
VMHunt: A Verifiable Approach to Partially-Virtualized Binary
Code Simplification

Dongpeng Xu
Pennsylvania State University
University Park, PA 16802, USA

dux103@ist.psu.edu

Jiang Ming
University of Texas at Arlington

Arlington, TX 76019, USA
jiang.ming@uta.edu

Yu Fu
Pennsylvania State University
University Park, PA 16802, USA

yuf123@ist.psu.edu

Dinghao Wu
Pennsylvania State University
University Park, PA 16802, USA

dwu@ist.psu.edu

ABSTRACT

Code virtualization is a highly sophisticated obfuscation technique

adopted by malware authors to stay under the radar. However,

the increasing complexity of code virtualization also becomes a

łdouble-edged swordž for practical application. Due to its perfor-

mance limitations and compatibility problems, code virtualization

is seldom used on an entire program. Rather, it is mainly used only

to safeguard the key parts of code such as security checks and

encryption keys. Many techniques have been proposed to reverse

engineer the virtualized code, but they share some common lim-

itations. They assume the scope of virtualized code is known in

advance and mainly focus on the classic structure of code emula-

tor. Also, few work verifies the correctness of their deobfuscation

results.

In this paper, with fewer assumptions on the type and scope of

code virtualization, we present a verifiable method to address the

challenge of partially-virtualized binary code simplification. Our

key insight is that code virtualization is a kind of process-level vir-

tual machine (VM), and the context switch patterns when entering

and exiting the VM can be used to detect the VM boundaries. Based

on the scope of VM boundary, we simplify the virtualized code.

We first ignore all the instructions in a given virtualized snippet

that do not affect the final result of that snippet. To better revert

the data obfuscation effect that encodes a variable through bitwise

operations, we then run a new symbolic execution called multiple

granularity symbolic execution to further simplify the trace snippet.

The generated concise symbolic formulas facilitate the correctness

testing of our simplification results. We have implemented our idea

as an open source tool, VMHunt, and evaluated it with real-world

applications and malware. The encouraging experimental results

demonstrate that VMHunt is a significant improvement over the

state of the art.
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1 INTRODUCTION

Virtualization, a general technique that runs a virtual machine on

versatile platforms [63], has become an important technique for

software protection to obfuscate code [5, 23, 62]. When applied

to code obfuscation, virtualization transforms the selected parts

of a program to bytecode in a new, custom virtual instruction set

architecture (ISA). At execution time, the bytecode is emulated

by an embedded virtual machine (or interpreter) on the real ma-

chine. The new ISA can be designed independently, and thus the

bytecode and interpreter greatly differ from those in every pro-

tected instance. In this way, the program’s original code never

reappears. Moreover, the bytecode is typically implemented in a

RISC-like style, in which a source x86 instruction will be translated

to a sequence of bytecode operations. Consequently, the number

of native instructions executed increases significantly [36], and

extracting the semantics of the custom ISA is like finding a nee-

dle in a haystack. Furthermore, virtualization obfuscation can be

seamlessly integrated with other obfuscation schemes such as data

encoding [16, 86], metamorphism [1, 85], and control flow obfusca-

tion [17, 74], rendering traditional static and dynamic analysis tech-

niques ineffective [13, 32]. Over the last decade virtualization obfus-

cation, generally recognized as one of themost advanced techniques

to impede reverse engineering [39, 50], has been developed as a set

of commercial software protection products [45, 46, 66, 69, 73] and

research tools [15, 53, 68].

The potency of virtualization obfuscation has definitely attracted

the attention of malware developers, who are highly motivated



to seek more sophisticated techniques for disguising their mali-

cious code and circumventing anti-virus solutions [43, 54]. An

increasing number of malware are armored by virtualization such

as Virus.Win32.Goblin [47] and Trojan.Win32.Clampi [26]. How-

ever, the heavy-weight obfuscation strength also comes with a cost

of performance and compatibility. Because the virtualized code

does not execute natively, its runtime overhead is considerably

high. A recent study shows that the slowdown varies from 1.9X

to 660.9X when only 10% of the code is virtualized [77]. The user

manual of Code Virtualizer [44] recommends that users only pro-

tect a short, core code snippet and avoid program hot spots such

as loop structures that iterate many times. Another limitation is

the compatibility issue. Some complicated program structures (e.g.,

switch/case statements and exception handlers) and x86 instruc-

tions (e.g., SIMD and AES instruction set) might not be correctly

translated by the virtualization tools [55]. The same study [77] also

confirms the compatibility problem in that most test programs exit

exceptionally when virtualization obfuscation level reaches 30%.

Therefore, unlike the binary packers, another common obfuscation

scheme for whole binary code protection [56, 71], malware devel-

opers only virtualize selected, key parts of the malicious code in

practice [78].

Most of existing work relies on dynamic analysis to deobfuscate

virtualized program. The first category of work attempts to reverse

engineer the bytecode interpreter [29, 30, 51, 55, 59]. Dynamic anal-

ysis is used to identify the decode-dispatch based interpretation,

which is the classic way to implement an instruction set virtualiza-

tion [63]. The distinguishing feature is a central loop that fetches a

piece of bytecode based on the current value of a virtual program

counter (i.e., decode), and then dispatches to the corresponding

handler which contains the machine code to emulate the bytecode.

Since bytecode handlers themselves are usually heavily obfuscated,

they need to be further simplified, e.g., by program synthesis [9],

symbolic execution [10, 37], or compiler optimizations [22, 57, 80].

The second category tries to strip off the virtualization obfuscation

layer from the tedious execution instructions [19, 40, 67, 83]. In this

category, dynamic taint analysis or concolic execution is applied

to identify the instructions that contribute to the real program be-

havior. However, a common limitation in both categories is that

they assume the scope of virtualization-obfuscated code is already

known. None of them discusses how to automatically extract the

virtualized code part from an obfuscated program. Besides, the way

of designing ground truth dataset in prior evaluations is biased

either: they perform whole program virtualization on very tiny,

synthetic programs [9, 19, 30, 59, 83]. Unfortunately, this assump-

tion may not be tenable for real-world applications where only part

of the code is virtualized.

