VMHunt: A Verifiable Approach to Partially-Virtualized Binary
Code Simplification

Dongpeng Xu
Pennsylvania State University
University Park, PA 16802, USA
dux103@ist.psu.edu

Yu Fu
Pennsylvania State University
University Park, PA 16802, USA
yuf123@ist.psu.edu

ABSTRACT

Code virtualization is a highly sophisticated obfuscation technique
adopted by malware authors to stay under the radar. However,
the increasing complexity of code virtualization also becomes a
“double-edged sword” for practical application. Due to its perfor-
mance limitations and compatibility problems, code virtualization
is seldom used on an entire program. Rather, it is mainly used only
to safeguard the key parts of code such as security checks and
encryption keys. Many techniques have been proposed to reverse
engineer the virtualized code, but they share some common lim-
itations. They assume the scope of virtualized code is known in
advance and mainly focus on the classic structure of code emula-
tor. Also, few work verifies the correctness of their deobfuscation
results.

In this paper, with fewer assumptions on the type and scope of
code virtualization, we present a verifiable method to address the
challenge of partially-virtualized binary code simplification. Our
key insight is that code virtualization is a kind of process-level vir-
tual machine (VM), and the context switch patterns when entering
and exiting the VM can be used to detect the VM boundaries. Based
on the scope of VM boundary, we simplify the virtualized code.
We first ignore all the instructions in a given virtualized snippet
that do not affect the final result of that snippet. To better revert
the data obfuscation effect that encodes a variable through bitwise
operations, we then run a new symbolic execution called multiple
granularity symbolic execution to further simplify the trace snippet.
The generated concise symbolic formulas facilitate the correctness
testing of our simplification results. We have implemented our idea
as an open source tool, VMHunt, and evaluated it with real-world
applications and malware. The encouraging experimental results
demonstrate that VMHunt is a significant improvement over the
state of the art.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10.

https://doi.org/10.1145/3243734.3243827

Jiang Ming
University of Texas at Arlington
Arlington, TX 76019, USA
jlang.ming@uta.edu

Dinghao Wu
Pennsylvania State University
University Park, PA 16802, USA
dwu@ist.psu.edu

CCS CONCEPTS

« Security and privacy — Software reverse engineering;

KEYWORDS

Code Virtualization, Binary Analysis, De-obfuscation, Multiple
Granularity Symbolic Execution

ACM Reference Format:

Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2018. VMHunt: A
Verifiable Approach to Partially-Virtualized Binary Code Simplification. In
2018 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’°18), October 15-19, 2018, Toronto, ON, Canada. ACM, New York, NY,
USA, 17 pages. https://doi.org/10.1145/3243734.3243827

1 INTRODUCTION

Virtualization, a general technique that runs a virtual machine on
versatile platforms [63], has become an important technique for
software protection to obfuscate code [5, 23, 62]. When applied
to code obfuscation, virtualization transforms the selected parts
of a program to bytecode in a new, custom virtual instruction set
architecture (ISA). At execution time, the bytecode is emulated
by an embedded virtual machine (or interpreter) on the real ma-
chine. The new ISA can be designed independently, and thus the
bytecode and interpreter greatly differ from those in every pro-
tected instance. In this way, the program’s original code never
reappears. Moreover, the bytecode is typically implemented in a
RISC-like style, in which a source x86 instruction will be translated
to a sequence of bytecode operations. Consequently, the number
of native instructions executed increases significantly [36], and
extracting the semantics of the custom ISA is like finding a nee-
dle in a haystack. Furthermore, virtualization obfuscation can be
seamlessly integrated with other obfuscation schemes such as data
encoding [16, 86], metamorphism [1, 85], and control flow obfusca-
tion [17, 74], rendering traditional static and dynamic analysis tech-
niques ineffective [13, 32]. Over the last decade virtualization obfus-
cation, generally recognized as one of the most advanced techniques
to impede reverse engineering [39, 50], has been developed as a set
of commercial software protection products [45, 46, 66, 69, 73] and
research tools [15, 53, 68].

The potency of virtualization obfuscation has definitely attracted
the attention of malware developers, who are highly motivated

to seek more sophisticated techniques for disguising their mali-
cious code and circumventing anti-virus solutions [43, 54]. An
increasing number of malware are armored by virtualization such
as Virus.Win32.Goblin [47] and Trojan.Win32.Clampi [26]. How-
ever, the heavy-weight obfuscation strength also comes with a cost
of performance and compatibility. Because the virtualized code
does not execute natively, its runtime overhead is considerably
high. A recent study shows that the slowdown varies from 1.9X
to 660.9X when only 10% of the code is virtualized [77]. The user
manual of Code Virtualizer [44] recommends that users only pro-
tect a short, core code snippet and avoid program hot spots such
as loop structures that iterate many times. Another limitation is
the compatibility issue. Some complicated program structures (e.g.,
switch/case statements and exception handlers) and x86 instruc-
tions (e.g., SIMD and AES instruction set) might not be correctly
translated by the virtualization tools [55]. The same study [77] also
confirms the compatibility problem in that most test programs exit
exceptionally when virtualization obfuscation level reaches 30%.
Therefore, unlike the binary packers, another common obfuscation
scheme for whole binary code protection [56, 71], malware devel-
opers only virtualize selected, key parts of the malicious code in
practice [78].

Most of existing work relies on dynamic analysis to deobfuscate
virtualized program. The first category of work attempts to reverse
engineer the bytecode interpreter [29, 30, 51, 55, 59]. Dynamic anal-
ysis is used to identify the decode-dispatch based interpretation,
which is the classic way to implement an instruction set virtualiza-
tion [63]. The distinguishing feature is a central loop that fetches a
piece of bytecode based on the current value of a virtual program
counter (i.e., decode), and then dispatches to the corresponding
handler which contains the machine code to emulate the bytecode.
Since bytecode handlers themselves are usually heavily obfuscated,
they need to be further simplified, e.g., by program synthesis [9],
symbolic execution [10, 37], or compiler optimizations [22, 57, 80].
The second category tries to strip off the virtualization obfuscation
layer from the tedious execution instructions [19, 40, 67, 83]. In this
category, dynamic taint analysis or concolic execution is applied
to identify the instructions that contribute to the real program be-
havior. However, a common limitation in both categories is that
they assume the scope of virtualization-obfuscated code is already
known. None of them discusses how to automatically extract the
virtualized code part from an obfuscated program. Besides, the way
of designing ground truth dataset in prior evaluations is biased
either: they perform whole program virtualization on very tiny,
synthetic programs [9, 19, 30, 59, 83]. Unfortunately, this assump-
tion may not be tenable for real-world applications where only part
of the code is virtualized.

Automatic detection of the virtualized code is an indispensable
step before deobfuscation procedures. Accurate boundaries can
quickly locate virtualized code and significantly reduce the over-
head, as deobfuscation procedures are generally quite expensive.
However, locating accurate boundaries is a nontrivial task. First,
decode-dispatch loops appear in many normal applications such
as web servers and user interfaces. Second, advanced code emu-
lators have adopted alternative interpretation structures, such as
threaded interpretation [8, 24], to hide the decode-dispatch fea-
tures. In threaded interpretation, the dispatch loop is inlined to the

individual handler functions. Worse still, we have observed fake
decode-dispatch loops that look very similar to real ones. Those
loops usually contain an increasing integer variable, which mimics
the virtual program counter inside the dispatcher. Their purpose is
to mislead the deobfuscation methods that rely on looking for the
decode-dispatch loop [29, 30, 37, 51, 55, 59].

In this paper, we propose a novel method, called VMHunt, to au-
tomatically identify and simplify virtualized code sections from an
execution trace. VMHunt does not assume any particular structure
of the bytecode interpreter in use. Instead, it locates the boundary
of partially-virtualized code based on an inherent property of stan-
dard virtual machine (VM) design: context switches occur between
virtualization application and native OS to ensure isolation [33]. The
code snippet inside a virtualized context is the virtualized code.
With the boundary information, VMHunt extracts the core part of
virtualized code by slicing the instructions that affect the native
context. Finally, VMHunt includes a new method called multiple
granularity symbolic execution to further simplify the sliced code.
Compared to the traditional symbolic execution, our design can
better revert data encoding effect and lead to more concise symbolic
formulas, which represent the original semantics of the virtualized
code. Furthermore, with the unprotected version of code, we can
use the generated symbolic formulas to verify the correctness of
VMHunt. Any semantic discrepancy may indicate that VMHunt is
not implemented perfectly right.

We have evaluated VMHunt on the latest version of well-known
virtualization obfuscators such as Code Virtualizer [45], VMPro-
tect [73], EXECryptor [66], and Themida [46] in benign and ma-
licious scenarios. Our experiment shows that VMHunt correctly
extracts the virtualized section from a tedious execution trace with-
out false positives. VMHunt’s trace simplification can reduce the
number of inflated instructions by several orders of magnitude,
and multiple granularity symbolic execution delivers a significantly
concise form which accurately reveals the semantics of the vir-
tualized code. Our experiments demonstrate VMHunt enables an
accurate analysis and understanding of virtualization-obfuscated
binary code, and it is essential for rapid response to emerging mal-
ware threats.

Scope and Contributions. VMHunt does not attempt to super-
sede existing virtualization deobfuscation methods, but rather com-
plements them by narrowing down the search scope for virtual-
ized code snippets, and then providing a simplified view of those
snippets. Other state-of-the-art techniques such as program syn-
thesis [9] and compiler optimizations [57] can work directly on
VMHunt’s simplified trace and achieve better reverse engineering
result. In summary, we make the following contributions.

e We propose a general method to detect the virtualized code
section from a program execution trace. This challenging
problem has been largely overlooked by the existing work
which relies on an over-simplistic assumption.

e We design a new optimization method to simplify the exe-
cution trace based on boundary information. Our multiple
granularity symbolic execution extends the capability of sym-
bolic execution in analyzing malicious binary code.

e Our approach is capable of performing correctness test-
ing to the deobfuscation results, which is rarely done by

the previous work. The source code are available at https:
//github.com/s3team/VMHunt.

2 BACKGROUND AND MOTIVATION

In this section, we first present the strength of code virtualization in
complicating reverse engineering. Then we discuss the drawbacks
of current deobfuscation work when handling threaded interpreta-
tion and selective virtualization. These limitations motivate us to
develop a generic tool.

