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Abstract

Precise and eloquent label information is fundamental for in-
terpreting the underlying data distributions distinctively and
training of supervised and semi-supervised learning models
adequately. But obtaining large amount of labeled data de-
mands substantial manual effort. This obligation can be mit-
igated by acquiring labels of most informative data instances
using Active Learning. However labels received from humans
are not always reliable and poses the risk of introducing noisy
class labels which will degrade the efficacy of a model instead
of its improvement. In this paper, we address the problem
of annotating sensor data instances of various Activities of
Daily Living (ADLs) in smart home context. We exploit the
interactions between the users and annotators in terms of re-
lationships spanning across spatial and temporal space which
accounts for an activity as well. We propose a novel annotator
selection model SocialAnnotator which exploits the interac-
tions between the users and annotators and rank the annota-
tors based on their level of correspondence. We also introduce
a novel approach to measure this correspondence distance us-
ing the spatial and temporal information of interactions, type
of the relationships and activities. We validate our proposed
SocialAnnotator framework in smart environments achieving
≈ 84% statistical confidence in data annotation.

Introduction
Acquiring labeled data instances is an important task for
training supervised and semi supervised machine learning
models. In most of the problem domains, both domain
knowledge and label information for a learning algorithm
are compiled by the human annotators. As a result human
intervention is indispensable for collecting ground truths.
Labeling large amount of data suggests engaging more do-
main experts or extending the time for the labeling process.
Adapting either of these approaches is a daunting task as
it is difficult to find abundant domain experts who can re-
lentlessly provide labels. Consider building an Activities of
Daily Living (ADLs) classifier using accelerometry data. If
the sampling frequency is 30 Hz and we collect data from a
single user for a single day, we end up with approximately
2.5 million data instances. Moreover, the reliability, avail-
ability of domain experts, and the incurring costs associ-
ated with data annotation process makes it a painstaking
step while building a machine learning model. It is possible
to reduce the complexity of data annotation by dissecting

the problem domain and identifying the relevancy of data
with appropriate activity. For example, in case of ADLs we
can select a handful number of activities or emphasize more
on a specific period of the day instead of considering all of
the data. From a machine learning perspective, we can view
this as to look for most important data instances which can
have significant impact on our classifier. By utilizing Ac-
tive Learning (Bodó, Minier, and Csató ), we can select the
most informative data instances and pose the label queries
to the annotators. There are alternative methods to reduce
annotation effort other than Active Learning like utilizing
Crowdsourcing platforms (Love and Hirschheim ) or train-
ing the learning model using unlabeled data (Fiorini, Cav-
allo, and et al. 2017) (Gjoreski and Roggen 2017). However
these approaches can invoke negative impact, for example,
annotators in Crowdsourcing platforms are mostly not do-
main experts and can introduce noisy labels in the model.

Activity recognition using wearable and ambient sensors
in smart home domain is a well studied problem in liter-
ature (Guan and Plötz 2017)(Shoaib et al. 2015). Existing
activity recognition methods endure limitation in terms of
data scarcity and scalability. The sensors produce an im-
mense volume of data due to high sampling frequency in
order to capture fine-grained information without any loss.
In order to collect ground truth information, existing works
have relied on the video feed heavily where each video
frame is mapped with the timestamp (Hossain, Khan, and
Roy 2017a). In this paper, we propose an online annota-
tor selection model while exploiting active learning in smart
home activity recognition domain. Even though active learn-
ing can be effective in acquiring labels, its foundation is built
on impractical assumptions - an annotator who is always
available to provide the correct labels to every queries with-
out incurring any cost and the active learner can query as
many instances as possible (Donmez and Carbonell 2008).
In practical, a single annotator may or may not respond to
all of the queries. Therefore, exploiting multiple annotators
seems more practical (Yang and Wooldridge 2015), never-
theless their expertise level may differ drastically. Moreover,
the labels received from these imperfect annotators are not
always reliable, so if we pose an important query to a wrong
annotator all the efforts will be pointless. Thus based on the
informativeness of the selected data instance, it is always
desirable to pose the query to the right annotator.
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We first attempt to model the human relationships and as-
semble a knowledge base to represent the level of influence
to others according to social and physical context. We for-
mulate a corresponding distance metric using this knowl-
edge base which expresses the level of correspondence
between connected users given the current context. While
calculating this distance, we also consider the distance be-
tween activity space for a certain user. Activity distance en-
ables us to find out similar activities with respect to their
spatial and temporal properties. For example, if a person
eats and watches television in the living room most of the
time, then eating and watching television has similar spa-
tial property. In such cases if an annotator can label eating
activity efficiently, then our assumption is that he can also
effectively provide label for watching television activity. In
this paper we design an annotator selection model SocialAn-
notator based on Contextual Multi-Armed Bandit (CMAB)
algorithm where the context resembles the features of the
queried instance and action corresponds to the annotator se-
lection. We consider the time, space, prior context history
and the approximate label received from the learner as the
context information for CMAB. SocialAnnotator works in a
collaborative manner where the connected users collaborate
and provide label for each other.

