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Abstract. The main goal of this paper is to present a series of inequal-
ities connecting the surface area measure of a convex body and surface
area measure of its projections and sections. We present a solution of a
question of S. Campi, P. Gritzmann and P. Gronchi regarding the as-
ymptotic behavior of the best constant in a recently proposed reverse
Loomis-Whitney inequality. Next we give a new sufficient condition for
the slicing problem to have an affirmative answer, in terms of the least
“outer volume ratio distance” from the class of intersection bodies of
projections of at least proportional dimension of convex bodies. Finally,
we show that certain geometric quantities such as the volume ratio and
minimal surface area (after a suitable normalization) are not necessarily
close to each other.

1. Introduction

In the past decades a lot of effort has been put in the study of prob-
lems of estimating volumetric quantities of a convex body (i.e. a convex com-
pact set with non-empty interior) in terms of the corresponding functionals
of its sections or projections. We refer to the books [Ga2, Ko1, KoY, RZ, S]
for more information, examples and the history of those problems. Our aim
is to continue this investigation by considering a number of problems of this
type.

In Section 3, we study inequalities involving the size of projections of
n-dimensional convex body and study the following problem proposed in
[CGG]:

Question 1.1. Find the smallest constant Λn, such that the following in-
equality holds for all convex bodies in Rn:

(1) min
{e1,...,en}∈Fn

n∏
i=1

∣∣K|e⊥i ∣∣ ≤ Λn|K|n−1,

where Fn denotes the set of all orthonormal basis’ in Rn.
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Inequality (1) can be viewed as a reverse to the classical Loomis-Whitney
[LW] inequality for compact subset A ⊂ Rn:

(2)
n∏
i=1

∣∣A|e⊥i ∣∣ ≥ |A|n−1.

The authors in [CGG] asked for the correct asymptotical behavior of Λ
1/n
n .

In section 3 (Theorem 3.1) we show that Λ
1/n
n ≤ c

√
n, for some absolute

constant c > 0. Moreover, we prove that this estimate is the best possible
up to an absolute constant c. We note that other variants of reverse Loomis-
Whitney type inequalities where considered in [CGaG].

In Section 4, we study a number of inequalities which arise in the study
of comparison problems. For example, what information on convex bodies
we can get from comparison inequalities for its curvature functions. We also
study the relationship of volume ratio, curvature measure and surface area
of convex bodies. For instance we prove that a convex body (even highly
symmetric) can have large volume ratio (close to the volume ratio of the
cube of the same volume) but small minimal surface area (close to the
surface area of the ball of the same volume). Notice that it is well known
that the opposite cannot happen (see (6) below).

Bourgain’s slicing problem [Bou1] asks whether any convex body in Rn

of volume 1 has a hyperplane section of volume greater than c > 0, where c
is an absolute constant. It follows from the work of the first named author
[Ko2, Theorem 1] (Theorem C in Section 5) that if a centrally symmetric
convex body K has bounded outer volume ratio with respect to the class
of intersection bodies (see Section 5 for definition), then the slicing prob-
lem has an affirmative answer for K (actually this result extends to general
measures in place of volume). In Section 5, we extend this result (however,
not bodywise) as follows (Theorem 5.1): If every convex body in Rn has a
projection of dimension at least proportional to n which is close to an inter-
section body (in the sense of outer volume ratio), then the slicing problem
will have an affirmative answer.

2. Background and notation

We use the notation a ∼ b to declare that the ratio a/b is bounded
from above and from below by absolute constants. We denote by Dn the
standard n-dimensional Euclidean ball of volume 1, and by Bn

2 the Euclidean
ball of radius 1. We denote the volume of Bn

2 by ωn.
A set L is called a star body if it has non-empty interior, it is star-shaped

at the origin and its radial function ρL is continuous. We remind that the
radial function ρL of L is defined as:

ρL(u) = max{λ > 0 : λu ∈ L} , u ∈ Sn−1 ,

where Sn−1 = {x ∈ Rn : |x| = 1} is the unit sphere in Rn.
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In this section, K will always denote a convex body in Rn. The support
function of K is defined as

hK(x) = max
y∈K
〈x, y〉 , x ∈ Rn .

The surface area measure (or curvature measure) SK of K is a measure on
Sn−1, defined by

SK(Ω) = Hn−1
({
x ∈ bdK : ∃u ∈ Ω, such that 〈x, u〉 = hK(u)

})
,

where Ω is a Borel subset of Sn−1 andHn−1 is the (n−1)-dimensional Hauss-
dorff measure. If SK is absolutely continuous with respect to the Lebesgue
measure, its density is denoted by fK and it is called the curvature function
of K.

A symmetric convex body ΠK is “the projection body of K” if its sup-
port function is given by

(3) hΠK(u) = |K|u⊥| = 1

2

∫
Sn−1

|x · u|dSK(x) for all u ∈ Sn−1,

where the last equality follows from the Cauchy formula for the volume of
the orthogonal projection. Next, if K1, . . . , Kn are compact convex sets in
Rn, we denote their mixed volume by V (K1, . . . , Kn). We refer to [S] or
[Ga2] for an extensive discussion on the theory of mixed volumes. Note that
if S(K) is the surface area of K, then

S(K) = nV (K[n− 1], Bn
2 ) =

∫
Sn−1

dSK .

