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Abstract

We study how well can q-query decision trees distinguish between the following
two distributions: (i) R = (R1, . . . , RN ) that are i.i.d. indicator random variables, (ii)
X = (R|R ∈ A) where A is an event s.t. Pr[R ∈ A] ≥ 2−a. We prove two lemmas:

Forbidden-set lemma: There exists B ⊆ [N ] of size poly(a, q, 1
η ) such that q-query trees

that do not query variables in B cannot distinguish X from R with advantage η.

Fixed-set lemma: There exists B ⊆ [N ] of size poly(a, q, 1
η ) and v ∈ {0, 1}B such that

q-query trees do not distinguish (X|XB = v) from (R|RB = v) with advantage η.

The first can be seen as an extension of past work by Edmonds, Impagliazzo, Rudich
and Sgall (Computational Complexity 2001), Raz (SICOMP 1998), and Shaltiel and
Viola (SICOMP 2010) to adaptive decision trees. It is independent of recent work by
Meir and Wigderson (ECCC 2017) bounding the number of i ∈ [N ] for which there
exists a q-query tree that predicts Xi from the other bits.

We use the second, fixed-set lemma to prove lower bounds on black-box proofs for
hardness amplification that amplify hardness from δ to 1

2 − ε. Specifically:

• Reductions must make q = Ω(log(1/δ)/ε2) queries, implying a “size loss factor”
of q. We also prove the lower bound q = Ω(log(1/δ)/ε) for “error-less” hardness
amplification proofs, and for direct-product lemmas. These bounds are tight.

• Reductions can be used to compute Majority on Ω(1/ε) bits, implying that black
box proofs cannot amplify hardness of functions that are hard against constant
depth circuits (unless they are allowed to use Majority gates).

Both items extend to pseudorandom-generator constructions.
These results prove 15-year-old conjectures by Viola, and improve on three incom-

parable previous works (Shaltiel and Viola, SICOMP 2010; Gutfreund and Rothblum,
RANDOM 2008; Artemenko and Shaltiel, Computational Complexity 2014).
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1 Introduction

In this paper we develop tools to bound the ability of adaptive procedures that make few
queries to distinguish between an i.i.d. distribution on which the procedure “receives small
advice” and the original i.i.d. distribution. We then use these tools to prove tight lower
bounds on hardness amplification proofs.

1.1 Adaptive procedures that receive small advice

Let R = (R1, . . . , RN) be a collection of i.i.d. indicator random variables. Suppose that “a
bits of advice” are given about R. That is, let A ⊆ {0, 1}N be an event with Pr[R ∈ A] ≥ 2−a,
and let X = (R|R ∈ A). We can think of X as “the way that R appears to an adversary
that received a bits of information on R”. We are interested in the following question:

How well can a decision tree making q queries distinguish between X and R?

For simplicity, let us focus on the case where each bit Ri is uniformly distributed. (In
some sense, made precise later, this is w.l.o.g.). It is instructive to consider the following
two examples:

Bad bits: Consider A = {r : r1 = 0}, then Pr[R ∈ A] = 2−a for a = 1, and R1 is a random
coin, whereas X1 is the constant zero. In other words, R1 and X1 are far in statisti-
cal distance. Consequently, there exists a 1-query decision tree that distinguishes R
from X with large advantage. (By advantage, we refer to the difference between the
probabilities that the decision tree accepts in the two experiments).

Pointer chasing: Let N = `+ 2`, and for r ∈ {0, 1}N , we write r = (r1, r2) where |r1| = `
and |r2| = 2`. We can interpret r1 ∈ {0, 1}` as a number r1 ∈ [2`] and consider
A =

{
r : r2

r1 = 0
}

. Namely, that the bit that r1 “points to” in r2 is fixed to zero. Once
again, Pr[R ∈ A] = 2−a for a = 1. Note that an (` + 1)-query decision tree P , that
queries the bits of r1 and “follows the pointer” to decide which query to ask in r2,
distinguishes R from X with large advantage.

The two examples point out a distinction between two types of “local procedures”: Adap-
tive procedures are general decision trees, that can decide on their next query based on the
answers to past queries. We say that a q-query decision tree P is nonadaptive, if there
exists a set Q ⊆ [N ] of size q, and a function fP such that P (x) = fP (xQ) (namely, if all
“computation paths” of P query the variables in S in some order).

It is interesting to note that a q-query nonadaptive decision tree cannot substantially
distinguish R from X in the case of “pointer chasing” even if q approaches 2`, whereas an
adaptive (`+ 1)-query decision tree can.
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1.1.1 Settings in which X and R are indistinguishable by shallow decision trees

We would like to identify settings in which we can argue that adaptive/nonadaptive q-query
decision trees cannot substantially distinguish X from R. Given the two examples above,
we need additional constraints. We discuss two settings, the second of which is introduced
in this paper.

Forbidden sets: Here one forbids decision trees from querying variables in a certain small
“forbidden set” B ⊆ [N ]. One shows that decision trees that do not make queries in
B cannot substantially distinguish R from X = (R|R ∈ A).

Loosely speaking, this means that except for a few “damaged variables” one can assume
that X is composed of i.i.d. variables (at least from the point of view of a shallow
decision tree).

Fixed sets: Here one fixes the variables in a certain small “fixed set” B ⊆ [N ] to some
value v, and considers the conditional distributions R′ = (R|RB = v) and X ′ =
(X|XB = v) = (R|RB = v,R ∈ A). One shows that no decision tree can substantially
distinguish X ′ from R′, even if the tree queries variables in B.

Loosely speaking, this means that we can “get rid” of correlations between bits of X
(at least from the point of view of a shallow decision tree) if we are willing to fix few
“damaged variables”.

In both cases, given integer parameters N, q, a, and an event A such that Pr[R ∈ A] ≥ 2−a,
we will want that B is of size b = poly(a, q, 1

η
) where η > 0 is measuring the required

statistical distance. (It can be easily observed by extending the “bad bits example” that we
cannot expect b = o(a·q

η
)).

1.1.2 Past work on nonadaptive procedures

A well-known lemma states that if we have N i.i.d. random variables and we condition on
an event that has not too small probability, then most variables are still close to uniform.

Lemma 1.1. Let N, a be integers. Let R = (R1, . . . , RN) be i.i.d. indicator random variables,
let A ⊆ {0, 1}N be an event such that Pr[R ∈ A] ≥ 2−a, and let X = (R|R ∈ A). For every
η > 0, there exists a set B ⊆ [N ] of size O(a/η2), such that for every i ∈ [N ] \ B, Ri and
Xi are η-close.1

Lemma 1.1 has found many applications in a wide variety of contexts, see for example
the 12 references in [MW17]. In our terminology, Lemma 1.1 is a forbidden set lemma for
q = 1. An extension of Lemma 1.1 to q > 1 was given by Shaltiel and Viola [SV10], and is
stated next.

1Here, distance is statistical distance, namely, two distributions are η-close if the probabilities they assign
to every event differ by at most η.
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Lemma 1.2 ([SV10]). Let N, a, q be integers. Let R = (R1, . . . , RN) be i.i.d. indicator
random variables, let A ⊆ {0, 1}N be an event such that Pr[R ∈ A] ≥ 2−a, and let X =
(R|R ∈ A). For every η > 0, there exists a set B ⊆ [N ] of size O(a · q/η2), such that for
every Q ⊆ [N ] \B of size q, RQ and XQ are η-close.

