢ be an even continuous
integrable function on R™, and let H be an (n — k)-dimensional subspace of R™. Suppose

that ¢ is integrable on all translations of H and that the Fourier transform qZ; 15 integrable
on H+. Then

(2m)k / o@)dr = [ d(x)da. (2.3)
H HL
We also need formulas expressing volume of central sections of star bodies in terms

of the Fourier transform. It was proved in [7] (see also [9, Lemma 3.8]) that for every
origin-symmetric star body K and for every £ € S*!

1
KOET=

A lower dimensional version of the latter formula is as follows.

(1 D).

Proposition 2.3. (/9, Theorem 3.25]) Let 1 < k < n, and let K be an origin-
symmetric star body in R"™ such that K is (k — 1)-smooth if k is odd and k-smooth if

k is even. Suppose that H is an (n — k)-dimensional subspace of R™. Then

KOH = o [ ) O (2.4

(2m)*(n —

In particular, if K = Bj is the unit Euclidean ball in R", then for every H € G,, 1
and every ¢ € S,

k‘wk
By NH| = —————(I|-[[;""")" 2.
| 2ﬁ | (27T>k<n—k)<|| H2 ) (5)7 ( 5)
where P
7Tn
n=|By| = ——n.
wn = |Bs| T(1+2)

The concept of an intersection body was introduced by Lutwak [14] (for £ = 1) and
generalized to &k > 1 by Zhang [15]. We formulate the definition in an equivalent form
established by Goodey-Weil [5] and Grinberg-Zhang [6]. Let 1 < k < n — 1. The class
BP}, of generalized k-intersection bodies in R™ is the closure in the radial metric of radial
k-sums of finite collections of origin-symmetric ellipsoids in R™. When k& = 1, BP} =7,
is the original class of intersection bodies introduced by Lutwak.

Recall that the radial k-sum of star bodies K and L in R" is a new star body K 4+ L
whose radius in every direction ¢ € S"~! is given by

P (€)= pic(©) + 05 (&),  VEe s

The radial metric in the class of origin-symmetric star bodies is defined by

p(K, L) = E:;gl lpr(§) — pr(§)]-
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Another generalization of the concept of an intersection body was introduced in [8].
For an integer k£, 1 < k < n and star bodies D, L in R", we say that D is the k-intersection
body of L if

IDNHY|=|LNH|, VHEGr, .

Taking the closure in the radial metric of the class of k-intersection bodies of star bodies,
we define the class of k-intersection bodies Z;'. If & = 1, we get the original class of
intersection bodies Z,,.

The following Fourier analytic characterization of k-intersection bodies was proved in

[3].

Proposition 2.4. ([9, Theorem 4.8]) Let 1 < k < n. An origin-symmetric star body

17

D in R" is a k-intersection body if and only if the function || - represents a positive

definite distribution on R™.

By [9, Theorem 4.13, Lemma 4.10], for every 1 < k < n—3 there exist infinitely smooth
convex bodies with positive curvature in R™ which are not k-intersection bodies. We will
use these bodies to prove the reverse volume difference inequalities for 1 < k < n—3. Note
that by [9, Corollary 4.9] every origin-symmetric convex body in R" is a k-intersection
body for k = n — 3,n — 2. The authors do not know whether it is possible to extend the
reverse inequalities to these values of k.

3 Main results

The following theorem extends the reverse volume difference inequality (1.5) to the
case of lower dimensional sections.

Theorem 3.1. Let 1 < k <n—3, and let K be an infinitely smooth origin-symmetric
convex body in R™, with strictly positive curvature, that is not a k-intersection body. Then

there exists an origin-symmetric convexr body L in R™ such that L C K and

n—k n—k k .
K|+ —|LI'= <cb, min (|[KNH|—|LNH]).
™R fre

n,n—=k

Proof. Since K is an infinitely smooth convex body, || - || is infinitely smooth. Thus
(| - lIz5)" is a continuous function on R™\ {0}. Since K is not a k-intersection body,
by Proposition 2.4, there exists £ € S"! such that (|| - ||z*)"(¢) < 0. By continuity of
(I - |5)", there exists a small neighborhood € of ¢ where (|| - ||g")" is still negative. We
choose € smaller (if necessary) so that there exists a (n — k)-dimensional subspace H
such that S"~' N Hg- c S*~1\ Q.

Let ¢ € C°°(S™1) be an even non-negative function on S"~! with support in QU —€.
Extend ¢ to an even homogeneous function ¢ - 7=* of degree —k on R". The Fourier
transform of the distribution ¢-r~* is a homogeneous of degree —n + k function - r="+*,
where ) is an infinitely smooth function on the sphere S™1.



Let € be a positive number such that |By*|-||6]| ™ > & > 0 for all # € S"~!. Define
a star body L by

-n -n € n—
101" = 11011 *’“—W(@—W, Vo € " (3.1)
2

Select 0 small enough so that for every 6

13 E
|6¢<0>|<min{||e||-”+’f— c < }
B B

This condition implies that L contains the origin and that L C K. Since L has strictly
positive curvature, by the argument from [9, p.96], we can select €, even smaller (if
necessary) to ensure that the body L is convex.

Now we extend the functions in both sides of (3.1) to even homogeneous functions of
degree —n + k on R™ and apply the Fourier transform. We have that for every & € S"!