2.1 Obfuscation Strength of Code
Virtualization

Code virtualization converts native binary code to bytecode written
in a RISC-like virtual instruction set architecture (ISA), and a cus-
tom emulator is attached to interpret the bytecode at run time. Note
that the new ISA can be generated randomly, and thus the bytecode
vary greatly from one obfuscated version to another. The step 0 in
Figure 1 shows an x86 instruction is translated to a virtual ISA in
a stack architecture style. Static analysis of the custom bytecode
is infeasible because the language specification of the new ISA is
unknown. Figure 1 illustrates the classic way to implement code
virtualization: decode-dispatch based interpretation. Step 1~4 form
a central loop to decode, dispatch, and execute the bytecode. Many
previous works perform dynamic analysis to identify these central
loops and then find the mapping between each bytecode and its
corresponding handler function [29, 30, 51, 55, 59]. The handler
functions run on the native CPU and their semantics are equivalent
to the bytecode. However, the handler functions are usually heavily
obfuscated by other obfuscation schemes, such as hiding constant
value by data encoding [16, 86], mutating instructions to syntacti-
cally different variants [1, 85], and control flow obfuscation [17, 74].
To get a relatively intelligible understanding of an obfuscated han-
dler function, analysts have to perform heavy-weight optimization
or simplification [9, 10, 22, 57].

2.2 Threaded Interpretation

Decode-dispatch interpretation is simple to develop, but the frequently-
used indirect branches in this structure introduce extra overhead
due to expensive mispredict penalty [25]. In addition, the decode-
dispatch structure has become well-known to security researchers.
Instead, commercial obfuscators have adopted an alternative struc-
ture of emulator, threaded interpretation [8, 24], to improve per-
formance and complicate reverse engineering. Threaded interpre-
tation removes the central decode-dispatch loop, which does not
meet the assumption held by many deobfuscation tools. Figure 2
shows an indirect threaded interpretation [24] structure that ap-
pends the decode-dispatch routine within each handler function.
The latest version of Code Virtualizer and Themida has applied
indirect threaded interpretation to their code emulators. To fur-
ther confuse decode-dispatch loop search, Code Virtualizer also
attaches a fake loop to mimic the real one. For example, we virtu-
alize four x86 instructions by Code Virtualizer’s “tiger white” VM
and generate three protected copies. The trace size of them ranges
from 81,952 ~ 97, 644 lines of instructions (5 orders of magnitude
explosion), and the fake decode-dispatch loop contributes about
90% of junk code. We have tested the three variants with Virtual

/*add eax, 10247/

0 Native binary code is translated to bytecode | vm_push_imm32 1024; +
(stack-based architecture) vm_push_reg32 eax; -+

vm_add; i

vm_pop_reg32 eax;

0 Decode: fetch bytecode via VPC

0 Update virtual context

I Virtual Context: |
| vm_eax, vm_ebx,

Virtual CPU
®

Handler Functions Running on
Native CPU

Handler for f . X .
vm_pushLimma2 O 0 Dispatch: call handler function
Handler for 0 Execute handler function on native CPU
vm_push_reg32
Handler for vm_add
Handler for
vm_pop_reg32

“VPC” in step 1 is short for Virtual Program Counter

Figure 1: The classic code emulator structure: decode-
dispatch based interpretation. Example: x86 Virtualizer [53],
Tigress [15], and the demo versions of commercial software
virtualization products [45, 46, 66, 69, 73].

Handler Functions Running on
Native CPU

Handler for
T vm_push_imm32

Bytecode

/*add eax, 1024”7/ | Decode-dispatch Tpeq0de-dispatch routine

vm_push_imm32 1024;
Handler for
vm_push_reg32

vm_push_reg32 eax;
Decode-dispatch routine

> Faked decode-
dispatch loop
vm_add;

vm_pop_reg32 eax; [‘ﬁ)

Handler for vm_add

Decode-dispatch routine

Handler for
vm_pop_reg32

Figure 2: Indirect threaded interpretation, and a fake decode-
dispatch loop is attached to mislead detection. Example:
Code Virtualizer 2.2.2 [45] and Themida 2.4.6 [46].

Deobfuscator [51] and VMAttack [30], two open source tools that
rely on the detection of decode-dispatch loop. Both of them fell
into the trap and missed the real target. Compared to Code Virtual-
izer, VMProtect 3.1.1 follows the direct threaded code [48] style: the
bytecode goes through a pre-decoding step so that each handler
function’s address is inlined into the bytecode. In this way, the
bytecode can directly call the related handler function.

2.3 Virtualization-Obfuscated Malware

The strength of code virtualization comes with the problems of
high performance penalty and poor compatibility. Whole program
virtualization may not be an optimal option to cyber-criminals, as
it can add new telltale signs such as high CPU usage and delay mal-
ware propagation. In practice, malware developers opt to virtualize
the core parts of malware. For example, FinSpy malware applies
custom code virtualization to protect command-and-control infor-
mation [52, 70]; SpyEye uses VMProtect to protect the malware
builder [65]; some malware samples choose to virtualize stolen
code to evade user-level API hooking [31, 78]. However, none of
the previous deobfuscation work studies the problem of partially-
virtualized code, and many of them can only deal with the classic
code emulator structure. Our approach will bridge this gap.

3 OVERVIEW

Figure 3 shows an overview of VMHunt’s workflow, which contains
three key components.

(1) Virtualized Snippet Boundary Detection. Given a virtualized
program, we first run it to record an execution trace. Then
we identify the virtualized snippet boundary in the trace
by detecting context switch instructions. Those instructions
switch context between the native environment and the
virtualized environment.

Virtualized Kernel Extraction. After the boundary is detected,

we analyze and extract the kernel of the virtualized snippet.

The kernel refers to instructions in the virtualized snippet

that affect native program environment. It reveals the se-

mantics of the virtualized snippet.

(3) Multiple Granularity Symbolic Execution. We propose a new
symbolic execution called “multiple granularity symbolic
execution” to simplify virtualized snippets. Our method rep-
resents the semantics of kernel virtualized code as concise
symbolic formulas.

(2

~

4 VIRTUALIZED TRACE BOUNDARY
DETECTION

4.1 Trace Logging

VMHunt’s trace log component is based on Intel Pin [38], a dynamic
binary instrumentation framework. The trace logger can record
all the instructions executed during runtime except those inside
system calls. In addition to the instructions, a trace also includes
plenty of runtime information. Overall, the following information
is recorded in a trace.

(1) The memory address of every instruction

(2) The instruction name (opcode), which describes the opera-
tion that the instruction is performing

(3) The source and destination operands. Usually there are three
types of operands: immediate value, register, or memory
address

(4) Runtime information, including the content in all registers
and memory accessing addresses

4.2 Context Switch Instructions

One of our major observation is that code virtualization is typi-
cally applied to some sensitive code sections, and the rest parts still
run as native code. Therefore, during the execution of a partially-
virtualized program, it will switch between the native environment
and the virtualized environment. Figure 4 presents a trace example
showing the execution of a virtualized program. Before line 1, the
program is running in the native context. The instructions from
line 2 to 9 save the native context by pushing all general registers
and the flag register to stack. After that, the jump instruction at
line 10 transfers the execution to the virtualized environment. From
line 11 to 15, the program is running inside the virtualized context.
After reaching the end of the virtualized part at line 15, the instruc-
tions from line 16 to line 23 restore the context by popping values
from memory to registers. Finally, the jump instruction at line 24
transfers the execution back to the native program and continues
the execution.

In this paper, we define the instructions that save or restore the

context between the native and virtualized environment as context
switch instructions. Specifically, there are two categories of context
switch instructions: context saving instructions and context restor-
ing instructions. Context saving instructions save all registers to
memory (typically stack), such as the instructions from line 2 to
9 in Figure 4. Similarly, context restoring instructions restore all
registers from memory (typically also stack), such as the instruc-
tions from line 16 to 23 in Figure 4. The term “context” in this paper
refers to the content in all registers.
Two VM Architectures: Stack vs. Register. A long-running dis-
cussion in VM design is whether an interpreter should be imple-
mented via stack-based architecture! or register-based architecture,
because these two designs have their own pros and cons [21, 60].
We wish to emphasize here that context switch instructions are
independent of any specific VM architecture. For example, Code Vir-
tualizer [45] provides multiple VMs including both stack-based VM
and register-based VM, and we find context switch instructions are
very common among different VMs. Since all partially-virtualized
programs include context switch instructions, they are significant
symbols for the beginning or end of virtualized snippets. Therefore,
identification of these context switch instructions is the first step
towards the detection of virtualized snippets.

Apparently, for the ideal case shown in Figure 4, identifying
context switch instructions is fairly straightforward. One intuitive
solution is using a pattern match method to match instruction
sequences that push all registers to stack or pop them back. How-
ever, according to our observation, virtualizer developers have
already taken advantage of obfuscation methods such as code mu-
tation [1, 85] to hide context switch instructions. Figure 5(a) shows
an example of obfuscated context saving instructions in Code Vir-
tualizer, and we have trimmed and simplified the example for better
presentation. In Figure 5(a), the instructions from line 4 to 15 is
actually an obfuscated version of push edi. In order to detect
the context switch instructions within an obfuscated execution
trace, which usually contains millions of instructions, we propose
a three-step method to effectively identify them. The three steps
are normalization, simplification, and clustering.

! The step 0 in Figure 1 is an example of stack-based architecture.

Trace Trace
: : Virtualized
- 1 Snippet 1
] | Virtualized Kemel Kernel 1 Multiple Granularity
— — Extraction Symbolic Execution
; : E— — f(®)
Binary Code — —
Trace - Virtualized Snippet |]
01001 Recording —] Boundary Detection 1
10010 — — . "
» » Virtualized
» | > -
elele — — Snippet 2
00010 — -
: : Vitualized Kemel K€M 2 1 tiie Granuiarity
: : Extraction Symbolic Execution
— — g(x)
[Normal instruction Il Context switch instruction [Virtualized snippet 1 [Virtualized snippet 2

Figure 3: An overview of VMHunt’s workflow. Virtualized snippet 1 & 2 represent two different VM architectures. The words
in italics represents VMHunt’s key components.

... // native program execution (2) Simplification. Similar to the previous work in automatic
2|push edi // context saving binary deobfuscation [29], our simplification involves two
3|push esi . L.
4|push ebx main components: a peephole optimizer and a data flow an-
5|push edx alyzer. The peephole optimizer is based on pattern matching
6|push ebp rules. It removes redundant instructions, e.g., store and load
; EE?: ::2 the same data between registers and memory. The data flow
9| pushfd analyzer records the def-use information of the operands,
101 jmp ©x1234 and then perform constant propagation and dead code elimi-
B N // virtualized snippet begin nation.
13 :3; (3) Clustering. Based on the normalized and simplified trace,
14|xor ... we build an instruction dependency graph. Our goal is to
}2 popfd // virtualized snippet end cluster the instructions that load data from memory to reg-
17|pop eax // context restoring isters together without affecting the dependency. Similarly,
18 pop ecx instructions that store data from registers to memory are
;3 Szg :zg also clustered together. If one cluster include operations on
21|pop ebx all registers, the instructions in the cluster is considered as
22|pop esi context switch instructions. For example, if one cluster in-
231pop edi cludes several mov instructions from all registers to memory,
24|jmp ©x8048123 . . .
25 ... // continue native program we regard them as context saving instructions.
S 1 execution We use the example in Figure 5 to show the procedure of detect-
ing context switch instructions in an obfuscated trace. Figure 5(a)
Figure 4: An execution trace showing context switching in a is the trace containing obfuscated context switch instructions. For
virtualized program. simplicity, we place the push instructions for esi, ecx and edx at
the first line. They are handled in the same way as the push instruc-
tions at line 2 and 3. Figure 5(b) is the result of normalization. All
(1) Normalization. We normalize all the data transfer instruc- the push instructions are normalized to a mov and a sub instruc-
tions (push, pop, xchg etc.) using the mov operation. Nor- tion as shown from line 2 to 5 in Figure 5(b). The blank lines are not
malization can resist instruction replacement obfuscation inserted by the normalization procedure and are for format only.

and reveal more simplification opportunities. Next, the simplification procedure works on the normalized trace.

