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Abstract

We provide general inequalities that compare the surface area S(K) of a convex
body K in R” to the minimal, average or maximal surface area of its hyperplane or lower
dimensional projections. We discuss the same questions for all the quermassintegrals
of K. We examine separately the dependence of the constants on the dimension in the
case where K is in some of the classical positions or K is a projection body. Our results
are in the spirit of the hyperplane problem, with sections replaced by projections and
volume by surface area.
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1 Introduction

The starting point of this article are two inequalities of the second named author about the
surface area of hyperplane projections of projection bodies. In [10] it was proved that if Z
is a projection body in R™ then
(L) 2|7 min, S(Pe(2)) < baS(2),

esn-
where S(A) denotes the surface area of A, P, (Z) stands for the orthogonal projection of Z
to the hyperplane £+ perpendicular to a vector £ € S"~!, and

(1.2) b, = (L= Dens

nwp™

where w,, is the volume of the Euclidean unit ball BJ* in R™. Note that b, ~ 1 and that
(1.1) is sharp; there is equality if Z = Bj. Conversely, in [11] it was proved that if Z is a
projection body in R™ which is a dilate of a body in isotropic position, then

(1.3) | Z | nax, S(Pe(2)) 2 e(log n)25(2),

where ¢ > 0 is an absolute constant.

Our first aim is to discuss similar inequalities for the surface area of hyperplane projec-
tions of an arbitrary convex body K in R". In what follows, we denote by Jx the minimal
surface area parameter of K, defined by

(1.4) s := min {S(T(K))/|T(K)|”% T e GL(n)}.

It is known that ¢y/n < dx < ¢n for every convex body K in R™, where ¢, ¢ > 0 are absolute
constants (see Section 2 for definitions, references and background information).
Our analogue of (1.1) is the following theorem.

Theorem 1.1. There exists an absolute constant ¢y > 0 such that, for every convex body K

m R™,

1 ) 2b,,0K c10K
1.5 K|~ S(Per(K)) < —— S(K) < S(K).
(15) K1E i, S(P 1) < 25 810) < 228 8(5)

This inequality is sharp e.g. for the Euclidean unit ball. Note that ¢;0x/+/n < ¢y/n for
every convex body K in R", and hence we have the general upper bound

(1.6) (K[ min S(Pe (K)) < ev/n S(K).

Our method employs an estimate for the minimal volume of a hyperplane projection of K:
one has

(1.7) min P, (K)| < ey/n|K|"%
éesnfl



for an absolute constant ¢ > 0.

Assuming that K is in the minimal surface area position we have a converse of Theorem
1.1:

Theorem 1.2. Let K be a convex body in R™ which is in the minimal surface area position.
Then,

1 C
. n i n = —
(1.8) K] min, (P (K)) Tn

where ¢ > 0 is an absolute constant.

The estimate of Theorem 1.2 is sharp; we provide an example in which the two quan-
tities in (1.8) are of the same order, using extremal (with respect to minimal hyperplane
projections) bodies of minimal surface area that were constructed in [12].

In the case where K is a projection body, one can see that (1.7) holds true with ¢y/n
replaced by b, (see Section 3). This leads to an alternative proof of (1.1) with a weaker (by
a factor of 2) constant.

Theorem 1.3. Let Z be a projection body in R™. Then,

(1.9) | Z|n (Juin, S(Fe(2)) < 26, 5(2).
esn—

It should be noted that there are convex bodies which are not projection bodies but their
minimal surface area parameter Ok is of the order of y/n; an example is given by B}, the
unit ball of /7. On the other hand, there exist projection bodies whose minimal surface
area parameter is of the order of n; an example is given by the cube. Thus, the estimates

of Theorem 1.1 and Theorem 1.3 complement each other. In our next result we replace
min S(P.(K)) by the expectation of S(Pe1(K)) on the sphere.

Theorem 1.4. Let K be a convex body in R™. Then,

10) K[ S (E)) do(e) < 20 et g e < g,
gn-1 n2wy, NLD

where co > 0 is an absolute constant.

A consequence of Theorem 1.4 is that if K is in some of the classical positions (minimal
surface area, isotropic or John’s position, or it is symmetric and in Lowner’s position) then

(111 K[ S () do(€) < e ().

The reason is th%t, in all these cases, the surface area of K satisfies an inequality of the form
S(K) < en|K|5 (see Section 2 for a brief description of the classical positions of a convex
body and for a proof of this last assertion).

Passing to lower bounds, our analogue of (1.3) is the following theorem.
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Theorem 1.5. Let K be a convex body in R™. Then,
(1.12) / S(Pex (K)) do(8) > e S(K),
Sn—1

where c3 > 0 1s an absolute constant.