Related Work
Activity recognition has been one of the core research ar-
eas in ubiquitous computing field for many years (Lara and
Labrador 2013) (He et al. 2008). This rapid surge and ad-
vancement in learning activity pattern have also assisted a
plethora of application domains ranging from sports (Daiber
and Kosmalla 2017) (Hossain, Khan, and Roy 2017b) to
health analytics (Samarah et al. 2017). Activity recogni-
tion research have been addressed from two pespectives us-
ing computer vision (Li and Vasconcelos 2017) (Jalal et
al. 2017) and sensor modalities (Hossain, Khan, and Roy
2017a) (Davila, Cretu, and Zaremba 2017). Various machine
learning models including both shallow learning (Lee and
Cho ) (Wyatt, Philipose, and Choudhury 2005) and deep
learning (Guan and Plötz 2017) (Bhattacharya and Lane
2016) algorithms have been exploited in existing activity
recognition literature over the years. Activity recognition
models exploiting supervised and semi-supervised learning
algorithms have to heavily rely on the number of labeled
data instances. Some literature have proposed models us-
ing unsupervised learning algorithms (Twomey et al. 2017)
(Münzner et al. 2017) (Bouchard, Bouchard, and Bouzouane
2012) but if the distribution of the data is not clearly inher-
ent, unsupervised algorithms fail to find the pattern in the
data.

To address the problem of gathering ground truth informa-
tion, active learning has been employed by few researchers.
The authors of (Bagaveyev and Cook 2014) investigated sev-
eral active learning approaches in smart home activity recog-
nition context and evaluated with real world data set. Diethe
et al. proposed a bayesian approach by utilizing active and
transfer learning in (Diethe, Twomey, and Flach 2016). In
(Liu, Chen, and Huang 2010) and (Stikic, Van Laerhoven,
and Schiele 2008) the authors exploited uncertainty based
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Figure 1: A high level structure of the modules in SocialAn-
notator framework.

active learning. (Ho et al. 2009) used an entropy based ap-
proach to measure the informativeness of data instances.
In our previous work (Hossain, Khan, and Roy 2017a) we
proposed a clustering based heuristic to find the most in-
formative instances. Hasan et al. proposed a context aware
model using active learning (Hasan and Roy-Chowdhury
2015). They utilized entropy and mutual information of the
instances to filter out the most informative data instances.
(Xu et al. 2014) applied active learning in a contextual multi-
armed bandit setting to do the activity classification. How-
ever, while employing active learning it is not always guar-
anteed to receive correct and noise free labels (Donmez and
Carbonell 2008). In this paper we take a radically different
approach than the existing literature and focus on improving
the impact of active learning by selecting proper annotator
using social relationships.