Automatic detection of the virtualized code is an indispensable

step before deobfuscation procedures. Accurate boundaries can

quickly locate virtualized code and significantly reduce the over-

head, as deobfuscation procedures are generally quite expensive.

However, locating accurate boundaries is a nontrivial task. First,

decode-dispatch loops appear in many normal applications such

as web servers and user interfaces. Second, advanced code emu-

lators have adopted alternative interpretation structures, such as

threaded interpretation [8, 24], to hide the decode-dispatch fea-

tures. In threaded interpretation, the dispatch loop is inlined to the

individual handler functions. Worse still, we have observed fake

decode-dispatch loops that look very similar to real ones. Those

loops usually contain an increasing integer variable, which mimics

the virtual program counter inside the dispatcher. Their purpose is

to mislead the deobfuscation methods that rely on looking for the

decode-dispatch loop [29, 30, 37, 51, 55, 59].

In this paper, we propose a novel method, called VMHunt, to au-

tomatically identify and simplify virtualized code sections from an

execution trace. VMHunt does not assume any particular structure

of the bytecode interpreter in use. Instead, it locates the boundary

of partially-virtualized code based on an inherent property of stan-

dard virtual machine (VM) design: context switches occur between

virtualization application and native OS to ensure isolation [33]. The

code snippet inside a virtualized context is the virtualized code.

With the boundary information, VMHunt extracts the core part of

virtualized code by slicing the instructions that affect the native

context. Finally, VMHunt includes a new method called multiple

granularity symbolic execution to further simplify the sliced code.

Compared to the traditional symbolic execution, our design can

better revert data encoding effect and lead to more concise symbolic

formulas, which represent the original semantics of the virtualized

code. Furthermore, with the unprotected version of code, we can

use the generated symbolic formulas to verify the correctness of

VMHunt. Any semantic discrepancy may indicate that VMHunt is

not implemented perfectly right.

We have evaluated VMHunt on the latest version of well-known

virtualization obfuscators such as Code Virtualizer [45], VMPro-

tect [73], EXECryptor [66], and Themida [46] in benign and ma-

licious scenarios. Our experiment shows that VMHunt correctly

extracts the virtualized section from a tedious execution trace with-

out false positives. VMHunt’s trace simplification can reduce the

number of inflated instructions by several orders of magnitude,

and multiple granularity symbolic execution delivers a significantly

concise form which accurately reveals the semantics of the vir-

tualized code. Our experiments demonstrate VMHunt enables an

accurate analysis and understanding of virtualization-obfuscated

binary code, and it is essential for rapid response to emerging mal-

ware threats.

Scope and Contributions. VMHunt does not attempt to super-

sede existing virtualization deobfuscation methods, but rather com-

plements them by narrowing down the search scope for virtual-

ized code snippets, and then providing a simplified view of those

snippets. Other state-of-the-art techniques such as program syn-

thesis [9] and compiler optimizations [57] can work directly on

VMHunt’s simplified trace and achieve better reverse engineering

result. In summary, we make the following contributions.

• We propose a general method to detect the virtualized code

section from a program execution trace. This challenging

problem has been largely overlooked by the existing work

which relies on an over-simplistic assumption.

• We design a new optimization method to simplify the exe-

cution trace based on boundary information. Our multiple

granularity symbolic execution extends the capability of sym-

bolic execution in analyzing malicious binary code.

• Our approach is capable of performing correctness test-

ing to the deobfuscation results, which is rarely done by





2.3 Virtualization-Obfuscated Malware

The strength of code virtualization comes with the problems of

high performance penalty and poor compatibility. Whole program

virtualization may not be an optimal option to cyber-criminals, as

it can add new telltale signs such as high CPU usage and delay mal-

ware propagation. In practice, malware developers opt to virtualize

the core parts of malware. For example, FinSpy malware applies

custom code virtualization to protect command-and-control infor-

mation [52, 70]; SpyEye uses VMProtect to protect the malware

builder [65]; some malware samples choose to virtualize stolen

code to evade user-level API hooking [31, 78]. However, none of

the previous deobfuscation work studies the problem of partially-

virtualized code, and many of them can only deal with the classic

code emulator structure. Our approach will bridge this gap.

3 OVERVIEW

Figure 3 shows an overview of VMHunt’s workflow, which contains

three key components.

(1) Virtualized Snippet Boundary Detection. Given a virtualized

program, we first run it to record an execution trace. Then

we identify the virtualized snippet boundary in the trace

by detecting context switch instructions. Those instructions

switch context between the native environment and the

virtualized environment.

(2) Virtualized Kernel Extraction. After the boundary is detected,

we analyze and extract the kernel of the virtualized snippet.

The kernel refers to instructions in the virtualized snippet

that affect native program environment. It reveals the se-

mantics of the virtualized snippet.

(3) Multiple Granularity Symbolic Execution. We propose a new

symbolic execution called łmultiple granularity symbolic

executionž to simplify virtualized snippets. Our method rep-

resents the semantics of kernel virtualized code as concise

symbolic formulas.

4 VIRTUALIZED TRACE BOUNDARY
DETECTION

4.1 Trace Logging

VMHunt’s trace log component is based on Intel Pin [38], a dynamic

binary instrumentation framework. The trace logger can record

all the instructions executed during runtime except those inside

system calls. In addition to the instructions, a trace also includes

plenty of runtime information. Overall, the following information

is recorded in a trace.