A consequence of Theorem 1.5 is that if K is in the minimal surface area, minimal mean
width, isotropic, John or Lowner position, then

(1.13) K1 [ S dr(€) > e5(8),

where ¢ > 0 is an absolute constant. In particular,

(1.14) K| nax, S(Pe (K)) > eS(K).
c n—1

Note that (1.14) is stronger than (1.3); moreover, for bounds of this type there is no need
to assume that K is a projection body. In fact, our proof of Theorem 1.5 shows that (1.13)
continues to hold as long as
(1.15) S(K)mT < c|K|»
for an absolute constant ¢ > 0. This is a mild condition which is satisfied not only by the
classical positions but also by all reasonable positions of K.

All these inequalities are proved in Section 4. Our main tools are a result from [7] stating
that
S(P(K) _ 2(n— 1) S(K)

(1.16) P (B S n K

for every convex body K in R" and any £ € S™"! estimates from [9] for the volume of
the projection body of a convex body in terms of its minimal surface area parameter, and
Aleksandrov’s inequalities. For the class of projection bodies, we prove and use the following
sharp estimate (Lemma 3.1): if Z is a projection body in R™ then

(1.17) min [P (2)] < 2 |27

gesn—1 n—1

In Section 5 we study the same questions for the quermassintegrals V,,_,(K) = V((K,n—
k), (BY,k)) of a convex body K and the corresponding quermassintegrals of its hyperplane
projections. We obtain the following estimates:

(i) For every 1 < p < n — 2 we have

(1.18)
i, p+ 1w, 10 c(p+1)0
K1 anin, Voo (P i) < P00y < SO0y
and
, (p+ Dwasr S(K)
. n —1— L g -1 Yn— .
1) [ Ve (P () do() < PR ()



(ii) If Z is a projection body in R™ then, for every 1 < p < n — 2 we have

nb,

. » mi e <
(1.20) 17| (ain, Vicrp(FPee(2)) < (p+ 1) —

Vop(2).

(iii) If K is in the minimal surface area, isotropic or John’s position, or it is symmetric and
in Lowner’s position, then, for every 1 < p < n — 2 we have

120 K [ Ve (P () do(€) < o+ DYV ().

(iv) For every 1 < p < n — 2 we have

(1.22) | Ve () o) > <255 Wi (O]

n—p
Wn,

(v) If K is in the minimal surface area, isotropic or John’s position, or it is symmetric and
in Lowner’s position then, for every 1 < p < n — 2 we have

p

(123) [KF [ Vi (P () dor(€) > 55 Vi (1) > (2
gn—1 wnnj

&1

)7 Vi (K,

The proofs employ the same tools as in the surface area case. The main additional ingredient
is a generalization of (1.16) to subspaces of arbitrary dimension and quermassintegrals of
any order, proved in [5]: If K is a convex body in R™ and 0 < p < k < n, then, for every
F e Gn,k,

VoK) 1 Vi) (Pe(K)
K[ 7 () PR

(1.24)

This inequality allows us to obtain further generalizations of the results of Section 4; we can
compare the surface area of a convex body K to the minimal, average or maximal surface
area of its lower dimensional projections Pp(K), F € G, for any given 1 < k < n — 1.
This is done in Section 6.

There are several questions that arise from this work and we hope that the reader might
find them interesting; these are stated explicitely throughout the text.

2 Notation and background

We work in R", which is equipped with a Euclidean structure (-,-). We denote by || - |2
the corresponding Euclidean norm, and write By for the Euclidean unit ball and S"! for
the unit sphere. We denote the unit ball of £} by B, 1 < p < oco. In particular, we also



write @, for the cube B = [-1,1]" and C,, = [—%, %}n for the cube of volume 1. Volume
is denoted by | -|. We write w, for the volume of BJ and o for the rotationally invariant
probability measure on S"~'. The Grassmann manifold G, of k-dimensional subspaces of
R™ is equipped with the Haar probability measure v,, . Forevery 1 <k <n—1and F € G,
we write Pp for the orthogonal projection from R™ onto F', and we set Bp = By N F and
Sp = S™ !N F. Finally, we write A for the homothetic image of volume 1 of a symmetric
convex body A CR" ie. A :=|A| % A.

The letters ¢, ¢, ¢1, ¢o etc. denote absolute positive constants which may change from line
to line. Whenever we write a ~ b, we mean that there exist absolute constants c,co > 0
such that cia < b < ca. Also, if K, L C R™ we will write K ~ L if there exist absolute
constants ¢, ¢y > 0 such that c; K C L C oK.

We refer to the books [6] and [14] for basic facts from the Brunn-Minkowski theory and
to the book [1] for basic facts from asymptotic convex geometry. We also refer to [3] for
more information on isotropic convex bodies.