Overall Framework
SocialAnnotator framework is composed of three major
components. We have an activity recognition classifier
which is trained on labeled data instances from wearable
devices that provide raw accelerometer data. After build-
ing a stable classifier, we start feeding unlabeled instances
and predict the class label. We then start filtering uncertain
data instances from the stream of unlabeled data instances in
our Active Learner module. In our active learner module, we
measure the entropy of the instances and select the instance
with maximum entropy. We then send the selected instance
to our Annotator Selectionmodule. Note that in our daily life
we interact with a number of people. The interaction can be
physical or virtual through social network but every interac-
tion is an opportunity to observe and share information. The
key insight here is that we are connected and have more in-
teractions with the people who we are related with us. These
connected people might be direct witnesses of what we are
doing in our day to day life. As a result these social relation-
ships and correspondence lead us to have knowledge about
the activity patterns of the people we are connected with.

Wemodel the level of correspondence using a distance pa-
rameter. We calculate the spatio-temporal distance between
two connected users using their probability distribution of
location. The spatio-temporal distance lets us know about
the intersection between their location distribution. We also
incorporate a weight based on the strength of the relation-
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ship. The people with whom we interact more have higher
potential to know about our daily routines. After formulat-
ing the distance parameter, we model a budget constrained
context aware multi-armed bandit. The task of the bandit is
to select annotator given the distance parameter and context.
We design the bandit in such a way so that it does not act
in a greedy way by introducing costs associated with each
annotator and a budget constraint. We adapt a game the-
oretic approach where we have to ensure maximum gain
and keep track of our budget as well. The costs associated
with the annotators are not static, as the level of interac-
tion evolves over time. For example, we have regular inter-
actions with the people at our work place during the week
days, but over the weekend we tend to mingle with close
friends. Also a person can be connected through multiple re-
lationships (close friend and colleague in a work place at the
same time). Therefore, we consider the cumulative relation-
ship weights of all the relations for quantifying the level of
correspondence between two users. Figure 1 depicts a con-
ceptual structure of our SocialAnnotator framework.

Distance Metrics
In this section we discuss the metrics which correlate our
annotators with activities. We collect raw accelerometer and
location data from the users and formulate the following dis-
tance metrics using the temporal and spatial information of
these sensor modalities.

Spatio Temporal Distance
We calculate the spatio-temporal distance of the related
users when an activity is performed. This distance metric
implies if an user has any knowledge about the performed
activity by another user he or she is related to. While com-
puting this parameter, we also consider the neighboring lo-
cations of where the activity was performed. We calculate
the likelihood of each related user j being in a location li
given the current context xt. We process this as a categorical
distribution. Let us consider a set of activitiesW with whom
the user ui is connected. The location of each activity is an
observation of our distribution, and the location set L(W )
is a sample of that distribution with cardinality m. Each lo-
cation in li ∈ L(P ) has a prior probability. We denote the
probabilities of locations as vector p = (p1, p2, p3...pm).
Let us consider q be the location probability distribution of
an annotator ai who is connected to user ui through a re-
lation. We then calculate the conditional distributions of p
and q given context xt and time t. Using these conditional
distributions we calculate the distance between them using
Bhattacharyya distance (Bhattacharyya ). The distance be-
tween these two conditional distributions is defined as:

dst(p(x, t), q(x, t)) = −ln(B(p(x), q(x)))

=

m�

i=1

�
pi(x, t)qi(x, t) (1)

In Eqn 1, B is the Bhattacharyya coefficient which provides
the measurement of overlap between the two probability dis-
tributions. This distance provides us information regarding
the annotators who reside closer to the user. We calculate
this spatio-temporal distance for all the connected users and
take the annotators who were closest to the vicinity where

the activity was performed. If no annotator was present in
the vicinity where the user performed the activity, we as-
sume that annotators dwelling in the neighboring locations
may have knowledge about the activity label.

Activity-Activity Distance
We exploit the connectivity among activities to filter appro-
priate annotators. Our intuition is that if the properties of an
activity Wi prevails in a similar spatial and temporal space
to another activity Wj and an annotator ak has efficiently
provided reliable labels to activity Wj then ak is a potential
annotator who can provide label of activityWi. To calculate
this distance we consider three components of an activity
pair - correlation, spatial and temporal. Correlation cal-
culates the co-occurrence frequency of the activity pair, the
spatial and temporal component models the probability of an
activity pertaining to the same location and time constraints.
The distance is defined as:

d(wi, wj) = f(wi, wj)N (||tai − taj ||2, µt,σt)

N (||lai − laj ||2, µs,σs) (2)

In eqn 2, f(wi, wj) denotes the co-occurrence frequency
between a pair of activity, lai , laj , tai , taj are the spatial and
temporal parameters of the associated activities.