1|push esi,ecx,edx 1|push esi,ecx,edx
2 |push eax 2(sub esp, ox4
3|push ebp 3 | mov [esp], eax
4|add esp, 0x4 4|sub esp, Ox4
5|sub esp, ox4 5| mov [esp],ebp
6[mov ebp, esp 6
7 [mov eax, ©@x3ff90adc 7| add esp, 0x4
8| sub eax, Ox3ff90ads8 8| sub esp, 0x4
9|sub ebp, eax 9
10| add eax, Ox4 10 | mov ebp, esp
I1|xor ebp, esp 11|mov eax, @x3ff9@adc
12| xor esp, ebp 12| sub eax, @Ox3ff90ads8
13| xor ebp, esp 13|sub ebp, eax
14| mov [esp], edi 14
15| mov ebp, eax 15| add eax, 0x4
16| push ebx 16
17 ... 17| xor ebp, esp
18| xor esp, ebp
19| xor ebp, esp
20
21|{mov [esp], edi
22 | mov ebp, eax
23
24| sub esp, ox4
25 [mov [esp], ebx
26

(a) Obfuscated context switch
instructions

(b) Normalization

®© N LR W —

push esi,ecx,edx 1|push esi,ecx,edx
sub esp, Ox4 2| sub esp, 0x4
mov [esp], eax 3(mov [esp], eax
sub esp, 0x4 4|sub esp, 0x4 Context
mov [esp],ebp 5| mov [esp],ebp Switch
6|sub esp, Ox4
add——esp, x4 7|mov [esp], edi
sub——esp;—8x4 8|sub esp, Ox4
9 [mov [esp], ebx v
mov—ebps—esp 10
HOV- B3O8 ae 11 |add eax, 0x4
SUb——eax;—Bx3FF98ad8 12(mov ebp, eax
sub—ebps—eax 13]...
sub——ebo—8x4
add eax, 0x4
mov——+%5—esp
mov——esps—ebp
mev—ebp—%
hev——ebps—esp
sub esp, Ox4
mov [esp], edi
mov ebp, eax
sub esp, ox4
mov [esp], ebx

(c) Simplification (d) Clustering

Figure 5: Detection of context switch instructions in an obfuscated program trace. The instructions in the gray area in (d) are
a cluster of context switch instructions. The color marks where the instructions are clustered.

The peephole optimizer removes the redundant instructions at line
7 and 8 in Figure 5(b). It also replaces the three xor instructions
from line 17 to 19 in Figure 5(b) with three instructions exchanging
data between esp and ebp as shown from line 18 to 20 in Figure 5(c).
Then the data flow analyzer simplifies the instructions at line 10-14
and 18-20 to instructions at line 22-23 in Figure 5(c). The instruction
at line 22 is deleted as dead code because the value produced is
never used. The final simplification result is shown in Figure 5(c).
After building the instruction dependency graph, the clustering
procedure finds the instructions at line 16 and 26 in Figure 5(c) has
no dependency on the instructions below them (labeled as grey).
Therefore, the data saving and stack changing instructions at line
23, 25, 28, and 29 can be clustered with instructions from line 1 to
5. Finally, the clustering result is shown in Figure 5(d)’s gray part.
It includes all of the instructions related to context saving, so we
can recognize these instructions as context switch instructions.

4.3 Pairing Context Switch Instructions

The next step is to pair the context saving instructions with the
restore instructions, so that we can further identify the virtualized
snippet between them. We use two heuristics to guide the pair-
ing process: stack depth and execution transfer instruction. In this
paper, stack depth denotes the value of the stack pointer register,
for example, the esp register in 32-bit x86 architecture. In the sce-
nario of switching context between native and virtualized program,
the stack depth of the context saving instructions should be the
same as the context restoring instructions. Suppose one program is
switching from native context to virtualization execution at point
A with the stack depth n. When the execution of virtualized part

is finished, it reaches program point E. It will restore the context
of normal program and continue execution from E. To ensure the
accuracy of the execution, the stack depth at E should be the same
as that before entering the virtualized part, which means the stack
depth at E is n as well.

When pairing the context switch instructions, we only pair the
context saving and restoring instructions in the same stack depth. In
this way, we overcome the shortcomings of blindly recursive pairing.
First, only context switch instructions in the same stack depth is
likely to be the start or end point of a virtualized program. On the
other hand, the context switch instructions in one stack depth are
separated from those in other stack depths. Therefore, even if the
context switch instructions in one stack depth is mistakenly paired,
it will not affect the instructions in other stack depths.

The other heuristic for pairing context switch instructions is that,
virtualization related context switch instructions usually come with
a control flow transfer instruction. It switches the execution between
the normal program and the VM, such as the jump instructions at
line 10 and 24 in Figure 4. Therefore, we only select those context
switch instructions that are followed by a control flow transferring
instruction, which could be any instruction used to change the
execution flow, such as jmp, call, ret.

5 EXTRACTION OF VIRTUALIZED KERNEL

The virtualized snippets collected from the last step are still too
large for analysis. In addition, modern virtualization tools would
mix other obfuscation techniques with virtualization so as to further
increase the obfuscation strength. Previous work [19, 59, 83] already
discussed some methods to deobfuscate a virtualized code, but they

Trace Stack

high address : T

0x12ff7Q native area

0x12ee64 T

VM area

low address l

Figure 6: An example showing an instruction with global be-
havior. It modifies the native area in the program stack.

P—>| mov[ebx], eax Ighx=0x12ff70

did not take the boundary information into consideration. In this
section, we will discuss how the boundary information is used to
extract the core part of virtualized snippets.

In general, our goal is to understand the behavior of a virtual-
ized snippet. The behavior can be categorized into two types: local
behavior and global behavior. Local behavior means its effect is
restricted in the virtualized context without affecting the native
context. An instruction with global behavior means it accesses or
changes the outside native context. For example, one instruction
has global behavior if it saves data to the outside context. When
analyzing a virtualized snippet, those instructions with global be-
haviors are crucial because they reveal the real function of the
snippet. In other words, the global behavior instructions are the
interface between the virtualized context and the normal context.
The virtualized code has to utilize these instructions with global
behavior to read in parameters and write the result to the native
context. Therefore, the global behavior instructions and the instruc-
tions that are related to them constitute the core part of a virtualized
snippet. We call those instructions the “Kernel” of a virtualized snip-
pet. Our key insight is that the kernel can represent the semantics
of a virtualized snippet. We only need to focus on the kernel when
analyzing a virtualized snippet. In order to extract the kernel, we
first identify the instructions with global behavior in a virtualized
snippet, and then slice the trace based on those instructions. The
following part describes the extraction steps in detail.

First, we start by defining two terms regarding two different
stack memory areas: the native area and the VM area. We use the
stack depth (discussed in Section 4.3) as a delimiter to separate VM
stack area from the stack area used by the native program. Note
that the native area does not intrude the VM area, because they are
typically very far from each other in the stack memory. In practice,
if the VM stack is mixed with the native program stack, the whole
virtualized program will become unstable and easy to crash. It also
increases the complexity of designing the VM memory. Therefore,
all commercial obfuscators avoid mixing them together.

With the definition of native area and VM area of stack, we
can go further to define the global behavior of an instruction in a
virtualized snippet. In general, the global behavior includes native
context access or modification. One of the common scenarios of
global behavior is an instruction modifies the content in native stack,
and Figure 6 illustrates such an example. The program execution
reaches point P in the trace and P is inside the virtualized snippet.
The stack depth at the context switch instruction is 0x12ee64. The
stack view at the point P is shown in the right part. Assuming the
stack is growing top-down, the section above address 12ee64 is the
native area and the section below is the VM area. The instruction
at program point P is writing data from register eax into memory
address [ebx]. Since the content of ebx is 0x12f {70, which means
the target address is located in the native area, the instruction at P
has global behavior.

In addition to explicitly modifying the native area content, an-
other implicit way of changing the native area is to modify the stack
memory content that will be swapped out by the context restoring
instructions (e.g., line 16 to 23 in Figure 4). Because the content
is popped to registers and will be used by the native execution,
modifying that memory content will affect the native execution as
well. Therefore, we define the following two types of instructions
inside a virtualized snippet as global behavior instructions. The
kernel of a virtualized snippet consists of the instructions that are
related to global behavior instructions.

(1) The instruction writes data to the native area of stack. It
is used for directly passing execution result of virtualized
snippet to the native area.

(2) The instruction saves data to the stack memory that will
be swapped to registers by context switch. It is used for
indirectly passing the execution result of virtualized code to
native program.

We run a backward slicing to extract the kernel, which con-
tains all the instructions related to the global behavior instructions.
In particular, we apply BinSim’s enhanced backward slicing algo-
rithm [40], which is able to handle many complicated issues when
performing slicing on binary code (e.g., implicit branch logic). The
sliced trace includes all of the necessary instructions that contribute
to computing the outputs from inputs, so it represents the real se-
mantics of the virtualized part. The slicing can significantly remove
unnecessary instructions in the trace. The evaluation result in Sec-
tion 8 shows that the size of the kernel only takes up about 1% of
the total instructions of the initial virtualized snippet.

6 MULTIPLE GRANULARITY SYMBOLIC
EXECUTION

To extract the semantics of the virtualized code, we want to get
a formula from the virtualized kernel by symbolic execution. By
comparing formulas from the original and obfuscated code, we can
further verify whether our deobfuscation is a semantically equiva-
lent translation. This correctness testing is never done by previous
work. However, another challenge rears its head. Modern virtual-
ized code usually come with lots of bit-wise operations. For example,
the VM byte code could be 8 bits or 16 bits, or even 9 bits [79]. Also,
data obfuscation can generate variables in different granularities. In
this scenario, although traditional symbolic execution with a fixed

atomic granularity (such as 32 or 64 bits) is still able to correctly
generate formulas, it fails to optimize the formulas which contain
symbols in different granularity. Traditional symbolic execution
only literally translate the instructions to formulas, and let solvers
to optimize and verify the formulas. These unoptimized formulas
are typically very large and include lots of redundant variables,
resulting in too much time for a solver to solve them.