Lemma 1.2 and so in particular Lemma 1.1 can already be obtained from the techniques
in the 1991 paper [EIRS01]. A proof will also be given later in this paper. In our terminology,
Lemma 1.2 is a forbidden set lemma for nonadaptive q-query decision trees. Namely, it says
that for every nonadaptive q-query decision tree P that does not make queries in B, P does
not distinguish X and R with advantage η.

The extension of Lemma 1.1 to larger q given by Lemma 1.2 has also found several
applications. The application in [SV10] concerns the complexity of hardness amplification
proofs. This application is also a main motivation for this work and is discussed in detail
below in Section 1.2. Lemma 1.2 has also found application in data-structure lower bounds,
see [Vio12, Vio09a].

A significant shortcoming of Lemma 1.2 is that it only applies to non-adaptive decision
trees. As a consequence, several applications of this result are also proved only in the
non-adaptive setting. For example, the bounds in [SV10] on the complexity of hardness
amplification proofs only apply to non-adaptive procedures. Although some of the available
hardness amplification proofs are indeed non-adaptive, others are not. This point is discussed
further in Section 1.2.2.

In the area of data structures, some of the lower bounds obtained using Lemma 1.2
were later generalized to the adaptive setting [Vio12, PV10]. However, in some cases this
generalization is not yet available. For example, [Vio09a] proves a non-adaptive lower bound
for the matching brackets problem, and this is not known in the adaptive setting.

Therefore, it will be desirable to extend Lemma 1.2 to handle general, adaptive decision
trees. In this paper we obtain such an extension. In fact, we shall prove two extensions.
The first is closest to the setting of Lemma 1.2 and gives a “forbidden set”. However when
applying this version, several technical difficulties arise because of adaptive procedures that
may query the forbidden set in complicated ways. So we prove a “fixed-set” extension, where
these difficulties disappear. We then discuss our main application to hardness amplification
proofs. We believe that the results in this paper will also be useful in the study of data
structures.

1.1.3 A forbidden set lemma for adaptive decision trees

In this paper we prove a forbidden set lemma for adaptive decision trees.

Lemma 1.3 (Forbidden set lemma for adaptive decision trees). Let N, a, q be integers. Let
R = (R1, . . . , RN) be i.i.d. indicator random variables, let A ⊆ {0, 1}N be an event such that
Pr[R ∈ A] ≥ 2−a, and let X = (R|R ∈ A). For every η > 0, there exists a set B ⊆ [N ] of

size O(a·q
3

η3 ) = poly(a, q, 1
η
), such that for every q-query decision tree P that does not make

queries in B, P (R) and P (X) are η-close.
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Later in this paper we also prove an extension of this lemma where the tree may query
variables in B with small probability, see Corollary 3.4.

It is illustrative to note that in the case of the “pointer chasing” example, the forbidden
set lemma must put (many of) the “pointer bits” in B (as otherwise an adaptive decision
tree can distinguish by querying the “pointer bits”).

Lemma 1.3 is independent of recent work by Meir and Wigderson, see Corollary 1.5 in
[MW17], and the follow-up work [ST17]. They prove a result similar to Lemma 1.3 but for
unpredictability rather than indistinguishability. Specifically, they show that every variable
Xi except those in a set BMW of O(aq/ε3) variables has the following property: no adaptive
decision tree making q queries to other variables can predict Xi with advantage more than
ε over random guessing. We elaborate more on the difference between the works in Remark
3.10.

1.1.4 A fixed set lemma for adaptive decision trees

Forbidden set lemmas have the drawback that they guarantee nothing in case the decision
tree does make queries in B. This is unavoidable, as can be seen by the “bad bits” and
“pointer chasing” examples. In this paper we propose the idea of fixed set lemmas where
X is further conditioned to the distribution X ′ by fixing the variables in some set B. A
corresponding conditioning is applied to R to obtain R′, whose bits are independent, |B| of
them are fixed, and the rest are unaltered. Then, even decision trees that make queries in B
cannot distinguish R′ and X ′. We prove the following fixed set lemma for adaptive decision
trees.

Lemma 1.4 (Fixed set lemma for adaptive decision trees). Let N, a, q be integers. Let
R = (R1, . . . , RN) be i.i.d. indicator random variables, let A ⊆ {0, 1}N be an event such
that Pr[R ∈ A] ≥ 2−a, and let X = (R|R ∈ A). For every η > 0, there exists a set
B ⊆ [N ] of size ≤ O(a · q/η2), and v ∈ {0, 1}B, such that for R′ = (R|RB = v) and
X ′ = (X|XB = v) = (R|RB = v,R ∈ A), and every q-query decision tree P , P (R′) and
P (X ′) are η-close.

In section 3.4 we explain how to reduce the size bound on B in Lemma 1.4 from O(a·q/η2)
to O(a · q/η).

This loosely means that if the application allows us to fix few bits of X, then we need
not worry about trees that make queries in B.

We note that one can’t derive a fixed set lemma from a forbidden set lemma by fixing
the bits in B. For example, consider the “pointer chasing” example. A forbidden set lemma
may choose B to be the “pointer bits” (namely B = {1, 2, . . . , `}). However, if these bits get
fixed, then the bit they point to is also fixed and not in B, and thus a 1-query decision tree
can distinguish. By using pointer chasing with several layers, this example can be extended
to show that even after many applications of a nonadaptive lemma, and fixing the bad bits,
one does not obtain a fixed set lemma.
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Remark 1.5. Stefano Tessaro pointed out the similarity between Lemma 1.4 and results in
cryptography related to random oracles with auxiliary input: Theorem 2 in [Unr07] (cf. The-
orem 1 in [DGK17]) and Lemma 1 in [CDGS18]. These results seem incomparable to Lemma
1.4. Lemma 1 in [CDGS18] roughly proves that the distribution X in Lemma 1.4 is indistin-
guishable by shallow decision trees from a convex combination of distributions of the form
R|RB = v. Instead, in Lemma 1.4 we show that the distribution X|XB = v is indistinguish-
able from the single distribution R|RB = v. Another difference is that actually Lemma 1 in
[CDGS18] is not stated for X but rather for an “average conditioning” of R, modeled as an
adversary who is given f(R), for a function f with bounded output length, and can make few
queries to R.

1.2 Hardness amplification

Hardness amplification is a technique to transform “hard functions” into “harder functions”.
It is closely related to error-correcting codes and plays a fundamental role in complexity
theory, derandomization, and cryptography. We give a brief survey of the aspects that are
most relevant to this work. For additional background we refer the reader to Chapter 17
“Hardness Amplification and Error Correcting Codes” in the textbook [AB09], and to the
discussion in [SV10].

Hardness amplification results in the complexity theoretic literature have the following
black-box form: Given a function f , there is a “construction map” that produces a function
Conf . The proof provides a “reduction” Red, that converts an “adversary” D that “breaks”
the (strong hardness) of Conf , into an “adversary” C that “breaks” the (weaker hardness)
of the original function. A precise definition follows:

Definition 1.6 (Black-box hardness amplification). 2 We say that two functions h1, h2 on
the same finite domain W , p-agree if PrX←W [h1(X) = h2(X)] ≥ p.