2.1. Convex bodies. A convex body in R" is a compact convex subset K of R" with
non-empty interior. We say that K is symmetric if x € K implies that —z € K, and that
K is centered if its barycenter ﬁ Il T dw is at the origin. The support function of a convex

body K is defined by hk(y) = max{(z,y) : © € K}, and the mean width of K is

(2.1) w(K) = /S ~ he(6) do(6).

The circumradius of K is the quantity R(K) = max{||z||s : € K} i.e. the smallest R > 0
for which K C RBYy. If 0 € int(K) then we write r(K) for the inradius of K (the largest
r > 0 for which rB} C K) and we define the polar body K° of K by

(2.2) K :={yeR": (z,y) <1lforallxz € K}.

The volume radius of K is the quantity vrad(K) = (|K|/|By|)"". Integration in polar
coordinates shows that if the origin is an interior point of K then the volume radius of K
can be expressed as

(23) wad() = ([ pel? do<e>)1/",

where ||0]|x = min{t > 0: 0 € tK}. We also define
(2.4 MK) = [ 16l do6).

2.2. Mixed volumes. From Minkowski’s fundamental theorem we know that if K1,..., K,,
are non-empty, compact convex subsets of R™, then the volume of t; K7 + --- + t,,K,, is a
homogeneous polynomial of degree n in t; > 0. That is,

(2.5) WK+ K = Y V(G K )



where the coefficients V(K;,, ..., K;,) are chosen to be invariant under permutations of their
arguments. The coefficient V (K7, ..., K,,) is the mixed volume of K7, ..., K,. In particular,
if K and C are two convex bodies in R™ then the function |K + tC| is a polynomial in
t €10, 00):

(2.6) K +tC| = i (?) Vo ji(K,C) ¥,

=0
where V,,_;(K,C) = V((K,n — j),(C, 7)) is the j-th mixed volume of K and C' (we use the

notation (C,j) for C,...,C j-times). If C' = BY then we set V,,_;(K) = V,_;,(K,B}) =
V((K,n—j),(BY,7)); this is the j-th quermassintegral of K. Note that

1 K+tC| - |K
(2.7) Vo i (K.C) = L lim HEHIC1 = K]

n t—0+ t ’

and by the Brunn-Minkowski inequality we see that

n—1

(2.8) Vaoa(K,C) = |K| |Cf'n

for all K and C' (this is Minkowski’s first inequality). The mixed volume V,,_; (K, C') can be
expressed as

29) Vi (K.0) = - [ he(®)doi(0),

n
where o is the surface area measure of K; this is the Borel measure on S" ! defined by

(2.10) ok (A) = A({z € bd(K) : the outer normal to K at z belongs to A}),

where A is the Hausdorff measure on bd(K). In particular, the surface area S(K) :=
o (8" 1) of K satisfies

(2.11) S(K)=nV,_1(K).
We will also use the Aleksandrov inequalities: if K is a convex body in R" then the sequence
%

(2.12) Qu(K) = (i / _|PF<K>|dun,k<F>)

Wk

is decreasing in k. This is a consequence of the Aleksandrov-Fenchel inequality (see [4] and
[14]). In particular, for every 1 < k < n — 1 we have

(2.13) (|—K|)i < (i /G PF(K)dVM(F))i < w(K).

Wk
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2.3. Classical positions. Let K be a centered convex body in R™. We introduce the
classical positions of K that we are going to discuss; we set the notation and provide some
background information.

Minimal surface area position. We say that K has minimal surface area if S(K) < S(T'(K))
for every T € SL(n). Petty ([13], see also [9]) proved that K has minimal surface area if
and only if o satisfies the isotropic condition

(2.14) S(K) = n /S (o (6)

for every £ € S"~!. From the isoperimetric inequality we know that S(K) > nwé | K |HT_1
The reverse isoperimetric inequality of K. Ball [2] states that if K has minimal surface area
and volume 1 then S(K) < S(C,) = 2n in the symmetric case and S(K) < S(A,) < con
in the not necessarily symmetric case, where A,, is a regular simplex of volume 1 in R™ and
co > 0 is an absolute constant.

Minimal mean width position. We say that K is in minimal mean width position if w(K) <
w(T(K)) for every T' € SL(n). It was proved in [8] that K has minimal mean width if and
only if

(2.15) w(K) =n /S (e 6)h(6)do (0)

for every £ € S"~!. From results of Figiel-Tomczak, Lewis and Pisier (see [1, Chapter 6]) it
follows that if a symmetric convex body K in R™ has minimal mean width then

(2.16) M(K)w(K) < ¢1log(dg + 1)

where di = d(K, B}) is the Banach-Mazur distance from K to B} and ¢; > 0 is an absolute
constant. If we assume that |K| = 1 then it is easy to check that M(K) > ¢/y/n, and hence
from (2.16) we see that w(K) < ¢y/nlog(dx +1). Then, a simple argument shows that a not
necessarily symmetric convex body of volume 1 in R™ that has minimal mean width satisfies
a similar bound: w(K) < ¢y/nlogn.