Relationship Weight
The strength of the social relationship can be integral in se-
lecting annotator. There may not be any annotator who di-
rectly witnessed the user doing an activity. However, human
being follows a cognitive routine most of the time and the
persons mostly associated with his life are acquainted with
the routine. For example, the family members living with the
user are usually more familiar with his routine. Some anno-
tators can also be remotely connected (e.g. updates on so-
cial network, talking over the phone or even playing online
games together). So certain relationships provide more em-
phasis and demand more attention while choosing the anno-
tator. For this reason, we try to provide weight to each con-
nected user according to the relation. However this weight
can not be static for all of the users as in real life not all
relationships are same and they evolve over time. For ex-
ample, consider the relationship with your office colleagues,
initially they could be just colleagues but over time some
might become your close friend. On the other hand one
might be in touch with their parents on regular basis, but
a different person might not. So for each person the weight
of relationship is different. We use the relationship intensity
strength proposed in (Srba and Bieliková 2010) to model
our relationship weight. The interaction between two users
(e.g. phone call, messaging, meeting etc.) or shared infor-
mation (e.g. playing soccer together, common hobby) are
designated as “rate factor”. Depending on the social aspect
these rate factors regulates the strength of a relationship. The
partial relationship weight between user k and j for one fac-
tor is defined as:

Yf (k, j) =
ωkj

�l
i=1 ft

1 + ln(1 + lc)
(3)
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In eqn 3 ωkj is the weight of the rate factor, l is the count
of rate factors, lc is the count of instances of the rate factor
and ft models the time influence. The final weight Y (k, j)
is measured by taking the arithmetic mean of the partial
weights of all the rate factors.

Now that we have formulated all our distance metrics,
we now define our final user to user distance metric. The
activity-activity distance metric provides the distance be-
tween activities and finds the similarity among them. We
maintain the count of such activities for which the annotators
have performance score more than a pre-defined threshold δ.
We utilize this count as an additional weight Wc for the an-
notators. The final distance is calculated using the following
equation:

D(k, j) = Y (k, j)Wc dkj
�
p(x, t), q(x, t)

�
(4)

Methodology
In this section, we discuss active learning, the contextual
multi armed bandit problem and the modeling of arms or ac-
tions of the bandit, the rewards and the context of our prob-
lem domain.

Active Learning
Active learning is fitting for problems pertaining to large
amount of unlabeled data instances. In the context of activ-
ity recognition using wearable devices, we have to process
overwhelming number of data instances which makes active
learning befitting. We only label the data instances which
provide highest gain which is reducing the generalized er-
ror of our classifier. In our proposed model we propose to
use Active learning using pool-based sampling as we receive
a stream of data in a very short period of time. We select
a data instance from a pool of instances in a greedy way.
Queries are typically conforming to the measure of uncer-
tainty. Here our assumption is that the instances which are
least certain are close to the decision boundary and label-
ing these instances will provide maximum gain. To measure
the uncertainty we calculate the entropy of the provided in-
stances and query the instance with maximum entropy. We
calculate the maximum entropy and select an instance by
following equation

xH = argmax
x

Hθ(Y |x)

= argmax
x

−
�

y

Pθ(y|x)log Ptheta(y|x) (5)