A δ → (1
2
− ε) black-box hardness amplification with input lengths k and n, and list size

2a is a pair (Con,Red) such that:

• A construction Con is a map from functions f : {0, 1}k → {0, 1} to functions Conf :
{0, 1}n → {0, 1}.

• A reduction Red is an oracle circuit Red(·)(x, α) that accepts two inputs: x ∈ {0, 1}k
and α ∈ {0, 1}a (we call α a “nonuniform advice string”). Red also receives oracle
access to a function D : {0, 1}n → {0, 1}.

We require that for all functions f : {0, 1}k → {0, 1} and D : {0, 1}n → {0, 1} such that D
(1

2
+ ε)-agrees with Conf , there exists α ∈ {0, 1}a such that RedD(., α) (1− δ)-agrees with f .

2In several papers, including [SV10], instead of a single reduction Red that receives an a bit long advice
string α, they define a set of reduction circuits of size 2a. The two definitions are equivalent. We also remark
that we allow the map Con to be arbitrary (with no complexity restrictions) whereas some previous work
placed a bound on its complexity. This only makes our results stronger.

5



Note that for if δ < 2−k then it follows that RedD(., α) 1-agrees with f , which means
RedD(., α) = f .

A reduction (or proof) is nonadaptive if the queries Red makes to the oracle are non-
adaptive.

The following specific “construction maps” are extensively studied in the literature:

Yao’s XOR Lemma: Let n = t · k for a parameter t and Conf (x1, . . . , xt) = f(x1)⊕ . . .⊕
f(xt). This is the “mother” of all hardness amplifications, dating back to oral presen-
tations by Yao in the 80’s, cf. [GNW95]. To give an example setting of parameters,
one can start with δ constant and then the hardness parameter ε decays exponentially
with t.

Direct product Lemma: Let n = t · k and Conf (x1, . . . , xt) = (f(x1) ◦ . . . ◦ f(xt)). Such
results are called “Concatenation Lemma” or “Direct product lemma”. Note that here,
Conf is nonboolean and outputs t bits, and consequently 1

2
+ ε should be replaced with

2−t + ε.

Local list-decodable codes: Let K = 2k, N = 2n and Conf (y) = Enc(f)y where Enc :
{0, 1}K → {0, 1}N is an encoding map for a binary error-correcting code, and we view
the function f : {0, 1}k → {0, 1} as a K-bit string that is the truth table of f . In
fact, for δ = 0, it is necessary that Enc is a “locally decodable, list-decodable code”,
and Red is a “local list decoding algorithm”. The connection between such codes
and hardness amplification is established in [STV01], where it is also said that is was
observed independently by other researchers (see [STV01]).

We note that black-box hardness amplification indeed lets us amplify hardness. In short,
this is because if there exists a small circuit D that (1

2
+ε)-agrees with Conf then the reduction

gives a procedure of the form RedD(., α) which (1 − δ)-agrees with f . Now, if RedD(., α) is
also a small circuit then this gives a larger circuit C(.) = RedD(., α) that (1− δ)-agrees with
f . If the latter is impossible, because we started with a function f that is sufficiently hard,
we have reached a contradiction, which means that D does not exist.

It is evident from this argument that to obtain hardness against a circuit class D one
needs to start from hardness against the larger circuit class RedD. The complexity of this
class depends on the complexity of Red and on the number of queries that Red is allowed to
make. Thus a natural question, and a main focus of this paper, is what is the complexity of
Red, and how many queries are required.

Red requires TC0. Fifteen years ago Viola [Vio04, Vio06] made several conjectures regard-
ing the complexity of hardness amplification. Informally, he conjectured that the smallest
circuit class that can prove hardness amplification with ε = 1/n is the class TC0 of constant-
depth circuits with majority gates. This is problematic because (1) lower bounds against
TC0 are a long-standing open problem in circuit complexity, (2) the “Natural Proofs” bar-
rier [RR97, NR04, MV15] indicates that achieving such bounds will be very difficult, and (3)
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average-case hardness with ε = 1/n is required for several important applications such as
the construction of pseudorandom generators a la Nisan [Nis91], and deriving further lower
bounds via the so-called “discriminator lemma” [HMP+93].

This is especially frustrating because for several important circuit classes, such as constant-
depth circuits with mod p gates for prime p, or constant-depth circuits with a limited number
of Majority gates, explicit hard functions are known, and in fact even functions with hard-
ness 1/2 − o(1). However, we can’t use hardness amplification to amplify the hardness to
the point where we could use it to construct pseudorandom generators or infer additional
lower bounds. For classes such as constant-depth circuits with parity gates the best known
pseudorandom generators have very poor seed length of the form m(1−o(1)) where m is the
output length [FSUV13].

More specifically, [Vio06] conjectures that every circuit class that can prove hardness
amplification to hardness 1/2−1/ε can compute majority on Ω(1/ε) bits, and must use Ω(1/ε)
queries. A more precise conjecture on the number of queries is Ω(log(1/δ)/ε2). Special cases
of these conjectures are proved in [Vio06] and in subsequent works [LTW11, SV10, GR08,
AS14], the last three of which are incomparable as they restrict the hardness amplification
in different ways. Previous work is discussed in more detail in Section 1.2.2 below.

In this paper we prove the conjectures, thus in particular improving on three incomparable
works [SV10, GR08, AS14].

1.2.1 Our results on hardness amplification proofs

First, we prove a tight query lower bound. Showing that reductions in black-box hardness
amplification must make at least q queries translates to saying that when transforming a
function f that is hard against circuits of size s to a function Conf that is harder against
circuits of size s′, then s′ ≤ s/q. This means that a “size loss” is unavoidable in black-box
hardness amplification.

Theorem 1.7 (Lower bound on the number of queries). There exist constants δ0, ν > 0 such
that: Let (Con,Red) be a δ → (1

2
− ε) black-box hardness amplification with input lengths k

and n, and list size 2a. Assume that:

• Red(·) is a size r oracle circuit, that makes at most q queries.

• n, a, 1
ε
≤ r ≤ 2ν·k and 2−2k ≤ δ ≤ δ0.

Then q = Ω(log(1/δ)/ε2).

The parameters achieved by Theorem 1.7 are tight up to constants, matching the pa-
rameters obtained by Klivans and Servedio [KS03] for the XOR lemma, using Impagliazzo’s
hard-core lemma [Imp95]. Note that the special case of δ = 2−2k (which is the same as
δ = 0) captures worst-case to average-case hardness amplification, and then the lower bound
is q = Ω(k/ε2).
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Remark 1.8 (A strengthening of Theorem 1.7). The assumption that Red(·) is a size r oracle
circuit is not necessary in Theorem 1.7, and can be omitted. We explain how to omit it after
proving the theorem in Section 5.1 (see Remark 5.2). Making this additional assumption
simplifies the notation in the proof, and note that reductions of exponential size are not
useful for proving hardness amplification theorems, and so the additional condition doesn’t
matter.

We then prove that hardness amplification proofs require majority.

Theorem 1.9 (Hardness amplification proofs require majority). There exist constants δ0, ν >
0 such that: Let (Con,Red) be a δ → (1

2
− ε) black-box hardness amplification with input

lengths k and n, and list size 2a. Assume that:

• Red(·) is a size r oracle circuit of depth d = O(log(1/ε)) (over a set of gates that
includes the standard boolean gates with unbounded fan-in)

• n, a, 1
ε
≤ r ≤ 2ν·k and δ ≤ δ0.