Isotropic position. For every centered convex body K of volume 1 in R" and any ¢ > 1 we
define

(2.17) I(K) = (/K ||x||gdx> "

We say that K is in the isotropic position if Ir(K) < Io(T(K)) for every T € SL(n). This
is equivalent to the existence of a constant Ly > 0 such that

(2.18) /K(x,§>2da: = L%



for every £ € S™7 1. It is known that if K is centered then
(2.19) /(x,§>2dx ~ |KN¢H?
K

for every & € S"1. Therefore, if K is isotropic we see that all hyperplane sections K N &+
of K have volume equal (up to an absolute constant) to Ly

John and Léwner position. We say that a convex body K is in John’s position if the ellipsoid
of maximal volume inscribed in K is a multiple of the Euclidean unit ball Bf. We say that a
convex body K is in Lowner’s position if the ellipsoid of minimal volume containing K is a
multiple of the Euclidean unit ball Bf. One can check that this holds true if and only if K°
is in John’s position. The volume ratio of a centered convex body K in R" is the quantity

(2.20) vr(K) = inf { (%) " &isan ellipsoid and € C K} .

The outer volume ratio of a centered convex body K in R" is the quantity ovr(K) = vr(K°).
K. Ball proved in [2] that if K is in John’s position then vr(K) < vr(C,) =~ y/n in the
symmetric case and vr(K) < vr(4A,) ~ y/n in the not necessarily symmetric case; in fact,
the reverse isoperimetric inequality follows from this fact.

2.4. Surface area and inradius. Let K be a centered convex body in R"™. Recall that
the inradius r(K) of K is the largest r > 0 for which B} C K. Using the monotonicity of
mixed volumes we may write

. 1
(2.21) S(K) = nV,_ (K, BY) < nV_, (K, @K).

Since the mixed volumes are homogeneous with respect to each of their arguments and
V(K,...,K) =|K|, we have the following general estimate for the surface area S(K) of K.

Lemma 2.1. Let K be a convez body in R™ with 0 € int(K). Then,

(2.22) S(K) < :(lg

Using Lemma 2.1 we obtain upper bounds for the surface area of a body which is in
isotropic, John’s or Lowner’s position.

Proposition 2.2. Let K be a centered convex body of volume 1 in R™.
(i) If K is isotropic then S(K) < en/Li < d'n, where ¢, > 0 are absolute constants.

(ii) If K is in minimal surface area position or in John’s position then S(K) < en, where
¢ > 0 is an absolute constant.

(iii) If K is symmetric and in Léwner’s position then S(K) < cn, where ¢ > 0 is an absolute
constant.



(iv) If K is symmetric and in the minimal mean width position then S(K) < cnlogn, where
¢ > 0 is an absolute constant.

Proof. The inclusion Lxg By C K for an isotropic symmetric convex body K in R" is clear
since

hic(u) = |G udll oy 2 1G5 wdll 2y = Lic
for every u € S™~!. This shows that 7(K) > Ly in this case. If K is centered but not

necessarily symmetric, then we still have hx(u) > cLk: to see this, we use the fact that
e tmax{|K N (t0 + 6+)| : t € R} < |K N O+ (see [3, Chapter 2]) and then write

Lithg(u) = cihg(u)|K N o+ > 02/ |K N (t0 + 61)| dt
0
=cl{r e K:(z,0) > 0}| > ¢,

where ¢3 > 0 is an absolute constant (the last inequality follows from Griinbaum’s lemma,
see [3, Chapter 2]). To conclude the proof of (i) we recall that Ly > ¢ for any convex body
K in R™

Assume that K is in John’s position. Then, using the volume ratio estimate we see that

v ~ K] %*Vr c/n
22 5= (ranag) — U0 <ovm

which implies that r(K) > ¢, and hence S(K) < ¢ 'n. Tt follows that if K is in minimal

surface area position we also have S(K) < ¢ 'n.

Next, assume that K is symmetric and in Lowner’s position; this time we use the fact

that R(K) < /nr(K) by John’s theorem, and then
(2.24) 1=|K|Y" < |R(K)BYY" < cR(K)/v/n < er(K).

Finally, if K is symmetric and in the minimal mean width position we can use the direct
estimate

(2.25) R(K®°) < ev/nw(K°) = ey/nM(K) < d logn

which is a consequence of (2.16) and of the fact that w(K) > ¢y/n by Urysohn’s inequality.
This shows that r(K) = 1/R(K°) > ¢/logn, and (iv) follows. O

Note. The example of the cube C,, shows that the bounds (i), (ii) and (iii) of Proposition
2.2 are sharp up to an absolute constant.