On the other hand, the most fine-grained symbolic execution
such as bit-precise symbolic execution is able to remove redundant
bit-wise formulas. However, it could otherwise become a perfor-
mance overkill. Since bit-precise symbolic execution breaks the
granularity of all variables into bit level, the resulting boolean
formulas could be too large for analysis and far from intelligible
as well. Therefore, fine-grained symbolic execution such as bit-
precise symbolic execution is not appropriate for the simplification
of virtualized snippet. In order to optimize formulas containing
multiple-granularity variables, we propose a novel symbolic exe-
cution called “multiple granularity symbolic execution”, in which
the length of symbols is not fixed during the symbolic execution.
Compared to the traditional single granularity symbolic execution,
our method can perfectly optimize formulas during symbolic ex-
ecution and generate neat formulas, which are easily handled by
theorem solvers.

Basically, multiple granularity symbolic execution tries to “in-
terpret” the semantics of every instruction in terms of different
granularities, rather than only “translate” instructions to formulas
and let the solver to handle the semantics. The new features of
multiple granularity symbolic execution are elaborated as follows.

(1) Maintain runtime status of registers during symbolic execu-
tion, including the size and location of symbols and concrete
values in every register.

(2) Interpret the effect of each instruction, e.g., shift left/right the
symbols in a register. Instead of translating the instruction
to a shl or shr in the output formula, multiple granularity
symbolic execution updates the content in registers with the
shifted result.

(3) Remove redundant symbols if they become concrete values
after the interpretation of the instruction, e.g., and sym,
0x00 when sym is an 8-bit symbol. The result is a concrete
value 0x00 and the symbol sym becomes redundant after
the interpretation, so it will be removed.

Multiple granularity symbolic execution is designed for optimiz-
ing formulas containing variables on different granularity during
symbolic execution. In single granularity symbolic execution, the
granularity of a symbol is fixed when it is claimed, for example, 32
bits or 64 bits, or only 1 bit. Similarly, a concrete value’s granularity
is also fixed. Users are not able to claim a 32-bit value, in which the
first 10 bits is one symbol and the last 22 bits is a concrete value. In
our multiple granularity symbolic execution, the key idea is that we
provide the capacity of creating a half-symbolic and half-concrete
value. With this strength, our symbolic execution can naturally han-
dle the bit-level operations and reduce the formula size. Figure 7(a)
shows an example. In the rest of this section, we will use this ex-
ample to elaborate how multiple granularity symbolic execution
works.

EAX
[3 [56 [78
[34 [Tsym]| 78
23 [4]symi| 7] se
[40 T o7 | 8o

mov ah, mem[@x14ff23]
shl eax, 4
and eax, Oxoffooffo

3
mov eax, 0x12345678 [[12

|

[

|

@) (b)

Figure 7: An example showing the states of multiple granu-
larity symbolic execution.

The snippet includes four instructions. The first instruction
moves a concrete value 0x12345678 to the 32-bit register EAX.
The second instruction loads a 8-bit symbolic value from memory
to the 8-bit register AH. The third instruction shifts the content in
EAX to left by 4 bits. The last instruction performs conjunction on
the value in EAX and a concrete value Ox0ff00ff0. Figure 7(b)
shows the content of EAX after each instruction. The key insight
here is that, the symbolic value sym1 is eliminated during the execu-
tion and the result is a concrete value. However, single granularity
symbolic execution usually ignore this fact and still generate a sym-
bolic value for the result, which leads to many redundant variables
in formulas. Our multiple granularity symbolic execution can catch
the fact and correctly generate a concrete value for the result. In
the following part, we will compare the execution procedure of the
two types of symbolic execution to show how our method works.
As the first step, we elaborate the symbols that will be used for
describing the symbolic execution procedure.

Definition 6.1. In symbolic execution, there are two types of
value: concrete value and symbolic value. We use C}I* to represent
a concrete value in symbolic execution. m is the length of the value.
n is the unique id of the value. Similarly, S;* represents a symbolic
value. For example, Cg represents a 8-bit concrete value and S%G
represents a 16-bit symbolic value.

Definition 6.2. We use [Valuey, Valuey, . .., Value,] to represent
the concatenation of the n values. For example, [C?, Sg, Cg] means
a concatenation of the three 8-bit values.

Definition 6.3. The symbol | is used for binding values. For exam-
ple, [Si‘, C§]|C§=0X23 means a concatenation of a symbolic value S?

and a concrete value CZS. The concrete value Cg is 0x23. In another
word, Cg is bound to 0x23.

Given the definitions above, we first simulate the process of
single granularity symbolic execution. In practice, the granularity
of most symbolic execution engines is one byte, which means the
shortest length of a value is 8 bits. So here we use 8 bits as the
granularity in this example. Every line is the execution result of
one instruction in Figure 7(a).

8 8 8 (8
[C4, G35 G, C11 s —ox12, ci=0x34, Ci=0x56,Co=0x78 (1)
8 ~8 o8 ~8
(€4, G35 51, C1 et —ox12, ci=0x34, Co=0x78 @)
837 = ShL(S3%, C3) Iszeics, 8, s8.c31,Co=0xa ®)

32 _ 32 32
S3" = and (537 G lc2_oxof feofo (4)

In step (1), four 8-bit concrete values are concatenated together to
show the content of EAX. In step (2), the 8-bit symbolic value Sf is
created to represent the value in AH. However, the 8-bit symbolic
execution do not have the capability to represent a 4-bit symbolic
value. Therefore, in step (3), it concatenates the four 8-bit values
and treats them as a 32-bit symbolic value ng. In step (4), ng is
used for calculating the conjunction.

From the simulation above, we can see that the result of single
granularity symbolic execution is a 32-bit symbolic value. However,
Figure 7(b) shows that the execution result should be a concrete
value. Therefore, single granularity symbolic execution create a
redundant symbolic value in the formula. Although the theorem
solver in the following step can prove that this symbolic value is
actually a concrete value, these redundant values unnecessarily
increase the formula size and add more burden to the solver.

The reason that single granularity symbolic execution misses the
optimization opportunity is that it lacks the capacity of handling
values on multiple granularity. Next we will show how our multiple
granularity symbolic execution is able to solve this problem. The
execution procedure is simulated as follows. First, we create a 32-bit
concrete value.

C1%lcs2-0x12345678

The second instruction sets AH to an 8-bit symbolic value. Since
the granularity is flexible, our method can directly set the cor-
responding part to a symbolic value, leaving the remaining bits
untouched as concrete values. In our example, it splits the 32-bit
concrete value into one 16-bit value and two 8-bit values, and then
replaces one 8-bit concrete value with a 8-bit symbolic value Sf.
The result is shown as below.

16 8 ~8
(G2, 51, C3llcs—0x1234, C3=0x78

The third instruction shift [C;é, Sf, Cg] to the left by 4 bits. In
multiple granularity symbolic execution, bit-level granularity is
exposed to all bitwise operations. Therefore, our method is able
to precisely interpret the semantics of bitwise operations on bit
level. The symbolic execution result of the shift operation is shown
as follows. It is an concatenation of one 12-bit concrete value, one

8-bit symbolic value and another 12-bit concrete value.

12 o8 ~l2
[C4% 51, C5" Nlcr2-0x234, c12=0x780

The last instruction perform the conjunction operation. Similarly,
Multiple granularity symbolic execution engine accurately execute
the conjunction instruction on bit level as follows.

Ci% A OxOFF, S8 A 0x00, CL2% A OxFFO]| 12 _
[Cy 1 5 llci2-ox234,c12=0x780

Therefore, the final result is a concatenation of three concrete
values.

12 ~8 ~12
(€™ C7 Cs"Ilci2-0x034, C3=0x00, C12=0x780

The three concrete values can be further merged to one 32-bit

concrete value. This is the same result as that shown in Figure 7(b).
32
C5"lcs2=0x03400780

Advance over state-of-the-art work. Multiple granularity sym-
bolic execution is a new variant of symbolic execution to summarize
the semantics of the extracted code, and it balances the accuracy and

performance between fixed bit-level symbolic execution and tra-
ditional symbolic execution. By contrast, extending existing work
to achieve the same goal is difficult, if not impossible. In summary,
our design offers two competitive advantages.

(1) Fine-grained Analysis. Multiple granularity symbolic execu-
tion accurately interprets the semantics of bitwise operations
on bit level during execution. The fine-grained information
exposes optimization opportunities for eliminating redun-
dant symbolic values.

Flexibility. The multiple granularity symbolic execution en-
gine is free to split and merge values without granularity
restriction. This feature gives multiple granularity symbolic
execution the capacity of operating on different granularity
levels, so that it can perform fine-grained analysis but still
generate concise formulas.

—
)
~

7 IMPLEMENTATION

We build an open source tool called VMHunt as the prototype
of our idea. The trace logger is written in C++ based on Intel’s
Pin DBI framework [38] (version 2.13). Symbolic execution on the
binary code has appealing applications in security analysis, and
many options [11, 14, 20, 22, 58, 61, 64] are available in the arsenal.
However, the fixed data type design in existing symbolic execution
engines obstructs the implementation of multiple-grained symbolic
execution. We have to redesign two fundamental components in
the symbolic execution engine: 1) a new data structure to support
multi-granularity data types; 2) a new symbolic execution rule to
decide an instruction should be translated to formula or interpreted.
It motivates us to develop our own symbolic execution engine. We
design an intermediate representation (IR), which can effectively
encode symbolic and concrete values on different granularities.
Based on this new feature, our symbolic execution engine efficiently
interprets the behavior of instructions and translates it to concise
formulas. Specifically, VMHunt consists of several components,
including the multiple granularity symbolic execution engine, a
parser for lifting a trace to the IR, the virtualized snippet boundary
detector, a forward/backward slicer, a peephole optimizer to revert
the effects of instruction-level obfuscation, and utilities for control
flow graph generation. The whole tool chain includes 17, 192 lines
of C++ code and 341 lines of Perl code.

8 EVALUATION

In this section, we evaluate VMHunt from two aspects: effectiveness
and performance. Particularly, we design and run experiments to
answer the research questions (RQs) as follows.

