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Abstract

We prove that the (n — 2)-dimensional surface area (perimeter) of central hyperplane
sections of the n-dimensional unit cube is maximal for the hyperplane perpendicular to
the vector (1,1,0,...,0). This gives a positive answer to a question of Pelczynski who
solved the three dimensional case. We study both the real and the complex versions of
this problem. We also use our result to show that the answer to an analogue of the
Busemann-Petty problem for the surface area is negative in dimensions 14 and higher.
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1 Introduction, volume formulas and results

A remarkable result of Ball [B1] states that the hyperplane section of the n-cube B! perpen-

dicular to amee = \%(1, 1,0,...,0) has the maximal (n — 1)-dimensional volume among all

hyperplane sections, i.e. for any a € S"~! C R”

vol,_1(B™ Nat) < wol,_1(B Nat,.) =2,

where at is the central hyperplane orthogonal to a. Oleszkiewicz and Pelczyniski [OP] proved
the complex analogue of this result, with the same hyperplane a:. ..
Pelezyniski [P] asked whether the same hyperplane section is also maximal for intersections with
the boundary of the n-cube, i.e. whether for all a € S~ C R"

vol,_5(OB™ Nat) < wol,_o(dB™ Nat,.) = 2((n—2)V2 + 1).
He proved it for n = 3 when vol;(0B2, N at) is the perimeter of the quadrangle or hexagon
of intersection. In this paper, we answer Pelczynski’s question affirmatively for all n > 3. We
also solve the complex version of this problem. For simplicity, we continue to call the quantity
vol,_o(OB" Nat) the perimeter of the cubic section.

*Part of the work was done when the first-named author visited the University of Missouri-Columbia as a
Miller Distinguished Scholar
**Partially supported by the NSF grant DMS-1700036



Ball [B2] used his result to prove that the answer to the Busemann-Petty problem is negative in
dimensions 10 and higher. The Busemann-Petty problem asks the following question. Suppose
that origin-symmetric convex bodies K, L in R" satisfy

vol,_1 (K Na*) <wol,_1(LNab)

for all a € S™ 1. Does it follow that the n-dimensional volume of K is smaller than that of L,
i.e. vol, K < vol,L? The problem was solved as the result of work of many mathematicians,
and the answer is affirmative for n < 4, and it is negative for n > 5; see [K] for details. Ball’s
result was one of the steps of the solution. He showed that the answer is negative when n > 10,
K is the unit cube and L is the Euclidean ball of certain size in R".

We consider the following analogue of the Busemann-Petty problem for the surface area. Sup-
pose that n > 3, and origin-symmetric convex bodies K, L in R" satisfy

vol,_o(0K Na™) < wol,_o(OL N a™)

for all @ € S™71, i.e. the surface area (perimeter) of every central hyperplane section of K is
smaller than the same for L. Does it follow that the surface area of K is smaller than that of
L, ie. vol,_1(0K) <wol,_1(0L)? We prove in Section 4 that the answer is negative for n > 14
and higher, when K is the unit cube and L is the Euclidean ball of appropriate size in R"™.

To formulate our results precisely, let us introduce the following notations. Let K € {R,C},
a =3 for K=Rand a = —= for K= C. Let || - || and |- | denote the maximum and the
Euclidean norm on K", respectively. Then

Bl = {a € K" | ||o|l. < a}

is the n-cube of volume 1 in K"”. For K = C, we follow the usual definition of volume by
identifying K™ with R?", i.e. we consider vols, and voly, 5 for the polydisc B? and its complex
hyperplane sections, respectively. For a € K" with |a| = 1 and t € K, the parallel section
function A is defined by

Ajn-1)(a,t) == volym—_1y (B N (a* + ata)),

where | = 1if K=Rand [ = 2 if K = C and a* := {z € K" | (z,a) = 0}. This gives the
volume of the hyperplane section of the n-cube perpendicular to a and at distance at to the
origin. We put A;,—1y(a) = Ayn—1y(a,0). Then Ball’s result and Oleszkiewicz and Pelczynski’s
complex analogue state that for all a € K™ with |a| = 1 we have

Atn—1)(@) < A1 (@mas) = (V2)".

The lower bound 1 = Ajp—1)(@min) < Ain-1)(@), min = (1,0,---,0), was shown earlier by
Hensley [H].

For a € K" with |a| = 1 we define the perimeter of the cubic section by a' as
Pl(n_g)(a) = voll(n_Q)(ﬁBQo N CLL),

with [ as before. The main result of this paper answers Pelczynski’s problem affirmatively:
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Theorem 1. Let n > 3 and apey =
we have

\%(1, 1,0,---,0) € K". Then for any a € K" with |a| = 1

Pin-2)(a) < Pin-2)(tmaz) (1)
where l =1 1f K=R and l =2 1f K= C. We have

P o(tmaz) =2((n —2)vV2+1) , K=R

and
Pg(n_Q)(amaz) =2r((n—2)2+4+1) , K=C.

For a € K" with |a] = 1 let a* denote the non-increasing rearrangement of the sequence
(lag|)r_;. Since the volume is invariant under coordinate permutations and sign changes, which
in the complex case means rotations of coordinate discs, we have

Al(n—l) (CL, t) = Al(n—l) (CL*, ‘t’)
and
Pyn-2)(a) = P2 (a”).

Therefore, we will generally assume in this paper that a = (ax)}_; satisfies a; > --- > a,, > 0
and |a| =1 as well as t > 0. For the parallel section function, the following formulas hold

2 [ sin(a
A - =
no1(a,t) = 7r/I_I costs)d , K=R, (2)
0 k=1
1
Ag(n— 1)at—§/H (ags) Jo(ts) sds , K=C, (3)
0 k=1
where j; (t) = 2J1(t and J, denote the Bessel functions of index v. If a; = 0, M and 7 (axs)

have to be read as 1 in formulas (2) and (3). Formula (2) was shown already by Pélya [Po]
in 1913, and was used by Ball [B1] in the proof of his result. Both formulas can be proven
by taking the Fourier transform of A;;,_1y(a, ), using Fubini’s theorem and taking the inverse
Fourier transform, cf. e.g. Koldobsky, Theorem 3.1 [K] or Kénig, Koldobsky [KK1] and [KK2].
The #2¢ and j;(¢) functions occur as Fourier transforms of the interval in R and the disc in
C = R?, respectively. For the complex case cf. also Oleszkiewicz, Pelczyniski [OP]. To prove

Theorem 1, we use the following formulas for the perimeter.

Proposition 2. For any a = (a;)7_, € S""' CR"

Py _QZ /1—a2 2 / H M cos(ags) ds , K=R, (4)

J=Llj#k

Psn—2)(a —27r21—ak / H Ji(a;s) Jo(ags) sds , K=C. (5)

J=Llj#k



In Ball’s result, the integral in (2) for ¢ = 0 is estimated by using Holder’s inequality if a; < \/L?
which is natural since in the extremal case (a; = ay = \/Li,aj = 0,7 > 3) the integrand is
non-negative. In (4) and (5) we have weighted sums of integrals where the integrands are
non-positive in the extremal case. Therefore, estimating Py,—2)(,) requires further methods in
addition to Ball’s techniques and inequalities or those of Oleszkiewicz and Pelczynski. One
idea is to consider the perimeter estimate as a constrained optimization problem, in view of
the following two results. We continue to denote [ =1if K=Rand [ =2 if K=C.