3 Projections of projection bodies

A zonoid is the limit of Minkowski sums of line segments in the Hausdorff metric. Equiva-
lently, a symmetric convex body Z is a zonoid if and only if its polar body is the unit ball
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of an n-dimensional subspace of an Lj-space; i.e. if there exists a positive measure u (the
supporting measure of Z) on S"~! such that

(3.) ola) = lallze =5 [ I(ea)ldu(o)

The class of origin-symmetric zonoids coincides with the class of projection bodies. Recall
that the projection body IIK of a convex body K is the symmetric convex body whose
support function is defined by

(3.2) huw(§) = [P (K)|, €S
From Cauchy’s formula

1
(33 Pal®)] =5 [ 10 doi(o)

where o is the surface area measure of K, we see that the projection body of K is a zonoid
whose supporting measure is ox. Minkowski’s existence theorem implies that, conversely,
every origin-symmetric zonoid is the projection body of some symmetric convex body in R".
Moreover, if we denote by C,, the class of origin-symmetric convex bodies and by Z,, the class
of origin-symmetric zonoids, Aleksandrov’s uniqueness theorem shows that the Minkowski
map Il : C, — Z, with K — IIK, is injective. Note also that Z,, is invariant under invertible
linear transformations and closed in the Hausdorff metric.

Let K be a convex body of volume 1 in R". Then, the volume of IIK and of its polar
body IT*K satisfy the bounds (see [9])

(3.4) (5—K) < K| < w, (“’”—18K)

n nwn,

and

(3.5) Wn ( e >n <K< 2
W10k nlo}

All these inequalities are sharp as one can see from the examples of the ball and the cube.

Our next lemma provides an estimate for the volume of the minimal hyperplane projection
of a zonoid.

Lemma 3.1. Let Z be a zonoid in R™. Then,

TLb n—1
: in [P (2)] < —2 |Z|" .
(36) i, [P (2)] < 2|2

Proof. We write Z = IIK for some convex body K. Recall the volume formula for zonoids

(see e.g. [15])
(3.7)
gn—1 n Jgn—1

11



Therefore,

S(K)
. > L(2).
(3.8) 2] 2 = = i |Pe(2)]

On the other hand, by (3.4) we have

Wn—laK
n—1

nwp "

(3.9) 2] = UK+ < K7 <

where we used the definition (1.2) of the constant b, and the fact that S(K) > dx|K|™= by
the definition (1.4) of the minimal surface area parameter dx. Then,

1 n—1 b K
) win 1P (2)] < 1217125 < S0

1
(3 O) n  gesn—1 n—1

—1
21,

and the result follows. O

Since every projection of a zonoid is a zonoid, a simple induction argument leads to the
following general result.

Theorem 3.2. Let Z be a zonoid in R™. Then, for every 1 < k < n—1 we have

k
. - 5
(3.11) Arn |Pr(2)] < ong |21,
where
w
(3.12) Ok = —.
Wy

The example of the ball shows that Lemma 3.1 and Theorem 3.2 are sharp. In fact, they
correspond to the known fact that Shephard’s problem has a positive answer for zonoids (see
[6, Corollary 9.3.4]).

4 Surface area of hyperplane projections

Our generalization of (1.1) is in terms of the minimal surface area parameter dx of K.

Proof of Theorem 1.1. The main ingredient in the proof is (1.16); we have

20 =Y () P (1)

(4.1 K| (P () <

for every £ € S"~1. Therefore,

. 2(n—1) .
(4.2) K] min, S(Pe(K)) < = — S(K) min [Fe (K.

12



Next, we observe that

(4.3) min |Pes ()| = min, onse(€) = (1K),

Since, by (3.4),

Wn—10K

(4.4) K| < === K],
nwn"
we get
Wn—10K n—1

(4.5) r(ITK) < vrad(ITK) < -~ |K| ™.
Going back to (4.2) we see that

. 2(n — 1)wn,1(9[{ n—1
(4.6) K| £g;}}}ls(PMK)) < oy S(K) K|,
and this proves (1.5). O

Question 4.1. It would be interesting to decide whether there exist convex bodies K such
that

(4.7) K[ min S(Pe (K) > ev/n S(K).

This would show that Theorem 1.1 is asymptotically sharp. Note that in the case of the
Euclidean ball one has

(4.8) Byl min, S(Pes(By)) > ¢ 5(B3).