Then there exists a circuit C of size poly(r), and depth O(d) that uses the gates allowed to
Red, and computes the majority function on inputs of length Ω(1/ε).

In particular, if ε = 1/n and Red(., α) are constant-depth circuits with And, Or, and

Parity gates of unbounded fan-in, and Not gates, then its size must be 2n
Ω(1)

by the known
lower bounds [Raz87].

Theorem 1.9 is tight in the sense that Klivans [Kli01] observed that there are reductions
that can be implemented by a constant-depth circuit with only one Majority gate. For an
exposition of a simplification of Klivans’ argument, due to Klivans and Vadhan, see Lectures
6 and 7 in [Vio09b].

Lower bounds on local decoding algorithms for list-decodable codes. The afore-
mentioned results of [STV01] show that a 0 → (1

2
− ε) black-box hardness amplification

(Con,Red) with list-size 2a yields (1
2
− ε, 2a)-list decodable code, with an encoding map

Enc : {0, 1}2k → {0, 1}2n , given by Enc(f) = Conf (here functions are identified with their
truth tables) and Red is a “local list-decoding algorithm”.3 In this terminology, our results
give lower bounds on the complexity, and on the number of queries of local list decoding
algorithms for list decodable codes.

Limitations on direct-product lemmas and decoding from erasures. Another ex-
tensively studied construction map is the nonboolean map Conf (x1, . . . , xt) = (f(x1), . . . , f(xt)),
and proofs for this map are known as concatenation lemmas or direct product lemmas. Our
techniques also apply in this setting, and give the lower bound of q = Ω(log(1/δ)/ε) in this
case. This is tight [IJKW10]. We also consider hardness amplification in the “error-less”

3A function Enc : {0, 1}K → {0, 1}N is (ρ, `)-list decodable if for every y ∈ {0, 1}N , there are at most `
elements x ∈ {0, 1}K such that Enc(x) ρ-agrees with y.
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setting, a study initiated by Bogdanov and Safra [BS07]. We prove a query lower bound of
q = Ω(log(1/δ)/ε), which matches a construction by Watson [Wat15]. These results follow by
proving lower bounds on the more general setup of “basic hardness amplification” considered
by Artemenko and Shaltiel [AS14] and Watson [Wat15]. It should be noted that these proofs
can be implemented by constant-depth circuits, and so computing majority is not required.
This was observed in [Vio06] for the direct product lemma, and can be verified by inspection
for example of [Wat15] for error-less hardness amplification, see [AS14] for discussion.

Limitations on black-box PRG constructions. Our techniques also apply to “hardness
versus randomness”, that is to constructing pseudorandom generators from hard functions.
Loosely speaking, we show the same lower bounds for constructing pseudorandom generators
with error ε as for amplifying hardness to 1/2− ε.

1.2.2 More on related work, and why previous negative results do not capture
all available techniques

As mentioned earlier, previous works proved special cases of the conjectures by restricting
the hardness amplification in various ways. One way to restrict was requiring that the proof
Red is non-adaptive, that is, only makes non-adaptive query to the oracle. The restriction
to non-adaptive reductions is severe because there exist hardness amplification proofs that
do exploit adaptivity, such as [SU05, Uma03, GGH+07, GR08]. We note that the proofs
of [SU05, Uma03] use adaptive reductions for a slightly different task: converting hard
functions to pseudorandom generators. As mentioned earlier, our lower bounds also apply
to pseudorandom-generator constructions.

Another way to restrict was to limit the length of the advice string a, that is, considering
reductions Red that are uniform. Some reductions for hardness amplification in the literature
use as little as a = O(log(1/ε)) bits of nonunifomity [IJKW10], but most reductions use
a = poly(1/ε) (or more) bits of nonuniformity.

Viola [Vio06] proves that majority is necessary for hardness amplification proofs based
on the Hadamard code, or on the Reed-Muller code concatenated with Hadamard. This
result applies to adaptive proofs, however only if the list size a is small (a = O(log(1/ε))).
Viola [Vio06] also proves the query lower bound q ≥ Ω(min{1/ε, k/ log k}). This result can
handle large a, even a = 2Ω(k), but only applied to non-adaptive reductions. These results
were subsumed by the next three works.

Shaltiel and Viola [SV10] proved limitations on non-adaptive reductions. Their results
are identical to Theorem 1.7 and Theorem 1.9, except that it only handles nonadaptive
reductions. Our results extend theirs by allowing for adaptive reductions.

Gutfreund and Rothblum [GR08] extend the above result about Reed-Muller code con-
catenated with Hadamard to any code. That is, they can handle any hardness amplification
but they require a to be small. Our results extend theirs by allowing large a.

Artemenko and Shaltiel [AS14] proved a lower bound of q = Ω(1/ε) for the number of
queries (allowing both adaptivity and large advice). Their approach is to consider a hardness
amplification variant that corresponds to codes that are locally list-decodable from erasures.
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They called this setup “basic hardness amplification.” Our results extend their work and
give a (tight) lower bound of q = Ω(log(1/δ)/ε) in that setup.

Watson [Wat15] considered an intermediate setup of “errorless amplification” and ob-
tained a tight lower bound of q = Ω(log(1/δ)/ε) on nonadaptive reductions (by reducing to
the lower bound of [SV10]). Our results extend this lower bound to adaptive reductions.

Applebaum, Artemenko, Shaltiel and Yang [AASY15] considered a more powerful class
of reductions that are allowed to be nondeterministic oracle circuits. They prove limitations
on such reductions for the case that ε� 1/r. These results are incomparable to ours.

2 Techniques

In this section we aim to give an informal overview of our arguments, trying to sum up the
main ideas. The technical section of this paper includes full proofs, and does not build on
this informal overview.

2.1 The forbidden and fixed set lemma

Our proofs of the new forbidden set lemma and fixed set lemma use basic information theory
(as is the case for the proofs of Lemma 1.1 and Lemma 1.2). For simplicity let us focus on
the case where R1, . . . , RN are i.i.d. and uniformly distributed. (In Section 3 we observe
that it is indeed sufficient to study the case of the uniform distribution to obtain results on
arbitrary i.i.d. variables).

The setting for Lemmas 1.1, 1.2, 1.3 and 1.4 is the following: Let X = (R|R ∈ A) for A
such that Pr[R ∈ A] ≥ 2−a. We aim to show that X and R cannot be distinguished from
uniform by shallow decision trees. It is immediate that H(X) ≥ N − a, where H is the
Shannon entropy function. All previous works in this area eventually connect entropy and
statistical distance using Pinsker’s inequality, which guarantees that a distribution Y over n
bits is η-close to uniform if H(Y ) ≥ n− η2.

2.1.1 Previous proofs for the nonadaptive case

It is instructive to first explain the argument used in Lemma 1.1 and Lemma 1.2, and point
out where this approach fails for adaptive decision trees. The proof of Raz [Raz98] for
Lemma 1.1 works by first using the chain rule for entropy:

N − a ≤ H(X) =
∑
i∈[N ]

H(Xi|X1, . . . , Xi−1).