Proposition 3. For any a = (a)7_, € S""' CR" and k € {1,--- ,n}, define

Dy(a) = % fo j= 1,j¢k Slr;(J—a;S) cos(ags) ds , K=R (6)
% fo jzl,j;ékjl(ajs) Jo(ags) sds , K=C
Then
Z Di(a) = (n—1) Ain—n(a). (7)
Proposition 4. For any a = (a)7_, € S ' CR" and k € {1,--- ,n},

Dk(a) S Al(n—l) (a) (8)
The proof of Proposition 4 also yields the following estimate for the parallel section function

Corollary 5. For any a € K" with |a| =1 and t > 0 we have

1/2
Ain-1y(a,t) < :

Ball’s proof relies on the non-trivial estimate f(p) < f(2) =1 for the function

_p2/°°
V2 ),

since then in the real case for all 0 < q, < --- < a; < \/Lg with ZZ:I a% = 1 we find by using

/0°°_

~ (qLreortva< va (9)

=1

sin(t) |7

Y

Holder’s inequality with py := a,;z > 2

n
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k
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The constrained approximation approach suffices to prove Theorem 1, except when, in the
real case, a; is in a small interval around \/Li To prove Theorem 1 also in this case, we need
additional information on the function f:



Proposition 6. Define f: (1,00) — R, by

N
f(p)'_\/;ﬂ/o
Then

(a) lim, . f(p) = \/g and f(%) < \/g )
(b) f(V2+3) <% .

(c) f][\/iJr%&] is decreasing and convex.

sin(?)
t

p
dt.

Proposition 7. For allp > 4, f(p) < \/g

Using the convexity of f and the estimates for f(p) for p = v/2+1/2 and p = %, we may improve
the general estimate (9) for certain sequences a with a; close to \%, which will essentially suffice
to prove Theorem 1 in these cases. This works since

\/§=;Lrgof(p) <f(2)=1,

i.e. f has strictly smaller values near oo than at 2. In the complex case, the function f is
replaced by

. 1 [
Fo) =55 [ litors ds

where also f(p) < f(2) =1 for all p > 2, cf. Oleszkiewicz, Pelezyniski [OP]. However, in this
case lim,_o f(p) = f(2) = 1. Therefore, no analogue of Proposition 6 (a), (b) and Proposition
7 is possible in the complex case. Fortunately, in the complex case, the perimeter formula given
by (5) is easier to estimate since it does not contain a square root in the weights of the integrals,

and the constraint technique works for all sequences a.

We quickly outline the strategy of the proof of the main result. In section 2, we prove the
perimeter formulas of Proposition 2 and the constraints of Propositions 3 and 4 for the inte-
grals occurring in Proposition 2. The constraint optimization problem is then solved to prove
Theorem 1, except for the case where K = R and a; is very close to iz In the latter situation,
the optimization problem yields an estimate which is weaker than the one claimed in Theorem
1. The problem is that the extremals for the perimeter estimate (a; = ay = \%, ar =0,k > 3)
deviate too much from the extremals for the constraints. We also give a direct proof of Theorem
1 in the first non-trivial case n = 3, K = R.

In section 3 we consider the real case when a; is close to \/Li In the constraint optimization

problem, we estimate the perimeter by ¢(aq,as)A,_1(a) for a specific function ¢. Ball’s esti-
mate A,_1(a) < /2 is not sufficient to prove Theorem 1 if a; is too close to \% for this specific
function ¢. However, in this case of ai, the general estimate A,_;(a) < v/2 may be improved
to A,—1(a) < V2 — d(ay,ay) for a certain function d(ai,as) > 0 by improving Ball’s estimate

f(p) < f(2) =1 for p > 2 for his function f defined above. We show that e.g. f(p) < \/g <1



for all p > %. This improves the estimate A,_;(a) < v/2 when a; < %, in which case f(p) < %
9

is applied to p = a1_2 > 1. Other cases of ay < a1 < Lz and ay < LQ < ay are treated by
some form of interpolation, using the convexity of f near p = 2 which is shown in the proof of

Theorem 6, see chapter 3.

The application to the Busemann-Petty type problem is considered in section 4. The Appendix
gives some of the technical proofs concerning Ball’s function f.

2 Geometric relations and optimization

We start by proving the formulas for the perimeter.

Proof of Proposition 2.

Let a = (a)p_, € S, a1 > -+-a, > 0 and € K*. We write a = (ay,a), * = (x1,Z) with
a = (ar)ji g T = (x)}_y € K"~ 1. This notation is also used in the following proofs. In the
real case K = R, the (n — 1)-dimensional hyperplane a' intersects the boundary dBZ in 2n
(n — 2)-dimensional (typically non-central) sections of an (n — 1)-cube, namely for z; = £,
j=1,--- ,n. For xy = —% we need to calculate

1
vol, »{% € R"' | (#,a) = §a1}.

Let a := \/%—a%, j=1,---,nand @ := (a})j_,. Then |&|* =" ,a}? = 1. Using (2), we find
~ n—1 o 1 ~1
vol,_o{ T € R" ™ | (Z,a) = S0 }=A, »(d,ay)

sin(a)r) sin aj
H cos(ayr)d 1— al H cos(ays)ds .

The same holds for z; = + and similarly for z; = j: , So that

P, 5(a) =2 Z \/1—ai = / H sin a] cos(ags) ds ,

Jj=1,j#k

which proves (4).
In the complex case K = C, we have to consider the intersection of a* with z; = \/LE exp(16)
for all # € [0,7), and use (3) instead of (2). Then

Psn—2)(a _271'2 / H Jilayr) Jo(agr) v dr

J=1,j#k

—27T21—ak / H J1(a;s) Jo(ags) s ds

J=Llj#k



which yields formula (5). O

Pelczyniski [P] proved Theorem 1 for n = 3 in the real case by considering three affine indepen-
dent points on the boundary of the cube and their antipodals, calculating the perimeter of the
(possibly non-planar) hexagon defined that way. This perimeter then turned out to be maximal
in the case that the hexagon degenerates into a rectangle perpendicular to e.g. (1,1,0), which
is planar. We give the easy direct proof of Theorem 1 for n = 3, K = R by using Proposition 2.

Proof of Theorem 1 for n =3, K = R:
For a > 8 > 0 and v > 0 we have

R L vsam
_/ sin(as) sin(Bs) cos(ys)ds = { 4551 | a—fB<y<a+f . (10)
T Jo as /68 0 04—{—6<'}/

Let a; > ay > az > 0, a? + a3 + a2 = 1. Using (10) to calculate the integrals in (4) and
distinguishing the cases a; > as + a3 and a; < as + a3, we find that

1
].P(CL)_ a1 \/1 a%—{_\/l_a% , 0120zt ag
— 1 pr— :
2 \% 1 - a2_2|—aa3a “+ \/ OJ% a1;a!113a =+ V a% GLI—Qf—aafaza3 (1< a2 ag

In the first case, the hyperplane intersects the cube in a rectangle, in the second case in a
hexagon.

i) Assume first that a; > ag + as. Then (a1 —a)*> > a3 =1—af —a3, 1 — a3 < a? + (a1 — az)?
and

1 1
EPl(a)_a(\/a%—i—(al—ag +\/a1+a2 V1—(1—2)24+V1-2a2,
1
where 0 < z := Z—j < 1. The right side is maximal for z = 0 or z = 1 with %Pl(a) < V24 1.

ii) If a; < ay + ag, assume first that a; = as > az > 0. Then f <ag=a < \/5, 1-— a3 = 2a?
and, as easily seen by the above formula,

_pl( \/_jua1 (y/1—a? — ,/——a1 <V2+1.