(1) The memory address of every instruction

(2) The instruction name (opcode), which describes the opera-

tion that the instruction is performing

(3) The source and destination operands. Usually there are three

types of operands: immediate value, register, or memory

address

(4) Runtime information, including the content in all registers

and memory accessing addresses

4.2 Context Switch Instructions

One of our major observation is that code virtualization is typi-

cally applied to some sensitive code sections, and the rest parts still

run as native code. Therefore, during the execution of a partially-

virtualized program, it will switch between the native environment

and the virtualized environment. Figure 4 presents a trace example

showing the execution of a virtualized program. Before line 1, the

program is running in the native context. The instructions from

line 2 to 9 save the native context by pushing all general registers

and the flag register to stack. After that, the jump instruction at

line 10 transfers the execution to the virtualized environment. From

line 11 to 15, the program is running inside the virtualized context.

After reaching the end of the virtualized part at line 15, the instruc-

tions from line 16 to line 23 restore the context by popping values

from memory to registers. Finally, the jump instruction at line 24

transfers the execution back to the native program and continues

the execution.

In this paper, we define the instructions that save or restore the

context between the native and virtualized environment as context

switch instructions. Specifically, there are two categories of context

switch instructions: context saving instructions and context restor-

ing instructions. Context saving instructions save all registers to

memory (typically stack), such as the instructions from line 2 to

9 in Figure 4. Similarly, context restoring instructions restore all

registers from memory (typically also stack), such as the instruc-

tions from line 16 to 23 in Figure 4. The term łcontextž in this paper

refers to the content in all registers.

Two VM Architectures: Stack vs. Register. A long-running dis-

cussion in VM design is whether an interpreter should be imple-

mented via stack-based architecture1 or register-based architecture,

because these two designs have their own pros and cons [21, 60].

We wish to emphasize here that context switch instructions are

independent of any specific VM architecture. For example, Code Vir-

tualizer [45] provides multiple VMs including both stack-based VM

and register-based VM, and we find context switch instructions are

very common among different VMs. Since all partially-virtualized

programs include context switch instructions, they are significant

symbols for the beginning or end of virtualized snippets. Therefore,

identification of these context switch instructions is the first step

towards the detection of virtualized snippets.

Apparently, for the ideal case shown in Figure 4, identifying

context switch instructions is fairly straightforward. One intuitive

solution is using a pattern match method to match instruction

sequences that push all registers to stack or pop them back. How-

ever, according to our observation, virtualizer developers have

already taken advantage of obfuscation methods such as code mu-

tation [1, 85] to hide context switch instructions. Figure 5(a) shows

an example of obfuscated context saving instructions in Code Vir-

tualizer, and we have trimmed and simplified the example for better

presentation. In Figure 5(a), the instructions from line 4 to 15 is

actually an obfuscated version of push edi. In order to detect

the context switch instructions within an obfuscated execution

trace, which usually contains millions of instructions, we propose

a three-step method to effectively identify them. The three steps

are normalization, simplification, and clustering.

1The step 0 in Figure 1 is an example of stack-based architecture.











In step (1), four 8-bit concrete values are concatenated together to

show the content of EAX. In step (2), the 8-bit symbolic value S81 is

created to represent the value in AH. However, the 8-bit symbolic

execution do not have the capability to represent a 4-bit symbolic

value. Therefore, in step (3), it concatenates the four 8-bit values

and treats them as a 32-bit symbolic value S323 . In step (4), S323 is

used for calculating the conjunction.

From the simulation above, we can see that the result of single

granularity symbolic execution is a 32-bit symbolic value. However,

Figure 7(b) shows that the execution result should be a concrete

value. Therefore, single granularity symbolic execution create a

redundant symbolic value in the formula. Although the theorem

solver in the following step can prove that this symbolic value is

actually a concrete value, these redundant values unnecessarily

increase the formula size and add more burden to the solver.

The reason that single granularity symbolic execution misses the

optimization opportunity is that it lacks the capacity of handling

values on multiple granularity. Next we will show how our multiple

granularity symbolic execution is able to solve this problem. The

execution procedure is simulated as follows. First, we create a 32-bit

concrete value.

C
32
1 |C32

1 =0x12345678

The second instruction sets AH to an 8-bit symbolic value. Since

the granularity is flexible, our method can directly set the cor-

responding part to a symbolic value, leaving the remaining bits

untouched as concrete values. In our example, it splits the 32-bit

concrete value into one 16-bit value and two 8-bit values, and then

replaces one 8-bit concrete value with a 8-bit symbolic value S81 .

The result is shown as below.

[C16
2 , S

8
1 ,C

8
3]|C16

2 =0x1234,C
8
3=0x78

The third instruction shift [C16
2 , S

8
1 ,C

8
3] to the left by 4 bits. In

multiple granularity symbolic execution, bit-level granularity is

exposed to all bitwise operations. Therefore, our method is able

to precisely interpret the semantics of bitwise operations on bit

level. The symbolic execution result of the shift operation is shown

as follows. It is an concatenation of one 12-bit concrete value, one

8-bit symbolic value and another 12-bit concrete value.

[C12
4 , S

8
1 ,C

12
5 ]|

C12
4 =0x234,C

12
5 =0x780

The last instruction perform the conjunction operation. Similarly,

Multiple granularity symbolic execution engine accurately execute

the conjunction instruction on bit level as follows.

[C12
4 ∧ 0x0ff, S

8
1 ∧ 0x00,C

12
5 ∧ 0xff0]|C12

4 =0x234,C
12
5 =0x780

Therefore, the final result is a concatenation of three concrete

values.

[C12
6 ,C

8
7 ,C

12
8 ]|

C
12
6 =0x034,C

8
7=0x00,C

12
8 =0x780

The three concrete values can be further merged to one 32-bit

concrete value. This is the same result as that shown in Figure 7(b).

C
32
9 |C32

9 =0x03400780

Advance over state-of-the-art work.Multiple granularity sym-

bolic execution is a new variant of symbolic execution to summarize

the semantics of the extracted code, and it balances the accuracy and

performance between fixed bit-level symbolic execution and tra-

ditional symbolic execution. By contrast, extending existing work

to achieve the same goal is difficult, if not impossible. In summary,

our design offers two competitive advantages.