We can prove an inequality which is reverse to (1.5) for any convex body K which is in
the minimal surface area position, using the following fact (see Theorem 1.2 in [7]): for any
convex body K in R” and any £ € S"! one has

Via(K) _ Vao(Fer (K))

49) Woa(K) S 1P (K]

Proof of Theorem 1.2. Note that

(4.10) VoK) = w [Quos ()" 2w, [Quor (K" = wi T [Via (K],
while

(4.11) NV 1 (K) = S(K),  (n—1)Vy_o(Per (K)) = S(Pes (K))

13



and if K is in the minimal surface area position by (2.14) we also have

1 1 S(K Vo1 (K
412) (P =3 [ @ldotw) >3 [ g do( = S = Bl
Sn—l Sn—l n
Combining the above we get
(n — Dw;™* n=2
(4.13) S(Fer(K)) = 1 Va1 (K)] =1
Therefore, we have
(4.14)
L n—1wp ' n=2 1 (n— 1wy’ n=2 1
KE min S () > P o gt = P et g
cesn—1 4 Apn-t
Since S(K) = |K|"+, we get:
e
(4.15) [K|* min S(Pei(K)) > %S(K).
gesn Ann=1 9yt
This proves Theorem 1.2. o

Remark 4.2. Theorem 1.2 is sharp. In [12] it is proved that there exists an unconditional
convex body Kj of volume 1 in R™ which has minimal surface area and satisfies

. €1
4.1 P (Ko)| < —=,
(4.16) 5319121‘ e+ (Ko)l NG

where ¢; > 0 is an absolute constant. From (4.2) we see that

(4.17) |Ko| min S(Pes(Ky)) < 2021 &) min |Pes (o) <

ERLE—— S(K,
cesn—1 n cesn—1 (Ko),

SIF

and since |Ky| =1 we get:

Proposition 4.3. There exists an unconditional convexr body Ky in R™ which has minimal
surface area and satisfies

1 . C
(4.18) Kol min S(Few(Ko)) < %S

where ¢ > 0 is an absolute constant.

(Ko)a

Next, assume that K = Z is a zonoid. Repeating the previous argument, but using
now Lemma 3.1 in order to estimate r(IIZ), we obtain an alternative proof of (1.1) (with a
weaker, by a factor of 2, constant).

14



Proof of Theorem 1.3. We have
(4.19)

. 2(n—1) _ 2(n—1) nb, n-1
21 min, $(Pe(2)) < 2= 5(2) min, 1P (2)] < 222 252121
by Lemma 3.1. Dividing by |Z \an1 we get the result. O

Question 4.4. It would be interesting to decide whether in the case of zonoids one has

(1.20) 2)8(Pa(2)) < LY

S(2) | P (Z))

for every ¢ € S"~1. This improvement of (1.16) (for the class of zonoids) would give a sharp
version of Theorem 1.3.
Next, we pass to estimates for the average surface area of hyperplane projections of K.

Proof of Theorem 1.4. From (1.16) we have

20 Y () P (1)

(4.21) |K|S(Per (K)) <

for every € € 8" L. Integrating on S"~! and using the identity

nwy,
(4.22) S = 2 [ P (m)] do(e)
wn_l Sn—1
we get
2(n—1)
42) K] [ SR do©) < T SE) [P ()]do)
_ Q(TL — 1) Wn—1 S(K)2
no nw,
Since
(4.24) 2(n — 1) wp_1 _ 2()n1 o L,
Y NG
we get the result. o

Now, let us assume that K is in the minimal surface area, isotropic or John’s position,
or it is symmetric and in Lowner’s position. Then, from Proposition 2.2 we know that

n—1
)

(4.25) S(K) < cn|K| ™=

where ¢g > 0 is an absolute constant. From Theorem 1.4 we get:

15



Theorem 4.5. Let K be a convex body in R™. If K is in the minimal surface area, isotropic
or John’s position, or it is symmetric and in Lowner’s position, then

(4.26) [KJ» [ S(Pe(K)do(§) < e/ S(K)

where co > 0 s an absolute constant.

Note. If K is symmetric and in the minimal mean width position, using Proposition 2.2
again, we get a weaker (by a logn term) result:

(4.27) [K|* [ S(Per(K))do(8) < cav/n(logn) S(K)
Sn—1
where ¢y > 0 is an absolute constant.
We pass now to lower bounds. Our analogue of (1.3) is Theorem 1.5

Proof of Theorem 1.5. We write

az) [ sratyasig =" [ [ o VP () o (9) o)

(n— 1w,

_ (= Do / | Pe(K)| v o(F).
Gn,n72

Wp—2

From the Aleksandrov inequalities it follows that

1

(4.29) (wl / |PF<K>|dun,n_2<F>> .