Then, choose α = η2, and let B be the set of indices i such that H(Xi|X1, . . . , Xi−1) < 1−α.
By a Markov argument, there are at most a/α = a/η2 such “weak” i. For every i ∈ [N ] \B,

H(Xi) ≥ H(Xi|X1, . . . , Xi−1) ≥ 1− α = 1− η2,

which by Pinsker’s inequality gives that Xi is η-close to uniform.
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An extension of this argument was used in [SV10], where they choose α = η2/q and for
i1, . . . , iq 6∈ B,

H(Xi1 , . . . , Xiq) =
∑
j∈[q]

H(Xij |Xi1 , . . . , Xij−1
) ≥

∑
j∈[q]

H(Xij |X1, X2, . . . , Xij−1) ≥ q·(1−α) = q−η2,

which by Pinsker’s inequality gives that (Xi1 , . . . , Xiq) is η-close to uniform.
It is instructive to consider that in the pointer chasing example, this argument produces

B = ∅ and does not identify the indices of the pointer. Loosely speaking, this means that
the criteria used by the proofs above for finding “bad indices” and placing them in B isn’t
suited for adaptive decision trees.

2.1.2 The forbidden set lemma

We explain the argument for Lemma 1.3. We need to come up with a criteria for selecting
indices that does identify the “pointer bits” in the pointer chasing example. We use the
following idea (inspired by a similar argument from [EIRS01]). We say that an i ∈ [N ] is α-
weak if H(Xi|X[N ]\{i}) < 1−α. A key observation is that this criteria (which is less stringent
than the one used above) does identify the bits of the pointer in the pointer chasing example.
Moreover, we can bound the number of α-weak bits, by the following iterative process: while
there is an α-weak bit i′, remove it, place it in B and continue. In an iteration of this process,
by the chain rule:

H(X[N ]\{i′}) = H(X)−H(Xi′ |X[N ]\{i′}) ≥ N − a− (1− α) = (N − 1)− (a− α),

and so in each iteration the gap between the bit-length of X and its entropy decreases by
α. The initial gap is a, and so, we can have at most a/α iterations, as entropy is bounded
above by bit-length. We will choose α = poly(η/q), so that after the last iteration we have
a “forbidden set” B of size b ≤ a/α = poly(a, q, 1/η).

To conclude we need to show that if an adaptive q-query decision tree P that does
not make queries in B distinguishes X from R with advantage η, then there exists some
i′ ∈ [N ] \ B that is not α-weak (which gives a contradiction). Essentially, we use the
“distinguisher to predictor hybrid argument” [GM84, BM84, Yao82] to obtain an index i′

such that the bit Xi′ can be predicted from X[N ]\{i′} with large advantage over random
guessing, showing that i′ is α-weak.

2.1.3 The fixed set lemma

We explain the argument for Lemma 1.4. The proof will follow the same overall approach
of the forbidden set lemma. However, this time, we will show that if a q-query decision tree
distinguishes X from uniform, then we can fix a few bits of X, and reduce the gap between
its bit-length and its entropy.

More precisely, we will show that if there exists a decision tree P that distinguishes X
from R with advantage η, then for α = η2, there exist i1, . . . , iq ∈ [N ], and v1, . . . , vq ∈ {0, 1}
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such that:
H(X|Xi1 = v1, . . . , Xiq = vq) ≥ (N − q)− (a− α). (1)

For this purpose, let I = (I1, . . . , Iq) be the indices of the variables queried by P on input
X. Note I is a random variable that is a function of X. By the chain rule we have that:

H(X) = H(X,XI1 , . . . , XIq) = H(XI1 , . . . , XIq) +H(X|XI1 , . . . , XIq)

This gives that:

H(X|XI1 , . . . , XIq) = H(X)−H(XI1 , . . . , XIq) ≥ N − a− (q − α) = (N − q)− (a− α),

where the inequality follows by Pinsker’s because the answers (XI1 , . . . , XIq) are not η-close
to uniform. Equation (1) now follows by an averaging argument that fixes XI and hence I.

Equation (1) gives that we are able to fix q variables, and decrease the gap between the
bit-length of X and its entropy by α. Once again, this gap is initially less than a, and so, this
can happen at most a/α times. Consequently, by iteratively applying this process, we end
up with a distribution where we fixed at most q · a/α = poly(a, q, 1/η) bits to some specific
values. The final distribution has that the bits that we did not fix cannot be distinguished
from uniform by a q-query decision tree. The precise argument appears in Section 3. In
that section we also include and discuss a slightly different argument suggested to us by an
anonymous referee. It only easily applies to distributions uniform on their support, which
are sufficient for our application, but it avoids entropy and Pinsker’s inequality, and gives a
better dependence on η.

2.2 Lower bounds on hardness amplification

Past work of Viola [Vio06] and Shaltiel and Viola [SV10] provides a framework that can
be used in conjunction with lemmas of the type discussed in the previous section to obtain
lower bounds on black-box hardness amplification. Theorem 1.7 (on the number of queries)
directly follows by extending the approach of [SV10] using Lemma 1.4 (instead of Lemma
1.2). Proving Theorem 1.9 (on “hardness amplification implies majority”) raises additional
difficulties that do not come up in the nonadaptive case. We start by a high-level explanation
of the approach of [SV10].

2.2.1 The Zoom lemma

Let NoiseNp denote the distribution of N i.i.d. indicator random variables, where each is one
with probability p. The approach of [SV10] is to show a “Zoom lemma” saying that: under
certain conditions, a black-box hardness amplification (Con,Red) implies a procedure P on
N = 2n variables that distinguishes NoiseN1

2
from NoiseN1

2
−ε with probability roughly 1 − δ.

The complexity of this procedure is inherited by the complexity of Con and Red specifically:

• If Red makes at most q queries, then P can be implemented by a q-query decision tree.
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• We can view an element in {0, 1}N as a function D : {0, 1}n → {0, 1}. In this notation,
the distinguishing procedure P is an oracle procedure P (·) that receives oracle access
to D that is chosen from either NoiseN1

2
or NoiseN1

2
−ε. Using this terminology, PD =

RedConf⊕D(x, α) for some specific function f , input x and advice string α that are
chosen in the proof.

Our first step is to use our new tools to prove a zoom lemma for adaptive reductions.
The lemma appears in Section 4. A side benefit of our new approach is that our new tools
simplify the proof of the zoom lemma (even in the nonadaptive case).

The argument for the zoom lemma. The high level idea of the proof of the zoom
lemma is to fix some function f : {0, 1}k → {0, 1} and consider the behavior of the reduction
when given oracle access to Conf ⊕NoiseN1

2
and Conf ⊕NoiseN1

2
−2ε. In the first case, the noise

completely masks Conf and the reduction receives no information about f . This means
that for a random f , Red is unlikely to 0.51-agree with f . In the second case, for any f ,
Conf ⊕ NoiseN1

2
−2ε is (w.h.p.) an oracle on which there exists α (which can be an arbitrary

function of NoiseN1
2
−2ε) on which Red(·, α) needs to (1 − δ)-agree with f . This intuitively

means that the procedure Red can distinguish NoiseN1
2
−2ε from uniform when it receives a

“advice bits”. Thus, in order to prove the zoom lemma, it is sufficient to show that Red
cannot distinguish R = NoiseN1

2
−2ε from X = (R|R ∈ A) where A is an event of probability

2−a. This is the setup considered in Section 1.1.