(1) Fine-grained Analysis. Multiple granularity symbolic execu-

tion accurately interprets the semantics of bitwise operations

on bit level during execution. The fine-grained information

exposes optimization opportunities for eliminating redun-

dant symbolic values.

(2) Flexibility. The multiple granularity symbolic execution en-

gine is free to split and merge values without granularity

restriction. This feature gives multiple granularity symbolic

execution the capacity of operating on different granularity

levels, so that it can perform fine-grained analysis but still

generate concise formulas.

7 IMPLEMENTATION

We build an open source tool called VMHunt as the prototype

of our idea. The trace logger is written in C++ based on Intel’s

Pin DBI framework [38] (version 2.13). Symbolic execution on the

binary code has appealing applications in security analysis, and

many options [11, 14, 20, 22, 58, 61, 64] are available in the arsenal.

However, the fixed data type design in existing symbolic execution

engines obstructs the implementation of multiple-grained symbolic

execution. We have to redesign two fundamental components in

the symbolic execution engine: 1) a new data structure to support

multi-granularity data types; 2) a new symbolic execution rule to

decide an instruction should be translated to formula or interpreted.

It motivates us to develop our own symbolic execution engine. We

design an intermediate representation (IR), which can effectively

encode symbolic and concrete values on different granularities.

Based on this new feature, our symbolic execution engine efficiently

interprets the behavior of instructions and translates it to concise

formulas. Specifically, VMHunt consists of several components,

including the multiple granularity symbolic execution engine, a

parser for lifting a trace to the IR, the virtualized snippet boundary

detector, a forward/backward slicer, a peephole optimizer to revert

the effects of instruction-level obfuscation, and utilities for control

flow graph generation. The whole tool chain includes 17, 192 lines

of C++ code and 341 lines of Perl code.

8 EVALUATION

In this section, we evaluate VMHunt from two aspects: effectiveness

and performance. Particularly, we design and run experiments to

answer the research questions (RQs) as follows.

(1) RQ1: Is VMHunt able to correctly detect the virtualized

snippet boundary inside a virtualized program trace? (effec-

tiveness)

(2) RQ2: Is VMHunt able to effectively extract and simplify the

virtualized kernel? (effectiveness)

(3) RQ3: How many false positives can VMHunt produce? (ef-

fectiveness)

(4) RQ4: How much overhead does VMHunt introduce? (per-

formance)

As the response to RQ1, we first apply modern commercial virtual-

izers to several real open source programs and then use VMHunt



to detect the virtualized snippets. In RQ2, we compare the size of

kernel with the size of virtualized snippet. We use a theorem prover,

STP [27], to check the equivalence of the kernel and the original

trace (i.e., correctness testing). We run VMHunt on malware sam-

ples and provide a case study about a virtualized ransomware to

answer RQ1 and RQ2. In response to RQ3, we run benign programs

without virtualization to check the false positives. As the answer

to RQ4, we report the performance of the main components in

VMHunt, including the tracer, boundary detector, and symbolic

execution engine.

8.1 Open Source Programs

Typically, virtualization is used for protecting a piece of sensitive

snippet in a program. So first we evaluate VMHunt in this common

scenario. We select several open source programs as the test bed.

Next, we apply modern virtualization obfuscators to a snippet in

the program. After that, we use VMHunt to discover the virtualized

snippet and simplify it.

8.1.1 Testbed Programs. Our testbed is comprised of programs

from several open source projects. We choose them based on the

following facts. First, they are widely used open source programs

in the real world. Second, they are representative tools from dif-

ferent areas. Lastly, they inherently include a main loop that read

data and process it. For example, a web server contains a loop to

dispatch different inquire packages to the corresponding handlers

based on the package type. The main loop’s behavior is similar

to a virtual machine’s dispatch-handler behavior. This behaviors

can help us check the false positives that VMHunt produces. The

programs in our testbed are grep-2.21, bzip2-1.0.6, md5sum-8.24,

AES in OpenSSL-1.1.0-pre3, thttpd-2.26, and sqlite-2.26. The CPU

and memory of our testbed machine is Intel Core i7-3770 processor

and 8GB, with Ubuntu Linux 14.04 installed.

8.1.2 Virtualizer and Sensitive Area. Wevirtualize the above testbed

programs with several modern virtualization obfuscation tools and

then use VMHunt to detect and simplify the virtualized snippet.

The virtualization tools are Code Virtualizer [45], Themida [46],

VMProtect [73] and EXEcryptor [66]. We adopt the most recent

released version of each tool so as to evaluate VMHunt against the

state-of-the-art virtualization techniques2. All those virtualization

tools provide the capability to let users select a piece of sensitive

area in a program to be virtualized. The virtualization tool will con-

vert that area to virtual instructions that can only be understood

by an internal virtual machine. The remaining part of that program

will be untouched.

In order to evaluate VMHunt in the real world scenario, we im-

plement a trial/registration scheme which has two virtualized areas

in each of the test bed programs. The details of the trial/registra-

tion is shown in the Appendix A. After that we use VMHunt to

detect the boundaries of the virtualized areas. The result shows

that VMHunt correctly identifies the virtualized snippets in all

testbed programs. VMHunt is also able to extract the kernel of each

virtualized snippet. We compare the number of lines of the total

trace, virtualized snippets and kernels in Table 1. For simplicity,

2We purchased the professional editions of all testing obfuscators. They are still the
latest versions until 05/09/18.

we only present the evaluation data from Code Virtualizer [45].

The data from VMProtect [73] and EXECryptor [66] are similar.

Themida [46] shares same VMs with Code Virtualizer, so the eval-

uation data is also the same. According to Table 1, the virtualized

snippet identified by VMHunt is about 10% of the whole trace size.

The kernel of a virtualized snippet is about 10−4 of the whole trace

size. The result proves that VMHunt can significantly reduce the

number of instructions for future analysis.