If a1 < ay + as, but a; > as, define = by a3 = x(a; — ag) so that x > 1. Then

1 — — 1
—P1 \/ 1- a1 —1—\/ 1— a3 xx: +/ 1 — 22(a; — ay)? o+~ ola a2)) =: §¢(x)
1

a1a2
We have

W (z) = (\/1_“% - \/1—a§)i _g2 @ m(a1—a2)2a1+a2—x(a1—a2).

3
as ap a? aiay V1 —d? aiap




If the factor of 5 is negative, all summands are negative and ¢'(x) < 0. If the factor is positive,

2/},(x)g(\/l—a% \/1 a)

a1az2
= aiy/1—a? —ag\/1—a3 — (a1 — az)y/a? + a3).
G16L2

This is negative as well: ¢(y) = y/1 — y? satisfies ¢'(y) = \1/_12%, so that a;\/1—a? —
-y

as+/1 — a% = (a1 — ag)\l/;—Q_Lyz for some ay < y < ay. But

1 — 2¢? 1-2
Y % \/1—a2—\/a1—|—a§<\/a1—|—a2.

V1—192 \/1—a2_

Hence ¢'(x) < 0, so that ¥ (z) < (1) since « > 1. Therefore

1 1 5 5
P < —(1-ad 1 a)

and, since = 1, af + a3 + (a1 — a2)? = 1, az = 3(a1 + /2 — 3a}), yielding

1 1 1 1
1—a? = 5(1+a%)—§a1\/2 —3a} =:¢_(a1), 1—a} = a3+a3 = 5(1+a%)+§a1\/2 —3a2 =: ¢y (ay),

with \/Lg <a < \/g so that

ay — a2
2 2
ay + aj

1 1

§P1 Sa—\/qb a) + Vo (a1) < V2 +1,
the maximal value being attained for a; = \/Li a
For K = R and n = 4, formula (4) can be integrated exactly by using formula (2.1) of Kénig,

Koldobsky [KK1] - instead of (10) in the case n = 3 - and distinguishing three cases. The result
is

(
2 az+az—ay a1taz—az / 2 aitaz—as
1= ay 2a2a3 + 1—- 2a1a + — a3 2a1a2
— 1 a4(a2+a3 a1) B
+v/1-dj (a1 T daraszas ) s am<axtaz—ay

§P2(a) = —% (—ai\/1 —a? + as\/1 — a3 + az/1 — a3 + as/1 — a3) (11)

FEWVI= B4 VI=B+VI=@) b a—ar <o <ot o+

il(\/l—ag—l—\/l—ag—l— 1—a3) , Gy +az+as < ay

\

Proof of Proposition 3.
We first give a geometric proof in the real case.
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a) Let ap > -+ >a, >0, > ,_,a; =1, a} := \/%, a = (aj)}_, and Dj(a) be given as in
a2

(6). By transformation of variables

sin(ajr) cos(ajr) dr = !

\/1—a1 / H ajr 1—a?

Dl(a) An_2<d,, a'l),

in terms of the (n — 2)-dimensional volume of the section of B! perpendicular to @ and

at distance 1a to the origin of B! Since :—2— is the height of the (n — 1)-dimensional

2d 2 /1al

pyramid P(1) with vertex in 0 and base being the above (n — 2)-dimensional section,

1
n—1

| =

1

2,/1—a?

vol,_1(P(1)) = A, 5@, ay)

Summing up the volumes of these pyramids, also for opposite sections, yields

@) =2 vol, 1 (P(F) = ! 5" Difa)

which is (7).

b) We now give a second, analytic proof of (7), based on integration by parts, using

d ,sin(a;s) 1 sin(a;s)

g( a;s )ZE(COS(%S)— a;s

)7

if all a; are > 0. Then

D) — | 2 ﬁsin(ajs)sin(als)]m % /Ooo " I sin(ags) (cos( i5) Sin(ajs)>sin(als) .

n
2
T a;S a S a;S a
j=2 ! =2 k=2,k#4j J !

n

= (n— DA, 1(0) = Y Dy(a) |

=2

so that 7 Dj(a) = (n — 1)A,-1(a). If some a; are zero, the corresponding Dj(a) equals
A,_1(a), and (7) follows by integration by parts only for those k where a; # 0.

c¢) The integration by parts technique also works in the complex case K = C, using

d . d Jl(S) JQ(S) J()(S) Jl(S)
- =92 | 2227 ) = 92 =2 —4
dsjl(s) ds ( s ) s s s?
and £ (sJi(s)) = sJo(s). For these formulas on Bessel functions, cf. Watson [W]. O

Proof of Proposition 4.
We first consider the real case. To show Dy(a) < A,_1(a), we may assume without loss of
generality that £ = 1 and a; > 0. We will not use any inequality between the coordinates of
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a in this proof, but assume that a; > 0 for all k. Again, let a; = \/% for j =1,--- ,n,
—a

a' = (af)j_y, € R*'. Then }77 ,af = 1 so that by transformation of variables and (6) in

i=2 %
dimension n — 1
1 2 [ iy sin(ar)
Di(a) = —— —/ ——2 2 cos(air) dr
V1—a? T Jo Jl_[Q a;r
1

1
= ——ol, o{ 7€ BY" | (3,d) = Ea'l }.

V1—a3

By Brunn-Minkowski, we have for any ¢t € R with [t| < d}
=, n—1 ~ o~ 1 / ~ n—1 ~ ~/ 1
vol,o{Z € BL " | (z,d') = §a1} <wol,o{T € BL " | (z,d') = 575}

Therefore 1 1 1
——wol,,_1{7 € Bgo—l z,a)] < =d}}.
i 1{ | [(,d")] 5 1
Define T : R*' — R™ by T(z) := (—2%2 7). Then T maps the slab

{# € B | |{z,d')] < 3a}} in dimension n — 1 into a central section of B2,

D1 (a) S

1
T{i e BY " | |(z,d)] < 5a’l} ={y = (21,%) € B | myay + (%,d’) = 0}
={ye By | (y,a) =0}.

Recall here that we normalized B! and B” to have volume 1. Since

1
T =1d+ — (-,a") a,
aj

T*T has an (n — 2)-fold eigenvalue 1 and one eigenvalue 1+ — (with eigenvector @’ of norm 1)

so that
Vdet(T*T) = i\/a’2 +1= i—l
ah V! ay /1 —a2

Therefore

1
Di(a) < \/det(T*T) vol, 1{% € BZ " | {z,d')| < §a’1}

=voln—1{y € BL, | (y,a) = 0} = Ap1(a).
The complex case requires only minor modifications. In that case

1 1
Di(a) = volym-1){T € B | (7,d) = —=d}}

1—a? NZ3

1 1 1
— volyn—1){Z € B | |(z,d)| < —=d}}.