(1) RQ1: Is VMHunt able to correctly detect the virtualized
snippet boundary inside a virtualized program trace? (effec-
tiveness)

(2) RQ2: Is VMHunt able to effectively extract and simplify the
virtualized kernel? (effectiveness)

(3) RQ3: How many false positives can VMHunt produce? (ef
fectiveness)

(4) RQ4: How much overhead does VMHunt introduce? (per-
formance)

As the response to RQ1, we first apply modern commercial virtual-
izers to several real open source programs and then use VMHunt

to detect the virtualized snippets. In RQ2, we compare the size of
kernel with the size of virtualized snippet. We use a theorem prover,
STP [27], to check the equivalence of the kernel and the original
trace (i.e., correctness testing). We run VMHunt on malware sam-
ples and provide a case study about a virtualized ransomware to
answer RQ1 and RQ2. In response to RQ3, we run benign programs
without virtualization to check the false positives. As the answer
to RQ4, we report the performance of the main components in
VMHunt, including the tracer, boundary detector, and symbolic
execution engine.

8.1 Open Source Programs

Typically, virtualization is used for protecting a piece of sensitive
snippet in a program. So first we evaluate VMHunt in this common
scenario. We select several open source programs as the test bed.
Next, we apply modern virtualization obfuscators to a snippet in
the program. After that, we use VMHunt to discover the virtualized
snippet and simplify it.

8.1.1 Testbed Programs. Our testbed is comprised of programs
from several open source projects. We choose them based on the
following facts. First, they are widely used open source programs
in the real world. Second, they are representative tools from dif-
ferent areas. Lastly, they inherently include a main loop that read
data and process it. For example, a web server contains a loop to
dispatch different inquire packages to the corresponding handlers
based on the package type. The main loop’s behavior is similar
to a virtual machine’s dispatch-handler behavior. This behaviors
can help us check the false positives that VMHunt produces. The
programs in our testbed are grep-2.21, bzip2-1.0.6, md5sum-8.24,
AES in OpenSSL-1.1.0-pre3, thttpd-2.26, and sqlite-2.26. The CPU
and memory of our testbed machine is Intel Core i7-3770 processor
and 8GB, with Ubuntu Linux 14.04 installed.

8.1.2 Virtualizer and Sensitive Area. We virtualize the above testbed
programs with several modern virtualization obfuscation tools and
then use VMHunt to detect and simplify the virtualized snippet.
The virtualization tools are Code Virtualizer [45], Themida [46],
VMProtect [73] and EXEcryptor [66]. We adopt the most recent
released version of each tool so as to evaluate VMHunt against the
state-of-the-art virtualization techniques?. All those virtualization
tools provide the capability to let users select a piece of sensitive
area in a program to be virtualized. The virtualization tool will con-
vert that area to virtual instructions that can only be understood
by an internal virtual machine. The remaining part of that program
will be untouched.

In order to evaluate VMHunt in the real world scenario, we im-
plement a trial/registration scheme which has two virtualized areas
in each of the test bed programs. The details of the trial/registra-
tion is shown in the Appendix A. After that we use VMHunt to
detect the boundaries of the virtualized areas. The result shows
that VMHunt correctly identifies the virtualized snippets in all
testbed programs. VMHunt is also able to extract the kernel of each
virtualized snippet. We compare the number of lines of the total
trace, virtualized snippets and kernels in Table 1. For simplicity,

2We purchased the professional editions of all testing obfuscators. They are still the
latest versions until 05/09/18.

we only present the evaluation data from Code Virtualizer [45].
The data from VMProtect [73] and EXECryptor [66] are similar.
Themida [46] shares same VMs with Code Virtualizer, so the eval-
uation data is also the same. According to Table 1, the virtualized
snippet identified by VMHunt is about 10% of the whole trace size.
The kernel of a virtualized snippet is about 107 of the whole trace
size. The result proves that VMHunt can significantly reduce the
number of instructions for future analysis.

Next, we run multiple granularity symbolic execution on each
kernel of the virtualized snippets. The symbolic execution generates
a simplified formula representing the semantics of the kernel. To
check whether the formula is equivalent to the original program, we
run symbolic execution on the trace of the original program without
virtualization. After that we use STP [27] to check whether the
formula from VMHunt’s output is equivalent to the unobfuscated
formula. The experiment result shows that all formulas generated
by VMHunt is equivalent to the original formula before obfuscation.
Compared to other deobfuscation work, VMHunt is the first one
that can verify the correctness of simplification result.

In order to evaluate the multiple granularity symbolic execution
in VMHunt, we compare it with two single granularity symbolic
execution engines. One is on byte-level (8 bits) and the other one is
on bit-level (1 bit). We remove the multiple granularity component
from our symbolic execution engine and modify it to a byte-level
and bit-level symbolic execution engine separately. They are used
for the comparative evaluation with VMHunt. We run the two single
granularity symbolic execution engines on the virtualized kernels
and compare the formulas with those generated by VMHunt. The
result is shown in Table 2. It shows that the size and number of
variables from formulas generated by multiple granularity symbolic
execution is significantly less than those from byte or bit level
symbolic execution engines. Moreover, we also compare the time
that a solver take to solve the formula. The formula generated
by multiple granularity symbolic execution can be solved about
10X faster than that from byte-level symbolic execution and 20X
faster than bit-level symbolic execution. The result proves that the
multiple granularity symbolic execution in VMHunt can produce
concise and efficient formulas, especially for bitwise operations.

8.2 Multiple VMs Virtualization

Some modern virtualization tools, such as Code Virtualizer [45] and
Themida [46], come with multiple custom VMs. Those custom VMs
are designed using different architectures. Users can apply different
VMs to different sensitive areas in the same program. As a result,
the execution trace of that program contains multiple virtualized
snippets of different VMs. In this scenario, reverse engineering one
sensitive area provides very little information for cracking other
sensitive areas. It raises a strong challenge to existing deobfuscation
methods and we have not found a direct response to this challenge
in the previous work.

We are curious about VMHunt’s performance in the scenario of
multiple VM virtualization. We conduct an experiment to verify
whether VMHunt is able to detect and simplify all virtualized snip-
pets of different VMs in a program. We adopt Code Virtualizer [45]
in this experiment, and it shares the same custom VM engines with
Themida [46]. The name of each VM is formed by an animal name

Table 1: The number of instructions of the whole trace, virtualized snippets, and kernels in all testbed programs. T means the
whole trace. S1 and S2 are the two virtual snippets in the trace. K1 and K2 are the kernels in S1 and S2 respectively.

Programs T S1 S2 S1+S2 K1 K2 KI+K2 (S1+S2)/T(%) (K1+K2)/T(10~%)
grep 1,072,446 130,329 168,857 299,186 552 1,061 1,613 24.6 15.0
bzip2 1,422,428 133,272 153,537 286,809 774 1,444 2,218 20.2 15.6
aes 2,479,948 124,793 156,019 280,812 837 1,173 2,010 11.3 8.1
md5sum 2,309,826 134,320 168,163 302,483 604 1,271 1,875 13.1 8.1
thttpd 3,680,610 117,435 155,262 272,697 677 1,389 2,066 7.4 5.6
sqlite 4,716,883 146,177 161,073 307,250 820 1,465 2,285 6.5 4.8

Table 2: Comparison of the formulas generated by bit-level,
byte-level and multiple granularity symbolic execution. The
formula size is measured by number of lines. The second
metric is the number of variables. The third metric is the
solving time measured by seconds. - means timeout after
1800 seconds.

SE | Metrics | grep bzip2 aes md5sum thttp sqlite
size 671 459 674 801 792 997
byte var # 1289 2071 3215 4318 4730 6103
time 90 105 150 152 144 183
size 7992 5205 5310 9134 6840 10289
bit var # 25110 41947 69827 87638 80592 13609
time 383 486 532 517 793 -
size 71 128 218 239 291 348
MG var # 408 558 544 673 804 930
time 12 16 13 14 20 23

plus a color, such as “lion black”, “tiger red” One animal name refers
to a custom VM architecture and the colors means different vari-
ants of that that architecture. Deeper color means the variant has
more virtualization methods applied in that VM architect. In this
experiment, we apply two significantly different VMs, “tiger white”
and “fish black” to virtualize the two sensitive areas as shown in
Figure 9. After that we repeat the experiment in the last section.
The result shows that all virtualized snippets in different VMs are
correctly detected and simplified. The size of different sections is
shown in Table 3. Particularly, by comparison of the S2 column in
Table 3 with the S2 column in Table 1, we can see that the “fish
black” VM is more complicated than “tiger white” However, the
size of the kernel is still similar. It proves that VMHunt can extract
the core semantics of the virtualized snippet.

Another way of applying multiple-VM virtualization is nested
VM [83], which means, apply another virtualization to an already
virtualized code. We also evaluate VMHunt in the nested VM sce-
nario. We use grep as the testbed and apply the tiger-white VM
twice. In practice, we observe that virtualized snippet after the
first round of virtualization is significantly larger than the original
snippet as shown in Table 3. Therefore, if the second round of virtu-
alization is applied directly to the virtualized snippet, it will cause
performance problem. Besides, the virtualized snippet also contains
program structures which are not suitable for being virtualized
again as mentioned in Section 1. In our evaluation, we select one
block of instructions after in the first-round virtualization. That
block does not include any program structures that could lead to

wrong virtualization. Then we apply another round of virtualization
to the block to produce the nested-virtualized grep program.

In our evaluation, we run VMHunt on the nested-virtualized grep.
First, VMHunt correctly identify two virtualized snippets. Different
from the previous experiment, those two virtualized snippets are
nested. We first apply VMHunt to extract the kernel of the inner
virtualized snippet and replace it with the kernel. After that, we run
VMHunt again to process the outer virtualized snippet. The final
result shows that VMHunt is able to correctly handle nested-VMs.

8.3 Malware Samples

In order to evaluate VMHunt in a malicious scenario in practice,
we collect malware samples from Virustotal® and some other fo-
rums. These samples cover different malware categories, such as
botnet, virus, and ransomware. All samples are already known as
being virtualized. We run VMHunt on these malware to detect
and simplify the virtualized snippet. Table 4 shows the evaluation
result. VMHunt successfully detects all virtualized snippets in all
the 10 samples. We also manually verify the extracted snippets are
real virtualized snippet. A detailed case study of the ransomware
sample, tears, is presented in the next section. Our observation is
that malware developers only apply virtualization obfuscation to a
small piece of code, which is typically a sensitive area that can be
detected by the anti-virus software.

8.4 A Ransomware Case Study

In this section, we present a case study about applying VMHunt
in a real-world ransomware called “tears”. We download the ran-
somware sample from VirusTotal. The ransomware encrypts vic-
tims’ files by AES encryption and then ask the victims to pay a
ransom for decryption of their files. Based on the description on
VirusTotal, the core part of the sample is protected by virtualization
techniques. We set up a Cuckoo sandbox* to run the ransomware
and record an execution trace. Then we use VMHunt to analyze the
virtualized snippets inside the trace. The size of the whole trace,
virtualized snippets and the kernels is shown as the last row in
Table 4.