Next, we run multiple granularity symbolic execution on each

kernel of the virtualized snippets. The symbolic execution generates

a simplified formula representing the semantics of the kernel. To

check whether the formula is equivalent to the original program, we

run symbolic execution on the trace of the original programwithout

virtualization. After that we use STP [27] to check whether the

formula from VMHunt’s output is equivalent to the unobfuscated

formula. The experiment result shows that all formulas generated

by VMHunt is equivalent to the original formula before obfuscation.

Compared to other deobfuscation work, VMHunt is the first one

that can verify the correctness of simplification result.

In order to evaluate the multiple granularity symbolic execution

in VMHunt, we compare it with two single granularity symbolic

execution engines. One is on byte-level (8 bits) and the other one is

on bit-level (1 bit). We remove the multiple granularity component

from our symbolic execution engine and modify it to a byte-level

and bit-level symbolic execution engine separately. They are used

for the comparative evaluationwith VMHunt.We run the two single

granularity symbolic execution engines on the virtualized kernels

and compare the formulas with those generated by VMHunt. The

result is shown in Table 2. It shows that the size and number of

variables from formulas generated by multiple granularity symbolic

execution is significantly less than those from byte or bit level

symbolic execution engines. Moreover, we also compare the time

that a solver take to solve the formula. The formula generated

by multiple granularity symbolic execution can be solved about

10X faster than that from byte-level symbolic execution and 20X

faster than bit-level symbolic execution. The result proves that the

multiple granularity symbolic execution in VMHunt can produce

concise and efficient formulas, especially for bitwise operations.

8.2 Multiple VMs Virtualization

Some modern virtualization tools, such as Code Virtualizer [45] and

Themida [46], come with multiple custom VMs. Those custom VMs

are designed using different architectures. Users can apply different

VMs to different sensitive areas in the same program. As a result,

the execution trace of that program contains multiple virtualized

snippets of different VMs. In this scenario, reverse engineering one

sensitive area provides very little information for cracking other

sensitive areas. It raises a strong challenge to existing deobfuscation

methods and we have not found a direct response to this challenge

in the previous work.

We are curious about VMHunt’s performance in the scenario of

multiple VM virtualization. We conduct an experiment to verify

whether VMHunt is able to detect and simplify all virtualized snip-

pets of different VMs in a program. We adopt Code Virtualizer [45]

in this experiment, and it shares the same custom VM engines with

Themida [46]. The name of each VM is formed by an animal name



Table 1: The number of instructions of the whole trace, virtualized snippets, and kernels in all testbed programs. T means the

whole trace. S1 and S2 are the two virtual snippets in the trace. K1 and K2 are the kernels in S1 and S2 respectively.

Programs T S1 S2 S1+S2 K1 K2 K1+K2 (S1+S2)/T(%) (K1+K2)/T(10−4)

grep 1,072,446 130,329 168,857 299,186 552 1,061 1,613 24.6 15.0

bzip2 1,422,428 133,272 153,537 286,809 774 1,444 2,218 20.2 15.6

aes 2,479,948 124,793 156,019 280,812 837 1,173 2,010 11.3 8.1

md5sum 2,309,826 134,320 168,163 302,483 604 1,271 1,875 13.1 8.1

thttpd 3,680,610 117,435 155,262 272,697 677 1,389 2,066 7.4 5.6

sqlite 4,716,883 146,177 161,073 307,250 820 1,465 2,285 6.5 4.8

Table 2: Comparison of the formulas generated by bit-level,

byte-level andmultiple granularity symbolic execution. The

formula size is measured by number of lines. The second

metric is the number of variables. The third metric is the

solving time measured by seconds. - means timeout after

1800 seconds.

SE Metrics grep bzip2 aes md5sum thttp sqlite

byte

size 671 459 674 801 792 997

var # 1289 2071 3215 4318 4730 6103

time 90 105 150 152 144 183

bit

size 7992 5205 5310 9134 6840 10289

var # 25110 41947 69827 87638 80592 13609

time 383 486 532 517 793 -

MG

size 71 128 218 239 291 348

var # 408 558 544 673 804 930

time 12 16 13 14 20 23

plus a color, such as łlion blackž, łtiger red.ž One animal name refers

to a custom VM architecture and the colors means different vari-

ants of that that architecture. Deeper color means the variant has

more virtualization methods applied in that VM architect. In this

experiment, we apply two significantly different VMs, łtiger whitež

and łfish blackž to virtualize the two sensitive areas as shown in

Figure 9. After that we repeat the experiment in the last section.

The result shows that all virtualized snippets in different VMs are

correctly detected and simplified. The size of different sections is

shown in Table 3. Particularly, by comparison of the S2 column in

Table 3 with the S2 column in Table 1, we can see that the łfish

blackž VM is more complicated than łtiger white.ž However, the

size of the kernel is still similar. It proves that VMHunt can extract

the core semantics of the virtualized snippet.

Another way of applying multiple-VM virtualization is nested

VM [83], which means, apply another virtualization to an already

virtualized code. We also evaluate VMHunt in the nested VM sce-

nario. We use grep as the testbed and apply the tiger-white VM

twice. In practice, we observe that virtualized snippet after the

first round of virtualization is significantly larger than the original

snippet as shown in Table 3. Therefore, if the second round of virtu-

alization is applied directly to the virtualized snippet, it will cause

performance problem. Besides, the virtualized snippet also contains

program structures which are not suitable for being virtualized

again as mentioned in Section 1. In our evaluation, we select one

block of instructions after in the first-round virtualization. That

block does not include any program structures that could lead to

wrong virtualization. Thenwe apply another round of virtualization

to the block to produce the nested-virtualized grep program.

In our evaluation, we run VMHunt on the nested-virtualized grep.