(11290 = (- I174Y°(€) = mPaole) = (- 150
It follows from (2.5) that for every £ € S"~!
(- 1E7997E) = (1 - 1) ) — n)rda(e) — CL k) (3.2)

kwk

For every H € G,,,,_1 we integrate (3.2) over S"~' N H* and get

(- ) (€)de — (2m)76 / o(€)de

Sn—1nHgL Sn—1nfgL

— (2m)*(n — k)e. (3.3)

Lo Iy e =

Since S"tN Hg- € S 1\ Q, we have ¢(£) = 0 for all £ € Hi. By (2.4), we get

e=  Jin (|KNH|—-|LNH|). (3.4)

n,n—k

Multiplying both sides of (3.2) by (|| - ||x*)", integrating over the sphere S"~! and
using Parseval’s formula on the sphere, we get

@ [ ORI a8 ~(2mral K| = s [ o)1) (0)ds

ey (B FSRO

kwk

Since ¢ is a non-negative function supported in QU —€, where (|| - ||g)" is negative, the
above inequality implies that

™ k n —
e [ BRIl > enralr - B e, @9
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By Holder’s inequality,

k

E n—
o [ nellel s <o ([ elias)” ([ eiian)
Sn—1 Sn_1 gn—1

n koo on—k
=(2m)"n|K|~|L| = . (3.6)

By (2.5), Parseval’s formula on the sphere and Holder’s inequality,

2m)k(n — k) B e
o R e = T |/ R @) 112 €)de

( —k
0| do

k
(27)" | cnonzt —n "
< B gy 1050 (0)
‘BZ | Sn—1
= (27)"nck | K| (3.7)
Combining (3.5), (3.6) and (3.7), we have
(2m)"n|K| < (2r)"n|K|"|LI*% + (21)"nck | K| e
This, together with (3.4), implies the result. ]
The following result extends (1.4) to sections of lower dimensions.

Theorem 3.2. Let 1 < k < n, and let L be an infinitely smooth origin-symmetric
convex body in R™, with strictly positive curvature, that is not a k-intersection body. Then
there exists an origin-symmetric convexr body K in R™ such that L C K and

n— n— Cc*
K| = |L|"" > ————— max (|KNH|-|LNH|),

(VM (L))" HECnn

where C' > 0 is an absolute constant.

Proof. Since L is an infinitely smooth convex body, || - ||;* is infinitely smooth. Thus
(Il - [|7¥)" is a continuous function on R™\ {0}. Since L is not a k-intersection body,
by Proposition 2.4, there exists & € S"~! such that (|| - ||;)"(¢) < 0. By continuity of
(Il - ||z¥)" there is a small neighborhood € of ¢ where (|| - [|;*)" is negative. We choose

Q) smaller (if necessary) so that there exists a (n — k)-dimensional subspace Hy such that
SN Hy c S™H\ Q.

Let ¢ € C*°(S™1) be an even non-negative function on S™! with support in QU —€.
Extend ¢ to an even homogeneous function ¢ - r=! of degree —k on R". The Fourier
transform of ¢-r~* in the sense of distribution is 1 - r~"* where 1 is an infinitely smooth
function on the sphere S™ 1.



Let € be a positive number with € > 0. Define a star body K by

3

101" = [10]17"" — 09(0) + B (3.8)
Choose 4 small enough such that for every
€ 3
o) < min {01 + s o
: By 7H 1By

This condition implies that K contains the origin and that L C K. Since L has strictly
positive curvature, we also make ¢, smaller (if necessary) to ensure that the body K is
convex.

Now we extend the functions in (3.8) to even homogeneous functions of degree —n +k
on R™. Applying the Fourier transform we get for every ¢ € S™1

(- M) = (1 2" E) — (2m)"d(8) + B k‘(l| 12")"(©).

Hence, it follows from (2.5) that for every £ € S™!

(- 19970 = (- 1579 €) — @nyroa(e) + Zon =k (3.9)

kOJk

For every H € G, we integrate (3.9) over S"~' N H* and get

[ Ry s = (- 19 € = 2ms [ o)
Sn—=1nHLl Sn—1nHLl Sn—1nHLl

+ (27)"(n — k)e. (3.10)
Since S" N Hg- € S 1\ Q, we have ¢(¢) = 0 for £ € Hi-. By (2.4), we have that

e= max (|KNH|—|LnH|. (3.11)
HeGn,nfk

Multiplying both sides of (3.9) by (|| - ||;*)", integrating over the sphere S™"~! and
using Parseval’s formula on the sphere, we get

" [ BI040 = all = )6 [ o)1 17 O)as

gn—1
(27)"(n

* k—wk_k)g /M<|I 29N 6)do.

Since ¢ is a non-negative function with support in Q U —Q, where (|| - ||*)" is negative,
the above inequality implies that

n —k —n+k n (2ﬂjk(n/_'k) RIAY
e [ el e > izl S [ e, @)



By Holder’s inequality,
(2m)" / 1160]125(16]|z*d6 < (2m)"n| L|= |K |5 (3.13)
Sn—l

By (2.5), Parseval’s formula on the sphere and Jensen’s inequality,

(27T)k(n - k) kA . 1 A A
e 01 (O)d0 =y | (-9 O)- 1) )
(2n)|5"|

= 10| do (6)
|BQ k| Sn—t1 t

(2m)" S ( 1 >k
2 n—=k
|B2 | fSnfl |10]]Ldo ()

_ oSt L

By~ M(L)*
> (271)"nCF —— . (3.14)
(VaM(L))
From standard estimates for the I'-function and (3.12), (3.13), (3.14), we get
k
(2m)"n|L|=|K| > (27)"n|L] + (27)"nC" —————¢.
(vVnM(L))

This, together with (3.11), implies the required result. ]
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