VMHunt identifies one virtualized snippet inside the execution
of the ransomware. After extraction and multiple granularity sym-
bolic execution of the kernel, we discover that the virtualized part
is actually the procedure of key generation. In fact, the AES en-
cryption key is generated based on the time when the ransomware

Shttps://www.virustotal.com
*https://cuckoosandbox.org/

Table 3: The number of instructions of the whole trace, virtualized snippets, and kernels in the Multi-VM experiment. S1 is
the virtualized snippet by tiger-white and S2 is the virtualized snippet by fish-black. K1 and K2 are the kernels of S1 and S2

respectively.

Programs T S1 S2 S1+S2 K1 K2 KI1+K2 (S1+S2)/T(%) (K1+K2)/T(107%)
grep 1,217,671 122,615 231,807 354,422 537 1,458 1,995 29.1 16.4
bzip2 1,594,486 120,103 206,049 326,152 713 1,540 2,253 20.8 14.1

aes 2,566,455 110,801 240,743 351544 792 1,675 2,467 13.7 9.6
md5sum 2,310,301 138,508 249,138 387,646 649 1,549 2,198 16.8 9.5
thttpd 3,691,011 123,080 277,226 400,306 711 1,563 2,274 10.8 6.2
sqlite 4,764,819 143,995 294,373 438,368 802 1,898 2,700 9.2 5.7

Table 4: VMHunt evaluation result on malware samples. S/T
is calculated in percentage. K/T is calculated in (107%)

Name Type T S K S/W K/W
chodebot Botnet 1,967,000 150,129 930 5.9 4.7
nzm Botnet 6,141,556 181,457 1432 3.0 2.3
phatbot Botnet 2,224,405 152,723 1008 6.9 4.5
zZswarm Botnet 5,587,140 168,529 1395 3.0 2.5
tsgh Botnet 5,199,837 145,372 1362 3.0 2.6
dllinject Virus 8,634,893 174,232 1568 2.0 1.8
locker_builder Virus 10,435,886 198,695 1293 1.9 1.2
locker_locker Virus 4,594,868 146,960 893 3.2 1.9
temp_java Virus 8,661,836 185,380 1504 2.1 1.7
tears Ransom 2,658,615 143,308 1074 54 4.0

is invoked. If the key generation procedure is cracked, people can
easily calculate the key by themselves. So the key generation proce-
dure is the sensitive area in the ransomware. The developer adopts
virtualization to hide this procedure.

According to the final result of VMHunt’s analysis, the key gen-
eration procedure can be represented as the following formula. The
symbol ¢ is a 32-bit integer representing the time when invoking the
ransomware. k is the 128-bit key for AES encryption. k is generated
by the concatenation of four encoding operations on ¢.

k = [t ® Oxabcd1234,shl(t,4),t A Oxdeadbeef, t + 1]

Particularly, based on our analysis, the virtualization tool translates
the t + 1 operation to 10 instructions in the VM, which add and
subtract constants as follows.

t+1=1-522959822-4+20+8—-4-16+4
+ 522959846 — 522959866 + 522959835

We rebuild the control flow graph from the virtualized snippet
and the kernel as shown in Appendix Figure 10. The kernel is
significantly simple than the virtualized snippet. We also looked into
the VM implementation and verified that the VM is implemented
in threaded model. There is no explicit dispatch loop inside the
execution trace. What’s more, we find a fake dispatch loop iterating
872 times. Each time it fetches an integer from an array and jump to
different fake handlers based on the integer value. The fake handlers
are all junk code. Our kernel extraction effectively filter out all of
those redundant sections.

8.5 Unvirtualized Programs

The effectiveness of VMHunt could be hurt by too many false
positives. We are curious about whether VMHunt produces false
positives on benign programs without virtualization. Therefore, we
apply VMHunt to testbed programs with all virtualization options
turned off. The result shows that the virtualization boundary detec-
tion does report several false positives. For example, some function
calls happen to use all registers. Those false positives are filtered out
in the following process when the virtualized kernel is extracted. In
benign programs, the program snippet extracted is almost the same
as the original trace since they are not obfuscated. Only the true
virtualized kernel is significantly smaller than the original trace.
Table 5 shows the size of the snippets extracted in the boundary
detection and virtualized kernel detection in the experiment on
grep. The virtualization boundary detection report 7 snippets as
possible virtualization snippet, in which two of them (snippet 4
and 7) are real virtualization snippets. As shown in Table 5, in the
snippets without virtualization, the kernel is the majority part of
the snippet because there is only a few redundant code. In contrast,
in the virtualized snippets, only very few instructions constitute
the kernel because lots of instructions are redundant. Therefore, the
ratio between kernel and the snippet is a good metric to filter out
the false positives. In our experiment, we set 90% as the threshold
to distinguish true virtualization snippet.

Besides, another observation is that the true virtualized snippet
is significantly longer than the benign snippets, because the virtu-
alized snippet includes the whole execution of a VM. This feature
is also used for filtering out the false positives. In VMHunt, we set
the threshold for snippet length as 10,000. These thresholds work
perfectly in our experiment. As the final result, VMHunt accurately
recognizes all virtualized snippets and reports zero false positive.

8.6 Performance

Overall, there are two phases in VMHunt, trace logging and offline
analysis. The trace logging component is built upon Intel Pin [38],
a dynamic binary instrumentation tool. The overhead of the trace
logging is typically about 5X slow down. Table 6 show the execu-
tion time of every component in the offline phase. The boundary
detection time increases as the trace size increases. The total time
of analyzing one program is about 20 minutes. Since all testbed
programs are real-world programs rather than synthetic examples,
VMHunt’s performance is good for practical virtualization analysis.

Table 5: The number of instructions of the snippets ex-
tracted in the boundary detection and kernel detection in
the grep experiment. Snippet 4 and 7 are true virtualization
snippets. S is the virtualized snippet size. K is the kernel size.

Snippet S K K/S(%)
1 5,371 5,103 95.01
2 218 218 100.00
3 3,557 3,282 92.27
4 130,329 552 0.42
5 1,697 1,572 92.63
6 2,392 2,288 95.61
7 168,857 1061 0.63

Table 6: VMHunt’s offline analysis performance. BD is
boundary detection. K-Extraction is kernel extraction.
MGSE is multiple granularity symbolic execution. The ex-
ecution time is measured in minutes.

Programs BD K-Extraction MGSE Total
grep 7.2 48 53 173
bzip2 9.3 3.7 4.7 17.7

aes 10.9 4.1 6.3 21.3

md5sum 114 4.9 5.8 22.1
thttpd ~ 14.7 47 51 245
sqlite 16.9 5.1 6.7 28.7

9 DISCUSSION

In this section, we discuss VMHunt’s limitations, possible coun-
termeasures, and future work. First, VMHunt bears with the same
incompleteness as any dynamic analysis: every time only one exe-
cution path can be sufficiently analyzed. The possible mitigation is
to automatically generate new inputs to explore uncovered paths
through concolic execution [42] or guided fuzz testing [28]. Second,
an attack to VMHunt’s trace logging is to fingerprint dynamic bi-
nary instrumentation environment and then exit exceptionally [49].
We can strengthen VMHunt by running malware in a transparent
environment [34, 84]. Our multiple granularity symbolic execution
is effective to defeat data encodings via bitwise operations, which
are quite common in commercial obfuscators. Attackers can mislead
the detection of VM context switch by inserting redundant context
switch instructions. We can defend this attack in two ways: 1) these
redundant instructions can be removed in the simplification proce-
dure; 2) we can check whether the switched context is actually used
in the kernel; if not, the context switch instructions are considered
to be redundant. Some work strengthens code obfuscation by diver-
sifying VM contexts and handler functions [35, 75, 76]. However,
VMHunt’s semantics-based simplification is able to deal with the
code mutation effects.

Theoretically, if the whole program is virtualized, VMHunt is
hard to locate it because no context switch occur in this case. How-
ever, We wish to reiterate that whole program virtualization rarely
happens in practice. First, existing virtualization technique cannot

correctly handle some common program structures and instruc-
tions, so whole program virtualization will result in compatibility
problems. Second, whole program virtualization translate the entire
program to VM instructions and interpret them during runtime,
which will cause significant slowdown.

In all of our tested VMs, context switch instructions save and
restore the content for all general registers, because the VM exe-
cution uses all of them. It is possible to customize a VM that only
uses some of the registers, so the context switch instructions would
only save and restore those used registers. This design will affect
our context switch instruction clustering. One possible solution
is to check whether only those saved registers are used between
the context switch instructions. In practice, we have not observed
any virtualization obfuscator using partial registers. Using partial
registers complicates the design of VM greatly. Especially, fewer
number of available registers lead to more register spilling, which
results in worse performance.

10 RELATED WORK

Deobfuscation of code virtualization. Code virtualization is one
of the strongest obfuscation available to malware authors, and thus
automatic deobfuscation methods can assist rapid understanding of
malicious code. As the decode-dispatch based emulator is the classic,
simple way to virtualize program code [63], a large portion of the
previous works focus on reverse engineering this class of code vir-
tualization [29, 30, 51, 55, 59]. A representative work, Rotalumé [59],
uses dynamic analysis to detect the central decode-dispatch loop
and then find the mappings between bytecode and related handler
functions, whose control flow graphs are constructed for malware
analysis. However, the latest commercial obfuscators have adopted
two improvements to evade detection: 1) threaded interpretation
in which the central decode-dispatch loop does not exist any more;
2) fake decode-dispatch loops to mislead loop search. In contrast,
VMHunt is a generic approach that reveals better resilience to these
evasions. Note that the obfuscated handler functions can be further
optimized to better understand their semantics [9, 10, 22, 37, 57],
and VMHunt’s simplification approach is orthogonal to them.

The approaches in the second category do not require the as-
sumption of emulator structure. Instead, they attempt to select the
execution instructions that have control/data dependencies with
original code semantics [19, 40, 67, 83]. For example, Kevin et al.
perform equational reasoning [18] to identify the instructions that
affect system call arguments. They treat such instructions as an
approximation to the original code [19]. BinSim [40] achieves the
similar results through an enhanced backward slicing. However,
they may disregard the protected code that do not affect observable
behaviors. Dynamic taint analysis is also applied to removing the
instructions related to the dispatcher structure [67, 83], but only
taint source dependent instructions can be kept. In comparison,
VMHunt’s slicing starts from multiple sources at VM boundary,
making the resulting instructions more complete.

Another difference is that the correctness testing is seldom done
by the previous deobfuscation work, while our simplification re-
sult is provable. We use a theorem prover to prove the simplified
code is semantically equivalent to the original code. Some work
only measured the similarity of control flow graphs (e.g., around

80% similarity) [59, 83] or x86 instruction opcode [19], but they
didn’t prove their deobfuscation result has the same behavior as
the original program.