2 2
ar 1 —aj NZS

<
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Define T : C"~! — C™ also by T(z) := (—<57j/>,i), mapping the slab in C"! into the central
1
section in C" defined by a'. In the complex case \/det(T*T) = —z(1 + af?) = }2 - 2, so that
1

D1 (a) < wolym-1y{y € BY | (y,a) = 0} = As1)(a).

O
Proof of Corollary 5.
Let a € K", [a| = 1 and t > 0. Put aj = 1%, t' == . Then (d,¢) € K", |(d,t)] = L.

We get from (2) and (3) by transformation of variables A;,—1)(a,t) = ;ﬂ D((d,t")), where

1+
e.g. in the real case
sin(a
D(( / H cos(t's) ds.

By Proposition 4, applied to (a',t') € S™ C R”“, D((d', ") < An((a', 1)) < /2. Similarly, for
K=C, D((d,t)) < As,((a', ")) < 2. Therefore

2

)l/2‘
1+ t2

Ajn-1) < (

O

In the case that the largest coordinate a; of a € S"! satisfies a; > \[ Ball [B1] showed by
projecting at onto a; ., = (1,0,---,0)* that

1 1
An, < — An, min) — — - 12
1(0) < = Aps @) = o (12)
The complex analogue of this is, again if a; > 7
1 1
Agn-1y(a) < = Ag(n-1)(Amin) = —, (13)
aj ay

cf. Oleszkiewicz, Petezyniski [OP].

We now prove Theorem 1, except in the real case when a; € (V2 — 1, ————) ~ (0.643,0.723),

VRS

i.e. when a; is close to f This is done using the constraints given by Propositions 3 and 4.

Proof of Theorem 1.
(a) We first verify the result in the complex case K = C which is easier to prove. We have for

amax

Dy(aymas) = D) = 1/:0]'1(—) Jo(=) s ds:2/ooo Tu(t) Jolt) dt = 1,

1 [ s > dt ,
Dj(amax) = 5/0 ]1(—)2 sds = /0 Jl(t)z? =2 , ] > 2.



For these integrals, cf. Gradstein, Ryshik [GR] or Watson [W]. Hence by (5)
Psn-1)(@maz) = 2m(1 4+ (n — 2)2) = 27(2n — 3). (14)

Now consider a = (ax)}_; € S"! with a; > --- > a, > 0. By Proposition 2

1 n
—Pan (@) = D (1 a2) Dila),
k=1

and using Propositions 3 and 4, we have

1 n n
—Pynyy(a) < sup{> (1—a}) Cx | 0 < Cp < Ayny(a), D Cr = (n— 1) Aypyy(a)}.

27
k=1 k=1

Since (1 — a})p_, is increasing in k, the sum » ;_, (1 — ai) Cy will be maximal under the given
restrictions, if the sequence (Cy)}_; is increasing as well which, in fact, means that C; = 0,
Cy=---=C, = Ayp_1)(a). Therefore

n

1
5= Pan-n(a) < ) (1= ap) Asinry(a)
k=2

n

=[(n—=1) = a}] As_ry(a) = (n — 2+ af) Asgy)(a).

k=2
If a; < \/LT we use that Ayp,—1)(a) < Asn—1)(amaez) = 2 by [OP], so that with (14)

1 3 1

27TP2(71—2) (CL) S (TL - 5) 2= %P2(n—2) (amax)~

If a; > \%, we use that by (13) Agn-1)(a) < %, so that

1 o1 n-2 1
o @) S =2 )G = T LS ) 2 = P ().

This proves Theorem 1 in the case of complex scalars.

(b) In the real case K = R, we have for @,

S

o< sin(-5) s 12 /00 sin(t)

cos(—=) ds = —

2
D Qmazx) = D Umaz) = — S -
nar) = Dafanor) = = | S ol ) ds= o

Dj(maz) = %/OOO (Sin;)y ds = \/52 /OOO (Smt(t)>2 dt =2, j>2

Hence by (4)

Py -a(amaz) = 2((n = 2)V2+1). (15)

12



Now let a = (ax)}_; € S"=1 be arbitrary with a; > --- > a, > 0. By Propositions 2, 3 and 4

we get, similarly as in part (a),

1 n n
§Pn_2(a) < sup{z 1—a2 Cr | 0<Cp < Ayi(a), ZC’“ =(n—-1) Ap_1(a)}.
k=1 k=1

Since also (y/1 — ai )}¥_; is increasing in k, the supremum is attained for increasing Cj, as well

and, in fact, for C; =0, Cy = -+ = Cy = A,_1(a) so that
1 - 5
5 Pra(a) < > J1-a} Ai(a).
k=2

Since ¢(x) = /1 — x is concave,

1
n—1

n

S 6a) < o > a) = b (1~ ad).

Hence

2 2

1
§Pn,2(a) S (n — 1) 1-—
Ifa; < \%, we use that A,_;(a) < /2 by [B1] to get

: o) < (n—2)V2 + 2\/5

(\]

If ay > \%, we use that A,_;(a) < % by (12) and also find

1 3 1
gtn—2(a) < (n—3 +a§)a—1

<(n-2V2+ 2V

(16)

However, %\/ﬁ ~ 1.0607 > 1, so that this does not prove P, s(a) < P,_2(dymaz) for alla € S*7L.

However, if a; satisfies a; < v/v/2 — 1 ~ 0.643, (17) yields

%Pn_g(a) < (n — § 4 \/5_ 1) \/E: (n— 2)\/54— 1= %Pn_g(amaa;)-

1

For a; > —5, the requirement that (n—1)4/1— %i < (n —2)v/2 + 1 is strongest for
1

n = 3, in which case it means a; > ———
V2+3

a ¢ (VV2 -1, \/12_%), we have shown P, _s(a) < P,_2(@maz)-

Hence Theorem 1 is proved also for real scalars, except in the situation that

1
ar€ [ VV2-1 ———.

V2+3

13

~ (.723. Therefore for any a € S" ! with

(18)



where the estimate is off by at most 2(%\/5 — 1) >~ 0.121. This discrepancy occurs since in
(16) the extremals for the sum of weights and for the section function A occur for different
sequences a. This could possibly be avoided, if one could show how the monotonicity of the
sequence (ay)p_, affects the size of the integrals Dy (a), but we have not been to find a result of
this type. Instead, we will address the case of (18) by a different method in the next section.

3 Interpolating Ball’s function

To prove Theorem 1 also for hyperplane sections perpendicular to a with a; € (v/v/2 — 1, \/ﬁ),

K = R, we will improve the general estimate for A,_1(a) in (17), by using the improved esti-
mates for Ball’s integral function f stated in Propositions 6 and 7. The convexity of f allows
estimates by interpolation for certain values of a; and as near -=. The technical proof of
Proposition 6 is given in the Appendix. The proof of Proposition 7 is a slight modification of
Nazarov, Podkorytov’s [NP] proof of Ball’s inequality f(p) < f(2) =1 for p > 2. Recall that

Proposition 7 states that f(p) < \/g < 1 forall p > %.