Lower bound on the number of queries Theorem 1.7 immediately follows from the
first item in the zoom lemma, as a q query decision tree that distinguishes NoiseN1

2
from

NoiseN1
2
−ε with probability 1 − δ, must make Ω(log(1/δ)/ε2) queries, cf. [SV10]. The precise

statement appears in Section 5.1.

Hardness amplification proofs require majority Viola [Vio06] and Shaltiel and Viola
[SV10], used an idea of Sudan (see discussion in [Vio06]) to give a reduction from the task
of computing Majority on 1

ε
bits, to the task of distinguishing NoiseN1

2
from NoiseN1

2
−ε. For

constant distinguishing advantage, this reduction transforms a constant depth distinguisher
into a constant depth circuit (of polynomially related size) that computes Majority. Thus,

in order to obtain Theorem 1.9 we need to simulate the computation RedConf⊕D(x, α) (from
the second item of the zoom lemma) by a small constant depth circuit. In this computation,
x, α, and f are fixed, while D is not.

Simulating this computation raises another difficulty: it is not clear how to compute Conf .
Although in some cases this can be done (see Footnote 8) in general it is not clear. This
problem is even more pronounced in our extensions to pseudorandom-generator construction,
where the relevant oracle is the NP function which checks if the string is in the support of
the generator.
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To overcome this difficulty we adapt an idea of [GR08] which removes the need to compute
Conf . Roughly, using a hybrid argument we can arrange so that there exists a depth i in

the computation of RedConf⊕D(x, α) so that the queries at depth < i have a fixed answer
(where Conf can be hardwired), and the queries at depth > i have a completely uniform
answer (independent of Conf ) . This holds however only for queries not in the fixed set B:
we note that even with this idea we need a fixed-set lemma, as otherwise we do not know
how to control the query answers at depth larger than i.

Pseudorandom-generator constructions. The above ideas can be extended in a rather
straightforward way to pseudorandom-generator constructions. Roughly, the oracle Conf⊕D
is replaced by the oracle Distf ⊕ D where Distf is the indicator function of the support of
the pseudorandom generator.

Organization. In Section 3 we prove our forbidden and fixed set lemmas. In Section 4
we state and prove the zoom lemma. In Section 5 we prove our lower bounds on hardness
amplification proofs and pseudorandom generator constructions. In particular, we prove
theorems 1.7 and 1.9 from the introduction. We conclude in Section 6 and also discuss some
open problems.

3 Forbidden and fixed set lemmas for adaptive decision

trees

In this section we state and prove the forbidden set lemma (Lemma 1.3) and the fixed set
lemma (Lemma 1.4). We will be interested in a more general setup where the variables are
over an alphabet that is not necessarily binary.

The proofs rely on the notion of Shannon entropy H(X) of a random variable X, defined
as H(X) :=

∑
x Pr[X = x] · log(1/Pr[X = x]), and the related notion of conditional entropy

H(X|Y ) of a random variable X conditioned to another random variable Y , defined as
H(X|Y ) := Ey∈YH(X|Y = y) (cf. [CT06, Chapter 2]). We list next a few standard properties
of entropy that we will use extensively in this section.

Lemma 3.1. Entropy satisfies the following.

1. Chain rule: For any random variables X and Y we have H(X, Y ) = H(X) +H(Y |X)
[CT06, Theorem 2.5.1].

2. Conditioning reduces entropy: For any random variables X, Y, Z we have H(X|Y ) ≥
H(X|Y, Z).

3. High entropy implies near-uniformity (Pinsker’s inequality): Let V be a random vari-
able taking values in a set S and suppose that H(V ) ≥ log |S|−α; then V is c·

√
α-close

to uniform over S, where c = 1√
2
< 1. [CK82, Chapter 3; Exercise 17].
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3.1 Decision trees with variables in a finite alphabet

We consider a general case in which the N variables of a decision tree are not boolean,
but rather from a finite alphabet Σ. We call such decision trees ΣN -decision trees. Each
internal node in such a decision tree has |Σ| children, corresponding to each of the possible
|Σ| answers to the value of the queried variable.

Definition 3.2 (adaptive and non-adaptive decision trees). Let Σ be a finite alphabet, and
V be some finite set. (We think of V as a set of variables, and typically V = [N ] for some
integer N . We think of the set ΣV as the set of inputs to a decision tree.)

We say that a function P : ΣV → O (for some finite set O) is implemented by a q-query
ΣV -decision-tree if there exists a depth q decision tree, where each internal node is labeled by
a “variable” i ∈ V , and has |Σ| children (each labeled by an element of Σ), and leaves are
labeled by elements of O. Every z ∈ ΣV , defines a path from the root to a leaf (in the obvious
way), and P (z) is the label of that leaf.

In the special case that V = [N ] we call the tree a ΣN -decision tree.
A decision tree is nonadaptive if exists a sequence of q distinct y1, . . . , yq ∈ V such that

every path of the decision trees queries these variables in this order, and note that in that
case there exists some function fP : Σq → O, such that P (z) = fP (zy1 , . . . , zyq).

In addition to the added generality, moving to a large alphabet Σ, has the advantage
that the forbidden set lemma and fixed set lemma for i.i.d. variables (chosen according to
a distribution that isn’t necessarily uniform) will follow by proving the special case where
each of the i.i.d. variables is uniform over a sufficiently large alphabet Σ. This will allow us
to concentrate on distances to the uniform distribution, which by Pinsker’s lemma (Lemma
3.1) is reduced to understanding the entropy of distributions.4

3.2 The forbidden set lemma

We restate lemma 1.3 for decision trees over some finite alphabet Σ (rather than for Boolean
alphabet).

Lemma 3.3 (Forbidden set lemma). Let N, a, q be integers. Let R = (R1, . . . , RN) be
i.i.d. random variables where each one is over some finite set Σ, let A ⊆ ΣN be an event
such that Pr[R ∈ A] ≥ 2−a, and let X = (R|R ∈ A). For every η > 0, there exists a set

B ⊆ [N ] of size ≤ a·q3

η3 = poly(a, q, 1
η
), such that for every q-query ΣN -decision tree P that

does not make queries in B, P (R) and P (X) are η-close.

Note that the Ri might not be uniform over Σ. We can state the following corollary in
which we allow P to make queries in B, as long as the probability that P (X) makes a query
in B is small. Note that we don’t have to explicitly require that the probability that P (R)
makes a query in B is small.

4We mention that several past works, such as Raz [Raz98], took a different approach and used Pinsker’s
lemma in a more general setting where it connects the statistical distance between two distributions to the
informational divergence (also know as Kullback Leibler distance) between the two distributions. The two
approaches are equivalent, and we choose the former, to make the proofs more transparent.
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Corollary 3.4. Let N, a, q be integers. Let R = (R1, . . . , RN) be i.i.d. random variables
(where each one is over some finite set Σ), let A ⊆ ΣN be an event such that Pr[R ∈ A] ≥ 2−a,
and let X = (R|R ∈ A). For every η > 0, β > 0, there exists a set B ⊆ [N ] of size
poly(a, q, 1

η
), such that for every q-query ΣN -decision tree P , if P (X) makes a query in B

with probability at most β then P (R) and P (X) are (η + β)-close.