Symbolic execution of binary code. Symbolic execution has
emerged as a fundamental technique for automatically analyzing bi-
nary code [3, 4, 72, 82]. Many laborious security analysis tasks, such
as control flow de-obfuscation [7, 41], exploit generation [2, 6, 12],
and cryptographic function detection [81], have been recast as a
set of constraint satisfaction problems. Then advanced Satisfiability
Modulo Theories (SMT) solvers are utilized to solve these con-
straints efficiently. To harness the full strength of SMT solvers, the
key is to accurately abstract domain-specific security analysis task
as verification constraints. VMHunt’s multiple granularity symbolic
execution reverts data encoding effects and produces concise con-
straints that could otherwise be hard to solve. VMHunt advances
the use of symbolic execution in obfuscated binary code analysis.

11 CONCLUSION

Code virtualization is one of the most advanced software obfus-
cation techniques. Because of the high performance penalty and
incomplete compatibility, code virtualization is mainly used to pro-
tect selected code segments. Existing virtualization deobfuscation
work are either ad hoc, designed for a specific emulator structure,
or assuming the scope of virtualized code is known to security ana-
lysts a priori. This paper presents a novel approach called VMHunt,
a generic approach to locate virtualization-obfuscated code and sim-
plify it. We consider the common virtual machine context switch
behavior as a general detection feature, and optimize the obscure
virtualized code through a semantics-based slicing and multiple
granularity symbolic execution. Our evaluation shows that VMHunt
can accurately identify the virtualized section and greatly simplify
it by several orders of magnitude. Our study demonstrates VMHunt
is an appealing complement to malware analysis.

ACKNOWLEDGMENTS

We thank the CCS anonymous reviewers and Heng Yin for their
valuable feedback. This research was supported in part by the Na-
tional Science Foundation (NSF) grants CNS-1652790, and the Office
of Naval Research (ONR) grants N00014-16-1-2265, N00014-16-1-
2912, and N00014-17-1-2894. Jiang Ming was also supported by the
University of Texas System STARs Program.

REFERENCES

[1] Shahid Alam, Issa Traore, and Ibrahim Sogukpinar. 2014. Current Trends and the
Future of Metamorphic Malware Detection. In Proceedings of the 7th International
Conference on Security of Information and Networks (SIN’14).

[2] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. 2011.
AEG: Automatic Exploit Generation on Source Code. In Proceedings of the 18th
Annual Network and Distributed System Security Symposium (NDSS’11).

[3] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexan-
der Pretschner. 2016. Code Obfuscation Against Symbolic Execution Attacks.
In Proceedings of the 32nd Annual Conference on Computer Security Applications
(ACSAC’16).

[4] Sebastian Banescu, Christian Collberg, and Alexander Pretschner. 2017. Pre-
dicting the Resilience of Obfuscated Code Against Symbolic Execution Attacks
via Machine Learning. In Proceedings of the 26th USENIX Conference on Security
Symposium (USENIX Security’17).

[5] Sebastian Banescu, Ciprian Lucaci, Benjamin Kramer, and Alexander Pretschner.
2016. VOT4CS: A Virtualization Obfuscation Tool for C#. In Proceedings of the
2016 ACM Workshop on Software PROtection (SPRO’16).

G

(1]

[12

(13

[14

[15

[16]

[17

(18

[19

)
=

[21]

[22

[23

[24]
[25

™
S

[27

[28

[29

[30

[31

[32

[33

Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili, and David Brumley. 2017. Your Ex-
ploit is Mine: Automatic Shellcode Transplant for Remote Exploits. In Proceedings
of the 38th IEEE Symposium on Security and Privacy (S&P’17).

S. Bardin, R. David, and J. Y. Marion. 2017. Backward-Bounded DSE: Targeting
Infeasibility Questions on Obfuscated Codes. In Proceedings of the 38th IEEE
Symposium on Security and Privacy (S&P’17).

James R. Bell. 1973. Threaded Code. Commun. ACM 16, 6 (1973).

Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017.
Syntia: Synthesizing the Semantics of Obfuscated Code. In Proceedings of the 26th
USENIX Conference on Security Symposium (USENIX Security’17).

Ian Blumenfeld, Roberta Faux, and Paul Li. 2013. SMT Solvers for Malware
Unpacking. In Proceedings of the 11th InternationalWorkshop on Satisfiability
Modulo Theories (SMT’13).

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011.
BAP: A Binary Analysis Platform. In Proceedings of the 23rd international confer-
ence on computer aided verification (CAV’11).

D. Brumley, P. Poosankam, D. Song, and J. Zheng. 2008. Automatic Patch-Based
Exploit Generation is Possible: Techniques and Implications. In Proceedings of
the 2008 IEEE Symposium on Security and Privacy (S&P’08).

Joshua Cazalas, J. Todd McDonald, Todd R. Andel, and Natalia Stakhanova. 2014.
Probing the Limits of Virtualized Software Protection. In Proceedings of the 4th
Program Protection and Reverse Engineering Workshop (PPREW’14).

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S%E: A
Platform for In-vivo Multi-path Analysis of Software Systems. In Proceedings
of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’11).

Christian Collberg. last reviewed, 10/01/2017. The Tigress C Diversifier/Obfusca-
tor. http://tigress.cs.arizona.edu/.

Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation,
Watermarking, and Tamperproofing for Software Protection. Addison-Wesley
Professional, Chapter 4.4, 258-276.

C. Collberg, C. Thomborson, and D. Low. 1998. Manufacturing cheap, resilient,
and stealthy opaque constructs. In Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of programming languages (POPL’98).

Kevin Coogan and Saumya Debray. 2011. Equational Reasoning on x86 Assembly
Code. In Proceedings of the 11th IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM’11).

Kevin Coogan, Gen Lu, and Saumya Debray. 2011. Deobfuscation of virtualization-
obfuscated software: a semantics-based approach. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS’11).

Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist,
Marie-Laure Potet, and Jean-Yves Marion. 2016. BINSEC/SE: A Dynamic Symbolic
Execution Toolkit for Binary-Level Analysis. Proceedings of the 23rd IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER’16)
(2016).

Brian Davis, Andrew Beatty, Kevin Casey, David Gregg, and John Waldron. 2003.
The Case for Virtual Register Machines. In Proceedings of the 2003 Workshop on
Interpreters, Virtual Machines and Emulators.

Fabrice Desclaux and Camille Mougey. 2017. Miasm: Reverse Engineering Frame-
work. RECON.

Anthony Desnos. 2010. Dynamic, Metamorphic (and opensource) Virtual Ma-
chines. Hack.lu.

Robert B. K. Dewar. 1975. Indirect Threaded Code. Commun. ACM 18, 6 (1975).
M. Anton Ertl and David Gregg. 2001. The Behavior of Efficient Virtual Ma-
chine Interpreters on Modern Architectures. In Proceedings of the 2001 European
Conference on Parallel Processing.

Nicolas Falliere, Patrick Fitzgerald, and Eric Chien. 2009. Inside the Jaws of
Trojan.Clampi. Symantec Technical Report.

Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-vectors and
Arrays. In Proceedings of the 2007 International Conference in Computer Aided
Verification (CAV’07).

Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated White-
box Fuzz Testing. In Proceedings of the 15th Annual Network and Distributed
System Security Symposium (NDSS’08).

Yoann Guillot and Alexandre Gazet. 2010. Automatic binary deobfuscation.
Journal in Computer Virology 6, 3 (2010).

Anatoli Kalysch, Johannes Goétzfried, and Tilo Miiller. 2017. VMAttack: De-
obfuscating Virtualization-Based Packed Binaries. In Proceedings of the 12th
International Conference on Availability, Reliability and Security (ARES’17).
Yuhei Kawakoya, Makoto Iwamura, Eitaro Shioji, and Takeo Hariu. 2013. API
Chaser: Anti-analysis Resistant Malware Analyzer. In Proceedings of the 16th In-
ternational Symposium on Research in Attacks, Intrusions, and Defenses (RAID’13).
Johannes Kinder. 2012. Towards Static Analysis of Virtualization-Obfuscated
Binaries. In Proceedings of the 19th Working Conference on Reverse Engineering
(WCRE’12).

Samuel T. King, George W. Dunlap, and Peter M. Chen. 2003. Operating System
Support for Virtual Machines. In Proceedings of the 2003 USENIX Annual Technical
Conference (ATC’03).

(34

[35

[39]

[40]

[41]

[42]

[43

[44]

[45

[46]

[48]

[49]

[50]

Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2014. BareCloud:
Bare-metal Analysis-based Evasive Malware Detection. In Proceedings of the 23rd
USENIX Conference on Security Symposium (USENIX Security’14).

Kaiyuan Kuang, Zhanyong Tang, Xiaoqing Gong, Dingyi Fang, Xiaojiang Chen,
Tianzhang Xing, Guixin Ye, Jie Zhang, and Zheng Wang. 2016. Exploiting Dy-
namic Scheduling for VM-Based Code Obfuscation. In Proceedings of the 15th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom’16).

Boris Lau. 2008. Dealing with Virtualization Obfuscators. CARO Workshop.
Mingyue Liang, Zhoujun Li, Qiang Zeng, and Zhejun Fang. 2017. Deobfuscation
of Virtualization-obfuscated Code through Symbolic Execution and Compilation
Optimization. In Proceedings of the 19th International Conference on Information
and Communications Security (ICICS’17).

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation (PLDI 05).

Ramya Manikyam, J. Todd McDonald, William R. Mahoney, Todd R. Andel, and
Samuel H. Russ. 2016. Comparing the Effectiveness of Commercial Obfuscators
Against MATE Attacks. In Proceedings of the 6th Workshop on Software Security,
Protection, and Reverse Engineering (SSPREW’16).

Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017. BinSim: Trace-
based Semantic Binary Diffing via System Call Sliced Segment Equivalence
Checking. In Proceedings of the 26th USENIX Conference on Security Symposium
(USENIX Security’17).

Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. 2015. LOOP: Logic-
Oriented Opaque Predicate Detection in Obfuscated Binary Code. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS’15).

Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Exploring multiple
execution paths for malware analysis. In Proceedings of the 28th IEEE Symposium
on Security and Privacy (S&P’07).

Philip OKane, Sakir Sezer, and Kieran McLaughlin. 2011. Obfuscation: The Hidden
Malware. IEEE Security and Privacy 9, 5 (2011).

Oreans Technologies. 2015. Protecting Better with Code Virtualizer. http://
oreans.com/codevirtualizer.php.

Oreans Technologies. last reviewed, 10/01/2017. Code Virtualizer: Total obfusca-
tion against reverse engineering. http://oreans.com/codevirtualizer.php.
Oreans Technologies. last reviewed, 10/01/2017. Themida: Advanced Windows
Software Protection System. https://www.oreans.com/themida.php.