S

Proof of Proposition 7.
Let f: (1,00) — R+ denote Ball's function, f(p) :== /22 [7| Sm(t [P dt. Define g, h : [0,00) —

R, by g(z) := |Sln 2| and h(z) := exp(——) Wlth g(O) =1, and let G,H : (0,1] — R, denote
the distribution functions of g and h, respectively. We claim that there is yo € (0, 1) such that

H(y) <G(y) forall0 <y <y, and H(y)>G(y) forall yo <y < 1. (19)
The distribution function lemma in [NP] then implies that the function ¢ : (1,00) — R4,
1 o
o(p) :=—5 [ (h(x)" —g(x)") dv
DPYo Jo

is increasing in p. Since by Proposition 6 for py : 9

/Ooog(:c)poz/o \/7 \/; \/ﬁ / exp( —ggﬂ /0 g(x)°dz,

we conclude that for all p > %
p [e') o
dx:/ g(x)? dx < / h(z)? dx = 3_7r7
0 0

o0
/0 2p

which is equivalent to f(p \/7 For p = 2,

2dr == \ﬁ—:/ h(z)? d.
/Og(x) =5 >0 g i ()" dx

Therefore there is ¢ € (2,9) such that

SlIl

sin(z)

T

0= / T (h@) - g(a)") do = g / Y (Hy) — Gy)) dy.

14



Hence H — G has at least one zero yo € (0,1). To prove (19), we will show that H — G has
only one zero. For m € N, let vy, :== max{ g(x) | x € [mm, (m + 1)7]}. Since

sin(z) _ H(l— x ),

* neN ()
we have forall 0 < z < 7
sin(x) 2 z? -
W)= - )< -) o= g
nEN nEN

ie. g(z) = # < exp(—%z) = h(z). Therefore H — G is positive in (y;,1). To show that
H — @ has only one zero, it suffices to prove that (H — G)" > 0in (0,y1) = U,,eN[Um+1: Ym)-
Since H' < 0,G’ < 0, this means that |%\ > 1 has to be shown there. We have, similarly as in

NP, H(y) = h™'(y) = \[6ln(}), H'(y) = /3 —L— and

Cwl= 3 ooy

x>0, g(x)=y

For y € (Ym+1,Ym), g(x) = y has one root z in (0,7) and two roots z;1,x;2 in (jm, (j + 1)m)

for j = 1,--- ,m. Easy estimates show |¢'(z0)| < 5, |¢'(z;1)], |9 (2)2)] < ﬂij, j € N so that for
all Y S [merla ym) with Y > Ymy1 > ( !

m—i—%)

G'(y)| > 201+ 7)) =2+ 7wm(m + 1),

j=1

>vg@+mMm+Dw m%)

2 24+ mm(m+1) 3 2 5w
2\/; o+ D) \/1n(7r(m+§))2\/§ln(7)>1.

This means that (19) holds and Proposition 7 is proven. O

Theorem 1 has been shown for K =R, n = 3 and for n > 4 if a; ¢ (v/v2 -1, ——). We

now consider the remaining cases and assume first that ay > %

Lemma 8. Assume that a € S"™1, a; € (v V2 —-1,—- ) and ay >

wom . Then

win

[NIE

Pn—2(a’) < Pn—2(amaac) = 2((” - 2)\/§+ 1)

15



Proof. Since a2 4+ ---+a3 =1 —af — a3 < §, we know that a,, < ---

a; < \/1§+1 . By concavity of v/1 — x, we find similarly as in (17)
2

IN
&
IN
A

Wi
IN
5
IN

[SSIE

1 n
5 Pn-2(a) < > \J1—a} Api(a)
k=2

<| (=2 [1-==0F 4 [1-dd | Ava(e)

1—a%—a§ / 5
= (n—2>\/1—ﬁ+ 1—CL2 An,1<a>
r 2 2
< (n—2)—#+\/1—a%} Ap_1(a). (20)

i) Suppose first that a; < \/Li Then % <ay <a < \/Li’ 2 < al_2 < a2_2 < %, and by Holder’s
inquality with py, := a;? > % for £ > 3 and Proposition 7
2 [ {5 sin(ags) 2 /°° sin(t) o’
Ana:—/ ds < Zoat dt)
1< ) s 0 g aks g<7r k 0 t )
= (H f(a*)“k) V2 < ( aif(a,f)) V2
k=1 k=1
3

< (1 at—a /2 adrlat) + (e VR
where the second inequality follows from the general arithmetic-geometric mean inequality. For

k=1,2write a;? = M2 + (1 — Ak)%, A = 9 — 4a; *. Using the convexity of f, cf. Proposition
6 (c), we find

A7) < a0 ) + (1~ Mf() < 00t 1)+ (4 - 8ad)y/ 2 = e,

so that

An-i(a) < ((1 —ai — a%)\/g + da(az) + ¢2(G1)) V2

(9(6@ +a3) —8+9(1 —af — a%)\/%) V2 =4 (ar, a2) V2
and with (20)

1 1—a?—a3 5
§Pn_2(a) <({n-—-2- — +4/1—a2 ) ¥i(ar,a0)V2 = y(ay, a2) V2.

16



g—:l > 0, % > 0 for all ay,as in the range considered. There-

fore ~ is increasing in a; and ay for all % < ay < a; < \/LE and %Pn_g(a) is bounded by
’7(%7 \/LE)\/? = (TL - 2)\/§+ 1= %Pn72(amax) .

Calculation shows that

ii) Suppose next that 75 < a; < ji+%. Write a;? = A 2+ (1 — A)(vV2+ ). Then by

)

Proposition 6

@f(a?) < (@) + (1 - NF(VE+ )
1—(\/_—1— a2 (2a1—1)50
R

= ¢1(a1)

Using this, we find similarly as in part i)

a) < (Z aif(af)) V2
< ((1 —aj — ag)\/g + ¢a(ag) + ¢1(a1)> V2 = Yy(ar, as),

and with (20)

3Pra() < (-2 - 200 12 wmin(ualan V2. 1)

ai

=: min(y1(a1, a2), 72(a1, az)), (21)

where we also used that A, ;(a) < —1 since a; > f It is easy to see that 7, is decreasing in

a1 and in ay since
6’72 ) 1 2 2 9 1
a—al——[(”—§)+§(a1+a2)+\/1—a2]a—%+1<07

0 o1

day  ay V1 —a}
A slightly longer calculation and easy estimates show, conversely, that 7, is increasing in a; and
ay. Consider the line % —ay = 8(a; — =) for % <ay; < %2 <a < (which originates

V2 V2+i
as an approximation of the curve defined by 7 (ay,as) = 72(a1,a2)). By (21)
Paala) < max{m(as,a2),7a(an, ) | S(a1- )5 S < = S < ———}
—P,_2(a) < max{v(a1,as),72(a1,a ——a— ——), - << —=<a < ——}
5 2 T1\a1, az), 2001, A2 NG 2 V23 2 1

V2+3
One checks that for all n > 4

on, 1 371 371

17



02 1 02 02

o m = 0a " %, <"
Therefore 9 1 1
84y < (=, — —2)V2+1
Y1 (a1 /2 a;) < ’Yl(ﬁ \/5) (n V2
and 9 1
,— —8 —_—— —2)V2+1.
72(611 \/5 al) = (\/— \/—) (n )
Hence P,_s(a) < 2((n —2)v/2+ 1) = P,_5(amaz) for all <@ < % ar < \/1§+% =

Next, we consider a similar interpolation scheme if ay < %

Lemma 9. Assume thata € S"™', a; € ( V2 — 1, \%) and ay < % Then for alln > 3

Pnf2(a) < Pnf2(amax) = 2((” - 2)\/5_'_ 1)'

If ay € (% 1 ) and as < %, the same holds for all n > 3, except for possibly n = 5 or
n =06.