In general,

V (K[n− 1], L) =
1

n

∫
Sn−1

hLdSK

and

|K| = 1

n

∫
Sn−1

hKdSK .

The Minkowski inequality for mixed volumes states that

(4) V (K[n− 1], L) ≥ |K|(n−1)/n|L|1/n,

with equality if and only if K and L are homothetic.
As F. John [J] (see also [AGM], page 50) proved, there exists a unique

ellipsoid JK of maximal volume contained in K, the so-called “John el-
lipsoid” of K. Since, for T ∈ GL(n) we have that J(TK) = T (JK),
there always exists T ∈ SL(n), such that J(TK) is a ball. The quantity

vr(K) :=
(
|K|/|JK|

)1/n
is called the volume ratio of K.

Consider a convex body K, with |K| = 1 and such that JK is an Eu-
clidean ball. Then,

1 = |K| = 1

n

∫
Sn−1

hKdSK ≥
1

n

∫
Sn−1

hJKdSK =
|JK|1/n

nω
1/n
n

S(K).
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We know by Stirling’s formula that ω
1/n
n ∼ 1/

√
n, hence

(5) S(K) ≤ c
√
n

1

|JK|1/n
= c
√
nvr(K) .

Let us also define the quantity

∂(K) := min
T∈GL(n)

S(TK)

|TK|(n−1)/n
.

We say that K is in minimal surface area position if S(K) = ∂(K) and
|K| = 1 (see [AGM], Section 2.3). With this definition, (5) gives:

(6) ∂(K) ≤ c
√
nvr(K) .

The parameters ∂(K) and vr(K) are affine invariants. A useful characteri-
zation of the minimal surface area position due to Petty [Pe] states that a
convex body K of volume 1 is in minimal surface area position if and only
if its surface area measure SK is isotropic, i.e.

(7)

∫
Sn−1

|〈x, u〉|2dSK(x) =
1

n
S(K) , for all u ∈ Sn−1 .

We say that the convex body K of volume 1 is in minimal mean width
position (see [AGM, Section 2.2]) if

1

|Sn−1|

∫
Sn−1

hK(u)du ≤ 1

|Sn−1|

∫
Sn−1

hTK(u)du

for every T ∈ SL(n). A very useful result which follows from Figiel, Tomczak-
Jaegermann, Lewis and Pisier estimates (see [AGM, Corollary 6.5.3]) gives
that for a symmetric convex body K ⊂ Rn in minimal mean width position
and of volume 1 we get

(8)
1

|Sn−1|

∫
Sn−1

hK(u)du ≤ C
√
n log n,

for some absolute constant C > 0.
If K contains the origin in its interior, the polar body K◦ of K is defined

to be the convex body

K◦ = {x ∈ Rn : 〈x, y〉 ≤ 1, ∀y ∈ K} .
If T ∈ GL(n) and H ∈ Gn,k, the following formulas hold:

(TK)◦ = T−∗K◦ and (K|H)◦ = K◦ ∩H .

Here, Gn,k denotes the Grassmannian manifold of k-dimensional subspaces
of Rn and the notation A|H denotes the orthogonal projection of A onto
the subspace H.

Let us assume that the origin is the centroid of K. The Blaschke-Santaló
inequality (see [San, RZ]) together with its reverse (see [BM, RZ]) give:

(9) (|K| · |K◦|)1/n ∼ 1/n .

Set N(K,Dn) to be the covering number of K by translates of Dn, i.e.

N(K,Dn) = min{N ∈ N : ∃ x1, . . . , xN ∈ Rn, such that K ⊆ ∪Ni=1(xi+Dn)} .
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Milman ([M], see also [AGM, Chapter 8]) proved that there exists an abso-
lute constant C > 0 and a linear image K ′ of K of volume 1, such that

max
{
N(K ′, Dn), N(

K ′◦

|K ′◦|1/n
, Dn), |K ′ ∩Dn|−1, | K ′◦

|K ′◦|1/n
∩Dn|−1

}
≤ Cn.

If the previous inequality holds for K ′, we say that K ′ is in M -position.
We will also need to use the notion of isotropic position of a convex body

(see [MP, BGVV]): there exists T ∈ SL(n), such that∫
TK

〈x, y〉2dy = L2
K |K|(n+2)/n|x|2 , x ∈ Rn

we will call TK an isotropic convex body or a body in isotropic position.
The parameter LK is called the isotropic constant of K. LK depends only
on K and it is invariant under invertible linear maps. It turns out that
(10)

L2
K =

1

n
min

T∈SL(n)

1

|K|(n+2)/n

∫
TK

|x|2dx =
1

n
min

T∈GL(n)

1

|TK|(n+2)/n

∫
TK

|x|2dx .

It is a major problem to show that LK is uniformly bounded from above by
an absolute constant (the fact that LK > c can be proved by comparison
with an Euclidean ball; see [MP, BGVV]). The best estimate currently
is due to Klartag [K]: LK ≤ C ′n1/4 who removed the logarithmic term
in the previous estimate of Bourgain [Bou2]. It should be noted that (see
[MP, BGVV]):

(11) |K ∩ u⊥| ∼
(∫

K

〈x, u〉2dx
)−1/2

, u ∈ Sn−1 .