Contextual Multi-Armed Bandit
A contextual bandit problem is composed of N arms or ac-
tions. In our context an action refers to selecting an anno-
tator. Our goal is to maximize this reward in each iteration.
However, by selecting a sub set of the actions in a regular
manner might always provide maximum reward. For exam-
ple, a person’s spouse or close friend has better idea about
his daily activity routine than any one else. So by select-
ing the spouse or close friend in each round will maximize
the reward outcome. If we consider the annotators as re-
sources, prompting the same set of annotators will lead to
resource exhaustion. In order to tackle this, we introduce
a resource constraint or budget for each of the annotator.
The annotators who ensures higher potential reward, incur

higher cost. As a result given an overall budget our aim is
to maximize the total reward while ensuring aggregated re-
source consumption remains bounded by a given budget. Let
us denote the action set as A = {a1, · · · , ak}. We consider
the cardinality of A to be finite as an user is connected to
a finite number of people. A d-dimensional feature vector
xt ∈ X denotes the context information received at time
t. At each time t, an agent or policy π decides to choose
an action ai based on the context xt and receives reward
rti . The history of taken actions and received reward is de-
noted by Ht−1 → {ai(τ), rτ , xi(τ)} for i = 1, . . . , N and
τ = 1, ....., t − 1 where ai(τ) denotes the chosen action
which generated reward rτ . The reward of an action is gen-
erated from an unknown distribution regulated by the given
context. Let us consider the optimum action at t is a∗i and its
corresponding reward is r̃ti .

We want to select the action which results in reward close
to the optimum one, so the aim is to maximize the reward
in each step and minimize the difference between the over-
all optimum reward and the reward received. The difference
between the optimal reward and the aggregated reward re-
ceived is called regret. We provide a formal definition of re-
gret as following

R =

T�

t=1

Rt =

T�

t=1

(r̃ti − rti) (6)

In this eqn, r̃ti is the optimum reward at step t and rti is
the reward received. Let us define our reward function as
rt = f(xt, ai(t)), where f(xt, ai(t)) is the reward map-
ping function for arm ai(t). In order to maximize the reward
function, the agent needs to learn the underlying function f
which maps the context to action. In order to acquire knowl-
edge about the latent function f , the agent has to explore
other actions instead of choosing the optimum action which
provides the best outcome. � is our exploration parameter.
The predictive distribution of our reward function depends
on the current context and the history of actions taken. This
is a normal distribution with mean µr and variance V which
are defined as following

pθ(rt|HT−1, xt) = N (µr(t), Vt) (7)

Each action ai(t) is also associated with a cost ctai
. The cost

associated with an annotator is variable in each round as the
distance between users defined in eqn 4 varies over time.
The costs are independently and identically drawn from an
unknown continuous distribution with mean µc. We adhere
to the same settings in (Xia, Qin, and et al. ): (i) the rewards
of an action are independent of its costs (ii) the rewards and
costs of an arm are not influenced by other actions (iii) the
rewards and costs of an action are independent and iden-
tically distributed at each iteration. Let us define a known
parameter, budget B which designates the number of time
the algorithm can invoke annotators. This budget constrain
also helps us to supervise the stopping time ts(B) of our
algorithm which is defined as following

ts(B)�

i=1

ciai
≤ B <

ts(B)+1�

i=1

ciai
(8)

Let us denoteR∗ as our optimum aggregated reward at stop-
ping time ts(B). We calculate the expected regret, evaluated
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over the randomness of rewards and costs by modifying eqn
6.

R = R∗ − E
� ts(B)�

t=1

(rtat
)
�

(9)

Actions The action space for an user is proportional to the
number of connected annotators. An action corresponds to
selecting an annotator from the correspondence vector M .
Each element mij ≥ 0 is congruent to how relevant the an-
notator is with respect to the user in terms of our distance
metric and labeling accuracy. The expected reward to cost
ratio of an annotator ai is ρai

= µ
ai
r

µ
ai
c
. According to (Xia,

Qin, and et al. ), if both reward and cost distribution of an
action is known, pulling the arm with maximum ρ can pro-
vide the expected reward as the optimal algorithm. When
the distributions are unknown, we should select the annota-
tor with the maximum ρ and also ensure exploration on the
other rarely selected annotators.

Context A context vector xt portrays the features and
characteristics of each annotator. The features considered in
a context vector are the timestamp t, location s, n perfor-
mance metrics of the annotator with respect to each activity
c1, . . . , cn. We do not include the sensor data in the context
vector.