}

\/Li' Since az < 2, f(ay?) < \/g by Proposition 7. If

VV2—-1<a < %, also f(a;?) < \/g If % <a < \/Li’ we again use the convexity of f to get
the slightly weaker estimate a?f(a;?) < ¢o(a1), where ¢, is as in i) of the proof of Lemma 8.

This yields
(z (o ) (alf( )+ (1 a%)@) %
< ((9a§ —4)+ (5 — 9a§)\/§) V2 =1y (ar) V2,

2

n—1

Proof. i) Suppose first that a; <

%pn_Q(a) <(m-14/1- Yi(a) V2 =: y(ar).

As easily seen, v is increasing for a; < \%, so that

SPaala) <9

(TL - 2)\/_+ 1= 2 n 2(amax) (22)

for all n > 5.
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1

ii) Assume now that B <a < ﬁ and ap < % Then again f(ay?) < \/g and for f(a;?)

we get by interpolation a?f(a;?) < ¢1(a;), where ¢; is as in part ii) of the proof of Lemma 8.
Therefore

An-i(a) < (Z aif(a,f)) V2 < <¢1(a1) +(1- a%)\/é) V2 =1 4y (a1) V2,

3Eaa@) < (= 1= 225 min(u(ov2, 1) = mini(en) i), (23)

where we also used that A, (a) < a—ll holds. Differentiating v, and 5, one finds that
vy > 0 > ~4 in the range of a; considered. Therefore, v, is increasing and 7, is decreas-
ing. We have, independently of n € N,n > 3, that v,(a1) = 72(ay) for a; ~ 0.71254 and
Y(dy) = yo(dy) < (n—2)v/2+ 1 for all n > 7. Then P,_5(a) < Po_s(amaz)-

For n = 6, this estimate is violated by < 0.006, for n = 5 by < 0.015. It is correct for n = 5,
a; ¢ (0.7095,0.7149) and for n = 6, a; ¢ (0.7115,0.7133).

For n = 3 we already proved Theorem 1. For n = 4, the above estimates in i) and ii) yield
Py(a) < Py(amaz) if a1 ¢ (0.7069,0.7177). However, the explicit formulas given in equation
(11) for Py(a) yield Piy(a) < Py(amas) also for these a;. Only the first or the second case in (11)
can occur, since a; < as + as + a4 in our situation. The maximum of the second formula occurs
for as = ay, with Py(a) < 3.6 < 2(v/2 4 1). The first expression in (11) yields an even smaller
maximal value. We do not give the details. In principle, the explicit formulas in (11) could be
used to prove Py(a) < Pa(amaz) for all a € S3; as in the case n = 3, though this would be more
complicated.

Replacing (23) by the slightly stronger estimate

%Pn_g(a) <|mn- 2)\/1 _lod-a J1—az| min(s(ar)v2, 2),

n—2 ai

we get P,_o(a) < P,_o(amag) for all a; € (\%, ﬁ) and ay > 0.5803 if n = 5 and ay > 0.4952
2

if n = 6. Therefore the only cases left open to prove Theorem 1 are

(24)

n=>5 , a;€(0.7095,0.7149) , ay < 0.5803
=6 , a €(0.7115,0.7133) , ay < 0.4952 ’

i.e. when a; ~ \/Li and as < a; — %. This case will be treated by using the following Lemma. O

Lemma 10. For a; € (0.7095,0.7149), LIO < ay < 0.5803 we have

\/7
0

sin(a1 8) sin(azs) T

ds < 0.985V/2. (25)

as 9S8
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We will prove Lemma 10 in the Appendix. Using (25), we finish the proof of Theorem 1 in the
remaining cases (24):

By Hélder’s inequality and (25)

2 (o]
A, _ < (-
1((1) - (71'/0 a18 asS

s(mfaw09%+«r—%—a»¢h)¢‘<0%mf

n

1
_1 I
a%+a% dS)afJFa% H<z / ‘Sln<aj8) |a;2 ds)ajz'
v

i 0 a;$

sin(ays) sin(ass)

Therefore

1 1—a?
5 Pn2(0) < (n—1)4/1 - . 0.985V/2.

n —

For n =5 and n = 6 and a; < 0.7149 this is < (n — 2)v/2 + 1, so that P,_5(a) < Py_s(tmaz)
also in the cases (24). This ends the proof of Theorem 1. 0

As for the lower estimate of P,_(a), the natural conjecture would be Pj,—9)(a) > Pign—2)(tmin) =
277 (n — 1), apmin = (1,0,--+,0), with [ =1 if K=R and [ = 2 if K = C. We can only prove
a slightly weaker estimate.

Proposition 11. For any a € K™ with |a| = 1
Pual@)22(-2) , K=E,
P2(n—2) (a) Z 27r(n - 2) y K=C.

Proof of Proposition 11.
i) We may assume a € S" ', a; > --- > a, > 0. In the complex case K = C, by Propositions
2,3 and 4

1 . n n
gpg(n_z)(a) Z min {Z(l — CL%)C}C | 0 S Ck S Ag(n_l)(CL), ch = (n — 1)A2(n_1)(a)} .

k=1 k=1
Since (1 — a})p_, is increasing in k, the sum Y 7 (1 — a)C) is minimized, if the Cj are

decreasing, i.e. for €y = --- = C,_1 = Ayp-1y(a) and C; = 0 so that by Hensley [H] and
Oleszkiewicz, Pelczynski [OP]

3= Pron (@) > i(l — ) Ao (@) = (0= 1= (1= @) Aaun )

ii) Similarly, we find in the real case K = R, using Hensley’s lower estimate [H] for the parallel
section function A,,_q

-1

n—1
ZZ\/l—ak \/1— a3
k=1

k=1

2

20



Now ¢(x) = v/1 — z is concave and decreasing on [0, 1]. Therefore for any x5 < yo < y1 < 14
with 22 + 23 = y5 + y? we have that ¢(y3) + ¢(y?) > ¢(23) + ¢(2?), i.e. the sum gets smaller
by moving all coordinates towards 0 and 1. Hence

%Pn_g(a) >(n—2)+

Remarks.

(a) One possibility to improve the lower estimate in Proposition 11 would be to understand
how the monotonicity properties of the sequence a = (ay)}_; affect the size of the integrals
Dg(a), since e.g. in the real case

n

P,_i(a) =) y/1—a} Dy(a).

k=1

(b) Numerical estimates of Ball’s integral function f, f(p) := /52 [;° ]@V’ dt indicate that

flp) = \/g for some p; with 2.165 < p; < 2.166, that f attains its minimum in ps with

3.36 < py < 3.37 and that f is convex for 1 < p < py with 4.46 < pg < 4.47. The behavior of f
near oo is well-understood: by a result of Kerman, Ol’hava and Spektor [KOS]

3 31 13 1 1
f(p) = ;(1—%1—9—@E+0(—))-

4 An application of the Busemann-Petty type

In this section we apply the result of Theorem 1 to the surface area version of the Busemann-
Petty problem described in the Introduction.