First, VMHunt correctly identify two virtualized snippets. Different

from the previous experiment, those two virtualized snippets are

nested. We first apply VMHunt to extract the kernel of the inner

virtualized snippet and replace it with the kernel. After that, we run

VMHunt again to process the outer virtualized snippet. The final

result shows that VMHunt is able to correctly handle nested-VMs.

8.3 Malware Samples

In order to evaluate VMHunt in a malicious scenario in practice,

we collect malware samples from Virustotal3 and some other fo-

rums. These samples cover different malware categories, such as

botnet, virus, and ransomware. All samples are already known as

being virtualized. We run VMHunt on these malware to detect

and simplify the virtualized snippet. Table 4 shows the evaluation

result. VMHunt successfully detects all virtualized snippets in all

the 10 samples. We also manually verify the extracted snippets are

real virtualized snippet. A detailed case study of the ransomware

sample, tears, is presented in the next section. Our observation is

that malware developers only apply virtualization obfuscation to a

small piece of code, which is typically a sensitive area that can be

detected by the anti-virus software.

8.4 A Ransomware Case Study

In this section, we present a case study about applying VMHunt

in a real-world ransomware called łtearsž. We download the ran-

somware sample from VirusTotal. The ransomware encrypts vic-

tims’ files by AES encryption and then ask the victims to pay a

ransom for decryption of their files. Based on the description on

VirusTotal, the core part of the sample is protected by virtualization

techniques. We set up a Cuckoo sandbox4 to run the ransomware

and record an execution trace. Then we use VMHunt to analyze the

virtualized snippets inside the trace. The size of the whole trace,

virtualized snippets and the kernels is shown as the last row in

Table 4.

VMHunt identifies one virtualized snippet inside the execution

of the ransomware. After extraction and multiple granularity sym-

bolic execution of the kernel, we discover that the virtualized part

is actually the procedure of key generation. In fact, the AES en-

cryption key is generated based on the time when the ransomware

3https://www.virustotal.com
4https://cuckoosandbox.org/



Table 3: The number of instructions of the whole trace, virtualized snippets, and kernels in the Multi-VM experiment. S1 is

the virtualized snippet by tiger-white and S2 is the virtualized snippet by fish-black. K1 and K2 are the kernels of S1 and S2

respectively.

Programs T S1 S2 S1+S2 K1 K2 K1+K2 (S1+S2)/T(%) (K1+K2)/T(10−4)

grep 1,217,671 122,615 231,807 354,422 537 1,458 1,995 29.1 16.4

bzip2 1,594,486 120,103 206,049 326,152 713 1,540 2,253 20.8 14.1

aes 2,566,455 110,801 240,743 351,544 792 1,675 2,467 13.7 9.6

md5sum 2,310,301 138,508 249,138 387,646 649 1,549 2,198 16.8 9.5

thttpd 3,691,011 123,080 277,226 400,306 711 1,563 2,274 10.8 6.2

sqlite 4,764,819 143,995 294,373 438,368 802 1,898 2,700 9.2 5.7

Table 4: VMHunt evaluation result on malware samples. S/T

is calculated in percentage. K/T is calculated in (10−4)

Name Type T S K S/W K/W

chodebot Botnet 1,967,000 150,129 930 5.9 4.7

nzm Botnet 6,141,556 181,457 1432 3.0 2.3

phatbot Botnet 2,224,405 152,723 1008 6.9 4.5

zswarm Botnet 5,587,140 168,529 1395 3.0 2.5

tsgh Botnet 5,199,837 145,372 1362 3.0 2.6

dllinject Virus 8,634,893 174,232 1568 2.0 1.8

locker_builder Virus 10,435,886 198,695 1293 1.9 1.2

locker_locker Virus 4,594,868 146,960 893 3.2 1.9

temp_java Virus 8,661,836 185,380 1504 2.1 1.7

tears Ransom 2,658,615 143,308 1074 5.4 4.0

is invoked. If the key generation procedure is cracked, people can

easily calculate the key by themselves. So the key generation proce-

dure is the sensitive area in the ransomware. The developer adopts

virtualization to hide this procedure.

According to the final result of VMHunt’s analysis, the key gen-

eration procedure can be represented as the following formula. The

symbol t is a 32-bit integer representing the time when invoking the

ransomware. k is the 128-bit key for AES encryption. k is generated

by the concatenation of four encoding operations on t .

k = [t ⊕ 0xabcd1234, shl(t , 4), t ∧ 0xdeadbeef, t + 1]

Particularly, based on our analysis, the virtualization tool translates

the t + 1 operation to 10 instructions in the VM, which add and

subtract constants as follows.

t + 1 = t − 522959822 − 4 + 20 + 8 − 4 − 16 + 4

+ 522959846 − 522959866 + 522959835

We rebuild the control flow graph from the virtualized snippet

and the kernel as shown in Appendix Figure 10. The kernel is

significantly simple than the virtualized snippet.We also looked into

the VM implementation and verified that the VM is implemented

in threaded model. There is no explicit dispatch loop inside the

execution trace. What’s more, we find a fake dispatch loop iterating

872 times. Each time it fetches an integer from an array and jump to

different fake handlers based on the integer value. The fake handlers

are all junk code. Our kernel extraction effectively filter out all of

those redundant sections.

8.5 Unvirtualized Programs

The effectiveness of VMHunt could be hurt by too many false

positives. We are curious about whether VMHunt produces false

positives on benign programs without virtualization. Therefore, we

apply VMHunt to testbed programs with all virtualization options

turned off. The result shows that the virtualization boundary detec-

tion does report several false positives. For example, some function

calls happen to use all registers. Those false positives are filtered out

in the following process when the virtualized kernel is extracted. In

benign programs, the program snippet extracted is almost the same

as the original trace since they are not obfuscated. Only the true

virtualized kernel is significantly smaller than the original trace.