Reward Our reward mapping function randomly gener-
ates reward according to the conditional probability measure
defined in eqn 7. Initially the model is uncertain about the
value θ. Our reward mapping function f is defined to mea-
sure the reduction in variance of our classification model
between two iterations. For making things simple, our ob-
jective is to minimize the squared loss of the true label and
the label received from an annotator. We define our expected
error as following

E
�
(ŷ − y)2|xt, yl

�
= EY |x

�
(y − EY |x[y|x, yl])2

�

+ (EL[ŷ]− EY |x[y|x])2 + EL

�
(ŷ − EL[ŷ])

2
�

(10)

In eqn 10 EL[.] is the expectation over the labeled train-
ing set L, ŷ is the label received from an annotator and y is
the true label of the instance. EY |x

�
(y − EY |x[y|x])2

�
in-

dicates noise or uncertainty of y given x. The second term
represents bias which is the error due to the selected action.
The third term represents the output variance of our model.
Therefore minimizing the variance will ensure to minimize
the generalization error of our model. So we try to reduce
error by selecting annotators that establish highest variance
reduction of our activity recognition model. For any action
ai, number of times it is invoked nai,t, average cost c̄ai,t
and average reward r̄ai,t and the exploration parameter is

�ai,t =
�

2log(t−1)
ni,t

. We calculate index Dai,t for each an-
notator:

Jai,t =
r̄ai,t

c̄ai,t
+

r̄�i,t
c̄ai,t

+
r̄�i,t
c̄ai,t

D(k, i) (11)

In eqn 11, the average reward to cost ratio represents the
exploitation. The first influences our algorithm to choose the
arms with higher rewards. The exploration term r̄�i,t

c̄ai,t
favors

the annotators who provide less reward and as a result in-
voked infrequently with lower costs. Exploring weaker an-
notators may be conducive as our budget is limited. The final
term enforces joint exploitation and exploration. Our whole
methodology is summarized in Algorithm 1.

Algorithm 1 SocialAnnotator Annotator Selection

Require: U , A pool of unlabeled instances {(x)u}Uu=1,
A = {a1, a2, . . . ak}, A list of connected annotators

1: Output: Best annotator ai.
2: Select instance xt with maximum entropy
3: p ← location probability distribution of the user
4: Reward Index J ← {}
5: for annotator ak ∈ A do
6: q ← location probability distribution of annotator ak
7: Calculate spatio temporal distance

dst(p(xt, t), q(xt, t))
8: Distance d ← {}
9: for each activity wi do
10: d(wi, wj) ← activity-activity distance
11: d.insert(d(wi, wj))
12: end for
13: maximum activity-activity distance dmax ←

max(d)
14: Yf (ak, user) ← relationship weight
15: D(ak, user) ← annotator-user distance
16: Jak

← reward index for annotator ak
17: J [k] = Jak

)
18: Maximum reward Jmax =max(J)
19: i ← index of Jmax

20: end for
21: return annotator ai

Experimental Evaluation
In this section we evaluate SocialAnnotator using real data
traces and compare the performance of our model using
different bandit algorithm. We also evaluate our classifier
based on annotator We provide a description of our setup
and dataset and data collection process in the following:

Setup
We collected activity data using wearable devices from 5
users over the course of 16 days. We used android smart
watch Moto360 to collect the accelerometer data. We also
collected the location information of the users using GPS
which we only used for ground truth. We developed smart-
phone apps for both ios and android platforms using which
the users can add correspondence (friend, spouse, roommate
etc.). Users were asked to log the interaction, location and
activity data using this platform. Users were asked to log
not only the in person interactions but also virtual or remote
(messaging, talking over the phone, interaction through so-
cial network etc.) interactions as well. Logging too much
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(b) (c) (d)
Figure 2: (a) shows the distribution of normalized reward with respect to number of queries. (b) shows per-annotator labeling
time distribution. (c) represents the stack plot of percentage of correctly labeled instances of all the connected users for each
user. (d) Precision, recall and f1-score of our base classifier using different settings.

interaction can become a burden, so only the number of in-
teraction was required to log. We established ground truth
using these log information. In our experiment we monitored
5 daily activities - {eating, sleeping, phone calling, working,
cooking}.