Theorem 12. For each n > 14, there exist origin-symmetric convexr bodies K, L in R™ such
that for all a € S™!
vol,_o(0K Na*) < wol,_o(OL N a™)

but
vol,_1(0K) > vol,_1(0L).

Proof. Let K = B!, be the unit cube in R". Let L be the Euclidean ball of radius r in R"
so that the perimeters of hyperplane sections of L are all equal to the maximal perimeter of
sections of K. Namely, for any a € S"!

27T(n—1)/2

vol,_5(OK Nat) < woly_o (0K Nat,.) = 2((n —2)vV2 4+ 1) = vol,_s(rS"2) = r"2 T
2

max
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1.e.

[(n—2)v2+ DD(25)) =
m(n=1)/(2(n-2)) ’

The desired inequality for the surface areas of K and L happens when

27Tn/2

vol,,_1(0B™) = 2n > vol,_1(rS™ 1) = "1 :
OB : )

VI3

The latter is equivalent to

7w (= 2)V2 DI
nl(%) nl'(2) r(n=1)2/(2(n~2))

1 [(n—2v2+)D(gh))
~ nl(2) 71/@(n-2))

=: BP(n) .
Then BP is decreasing in n, with BP(zg) = 1 for zy ~ 13.70, so BP(n) < 1 for alln > 14. [

A similar argument can be made in the complex case when there are similar counterexamples
for all n > 11.
5 Appendix

In the Appendix, we present the technical proofs of Proposition 6 and of Lemma 10.

Proof of Proposition 6 (a).
The fact that lim, . f(p) = \/g is well-known [KOS], following from Smxﬂ < exp(—%z) for
0<z<mand /B2 [~ exp(—%) dr = \/g Now let p := 9. Since

sinéx):H(l_%)’

neN

andln(l—y)g—y—%y2f0r0§y<1,Weﬁndf0r0<x<7r

sm T 1 x x? xt
1 o N2 V4 -z
( ) Z<mr) ZZ(mr) 6 180
neN neN ne
sin(z) 2 7t
< - — 0, ).

This implies

()" < () oy - 2 < () -y e e ),




2

(1_ﬁ) dx

sin(x sin(x)

\/ V 27/,
=, /= 2 <0.9134
,/M(S(w) 48) 0.91340.

Here Si denotes the sine integral function. For z € (m,2m), |22 /4 < |%|l/4 < 0.683

where zg ~ 4.493. Hence
9 27
" < 0.683, /@—/
2w ),

B

_0683\/; W(S( ) — Si(27)) < 0.03414.

sin(x sin(z)

For z € (km, (k + 1)m), ]bm(x) [P0 < (ki)l/‘1 (—Sm(g”))2 and

km

Sll’l

" dx < \/%2 (klw)l/4 (Si((2k + 1)m) — Si(2k)).

™

Also,
Jy = \/EZ/: sin@) | o, <\/%72T(klﬂ)”4/: wZ dz
- \/%i(klﬁ)l/‘*(2 Si(2km)).
Calculation then shows that f(pg) = 22:0 I+ Js < 0.977 < \/g O

Proof of Proposition 6 (b).
Now let pg := V2 + % ~ 1.9142 < 2. The claim is that f(pg) < %. We note that for p < 2,
f(p) > 1. For 0 <z < § and p > 1, we have, similarly as above,

(singfx))p S exp(_:%z) (1— 1%14),

yielding
0 5 2
Po2 [2 x Do 4
< 4/ == ——) (1 — —
dx N/ / exp( 5 ) ( 150° ) dx

9 us
Iy = \/%—/2
™ Jo

Tpo Vbr po 3 Do

Do 2
- /22 36 —— — — —) erf — )| <0.76509
V2 r [480190( 7o) exp(——5 7 + pg/2(2 20) et 24)] = !

where erf denotes the standard error function, erf(x) := \% IS exp(—t?) dt. For z € (3,7),
Taylor expansion at x = 7 yields an approximation

(sinx(x) ) 2 ¢ ]i (1

sin(z)|”

X

>1IH



where cg =1, ¢; =2, g = —(%2 — 3) etc. Taking the 22-th power of this gives an estimate for

. p
(sm(x)) "2 € (Z,7) of the form

T

(sinx(ﬂ?) o < (1 — %)Po Zdj(l _ =

J=0

dy = 1, d; = 1.9142 etc., where the right hand side may be integrated exactly, giving

po2 [
Iy = 4/ ——
02 := 4/ 2#/5

In (7, 00), we use approximations of (sin(z))? and |sin(z)|P instead of those for |Sln J|po. For
€ (0,27), we have the alternating series estimate

sin(z) |"

dr <0.13531.

. 1 2 1
E 2 —c =1 R
(sin(x < ) y o =0 = 1,6 = 3’ , C3 45’ 4 = 315
Taking the 22-th power of this gives an estimate for
24 p Py P
2j . - _ 0 _ o o 0
sm p ) = l(fl?) s d[) = 1,d1 = 5 ,dg = 3 12 etc.

Using this, we find for [ € N

L

Sll’l

lp() SlIl
Z/ x+k77p0
p02 T ll’)
=: I, </ —=-— —d
;k_\/2ﬂ;/o (x + km)po

dz can be integrated exactly. One finds, choosing [ = 5,

I(z)

The integrals fo (=)

5
(Toa + Io) + (3 Ii) < 0.90040 + 0.09383 = 0.99423.
k=1
The remaining integral over (67, c0) is estimated by

@2/*
27r67r

sin(z) |”°

5
2 1 1
< -— — —_— <
<\/5 == ) ) o) 1.6 < 0.02567.

k=1

Hence f(po) < 0.99423 + 0.02567 = 1.0199 < % . a
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Proof of Proposition 6 (c).
(a) We claim that f|[f+1 9) Is convex. Put g(p,z) == \/p |Sm$ﬂ|p and

h(p, x) = 4p(In | )2 4 dp(in ||y — 1. Then

0%g 1 |sin(z)[”
m(p, z) = h(p,z) el x> 0.
We will show that for all p € [v2+ 1, 7]
o0 . P 1
/‘Mn@ m@)ch25>0 (26)
0

This yields that f”(p) > 0, so that f is convex in this interval. We remark that f is negative
in 0 < x < z, and non-negative for x > z,, where z, ~ 1.8 for p in the given range: More
precisely, note that

4p*(Iny)* +4p(lny) —1=0 & Iny = —

sin( (— 1+xf 2) = Si“x(:”) yields a unique

For y = |7 ] < 1, we need the plus sign and y, = exp

solution z,, decreasmg with p,

p

1.8205 p=+2+1/2
T,=14 17863 p=2 ,
1.6965 p=9/4

0.5323 p=+2+1/2
Yy =14 05469 p=2
0.5848 p=9/4

\

We estimate gi]g(p, x) from below on the intervals (0, z,), (z,, 7) and (7, 27) and integrate that.

sin(z)

(b) For all 0 < = < z,, h(p,z) < 0. For these we have to estimate ( )P from above to

estimate the integrand in (26) from below. We again use

<sin(x)>p < eXp<_@) (1— 2 a4

T

as in the previous proof. Replacing ln(sm(x)) in h(p,x) by —% - % increases h(p,x) by at
most 1073, and only for x < 1, so that
! 2 4

/Oxp hp, ) (%)p dz

= exp(~ ) (1= L) (a4 S ap(- ) 1) 2070
~Jo 6 180 6 180 6 180
2

%) dow —107*

o x°p 2 2 p2 D\ 4 p2
> il A r_ £ £
_/O exp(-20) (-1 - 2p? + (B - Byt 2oy

1
= 3% (8+ pa? + —tat) exp(—ra?) — 1070 = m(p) .