Thus, the problem of bounding LK is equivalent to Bourgain’s slicing prob-
lem.

3. A remark on the reverse Loomis-Whitney inequality

The main goal of this section is to provide a sharp asymptotic estimate

for the quantity Λ
1/n
n in the reverse Loomis-Whitney inequality.

Theorem 3.1. There exists an absolute constant c > 0, such that

(12) Λn ≤ (c
√
n)n.

Moreover, there exists a symmetric convex body L in Rn, such that

(13) min
{e1,...,en}∈Fn

n∏
i=1

∣∣L|e⊥i ∣∣ ≥ (c′
√
n)n|L|n−1 ,

where c′ > 0 is another absolute constant.

The proof of Theorem 3.1 follows from two theorems due to K. Ball.
The first is K. Ball’s reverse isoperimetric inequality (for symmetric convex
bodies):

Theorem A. [Ba2] Let K be a convex body and ∆ be a simplex in Rn.
Then,

∂(K) ≤ ∂(∆) ≤ cn .
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The second is a remarkable example of a convex body whose projections
all have large volumes (comparing to its volume):

Theorem B. [Ba1] There exists a symmetric convex body L in Rn of vol-
ume 1, such that

∣∣L|u⊥∣∣ ∼ √n, for all u ∈ Sn−1.

Proof of Theorem 3.1: First, note that the convex body L from Theorem B
serves as an example of a convex body that satisfies (13).

To prove (12), we may assume that K is of volume 1. Let us first consider
a convex body M in minimal surface area position (thus |M | = 1). It was
observed in [GP], that, in this case, the measure SM is isotropic. By equation
(7), Theorem A and the Cauchy-Schwartz inequality∣∣M |u⊥∣∣ =

1

2

∫
Sn−1

|〈x, u〉|dSM(x)

≤ 1

2

(∫
Sn−1

|〈x, u〉|2dSM(x)

)1/2(∫
Sn−1

dSM(x)

)1/2

=
1

2

(
1

n

∫
Sn−1

|x|2dSM(x)

)1/2(∫
Sn−1

dSM(x)

)1/2

=
1

2
√
n
∂(M)|M |(n−1)/n ≤ c

√
n ,(14)

for all u ∈ Sn−1.
Note that for every convex body K, |K| = 1 there exists T ∈ SL(n),

such that TK is in minimal surface area position. Since both (7) and (12)
are invariant under orthogonal transformations, we may assume that T is a
diagonal matrix with strictly positive entries. Then, T−1 = diag(λ1, . . . , λn)
for some λ1, . . . , λn > 0 with

∏
λi = 1. Consequently, if {e1, . . . , en} is the

standard orthonormal basis in Rn, it follows by (14) and the fact that T−1

is diagonal that:
n∏
i=1

∣∣K|e⊥i ∣∣ =
n∏
i=1

∣∣T−1T (K|e⊥i )
∣∣ =

n∏
i=1

∣∣TK|e⊥i ∣∣ ∏
j∈{1,...,n}\{i}

λj

=
n∏
i=1

∣∣TK|e⊥i ∣∣ 1

λi
≤ (c
√
n)n

n∏
i=1

1

λi
= (c
√
n)n .

�

4. Curvature measures and comparison of volumes

Let us continue in another direction with the following observation:

Proposition 4.1. Let K, L be centrally symmetric convex bodies in R2. If
SK ≤ SL, then K ⊆ L.

Proof: Using the definition of projection body of a convex body (see equation
(3)) we get that ΠK ⊆ ΠL. However one can notice that for any symmetric
convex body M ⊂ R2 we have ΠM = 2OM , where O is the rotation by
π/2. The result follows.
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�

Remark 4.2. After a suitable translation, Proposition 4.1 remains true
in the non-symmetric planar case as well. This is due to the additivity of
the curvature measures of planar convex bodies. Indeed, set µ := SL − SK.
Minkowski’s Existence and Uniqueness Theorem (see [S, Section 8.2]) states
that there exists a unique (up to translation) compact convex set M , such
that SM = µ. Assuming that K, L and M contain the origin, we get: L =
K + M ⊇ K, where we used the fact (see [S, Section 8.3]) that in the
plane SK+M = SK + SM and again Minkowski’s Existence and Uniqueness
Theorem.

One cannot naturally expect Proposition 4.1 to hold true in any dimension.
Indeed, let K = [−1, 1]n−3×[−1/10, 1/10]2×[−2, 2] and L = [−1, 1]n, n ≥ 3,
then SK ≤ SL, but K 6⊂ L. From another point of view, one can always
guarantee the comparison of volumes:

Proposition 4.3. Let K, L be centrally symmetric convex bodies in Rn. If
SK ≤ SL, then |K| ≤ |L|.

Proof: Indeed, from SK ≤ SL we get
∫
Sn−1 hLSK ≤

∫
Sn−1 hLSL, and can use

Minkowski inequality (4) to finish the proof.