Table 5 shows the size of the snippets extracted in the boundary

detection and virtualized kernel detection in the experiment on

grep. The virtualization boundary detection report 7 snippets as

possible virtualization snippet, in which two of them (snippet 4

and 7) are real virtualization snippets. As shown in Table 5, in the

snippets without virtualization, the kernel is the majority part of

the snippet because there is only a few redundant code. In contrast,

in the virtualized snippets, only very few instructions constitute

the kernel because lots of instructions are redundant. Therefore, the

ratio between kernel and the snippet is a good metric to filter out

the false positives. In our experiment, we set 90% as the threshold

to distinguish true virtualization snippet.

Besides, another observation is that the true virtualized snippet

is significantly longer than the benign snippets, because the virtu-

alized snippet includes the whole execution of a VM. This feature

is also used for filtering out the false positives. In VMHunt, we set

the threshold for snippet length as 10,000. These thresholds work

perfectly in our experiment. As the final result, VMHunt accurately

recognizes all virtualized snippets and reports zero false positive.

8.6 Performance

Overall, there are two phases in VMHunt, trace logging and offline

analysis. The trace logging component is built upon Intel Pin [38],

a dynamic binary instrumentation tool. The overhead of the trace

logging is typically about 5X slow down. Table 6 show the execu-

tion time of every component in the offline phase. The boundary

detection time increases as the trace size increases. The total time

of analyzing one program is about 20 minutes. Since all testbed

programs are real-world programs rather than synthetic examples,

VMHunt’s performance is good for practical virtualization analysis.



Table 5: The number of instructions of the snippets ex-

tracted in the boundary detection and kernel detection in

the grep experiment. Snippet 4 and 7 are true virtualization

snippets. S is the virtualized snippet size. K is the kernel size.

Snippet S K K/S(%)

1 5,371 5,103 95.01

2 218 218 100.00

3 3,557 3,282 92.27

4 130,329 552 0.42

5 1,697 1,572 92.63

6 2,392 2,288 95.61

7 168,857 1061 0.63

Table 6: VMHunt’s offline analysis performance. BD is

boundary detection. K-Extraction is kernel extraction.

MGSE is multiple granularity symbolic execution. The ex-

ecution time is measured in minutes.

Programs BD K-Extraction MGSE Total

grep 7.2 4.8 5.3 17.3

bzip2 9.3 3.7 4.7 17.7

aes 10.9 4.1 6.3 21.3

md5sum 11.4 4.9 5.8 22.1

thttpd 14.7 4.7 5.1 24.5

sqlite 16.9 5.1 6.7 28.7

9 DISCUSSION

In this section, we discuss VMHunt’s limitations, possible coun-

termeasures, and future work. First, VMHunt bears with the same

incompleteness as any dynamic analysis: every time only one exe-

cution path can be sufficiently analyzed. The possible mitigation is

to automatically generate new inputs to explore uncovered paths

through concolic execution [42] or guided fuzz testing [28]. Second,

an attack to VMHunt’s trace logging is to fingerprint dynamic bi-

nary instrumentation environment and then exit exceptionally [49].

We can strengthen VMHunt by running malware in a transparent

environment [34, 84]. Our multiple granularity symbolic execution

is effective to defeat data encodings via bitwise operations, which

are quite common in commercial obfuscators. Attackers canmislead

the detection of VM context switch by inserting redundant context

switch instructions. We can defend this attack in two ways: 1) these

redundant instructions can be removed in the simplification proce-

dure; 2) we can check whether the switched context is actually used

in the kernel; if not, the context switch instructions are considered

to be redundant. Some work strengthens code obfuscation by diver-

sifying VM contexts and handler functions [35, 75, 76]. However,

VMHunt’s semantics-based simplification is able to deal with the

code mutation effects.

Theoretically, if the whole program is virtualized, VMHunt is

hard to locate it because no context switch occur in this case. How-

ever, We wish to reiterate that whole program virtualization rarely

happens in practice. First, existing virtualization technique cannot

correctly handle some common program structures and instruc-

tions, so whole program virtualization will result in compatibility

problems. Second, whole program virtualization translate the entire

program to VM instructions and interpret them during runtime,

which will cause significant slowdown.

In all of our tested VMs, context switch instructions save and

restore the content for all general registers, because the VM exe-

cution uses all of them. It is possible to customize a VM that only

uses some of the registers, so the context switch instructions would

only save and restore those used registers. This design will affect

our context switch instruction clustering. One possible solution

is to check whether only those saved registers are used between

the context switch instructions. In practice, we have not observed

any virtualization obfuscator using partial registers. Using partial

registers complicates the design of VM greatly. Especially, fewer

number of available registers lead to more register spilling, which

results in worse performance.

10 RELATEDWORK

Deobfuscation of code virtualization.Code virtualization is one

of the strongest obfuscation available to malware authors, and thus

automatic deobfuscation methods can assist rapid understanding of

malicious code. As the decode-dispatch based emulator is the classic,

simple way to virtualize program code [63], a large portion of the

previous works focus on reverse engineering this class of code vir-

tualization [29, 30, 51, 55, 59]. A representative work, Rotalumé [59],

uses dynamic analysis to detect the central decode-dispatch loop

and then find the mappings between bytecode and related handler

functions, whose control flow graphs are constructed for malware

analysis. However, the latest commercial obfuscators have adopted

two improvements to evade detection: 1) threaded interpretation

in which the central decode-dispatch loop does not exist any more;

2) fake decode-dispatch loops to mislead loop search. In contrast,

VMHunt is a generic approach that reveals better resilience to these

evasions. Note that the obfuscated handler functions can be further

optimized to better understand their semantics [9, 10, 22, 37, 57],

and VMHunt’s simplification approach is orthogonal to them.