The second inequality follows by expanding the product of both polynomials and easy lower
2 2

estimates. Actually, the leading term in 29 is g—ox6, but the lesser value g%xfi was chosen to

allow for an exact integration without error functions. We note that p.:cf, and 7, (p) are both

increasing in p, ; with negative values,

—2.015 p=+2+1/2
Tp) =4 —1.971 p=2
—1.858 p=9/4

rz 0 dzx x 2

(c) For x € (xp,m), h(p,z) > 0. For y = sin(e) - dy _ coslz) _ sinlr) -\ have —0.4362 < % <
1 ~(.3183 for all 2 € (1.6965, 7). Therefore

- . - . sin(x)
sin(z) | / sin(z) |7 | d( ) 1
h dz > h < d
/x,, (p.@) | = =L (p.x) dr | 0.4362 "
Yp
> 2.2926 / (4p*(Iny)* +4p(lny) — 1) ¥ dy =: I ,
0
sin(x)

substituting y =
calculated explicitly,

4p? s App—1) 3p* — 6p — 1)
= 2.2926 1 -7l + — Pl —. .
(22t = BT gy + 222 g =)

, which maps (z,,7) bijectively onto (0,y,). The last integral can be

The function 75 is increasing in p, too, with positive values. One has e.g.

0.898 p=+2+1/2
n(p) =4 0916 p=2
0.956 p=19/4

(d) For x € (m,2m), h(p,x) attains large values: if p < 2, h(p,z) > 21 and if p > 2, even

h(p,x) > 24. We find for p < 2
27 p 27 p 27
/ h(p,x) dx221/ d:v221/ .
= 21(Si(4m) — Si(2m)) ~ 1.554 =: v3(p),

and for p > 2, using Holder’s inequality,

sin(z) sin(z) sin(z) |2

dx

T T

X

o . p 21 | o3 p
/ h(p, x) sin(z) dx > 24/ sin(z) dx
T z u r
1 > Isin(z) | L .. :
= 24— / ] 24m(—[Si(4m) — Si(2m))"* = 75(p) -

The function 73 is decreasing in [2, 7], v3(2) ~ 1.776, v3(§) ~ 1.112.

26



We conclude from the estimates in (b), (c¢) and (d) that

/OOO h(p. z) sin(z)

T
This way, we find that y(p) > 0.43 for V24 3 <p <2 and y(p) > 0.21 for 2 < p < 2. Hence
f”|[\/§+%,2] > 0, and f is convex there.

Since f(v2+ 1) > 1> f(2) and f is convex, f is decreasing in [v2 + 1, 2]. O

p p

sin(z) dz > v1(p) + v2(p) + 13(p) =: v(p) .

27
de/ h(p, x)
0

It remains to prove Lemma 10 which is only used for K =R, n =5 or n = 6 and a; in a very

small interval near \/LE Therefore we only outline the essential parts of the proof. Basically,

the integral in (25) is strictly less than v/2 since a; and ay deviate by at least £, and so there
is some cancelation in the product sin(a;s) sin(ass).

Proof of Lemma 10. We have to estimate with d := £

ar
9 [ P 1 2 [
_/ a1+n.2 d,r:\/é _/

T Jo V2a; ™ Jo

Note that, by assumption, v/2a; ~ 1, a;? ~ 2. We have to show .J < 0.985.

sin(ayr) sin(aqr) sin(s) sin(ds) a?(11+d2)

ds =:V2J .
s ds

alr aoT

a) For 0 < s < m, ln(smf)) < —% - f—; — O(s%), with only negative terms in the series. This
yields
1
sin(s) sin(ds) | «¥(1+d%) s st 1+d?
<exp-—)(1-— ¢
s ds < exp( Ga%) ( 180 a%l—l—dg) ’

Integration of the right side over [0, 7] yields

I 1 2/“

o \/§G17T 0
3 T 3 ,1+d. V2 72 72 4+9a21 + d*

</ Zerf 1— —a? <= — L = d) .

b) For m < s < 27, we use Holder’s inequality with exponent p = 2a3(1 + d?),

I 1 9 \/\27T
. \/ﬁalﬂ- ™

- 1 2E/QW
B V/ial T Jr

- \/_5[ (Si(2m) — Si(4m))5 :

a; md?

sin(s) sin(ds) Tra)

s ds

sin(s) sin(ds) 2

S ds

S

sin(s) sin(ds)

s ds

1
2 2a2 (1+d2) 1
1 2 S
dS) (—71') 23 (14d?)
YA

+ (Si(2nd) — Si(47rd))?ji7r

(1£d)?® , cos(2md)
6md? sin(md) 3m2d?

1
24104 =1y (ay, d)

=) (Si(2r(1 £ d)) — Si(4m(1 £ d)))
+

27



2
. . . . . . Al/al . . . . . a% 1
The function 7, is increasing in a;, since — 1Is Increasing in a, if A< exp(—;) ~ exp(—;l)

which is satisfied if A is the appropriate power of the integral.

c) For 2m < s < oo, we again use Holder’s inequality with exponent p = 2a?(1 + d?), but
differently

L] 2/°°
2'_\/§a17r o s ds

1
oo 2 2a2(1+d2) oo 2 -t
< 1 g s 1 |i|7a%(1+d2)—1 s 2a%(14+d?) .
N \/5@177 2 2 ds

Here we estimated |sin(ds)| by 1. This yields

1
a2 (1+d2)

sin(s) sin(ds) s

sin(s)

S

) 9 9 | P S
ﬁ(ﬂ (4r) ) T [(L)H 2”(2‘“(1%)_1)} M (and) |

2rd 3—2a2(1+ d?)

In conclusion, J = Ip+11+15 < (y1+72+73) (a1, d) =: v(ay,d), which, for the range of a;, a; and
d = 2% considered, is bounded by J < 0.985. The function v essentially does not depend on a
since it is considered only in a tiny interval. Nevertheless, its maximum (for the relevant values
of d) is attained for the maximal choice a; = 0.7149. As a function of d, the maximum is at-
tained for the maximal value of d, which is d = 8:‘;’382 < 0.818,i.e. J < ~(0.7149,0.818) < 0.985.
This is not surprising, since the cancelation effect in sin(s)sin(ds) is minimal if d is maximal.
Obviously, the main contribution to J comes from I, which is slightly larger than 0.92 whereas

I, and I, each contribute about 0.03. O
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