�

Thus it is interesting to ask for comparison with a Euclidean Ball: If K is a
symmetric convex body of volume 1, such that JK is an Euclidean ball and
SK ≥ ScDn , for some absolute constant c > 0, is it true that K has bounded
volume ratio? Actually, one might ask a weaker (as (6) shows) version of
the previous question:

Question 4.4. Let K be a symmetric convex body, such that JK is a ball.
If SK ≥ ScDn, is it true that the quantity ∂(K)/

√
n is bounded from above

by an absolute constant?

An extra motivation for Question 4.4 is Proposition 4.8 (see below). As
we show the answer to this question is negative. Recall that a convex body
is called 1-symmetric if its symmetry group contains the symmetry group
of the standard n-cube.

Theorem 4.5. There exists an absolute contant c > 0, such that for each
positive integer n, there exists an 1-symmetric convex body L of volume 1
in Rn, such that SL > cSDn, but ∂(L)/

√
n ≥ c

√
n.

Remark 4.6.

(1) Note that if L as in Theorem 4.5, i.e. 1-symmetric, then JL is an
Euclidean ball and ∂(L) = S(L).

(2) K. Ball’s reverse isoperimetric inequality shows that the factor 1/
√
n

gives the worst possible order in Theorem 4.5.
(3) We also note that cSDn = Sc1/(n−1)Dn

, so the assumption in Theorem
4.5 is much stronger than the assumption in Question 4.4.
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Proof of Theorem 4.5: Let Cn be the standard n-cube of volume 1. Consider
the convex body K defined as the Blaschke average of Cn and Dn:

SK =
1

2
SCn +

1

2
SDn .

Note that Cn is in M -position (this, follows, for example from covering Cn
by copies of Dn, see Lemma 8.1.3 in [AGM]), thus:

|Cn ∩Dn| ≥ C−n .

Using the Minkowski inequality (4), we obtain:

C−1|K|(n−1)/n ≤ |Cn ∩Dn|1/n|K|(n−1)/n ≤ 1

n

∫
Sn−1

hCn∩DndSK

=
1

2n

∫
Sn−1

hCn∩DndSCn +
1

2n

∫
Sn−1

hCn∩DndSDn

≤ 1

2n

∫
Sn−1

hCndSCn +
1

2n

∫
Sn−1

hDndSDn

=
1

2
|Cn|+

1

2
|Dn| = 1 .

This shows that

(15) |K|(n−1)/n ≤ C .

Moreover, using the fact that S(Dn) ∼
√
n and S(Cn) = 2n, we get:

1

2

2n+ c′
√
n

C
≤ S(Cn) + S(Dn)

2C
≤ S(K)

|K|(n−1)/n
,

therefore
S(K)

|K|(n−1)/n
≥ c′′n .

Set L := (1/|K|1/n)K. Then, |L| = 1 and

SL ≥
1

2

1

|K|(n−1)/n
SDn ≥ [1/(2C)]SDn .

However,

∂(L) =
S(K)

|K|(n−1)/n
≥ c′′n ,

as claimed.

�

Let K0 be a centrally symmetric star body in Rn. Let us recall the
definition of the curvature image C(K0) body of K0 which is defined via
the curvature function of C(K0) (see [L1] for more information):

fC(K0)(x) =
ρn+1
K0

(x)

n+ 1
, x ∈ Sn−1 .

A convex body L is called “body of elliptic type” if there exists a convex
body K0, such that L = C(K0).

Question 4.7. Is Question 4.4 true for symmetric bodies of elliptic type?
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Remark 4.8. We note that following ideas of the proof from [Sa, Proposi-
tion 5.3] one can show that if Question 4.7 had an affirmative answer, then
the slicing problem would have an affirmative answer as well.

As shown in [Sa], for any symmetric convex body K, LK ∼ ∂(C(K)) (so
the reverse implication to the statement from Remark 4.8 obviously holds).
Hence, it follows by (6) that if all centrally symmetric bodies of elliptic type
have uniformly bounded volume ratios, then the isotropic constant would
be uniformly bounded. It would be, therefore, natural to ask if the reverse
inequality of (6) is true.

Question 4.9. Is there an absolute constant c′ > 0. such that

c′
√
nvr(K) ≤ ∂(K) ,

for all centrally symmetric bodies of elliptic type K?

If Question 4.9 had an affirmative answer, then for any symmetric con-
vex body K, the following would hold true: LK is bounded if and only if
vr(C(K)) is bounded. This provides a good motivation for our next result:
a reverse inequality to (6) cannot hold true for general symmetric convex
bodies.

Theorem 4.10. There exists a convex body K in Rn, such that

∂(K) ≤ c′vr(K)
√

log(n+ 1) .

Remark 4.11.

(1) Actually K, from Theorem 4.10 can be taken to be 1-symmetric.
(2) It follows by K. Ball’s volume ratio inequality [Ba2] and the classical

isoperimetric inequality that Theorem 4.10 gives the worst possible
case up to a logarithmic factor.