The approaches in the second category do not require the as-

sumption of emulator structure. Instead, they attempt to select the

execution instructions that have control/data dependencies with

original code semantics [19, 40, 67, 83]. For example, Kevin et al.

perform equational reasoning [18] to identify the instructions that

affect system call arguments. They treat such instructions as an

approximation to the original code [19]. BinSim [40] achieves the

similar results through an enhanced backward slicing. However,

they may disregard the protected code that do not affect observable

behaviors. Dynamic taint analysis is also applied to removing the

instructions related to the dispatcher structure [67, 83], but only

taint source dependent instructions can be kept. In comparison,

VMHunt’s slicing starts from multiple sources at VM boundary,

making the resulting instructions more complete.

Another difference is that the correctness testing is seldom done

by the previous deobfuscation work, while our simplification re-

sult is provable. We use a theorem prover to prove the simplified

code is semantically equivalent to the original code. Some work

only measured the similarity of control flow graphs (e.g., around



80% similarity) [59, 83] or x86 instruction opcode [19], but they

didn’t prove their deobfuscation result has the same behavior as

the original program.

Symbolic execution of binary code. Symbolic execution has

emerged as a fundamental technique for automatically analyzing bi-

nary code [3, 4, 72, 82]. Many laborious security analysis tasks, such

as control flow de-obfuscation [7, 41], exploit generation [2, 6, 12],

and cryptographic function detection [81], have been recast as a

set of constraint satisfaction problems. Then advanced Satisfiability

Modulo Theories (SMT) solvers are utilized to solve these con-

straints efficiently. To harness the full strength of SMT solvers, the

key is to accurately abstract domain-specific security analysis task

as verification constraints. VMHunt’s multiple granularity symbolic

execution reverts data encoding effects and produces concise con-

straints that could otherwise be hard to solve. VMHunt advances

the use of symbolic execution in obfuscated binary code analysis.

11 CONCLUSION

Code virtualization is one of the most advanced software obfus-

cation techniques. Because of the high performance penalty and

incomplete compatibility, code virtualization is mainly used to pro-

tect selected code segments. Existing virtualization deobfuscation

work are either ad hoc, designed for a specific emulator structure,

or assuming the scope of virtualized code is known to security ana-

lysts a priori. This paper presents a novel approach called VMHunt,

a generic approach to locate virtualization-obfuscated code and sim-

plify it. We consider the common virtual machine context switch

behavior as a general detection feature, and optimize the obscure

virtualized code through a semantics-based slicing and multiple

granularity symbolic execution. Our evaluation shows that VMHunt

can accurately identify the virtualized section and greatly simplify

it by several orders of magnitude. Our study demonstrates VMHunt

is an appealing complement to malware analysis.
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Appendix A

A common virtualization procedure is shown as follows.

a) In the source code of the program that will be virtualized, insert

marks around the sensitive area. In C/C++ code, typically the mark

is implemented as macros. Figure 8 shows such an example.

b) Compile the source code using a normal compiler like GCC or MS

VC++. The code is linked to a library provided by the virtualization

tool. The result is an executable file. In this step, the sensitive area

in the executable file is not obfuscated. It is only marked.

c) Run the virtualization tool to process the executable file. The

virtualization tool will translate the marked area to the virtualized

code and append the virtual machine in the binary code.

1 ...

2 #include "VirtualizerSDK.h"

3
4 int f(int a)

5 {

6 int b = 1;

7
8 VIRTUALIZER_START // The macro marks the

9 // starting point of the

10 // virtualized area

11 a++;

12
13 VIRTUALIZER_END // The macro marks the ending

14 // point of the virtualized

15 // the area

16
17 return a + b;

18 }

Figure 8: An example showing the virtualization marks in

the source code to be virtualized. Themacrosmark the start-

ing and ending point of the sensitive area which will be vir-

tualized.

A.0.1 Sensitive Area. According to the manual book of the vir-

tualization tools, users should prevent the following cases when

applying virtualization to a program.

• Users should avoid virtualizing a loop that repeats many

times to avoid too much performance loss.

• Switch/Case statements and exception handling inside a

sensitive area might not work properly after virtualization.

Therefore, those program structures are not recommended

to be virtualized.

In practice, due to the performance overhead and the compatibil-

ity problems, virtualization can only be applied to limited program

structures and areas. The recommended way of applying virtual-

ization is only protect the sensitive area in your program.

One typical situation of the sensitive area is the checking pro-

cedure in a trial/registration scheme of an application. The same

application can run in two modes, the trial mode or the registered

mode. The registered mode provides full features whereas the trial

mode only provide limited features. Figure 9 shows an example

of the registration checking function and the recommended way

of protecting them by virtualization. The function f runs differ-

ent branches based on the value of the global variable reg_mode.

Therefore, all snippets that reads or write reg_mode should be

considered as sensitive areas and should be virtualized.
Basically, the trial/registration scheme needs a checking mecha-

nism to decide in which mode the application should run. For ex-

ample, the checking mechanism can be implemented as a function

to verify whether a serial number is eligible. Figure 9 shows an ex-

ample of the registration checking function and the recommended

way of protecting them by virtualization. The global boolean vari-

able at the first line stores the mode of the application. true

means the program is running under the registered mode and

false means the trial mode. At line 8 in the main function, the

application check whether it is registered by calling the function

checkRegistration(). The function will return true if the se-

rial number is eligible or false if not. The function f includes two

branches for the registered mode and trial mode, respectively. It

checks the global variable reg_mode and then select one branch to

execute. In this example, the global variable reg_mode is sensitive

because the trial/registration scheme can be work around if we

can modify its value. Therefore, any snippet that reads or write it

should be considered as sensitive area and should be virtualized.

1 bool reg_mode;

2
3 int main ()

4 {

5 ...

6
7 VIRTUALIZER_START

8 reg_mode = checkRegistration(); // sensitive area 1

9 VIRTUALIZER_END

10
11 ...

12 }

13
14 void f()

15 {

16 VIRTUALIZER_START

17 if (reg_mode) { // sensitive area 2

18 // code for registered verion

19 } else {

20 // code for trial version

21 }

22 VIRTUALIZER_END

23 }

Figure 9: An example showing a registration checking func-

tion and the sensitive area being virtualized.