The sensor data are directly uploaded to our lab server
from the wearable device and we preprocess(feature extrac-
tion, filtering, noise reduction etc.) the data in the server. As
previously stated in our pipeline in Figure 1, we train a su-
pervised classifier first to recognize the performed activity.
We have used a simple decision tree based classifier. Initially
after training our model with labeled instances we achieved
an average accuracy of 77%. Even if we have achieved
low accuracy compared to the existing literature, we are
only concerned about investigating how efficient labeling
can help to improve the performance of activity recogni-
tion model. We have For our budgeted multi-armed bandit,
the reward and cost of each annotator are sampled from a
beta distribution. The parameters of the these distributions
are sampled from [1,5]. The budget of our framework is
chosen from the set {200, 300, 400, 500, 1000}. We com-
pare our annotator selection model with different contextual
multi armed bandit algorithm - LinUCB, �-Greedy, EXP4
and Random sampling. In case of Random sampling, the an-
notator is chosen at random in each iteration. All the contex-
tual bandit algorithms are executed up to 300 iterations per
user in this experiment.

Table 1: Statistics of SocialAnnotator compared to other
multi-armed bandit algorithm

r̄ c̄ r̄/c̄ % opt
Random 0.763 0.793 0.962 1.67
LinUCB 0.758 0.814 0.932 0.8
�-Greedy 0.796 0.886 0.8984 1.32
EXP4 0.864 0.810 1.067 61.17

SocialAnnotator 0.913 0.267 3.419 73.42

Bandit Performance
In Table 1, we list and compare average rewards(r̄), average
costs(c̄), average reward to cost ratio (r̄/c̄) and the percent-
age of time optimal annotator gets selected (% opt) of dif-
ferent bandit algorithms. From the statistics we see that Lin-

UCB and �-Greedy perform worst with respect EXP4 and
our model. Both these algorithms are not meant for prob-
lems with budget constaints and as a result they do not take
budget into consideration. Our model can achieve higher re-
ward at lower cost contrast to other bandits which verifies
that we are choosing optimal annotator at each step. In fig-
ure 2a the trend of average reward obtained at each step is
shown. It is evident that our proposed algorithm outperforms
the other bandit algorithm settings. More context informa-
tion like detailed interaction, fine grained location informa-
tion etc. might further improve the model.

Annotator Selection
We monitor the performance of each annotator and maintain
a score for each activity associated with the connected users.
In Figure 2b we provide the annotation time distributions of
each user using boxplot. A box depicts the majority of anno-
tation times and the median time is marked with a solid line
inside the box. It is noticeable from the figure that each user
have different time distribution which means the efficiency,
promptness and reliability of each user varies. We also de-
duce that the annotator might not provide the label at all. We
show the percentage of correctly labeled instances by each
user in Figure 2c. As User 5 is only connected to User 4
and User 1 there are only three scores for him including the
score of labeling his own activity. It is apparent that all the
users are efficient in labeling their own activity.

Table 2: Labeling result of each user
Correct Label Wrong Label No Label

User 1 324 49 27
User 2 306 68 26
User 3 285 83 32
User 4 310 73 17
User 5 345 37 18

We notice that User 1 and User 5 were able to label each
others data quite precisely. We found that these two users
were living in the same apartment and User 1 is spouse of
User 5. Their quantity of interaction was also very high as
apart from living together they were also talking with each
other over the phone couple of times a day. We also notice
from the figure that User 2 and User 4 were able to label the
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Stiefelhagen, R.; and Dürichen, R. 2017. Cnn-based sen-
sor fusion techniques for multimodal human activity recog-
nition. In Proceedings of the 2017 ACM International Sym-
posium on Wearable Computers, ISWC ’17, 158–165.
Samarah, S.; al Zamil, M. G. H.; Al-Eroud, A. F.;
Rawashdeh, M.; Alhamid, M. F.; and Alamri, A. 2017. An
efficient activity recognition framework: Toward privacy-
sensitive health data sensing. IEEE Access 5.
Shoaib, M.; Bosch, S.; Incel, Ö. D.; Scholten, H.; and
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