Proof of Theorem 4.10: We first notice that the mean width of Bn
∞ (the unit

ball of `n∞) is of the order
√

(log(n+ 1))/n (this can be calculated by passing
to the integral over the gaussian measure and using standard estimates for
the sequence of standard normal variables, see [AGM] and [LT, Chapter 3,
page 79] for more details). Therefore, integrating in polar coordinates, we
get: ∫

Dn

‖x‖∞dx =
1

n+ 1

∫
Sn−1

‖x‖∞ρn+1
Dn

dx

=
ω
−n+1

n
n

n+ 1
|Sn−1|

∫
Sn−1

‖x‖∞
dx

|Sn−1|

∼ ω−1/n
n

∫
Sn−1

‖x‖∞dσ(x)

∼
√
n
√

(log(n+ 1))/n =
√

log(n+ 1) ,

where σ is the Haar probability measure on Sn−1. We note that∫
Dn

‖x‖∞dx =

∫ ∞
0

|Dn ∩ {‖x‖∞ > s}|ds =

∫ ∞
0

|Dn \ sBn
∞|ds .
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Let s0 > 0 be such that

(16) |Dn ∩ s0B
n
∞| = |Dn \ s0B

n
∞| = 1/2 .

∫
Dn

‖x‖∞dx =

∫ s0

0

|Dn \ sBn
∞|ds+

∫ ∞
s0

|Dn \ sBn
∞|ds

>

∫ s0

0

|Dn \ s0B
n
∞|ds+

∫ ∞
s0

|Dn \ sBn
∞|ds > s0/2 .

It follows that s0 ≤ C1

√
log(n+ 1). Take, now,

K := Dn ∩ s0B
n
∞ .

Note that K is 1-symmetric, with |K| = 1/2 and thus

∂(K) = S(K) ≤ S(Dn) ≤ C2

√
n .

Moreover, since K is 1-symmetric, JK is an Euclidean ball and the largest
Euclidean ball contained in K. Using the definition of K we get that JK is
not larger then the largest Euclidean ball contained in s0B

n
∞, so

JK ⊆ s0B
n
2 ≤ (1/c1)

√
log(n+ 1)Bn

2 ,

for some absolute constant c1 > 0. Thus,

vr(K) ≥ c1

(
|K|

|
√

log(n+ 1)Bn
2 |

)1/n

≥ c1
1/2√

log(n+ 1)ω
1/n
n

≥ c2

√
n√

log(n+ 1)
≥ c2

C2

∂(K)√
log(n+ 1)

.

�

Remark 4.12. By a well known lemma of C. Borell [Bor], we have

|Dn \ sBn
∞| ≤ C0e

−c0s ,

for s ≥ 2s0, where c0, C0 > 0 are absolute constants and s0 is defined by
(16). Therefore, ∫ ∞

2s0

|Dn \ sBn
∞|ds ≤

∫ ∞
0

C0e
−c0sds ≤ C ′0

and ∫ 2s0

0

|Dn \ sBn
∞ds| ≤ 2s0|Dn| = 2s0 .

Thus, s0 ≥ c3

√
log(n+ 1), which shows that the logarithmic factor in the

example of Theorem 4.10 cannot be removed.

Remark 4.13. Note that if K is the example from Theorem 4.10 (recall
that |K| = 1/2), by (7) and (14), we have |K|u⊥| ≤ c4 , where we used
the fact that since K is 1-symmetric, SK is isotropic. Also, |K|u⊥| ≥ |K ∩
u⊥| ≥ c5|K|(n−1)/n ≥ c6, since K is in isotropic position and it has bounded
isotropic constant, as 1-symmetric. Consequently (after a suitable dilation),
we may take K in Theorem 4.10 such that all its projections have volumes
of constant order, when it is in minimal surface area position.
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The next two theorems continue the discussion started in Proposition
4.3. Our goal is to provide bounds on the difference of volumes of convex
bodies via its curvature functions.

Theorem 4.1. Let K,L ⊂ Rn be convex bodies with absolutely continuous
surface area measure, such that fK(θ) ≤ fL(θ), for all θ ∈ Sn−1. Then

|L|
n−1

n − |K|
n−1

n ≥ ω
n−1

n
n min

θ∈Sn−1
(fL(θ)− fK(θ)).

Proof: Consider two convex bodies K,L ⊂ Rn such that

(17) fK(θ) ≤ fL(θ)− ε,
for some ε ≥ 0 and all θ ∈ Sn−1. Then∫

Sn−1

hL(θ)fK(θ)dθ ≤
∫

Sn−1

hL(θ)fL(θ)dθ − ε
∫

Sn−1

hL(θ)dθ

or

V (K[n− 1], L) ≤ |L| − εV (Bn
2 [n− 1], L).

Applying the Minkowski inequality (4) to V (K[n−1], L) and V (Bn
2 [n−1], L)

we get

|L|
1
n |K|

n−1
n ≤ |L| − ε|L|

1
n |Bn

2 |
n−1

n .

Thus

|L|
n−1

n − |K|
n−1

n ≥ ε|Bn
2 |

n−1
n .

To finish the proof of the theorem we note that (17) is always true with
ε = min

θ∈Sn−1
(fL(θ)− fK(θ)).

�

We note that if we can consider K to be rBn
2 in the above theorem and

send r → 0 to get that

|L|
n−1

n ≥ ω
n−1

n
n min

θ∈Sn−1
(fL(θ)),

for any L with absolutely continuous surface area measure.

Theorem 4.2. There exists an absolute constant C > 0 such that for
any K,L ⊂ Rn, two convex bodies with absolutely continuous surface area
measure, with fL(θ) ≥ fK(θ), for all θ ∈ Sn−1 and such that K is in the
minimal width position, we have

|L|
n−1

n − |K|
n−1

n ≤ C log n ω
n−1

n
n max

θ∈Sn−1
(fL(θ)− fK(θ)).