WV

(wnl_l /Sn_l | P (K)| da(g)) =

which gives

1 n n—2 n—2
(4.30) / S(Per(K))do(§) > (n )fﬂ L S(K)n=1 > c3S(K)n1,
sn—1 (nwy,)n=1
where c3 > 0 is an absolute constant. O

Now, let us assume that K is in the minimal surface area, minimal mean width, isotropic,
John or Lowner position. Then, from Proposition 2.2 (or from simple estimates in the cases
of a not necessarily convex body K that are not covered there) we know that, e.g.

(4.31) S(K) < con® |K|"

where ¢y > 0 is an absolute constant. It follows that

1

(4.32) S(K)™ < (cn®)72 | K| < eal K7,

16



where ¢4 > 0 is an absolute constant. Then,

1 n=2 _
(4.33) |K|» S(K)n1 > ¢;'S(K).
Thus we have proved:

Theorem 4.6. Let K be a convex body in R™. If K is in the minimal surface area, minimal
mean width, isotropic, John’s or Lowner’s position, then

(431 K[ SR (1) do() > S(K),

where c5 > 0 is an absolute constant.
Note. The proof of Theorem 4.6 shows that (4.34) continues to hold as long as the mild
condition

1

(4.35) S(K)™1 < ¢|K|~

is satisfied by K with an absolute constant ¢ > 0.

5 Quermassintegrals of hyperplane projections

A generalization of (1.16) to subspaces of arbitrary dimension and quermassintegrals of any
order was given in [5].

Theorem 5.1. Let K be a convex body in R™ and let 0 < p < k < n. Then for every
k-dimensional subspace F' of R", if Pr(K) denotes the orthogonal projection of K onto F,
we have

VaolK) o 1 Viey(Pr(K)

(5-1) K[ 2 () [Pe(K)]

Setting k =n — 1, for every 1 < p < n — 2 we have

Va—p(K) > 1 Vi p(Per (K))

5.2 >

(5:2) K Z o+l Pk

Therefore,

(5.3) K| min Vi1oy(Pe (K)) < (p+ 1) Vap(K) min |Per (K)),

565"* §€Sn71

and using (4.5) and Lemma 3.1 we immediately get the following theorem.

17



Theorem 5.2. Let K be a convex body in R™. For every 1 < p < n — 2 we have
Dw,_10 1)0

p+ Dw, KVn,p(K)g ci(p+1)0k
nw, vn

where ¢1 > 0 is an absolute constant. If Z is a zonoid in R™ then, for every 1 <p<n—2
we have

54) KT min, Vor (P (K)) < & VoK),

1 . nb,
(5.5) 217 i Vaes-p(Pec(2)) € (0 + D22 Vi (2)
Starting from (5.2) and integrating on the sphere we get
50) K] [ Ve (P (KD do(€) < (o4 DVary(K) [ 1P (8] do(e)
(p -+ 1)(,(.)”,1

= BTy (K)S(K).

Nnwy,
Dividing by |K|"T_1 we get:
Theorem 5.3. Let K be a convex body in R™. For every 1 < p <n — 2 we have

51K [ Ve(Patm)dete < B2 2UD )

O

In particular, if K is in the minimal surface area, isotropic or John’s position, or it is
symmetric and in Lowner’s position, then we have

5.9 K[ Va0 do(€) < o+ VRV oK),

where ¢; > 0 is an absolute constant.

For the lower bound, an analogue of Theorem 1.5, we first observe that
(5.9) Vap(K) = wi [Qu-p(K)]"? and Vi1 p(Per (K)) = Wi [Qno1-p(Pes (K))" 77

for every € € 8”71, Then, we write

o Wp—1

(5.10) /S  Vap(Pe(K)) do(€) = R /5 /G R |Pp(K)|d(E) do(€)
o Wp—1
B Wn—1-p /Gn,n1p | Pr ()| dvng1-p(F)

= W1 [Quor—p(K)]" 1.
From the Aleksandrov inequalities we have (Q,,—1_,(K) > Q,—,(K), and hence

(5.11) | Ve (KD o) 2 s Quy (K

—1-p

= Wn_1 (M) =

Wn

which gives the next theorem.
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Theorem 5.4. Let K be a convex body in R™. For every 1 < p < n — 2 we have

(.12 [ Vsl P ) do€) > <S5 Vo ()75

n—p
Wn

Using the monotonicity of mixed volumes we may write

(5.13) VoK) < Viy (Km = p). (r(K) 'K ) <

Now, let us assume that K is in the minimal surface area, isotropic or John’s position, or
it is symmetric and in Lowner’s position. Then, r(K) > ¢| K|~ for an absolute constant
co > 0, and (5.13) gives

(5.14) K > Vo y(K).
Therefore,
1 n-l-p %ip 1 n-1l-p %ip
(5.15) K[ [Vap (K)] 777 2 57" Vap ()72 [V (K)] 777 = 577 Vo (K.