Proof. (of Corollary 3.4) Let B be the set guaranteed by Lemma 3.3. Let P ′ be a randomized
decision tree that on input z = (z1, . . . , zN), simulates P (z) with the following modification:
Whenever P wants to make a query to zi for i ∈ B, P ′ does not make the query, and instead
samples a fresh, uniform answer A distributed like Ri, and supplies it to P . It immediately
follows that Pr[P (X) 6= P ′(X)] ≤ β, and that P (R) is distributed exactly like P ′(R).

Assume towards a contradiction that |Pr[P (X) = 1] − Pr[P (R) = 1]| > β + η. By the
triangle inequality |Pr[P ′(X) = 1] − Pr[P ′(R) = 1]| > η, and by an averaging argument
the randomness of P ′ can be fixed to yield a deterministic q-query decision tree P ′′ with the
same property. Note that P ′′ never makes a query in B. This contradicts Lemma 3.3.

Lemma 3.3 follows directly from the following lemma (that can be thought of as the
special case in which variables Ri are uniformly distributed over Σ = {0, 1}m).

Lemma 3.5 (Entropy version of forbidden set lemma). Let N,m, a, q be integers. Let Z =
(Z1, . . . , ZN) be a distribution over ({0, 1}m)N with H(Z) ≥ N ·m−a. For every η > 0, there

exists a set B ⊆ [N ] of size O(aq
3

η3 ) = poly(a, q, 1
η
) such that for every q-query ({0, 1}m)N -

decision tree P , that does not make queries in B, P (Z) is η-close to P (UN ·m).

We are now ready to derive Lemma 3.3 from Lemma 3.5.

Proof. (of Lemma 3.3) Let R = (R1, . . . , RN) be i.i.d. random variables where each one is dis-
tributed according to some distribution Q on Σ. There exists an integer m and g : {0, 1}m →
Σ, such that g(Um) = Q.5 Consider the probability space in which Z = (Z1, . . . , ZN) is cho-
sen from UN ·m, and for every i ∈ [N ], Ri = g(Zi). We can imagine that R is chosen this
way, and interpret A ⊆ ΣN as

A′ = {(z1, . . . , zN) : (g(z1), . . . , g(zN)) ∈ A} .

Note that R ∈ A iff Z ∈ A′, and Pr[Z ∈ A′] = Pr[R ∈ A] ≥ 2−a. This implies that
H(Z) ≥ N ·m− a. Moreover, any q-query ΣN -decision tree can be simulated by a q-query
({0, 1}m)N -decision tree (in the obvious way). Thus, we can apply Lemma 3.5 on Z and
obtain the consequence of Lemma 3.3.

5It may be that Q assigns probabilities that are not multiples of 2−m to some elements, and then this
is true only up to some arbitrarily close precision. As we are allowed statistical distance of η > 0, we can
ignore this technicality.
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3.2.1 Proof of Lemma 3.5

The first step is inspired by an argument used in [EIRS01]. Namely, we will identify i ∈ [N ]
which are weak, in the following sense.

Definition 3.6 (Weak indices). We say that i ∈ [N ] is α-weak with respect to T ⊆ [N ] if
H(Zi|ZT\{i}) < m− α.

Lemma 3.7. For every α > 0, there exists a set B ⊆ [N ] of size b ≤ a
α

such that every
i ∈ T := [N ] \B is not α-weak with respect to T .

Proof. Consider the following iterative process. We start with B = ∅, and T = [N ]. In each
step, we have some set B ⊆ [N ], and let T = [N ] \ B. We will keep the invariant that at
step j:

• |B| = j.

• H(ZT ) ≥ (N − j) ·m− a+ j · α.

Note that this indeed holds in the beginning where j = 0. We now describe a step in the
process: By the chain rule, for every i ∈ [T ]

H(ZT ) = H(ZT\{i}) +H(Zi|ZT\{i}).

If there exists i ∈ T that is α-weak with respect to T then,

H(ZT\{i}) = H(ZT )−H(Zi|ZT\{i})
≥ (N − j) ·m− a+ j · α− (m− α)

= (N − (j + 1)) ·m− a+ (j + 1) · α.

Therefore, we keep the invariant if we add i to B and continue. We stop this iterative
process, if at some step j, there is no α-weak i ∈ T with respect to T . Note that if the
process continues for j steps, then ZT is a distribution over (N− j) ·m bits, that has entropy
≥ (N − j) ·m − a + j · α. The entropy of ZT is upper bounded by the length of ZT , and
therefore the process must stop within a

α
steps.

We apply Lemma 3.7 with α = ( η
2·q )

2 and obtain a set B of size b ≤ a
α

= O(aq
3

η3 ). Let

T = [N ] \B.
We assume (for contradiction) that there exists a q-query ΣN -decision tree P that does

not make queries in B, and

|Pr[P (Z) = 1]− Pr[P (UN ·m) = 1]| > η.

We consider the following hybrid executions of P :

Definition 3.8 (Hybrid executions). For 0 ≤ j ≤ q, we consider the following experiment
Ej:
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• The probability space is over independently chosen Z and R← UN ·m.

• We simulate a run of P where in the first j queries, we answer queries using R, and
in the remaining queries we answer queries using Z.

• Let Hj = (Hj
1 , . . . , H

j
q ) be the q answers that P obtained in experiment Ej.

• Note that the output of P is completely determined by a sequence a1, . . . , aq of answers,

and we will denote this output by P̂ (a1, . . . , aq).

• Let pj = Pr[P̂ (Hj) = 1] (namely the probability that P answers one in experiment Ej).

Note that E0 is the experiment where P is run on Z, and Eq is the experiment where
P is run on R. We have that |p0 − pq| > η, and therefore, there exists j ∈ [q] such that
|pj−1 − pj| > η

q
.

Note that the first j − 1 answers in both Hj and Hj−1 are distributed identically, and
are composed of independent uniform random variables. By averaging, it follows that there
exists values a1, . . . , aj−1 ∈ {0, 1}m such that for:

• Ĥj−1 = (Hj−1|Hj−1
1 = a1, . . . , H

j−1
j−1 = aj−1) = (a1, . . . , aj−1, H

j−1
j , . . . , Hj−1

q ), and

• Ĥj = (Hj|Hj
1 = a1, . . . , H

j
j−1 = aj−1) = (a1, . . . , aj−1, H

j
j , . . . , H

j
q ),

it holds that: |Pr[P̂ (Ĥj−1) = 1]− Pr[P̂ (Ĥj) = 1] > η
q
.

In both Ĥj−1 and Ĥj, the first j − 1 answers are fixed to a1, . . . , aj−1. Therefore, both
computations follow the same path in the decision tree, and reach the same fixed node after
j − 1 queries. Let Q be the subtree of P that starts at that node (note that Q makes at
most q queries). Let i′ be the variable that is queried at the root of Q. Let H̃j−1, H̃j be
the q − (j − 1) final answers of Ĥj−1 and Ĥj respectively (namely, these are the answers in
experiments Ej−1 and Ej that we have not fixed). We have that:

|Pr[Q̂(H̃j−1) = 1]− Pr[Q̂(H̃j) = 1] >
η

q
.