Proof: Consider two convex bodies K,L ⊂ Rn such that

(18) fL(θ) ≤ fK(θ) + ε,

for some ε ≥ 0 and all θ ∈ Sn−1. Then∫
Sn−1

hK(θ)fL(θ)dθ ≤
∫

Sn−1

hK(θ)fK(θ)dθ + ε

∫
Sn−1

hK(θ)dθ
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or

V (L[n− 1], K) ≤ |K|+ ε
1

n

∫
Sn−1

hK(θ)dθ.

Now we can apply the Minkowski inequality (4) to V (L[n− 1], K). We can
also use the fact that K is in minimal width position and apply inequality
(8) to claim that∫

Sn−1

hK(θ)dθ ≤ C|Sn−1||K|
1
n
√
n log n = Cωn|K|

1
nn
√
n log n.

Thus

|K|
1
n |L|

n−1
n ≤ |K|+ ε

1

n
Cωn|K|

1
nn
√
n log n.

or

|L|
n−1

n − |K|
n−1

n ≤ εC|Bn
2 |

n−1
n log n.

To finish the proof of the theorem we note that (18) is always true for
ε = max

θ∈Sn−1
(fL(θ)− fK(θ)).

�

5. A note on the slicing problem

Recall that the notion of an intersection body of a star body was intro-
duced by E. Lutwak [L2]: IL is called the intersection body of L if the radial
function of IL in every direction is equal to the (n − 1)-dimensional vol-
ume of the central hyperplane section of L perpendicular to this direction:
∀ξ ∈ Sn−1,

ρIL(u) = |L ∩ u⊥|,
As shown in [L2] (using a result of Busemann’s theorem [Bu]), if L happens
to be a symmetric convex body, then IL is also a symmetric convex body.

A more general class of intersection bodies was defined by R. Gardner
[Ga1] and G. Zhang [Zh] as the closure of intersection bodies of star bodies
in the radial metric d(K,L) = supξ∈Sn−1 |ρK(ξ)− ρL(ξ)|. We refer reader to
books [Ga2, Ko1, KoY, RZ] for more information on definition and prop-
erties of Intersection body and their applications in Convex Geometry and
Geometric Tomography.

Define the quantity Ln := max{LK : K is a convex body in Rn}. For
n, k ∈ N, k ≤ n and c > 0, define the class Cn,k,c of convex bodies K in Rn,
that have a l-dimensional projection P , with l ≥ k, for which there exists
an l-dimensional intersection body, such that P ⊆ L and |L|/|P | ≤ cn.
Finally, define In,k to be the smallest constant t, for which Cn,k,t contains all
centrally symmetric convex bodies in Rn.

Next, let f be a non-negative even continuous function on Rn, and let µ
be the measure in Rn with density f , i.e. for every compact set B ⊂ Rn

µ(B) =

∫
B

f(x)dx.



ESTIMATING VOLUME AND SURFACE AREA 13

This definition also applies to compact sets B ⊂ u⊥. The following was
proved in [Ko2, Corollary 1]:

Theorem C. There exists an absolute constant C0 > 0, such that if L is a
symmetric convex body in Rn, such that L ∈ Cn,n,a, for some a > 0 and µ
is any even measure with continuous density in Rn, then

(19) µ(L) ≤ (C0/a) max
u∈Sn−1

µ(L ∩ u⊥)|L|1/n .

It follows by Theorem C, applied to µ being standard Lebesgue measure,

together with (11) that Ln ≤ C
′
0In,n, for some absolute constant C

′
0 > 0.

Our goal is to replace In,n with In,k, where k is at least proportional to n.

Theorem 5.1. There exists an absolute constant C̃ > 0, such that for any
n ∈ N and for any λ ∈ (0, 1], it holds

Ln ≤ C̃1/λIn,bλnc ,

where b·c denotes the floor function.

We also note that if K has bounded outer volume ratio (in which case
K also has bounded isotropic constant), then K◦ has a bounded volume
ratio and thus (see for example [P, Theorem 6.1]) K◦ has an almost Eu-
clidean section of proportional dimension, which gives a projection of K of
proportional dimension which is almost Euclidean. The following question
is therefore natural:

Question 5.2. Is it true that any convex body K ⊂ Rn has projections of
at least proportional dimension that are close to some intersection body in
the sense of the Banach-Mazur distance?

Before proving Theorem 5.1, we will need some geometric statements.

Lemma 5.3. Let K be a symmetric convex body of volume 1, in M position.
There exists an absolute constant C0 > 0, such that for any subspace H of
Rn, it holds

1/C0 ≤ |K ∩H|1/n ≤ |K|H|1/n ≤ C0 .

Proof: By assumption, there exist points x1, . . . , xN ∈ Rn, with N < Cn,
such that

K ⊆
N⋃
i=1

(xi +Dn) .