Joshua Phillips, Vitaly Zaytsev, and Abhishek Karnik. 2009. Parasitics: The Next
Generation. Kaspersky Lab Technical Report.

Tan Piumarta and Fabio Riccardi. 1998. Optimizing Direct Threaded Code by Selec-
tive Inlining. In Proceedings of the 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’98).

Mario Polino, Andrea Continella, Sebastiano Mariani, Stefano D’Alessio, Lorenzo
Fontata, Fabio Gritti, and Stefano Zanero. 2017. Measuring and Defeating Anti-
Instrumentation-Equipped Malware. In Proceedings of the 14th Conference on
Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA’17).
Michalis Polychronakis. 2011. Reverse Engineering of Malware Emulators. Springer
US, Chapter Encyclopedia of Cryptography and Security.

[51] Jason Raber. 2013. Virtual Deobfuscator: Removing virtualization obfuscations

[52]

[53]
[54]
[55]
[56]

[57]

[58]

[59]

[60

from malware. Black Hat USA.

Ben Read and Jonathan Leathery. 2017. CVE-2017-0199 Used as Zero Day to
Distribute FINSPY Espionage Malware and LATENTBOT Cyber Crime Malware.
FireEye Threat Research Blog.

ReWolf. last reviewed, 10/01/2017. x86 Virtualizer. http://www.openrce.org/blog/
view/847/x86_Virtualizer_-_source_code.

Thomas Roccia. 2017. Malware Packers Use Tricks to Avoid Analysis, Detection.
McAfee Blogs.

Rolf Rolles. 2009. Unpacking virtualization obfuscators. In Proceedings of the 3rd
USENIX Workshop on Offensive Technologies (WOOT’09).

Kevin A. Roundy and Barton P. Miller. 2013. Binary-code Obfuscations in Preva-
lent Packer Tools. Comput. Surveys 46, 1 (2013).

Jonathan Salwan and Sébastien Bardin and Marie-Laure Potet. 2017. Deobfusca-
tion of VM based software protection. In Symposium sur la sécurité des technologies
de 'information et des communications (SSTIC’17).

Florent Saudel and Jonathan Salwan. 2015. Triton: A Dynamic Symbolic Execution
Framework. In Symposium sur la sécurité des technologies de I'information et des
communications (SSTIC’15).

Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. 2009. Auto-
matic reverse engineering of malware emulators. In Proceedings of the 30th IEEE
Symposium on Security and Privacy (S&P’09).

Yunhe Shi, David Gregg, Andrew Beatty, and M. Anton Ertl. 2005. Virtual Ma-
chine Showdown: Stack Versus Registers. In Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments (VEE05).

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino,
Andrew Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In Proceedings of the 37th IEEE Symposium on Security and
Privacy (S&P’16).

Craig Smith. 2008. Creating Code Obfuscation Virtual Machines. RECON.

Jim Smith and Ravi Nair. 2005. Virtual Machines: Versatile Platforms for Systems
and Processes (The Morgan Kaufmann Series in Computer Architecture and Design).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.
2008. BitBlaze: A New Approach to Computer Security via Binary Analysis. In
Proceedings of the 4th International Conference on Information Systems Security
(ICISS 08). Keynote invited paper.

Aditya K Sood, Richard J Enbody, and Rohit Bansal. 2011. SpyEye malware
infection framework. Virus Bulletin.

StrongBit Technology. last reviewed, 10/01/2017. EXECryptor: Bulletproof soft-
ware protection. http://www.strongbit.com/execryptor.asp.

Zhanyong Tang, Lei Wang, Kaiyuan Kuang, Chao Xue, Xiaoqing Gong, Xiao-
jiang Chen, Dingyi Fang, and Zheng Wang. 2017. SEEAD: A Semantic-based
Approach for Automatic Binary Code De-obfuscation. In Proceedings of 16th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom’17).

Clark Taylor and Christian Collberg. 2016. A Tool for Teaching Reverse Engi-
neering. In Proceedings of the 2016 USENIX Workshop on Advances in Security
Education.

The Enigma Protector. last reviewed, 10/01/2017. Enigma Protector: A profes-
sional system for executable files licensing and protection. http://enigmaprotector.
com/.

Tora. 2012. Devirtualizing FinSpy. POC 2012.

Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas. 2015.
SoK: Deep packer inspection: A longitudinal study of the complexity of run-
time packers. In Proceedings of the 36th IEEE Symposium on Security & Privacy
(S&P’15).

Julien Vanegue, Sean Heelan, and Rolf Rolles. 2012. SMT Solvers for Software
Security. In Proceedings of the 6th USENIX Workshop on Offensive Technologies
(WOOT’12).

VMProtect Software. last reviewed, 10/01/2017. VMProtect software protection.
http://vmpsoft.com.

C. Wang, J. Davidson, J. Hill, and J. Knight. 2001. Protection of software-based sur-
vivability mechanisms. In Proceedings of International Conference on Dependable
Systems and Networks (DSN01).

Huaijun Wang, Dingyi Fang, Guanghui Li, Na An, Xiaojiang Chen, and Yuanxi-
ang Gu. 2014. TDVMP: Improved Virtual Machine-Based Software Protection
with Time Diversity. In Proceedings of the 3rd Program Protection and Reverse
Engineering Workshop.

Huaijun Wang, Dingyi Fang, Guanghui Li, Xiaoyan Yin, Bo Zhang, and Yuanxiang
Gu. 2013. NISLVMP: Improved Virtual Machine-Based Software Protection. In
Proceedings of the 9th International Conference on Computational Intelligence and
Security.

Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang, and Dinghao Wu. 2016. Translin-
gual Obfuscation. In Proceedings of the 1st IEEE European Symposium on Security
and Privacy (Euro S&P’16).

Zhenxiang Jim Wang. 2010. Virtual Machine Protection Technology and AV
industry. CARO Workshop.

Josh Watson. 2017. An extra bit of analysis for LEMENCy. Trail of Bits Blog.
Haijiang Xie, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2017. Nightingale:
Translating Embedded VM Code in x86 Binary Executables. In Proceedings of the
20th Information Security Conference(ISC’17).

Dongpeng Xu, Jiang Ming, and Dinghao Wu. 2017. Cryptographic Function
Detection in Obfuscated Binaries via Bit-precise Symbolic Loop Mapping. In
Proceedings of the 38th IEEE Symposium on Security and Privacy (S&P’17).
Babak Yadegari and Saumya Debray. 2015. Symbolic Execution of Obfuscated
Code. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security (CCS’15).

Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya Debray. 2015. A
generic approach to automatic deobfuscation of executable code. In Proceedings
of the 36th IEEE Symposium on Security and Privacy (S&P’15).

Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin. 2012. V2E:
Combining Hardware Virtualization and Software Emulation for Transparent
and Extensible Malware Analysis. In Proceedings of the 8th ACM SIGPLAN/SIGOPS
Conference on Virtual Execution Environments (VEE’12).

Qinghua Zhang and Douglas S. Reeves. 2007. MetaAware: Identifying Metamor-
phic Malware. In Proceedings of the 23rd Annual Computer Security Applications
Conference (ACSAC’07).

Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson. 2007. Information
Hiding in Software with Mixed Boolean-Arithmetic Transforms. In Proceedings
of the 8th International Workshop on Information Security Applications (WISA'07).

Appendix A

A common virtualization procedure is shown as follows.

a) In the source code of the program that will be virtualized, insert
marks around the sensitive area. In C/C++ code, typically the mark
is implemented as macros. Figure 8 shows such an example.

b) Compile the source code using a normal compiler like GCC or MS
VC++. The code is linked to a library provided by the virtualization
tool. The result is an executable file. In this step, the sensitive area
in the executable file is not obfuscated. It is only marked.

¢) Run the virtualization tool to process the executable file. The
virtualization tool will translate the marked area to the virtualized
code and append the virtual machine in the binary code.

1 e

2 | #include "VirtualizerSDK.h"

3

4 int f(int a)

5 14

6 int b = 1;

7

8 VIRTUALIZER START // The macro marks the

9 // starting point of the

10 // virtualized area

11 a++;

12

13 VIRTUALIZER_END // The macro marks the ending
14 // point of the virtualized
15 // the area

16

17 return a + b;

18 |}

Figure 8: An example showing the virtualization marks in
the source code to be virtualized. The macros mark the start-
ing and ending point of the sensitive area which will be vir-
tualized.

A.0.1 Sensitive Area. According to the manual book of the vir-
tualization tools, users should prevent the following cases when
applying virtualization to a program.

e Users should avoid virtualizing a loop that repeats many
times to avoid too much performance loss.

e Switch/Case statements and exception handling inside a
sensitive area might not work properly after virtualization.
Therefore, those program structures are not recommended
to be virtualized.

In practice, due to the performance overhead and the compatibil-
ity problems, virtualization can only be applied to limited program
structures and areas. The recommended way of applying virtual-
ization is only protect the sensitive area in your program.

One typical situation of the sensitive area is the checking pro-
cedure in a trial/registration scheme of an application. The same

application can run in two modes, the trial mode or the registered
mode. The registered mode provides full features whereas the trial
mode only provide limited features. Figure 9 shows an example
of the registration checking function and the recommended way
of protecting them by virtualization. The function f runs differ-
ent branches based on the value of the global variable reg_mode.
Therefore, all snippets that reads or write reg_mode should be
considered as sensitive areas and should be virtualized.

Basically, the trial/registration scheme needs a checking mecha-
nism to decide in which mode the application should run. For ex-
ample, the checking mechanism can be implemented as a function
to verify whether a serial number is eligible. Figure 9 shows an ex-
ample of the registration checking function and the recommended
way of protecting them by virtualization. The global boolean vari-
able at the first line stores the mode of the application. true
means the program is running under the registered mode and
false means the trial mode. At line 8 in the main function, the
application check whether it is registered by calling the function
checkRegistration(). The function will return true if the se-
rial number is eligible or false if not. The function f includes two
branches for the registered mode and trial mode, respectively. It
checks the global variable reg_mode and then select one branch to
execute. In this example, the global variable reg_mode is sensitive
because the trial/registration scheme can be work around if we
can modify its value. Therefore, any snippet that reads or write it
should be considered as sensitive area and should be virtualized.

bool reg_mode;

int main ()

{

VIRTUALIZER_START
reg_mode = checkRegistration(); // sensitive area 1
9 VIRTUALIZER_END

12 |}

13

14 void f()

15 | {

16 VIRTUALIZER_START

17 if (reg_mode) { // sensitive area 2
18 // code for registered verion
19 } else {

20 // code for trial version

21 }

22 VIRTUALIZER_END

23 }

Figure 9: An example showing a registration checking func-
tion and the sensitive area being virtualized.

(a) Virtualized snippet. (b) Kernel.

Figure 10: The CFG recovered from the virtualized snippet and kernel.