From Theorem 5.4 we get:

Theorem 5.5. Let K be a convex body in R"™, which is in the minimal surface area, isotropic
or John’s position, or it is symmetric and in Lowner’s position. For every 1 < p <n—2 we
have

P

Wy 1C0P C1\ 3=p)
(5.16)  |K]» /5 _lvn_l_p<Pgl<K>>da<§>>%&Vn_m»(5)“ "V (K),
wp" P

where ¢; > 0 is an absolute constant.

p
Note that (%) 2P > ¢y for an absolute constant ¢, > 0 as long as p < en/(logn).

6 Surface area of projections of higher codimension

Recall that mV,,_;(A) = S(A) for every convex body A in R™. Therefore, setting p = 1 in
Theorem 5.1 we get:

Lemma 6.1. Let K be a conver body in R™ and let 1 < k < n — 1. Then for every
k-dimensional subspace F' of R™ we have

S(K) n S(Pr(K))

(6.1) K| ~ k(n—k+1) |Pp(K)|

We first prove an analogue of Theorem 1.3.
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Theorem 6.2. Let Z be a zonoid in R™ and let 1 < k <n—1. Then,

o < —- 77

(6.2) |Z] An S(Pp(2)) < - onk S(Z),
where o, 1 is the constant in Theorem 3.2.
Proof. From (6.1) we see that
(6.3)

_ k(n —k+1) _ k(n —k+1) &

{—4" < — 0, Z) | Z]|n,
|Z] A S(Pr(Z)) < " 5(2) Ain |Pr(Z)| " oniS(Z) 2]

where in the last step we have also used Theorem 3.2. Dividing by |Z |§ we get the result.
O

Definition 6.3. For every convex body K in R™ and every 1 < k < n — 1 we introduce the
parameter

1
|

(6.4) () lLI%MNWMﬂ-

Using Lemma 6.1 and applying the same argument as in the proof of Theorem 1.4 we
get:
Theorem 6.4. Let K be a convexr body in R™ and let 1 < k <n—1. Then,
k(n—k+1)

(6.5) uwf/ S(Pe(K)) dvi(E) < S(K) pul).
e n

Proof. From Lemma 6.1 we have

(6.6) K] S(Pe(i)) < "D g0y | P

n
for every F' € G, ;. Integrating with respect to v, ; on G, we get

k(n—k+1)

n

(6.7) !K!/G S(Pp(K)) dvm ik (F) < S(K)/G | Pr(K)| dvn i (F),

and the result follows. O

Remark 6.5. Let us assume that K is in the minimal surface area, isotropic or John’s
position, or it is symmetric and in Lowner’s position. From (5.13) and the fact that r(K) >
co| K| we get

1 wg 1 wg | K| W
6.8 n(K) = viK) < i = —
. 0 g e, M S R g T

Then, Theorem 6.4 gives the following analogue of Theorem 4.5:
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Theorem 6.6. Let K be a convex body in R™. If K is in the minimal surface area, isotropic
or John’s position, or it is symmetric and in Lowner’s position, then

(69 KPS [ SR () < D2y
Gn,k n wnco

where cog > 0 1s an absolute constant.
The lower bound of Theorem 1.5 can be generalized as follows.

Theorem 6.7. Let K be a convex body in R™. For every 1 < k < n—1 we have

(6.10) /G S(Pr(K)) diy(F) > m’% S(K)+

Proof. We write

/{;wk

610 [ s ) = 2 [P () o (€ d( )

WEk—1

kw
_ Mk / | Pg(K)| dvp 1 (E).
Gn,kfl

Wk—1
From the Aleksandrov inequalities we have
1

Iy 1

(6.2 (wl [ \P;;(K)\dvn,mw)) (G mewaee)

()

V

which gives

k 1
(6.13) / S(Pp(K)) dvy 4 (F) > ——%  S(K)w,
Gn,k: (nwn)n—l
as claimed. O

Now, let us assume that K is in the minimal surface area, isotropic or John’s position,
or it is symmetric and in Lowner’s position. Then, from Proposition 2.2 we know that

(6.14) S(K) < con |K|*,

where ¢q > 0 is an absolute constant. Therefore,

n—k k-1 1 n—k k-1
(6.15) [K[ T S(K) 1 > —— = S(K) = 15(K) =t = —— ¢ 5(K),

(con) ==t (con)n=t

and Theorem 6.7 implies the following.
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Theorem 6.8. Let K be a convex body in R™. If K is in the minimal surface area, isotropic
or John’s position, or it is symmetric and in Lowner’s position, then

(6.16) K[ SR daa(F) > P (1),

where cog > 0 1s an absolute constant.
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