Let H ∈ Gn,k. Then, since Dn|H = ω
−1/n
n Bk

2 , we obtain

|K|H| ≤
∣∣∣ N⋃
i=1

(xi +Dn)|H
∣∣∣ ≤ N |Dn|H| = Nω−k/nn |Bk

2 |

= Nω−k/nn ωk ≤ NC ′k(
√
n)k(
√
k)−k ≤ (CC ′)n(

√
n/k)k ,

where we used the fact that ω
1/n
n ∼ 1/

√
n. Thus,

|K|H|1/n ≤ C .
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On the other hand, if we replace K by K◦/|K◦|1/n and since
∣∣K◦/|K◦|1/n∣∣ =

1, we get: ∣∣∣ K◦

|K◦|1/n
|H
∣∣∣1/n ≤ C ,

which gives

(20) |K◦|H|1/n ≤ C|K◦|k/n2

.

Using (9) and the fact that (K◦|H)◦ = K ∩H, we obtain

(c1/k)k/n|K ∩H|−1/n ≤ |K◦|H|1/n.

This together with (20) give

(c1/k)k/n|K ∩H|−1/n ≤ C|K◦|k/n2 ≤ C(c2/n)k/n

or

|K ∩H|1/n ≥ (nc1/(c2k))k/n/C ≥ c ,

as required.

�

The next proposition is based on the existence of an M -position.

Proposition 5.4. Let K ′ be a symmetric convex body of volume 1, be such
that |K ′∩H|1/n ≤ C ′, for all subspaces H of Rn, for some absolute constant
C ′ > 0. Then, there exists an absolute constant C ′′′, such that

|K ′|H|1/n ≤ C ′′′ ,

for all subspaces H of Rn.

Proof: Consider a convex body K of volume 1, in M -position, such that
K ′ = TK, for some T ∈ SL(n). As in the proof of Theorem 3.1, we may
assume that T is diagonal; actually we are only going to need the fact that
T is symmetric, i.e. T ∗ = T . We will make use of a special case of a result
from [F] (see also [S, (5.28)]), stating that if M is a convex body in Rn,
H ∈ Gn,k and P is a convex body in H⊥, then

(21) |M |H| =
(
n

k

)
1

|P |
V
(
M [k], P [n− k]

)
.

Let k ∈ {1, . . . , n − 1} and H ∈ Gn,k. Now we apply Lemma 5.3 together
with (9) to get:

(22)
∣∣((TK) ∩H

)◦∣∣1/n ≥ (c1/k)k/n|(TK) ∩H|−1/n ≥ (c1/k)k/n/c′

and similarly,

(23) |K◦|H|1/n ≤ (c2/k)k/n|K ∩H|−1/n ≤ (c2/k)k/n/c′′ .
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Moreover, for any convex body P in H⊥, using (21) we obtain:∣∣(TK)◦|H
∣∣ =

(
n

k

)
1

|P |
V
(
(T−∗K◦)[k], P [n− k]

)
=

(
n

k

)
1

|P |
V
(
K◦[k], (T ∗P )[n− k]

)
=

(
n

k

)
1

|P |
V
(
K◦[k], (TP )[n− k]

)
=
|TP |
|P |

(
n

k

)
1

|TP |
V
(
K◦[k], (TP )[n− k]

)
=
|TP |
|P |

∣∣K◦|(T−∗H)⊥
∣∣ ,(24)

where we used the fact that TP is a convex body in (T−∗H)⊥. Thus, (22),
(23) and (24) imply (

|TP |
|P |

)1/n

≥ c′′′ .

Replacing P by T−1P , we get:

(25) |P |1/n ≥ c′′′|T−1P |1/n ,

for all convex bodies P in H, for all subspaces H of Rn. On the other hand,
as before one can write:

|(TK)|H| =

(
n

k

)
1

|P |
V
(
(TK)[k], P [n− k]

)
=

(
n

k

)
1

|P |
V
(
K[k], (T−1P )[n− k]

)
=
|T−1P |
|P |

(
n

k

)
1

|T−1P |
V
(
K[k], (T−1P )[n− k]

)
=
|T−1P |
|P |

∣∣K|(T ∗H)
∣∣ .

Therefore, the previous identity, Lemma 5.3 and (25) give:

|K ′|H|1/n =
∣∣(TK)|H

∣∣1/n ≤ (|T−1P |/|P |
)1/n∣∣K|(T ∗H)

∣∣1/n ≤ C ′′′/c′′′ ,

for any subspace H of Rn.

�

Proposition 5.5. Let λ ∈ (0, 1] and K be a symmetric convex body in Rn

of volume 1, such that
∣∣K|H∣∣1/n ≤ A, for some A > 0 and for all subspaces

H of Rn. If, in addition, K ∈ Cn,k,t, for some t > 0, k ≥ λn, then there
exists an (n− 1)-dimensional subspace F , such that

|K ∩ F | ≥ c̃

A1/λt
,

for some absolute constant c̃ > 0.
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Let H ∈ Gn,k. By Fubini’s Theorem, we have:

(26) 1 = |K| =
∫
K|H
|K ∩ (H⊥ + x)|dx .

Let G be a codimension 1 subspace of H. Then, the subspace F := span{G∪
H⊥} has dimension n− 1. The following claim is the key step in the proof
of Proposition 5.5:

Claim. (K ∩F )|H = (K|H)∩G and (K ∩F )∩ (H⊥+ x) = K ∩ (H⊥+ x),
for all x ∈ G.
Proof of the claim: To prove the first part, let x ∈ (K|H)∩G. Since x ∈ K|H,
there exists y ∈ H⊥, such that x+y ∈ K. Since x ∈ G, x+y ∈ F , it follows
that x + y ∈ K ∩ F , so x ∈ (K ∩ F )|H. Thus, (K ∩ F )|H ⊆ (K|H) ∩ G.
Conversely, let x ∈ (K ∩ F )|H. Then, there exists y ∈ H⊥, such that
x+y ∈ K∩F . Thus, x+y ∈ K and x+y ∈ F , so x ∈ K|H and x ∈ F |H = G.
Consequently, x ∈ (K|H) ∩G, which shows that (K|H) ∩G ⊆ (K ∩ F )|H,
as required. To prove the second part, note that for any x ∈ G, x + H⊥ ⊆
span(G ∪H⊥) = F , thus K ∩ (x + H⊥) ⊆ (K ∩ F ) ∩ (x + H⊥). Since the
opposite inclusion is trivial, our claim is proved.

�

Proof of Proposition 5.5: Using again Fubini’s Theorem and the previous
claim, we get:

|K ∩ F | =

∫
(K∩F )|H

|K ∩ F ∩ (H⊥ + x)|dx

=

∫
(K|H)∩G

|K ∩ F ∩ (H⊥ + x)|dx

=

∫
(K|H)∩G

|K ∩ (H⊥ + x)|dx .(27)

Assume, now, that K|H ⊆ L and |L|/|K|H| < tn, where L is an intersection
body in some k-dimensional subspace H of Rn.

Set µ to be the measure on H with density x 7→ |K ∩ (H⊥+x)| (i.e. µ is
the marginal of the uniform measure on K with respect to the subspace H;
see e.g. [Ba3]) and L := K|H ⊆ H . Using Theorem C, we conclude that
there exists a codimension-1 subspace G of H, such that:

(28) µ((K|H) ∩G)|K|H|1/k ≥ (c̃/t)µ(K|H) ,

for some absolute constant c̃ > 0. Since

|K|H|1/k ≤ A1/λ ,

if we set F = span{G ∪H⊥}, applying (26) and (27) to (28), we obtain:

|K ∩ F | = µ((K|H) ∩G) ≥ c̃0

A1/λt
,

as claimed.

�
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Proof of Theorem 5.1. As shown in [K], there exists a symmetric convex body
K, such that LK ≥ c0Ln. We may assume that K is of volume 1 and in
isotropic position. Then, as it was proved in [BKM, Corollary 3.5], |K∩H|1/n
is bounded from above by an absolute constant. It follows immediately by
Propositions 5.4, 5.5 and the definition of In,k that there exists an (n− 1)-
dimensional subspace F , such that

|K ∩ F | ≥ c̃

C1/λIn,[λn]

,

for some absolute constant C > 0. Our claim follows immediately from the
previous inequality and (11).

�
We remark that our method can be used to increase the class of symmet-

ric convex bodies that are known to satisfy (19) (with an absolute constant).
Indeed, one can replace the Lebesgue measure in Proposition 5.5 by any even
measure (one has to repeat the steps of the proof) to obtain the following:

Proposition 5.6. Let µ be an even measure in Rn, with continuous density,

λ ∈ (0, 1] and K be a 0-symmetric convex body in Rn, such that
∣∣K|H∣∣1/k ≤

A|K|1/n, for some A > 0 and for all k ≥ λn and H ∈ Gn,k. If, in addition,
K ∈ Cn,k0,t, for some t > 0 and for some k0 ≥ λn, then there exists an
(n− 1)-dimensional subspace F , such that

µ(K ∩ F )|K|1/n ≥ c̃

A1/λt
µ(K) ,

for some absolute constant c̃ > 0.

In particular, it follows from the previous statement and from Lemma 5.3
that if K ∈ Cn,k,c, for some k ≥ λn and K is in M -position, then (19) holds
for K (with an absolute constant) for all even measures µ with continuous
density. As an example, take K = aBn

2 ×L, where L is any convex body in
M -position, dimL = n and |L| = |aBn

2 |.
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[San] L.A. Santaló, An affine invariant for convex bodies of n-dimensional

space, Portugaliae Math. (In Spanish) 8 (1949), 155–161.

[Sa] C. Saroglou, Minimal surface area position of a convex body is not

always an M-position, Israel J. Math., 195 (2013), 631–645.



20 A. KOLDOBSKY, C. SAROGLOU, AND A. ZVAVITCH

[S] R. Schneider, Convex Bodies: The Brunn–Minkowski theory, Second

Expanded Edition, Encyclopedia of Mathematics and its Applications,

151, Cambridge University Press, Cambridge, 2014.

[Zh] G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer.

Math. Soc. 345 (1994), 777–801.

Department of Mathematics,, University of Missouri, Columbia,, MO
65211, USA

E-mail address: koldobskiya@missouri.edu

Department of Mathematics,, Kent State University,, Kent, OH 44242,
USA

E-mail address: csaroglo@kent.edu & christos.saroglou@gmail.com

Department of Mathematics,, Kent State University,, Kent, OH 44242,
USA

E-mail address: zvavitch@math.kent.edu