Namely, Q distinguishes between the following two scenarios:

• When its answers are from H̃j−1: Namely, the query on i′ is answered by Zi′ and
remaining queries are answered using Z.

• When its answers are from H̃j: Namely, the query on i′ is answered by Ri′ and re-
maining queries are answered using Z.

We now return to viewing Q as a function over ({0, 1}m)N . At this point, we can forget that
this function is implemented by a decision tree, and only recall that it does not depend on
variables in B, which in particular means that i′ ∈ T . To simplify notation we can reorder
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the variables and assume w.l.o.g. that i′ = 1, and T = [N − b]. With this choice we have
that there exists a function Q : ({0, 1}m)N−b → {0, 1} such that:

|Pr[Q(Um, Z2, . . . , ZN−b) = 1]− Pr[Q(Z1, Z2, . . . , ZN−b) = 1]| > η

q
.

This is a contradiction to the fact that i′ is not α-weak with respect to T , as is shown in the
next lemma.

Lemma 3.9. The distributions (Um, Z2, . . . , ZN−b) and (Z1, Z2, . . . , ZN−b) are η
q
-close.

Proof. We have that 1 is not α-weak in T = [N− b]. This means that H(Z1|Z2, . . . , ZN−b) ≥
m− α. Let

G =
{

(z2, . . . , zN−b) : H(Z1|(Z2, . . . , ZN−b) = (z2, . . . , zN−b)) ≥ m− α2/3
}
.

By Markov’s inequality, Pr[(Z2, . . . , ZN−b) ∈ G] > 1−α1/3. By Pinsker’s lemma (Lemma 3.1)

for every (z2, . . . , zN−b) ∈ G, (Z1|(Z2, . . . , ZN−b) = (z2, . . . , zN−b)) is α
1
3 -close to Um. Overall,

it follows that (Um, Z2, . . . , ZN−b) and (Z1, Z2, . . . , ZN−b) are ε-close for ε = 2 · α1/3 ≤ η
q
.

This concludes the proof of Lemma 3.5.

Remark 3.10. Recent work by Meir and Wigderson [MW17] (with quantitative improve-
ments by Smal and Talebanfard [ST17]) consider a notion that is closely related to weak
indices. Loosely speaking, recall that we say that an index i is weak with respect to T , if
Zi can be predicted from ZT\{i}. Let’s say that i is (ε, q)-weak with respect to T , if there
exists a q-query decision tree that predicts Zi with probability 1

2
+ ε given access to ZT\{i}.

(We remark that the prediction success is measured in different units with this definition,
that only makes sense in case Zi is a bit). With this notation, the aforementioned works
show that if Z is over N bits, and has H(Z) ≥ N − a then, the number of indices i that are
(ε, q)-weak with respect to [N ] is at most poly(q · a/ε). (In fact, a stronger claim is true that
holds for bounded-width DNF.) This is incomparable to Lemma 3.7. The latter is stronger
(as it doesn’t require the predictor to be a decision tree) while the former gives “with respect
to” [N ] rather than T = [N ] \ B (as is the case in Lemma 3.7). We further remark that
(with some care) it is possible to use the result of Meir and Wigderson (in place of Lemma
3.7) in our proof of Lemma 3.5.

3.3 The fixed set lemma

We restate lemma 1.4 for decision trees over some finite alphabet Σ (rather than for Boolean
alphabet).

Lemma 3.11 (Fixed set lemma). Let N, a, q be integers. Let R = (R1, . . . , RN) be i.i.d. in-
dicator random variables (where each one is over some finite set Σ), let A ⊆ ΣN be an event
such that Pr[R ∈ A] ≥ 2−a, and let X = (R|R ∈ A). For every η > 0, there exists a set
B ⊆ [N ] of size a·q

η2 = poly(a, q, 1
η
), and v ∈ {0, 1}B such that for R′ = (R|RB = v) and

X ′ = (X|XB = v) = (R|RB = v,R ∈ A), and every q-query decision tree P , P (R′) and
P (X ′) are η-close.
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Lemma 3.11 follows directly from the following lemma (that can be thought of as the
special case in which variables Ri are uniformly distributed over Σ = {0, 1}m).

Lemma 3.12 (Entropy version of fixed set lemma). Let N,m, a, q be integers. Let Z =
(Z1, . . . , ZN) be a distribution over ({0, 1}m)N with H(Z) ≥ N ·m − a, and let R ← UN ·m.
For every η > 0, there exists a set B ⊆ [N ] of size a·q

η2 = poly(a, q, 1
η
), and v ∈ ({0, 1}m)B

such that the following holds: Let Z ′ = (Z|ZB = v) and let R′ = (R|RB = v). For every
q-query ({0, 1}m)N -decision tree P , P (Z ′) and P (R′) are η-close.

We can now derive Lemma 3.11 from Lemma 3.12. The argument is identical to the way we
derived Lemma 3.3 from Lemma 3.5. We repeat it below for completeness.

Proof. (of Lemma 3.11) Let R = (R1, . . . , RN) be i.i.d. random variables where each one
is distributed according to some distribution Q on Σ. There exists an integer m and
g : {0, 1}m → Σ, such that g(Um) = Q.6 Consider the probability space in which Z =
(Z1, . . . , ZN) is chosen from UN ·m, and for every i ∈ [N ], Ri = g(Zi). We can imagine that
R is chosen this way, and interpret A ⊆ ΣN as

A′ = {(z1, . . . , zN) : (g(z1), . . . , g(zN)) ∈ A} .

Note that R ∈ A iff Z ∈ A′, and Pr[Z ∈ A′] = Pr[R ∈ A] ≥ 2−a. This implies that
H(Z) ≥ N ·m− a. Moreover, any q-query ΣN -decision tree can be simulated by a q-query
({0, 1}m)N -decision tree (in the obvious way). Thus, we can apply Lemma 3.12 on Z and
obtain the consequence of Lemma 3.11.

In the next subsection we prove Lemma 3.12.

3.3.1 Proof of Lemma 3.12

The next lemma shows that if there exists a decision tree that distinguishes, then we can fix
the variables along one of its computation paths, and decrease the “entropy deficiency”.

Lemma 3.13. Let N,m, q be integers. Let Z = (Z1, . . . , ZN) be a distribution over ({0, 1}m)N ,
and let R ← UN ·m. If there exists a q-query ({0, 1}m)N -decision tree P such that P (Z) and
P (R) are not η-close, then there exists a set B ⊆ N of size q, and v ∈ ({0, 1}m)B such that
H(Z|ZB = v) ≥ H(Z)− q ·m+ η2.

Proof. On input x = (x1, . . . , xN), the query yj made by P (x1, . . . , xN) at step j is completely
determined by answers to previous queries: xy1 , . . . , xyj−1

. Let fj be the function that
determines the j’th query, namely, for every j, the j’th query of P on (x1, . . . , xN) is given
by:

yj = fj(xy1 , . . . , xyj−1
).

6It may be that Q assigns probabilities that are not multiples of 2−m to some elements, and then this
is true only up to some arbitrarily close precision. As we are allowed statistical distance of η > 0, we can
ignore this technicality.
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The output of P on input x = (x1, . . . , xN) is completely determined by xy1 , . . . , xyq . Let
g be the function that determines this output. Namely,

P (x1, . . . , xN) = g(xy1 , . . . , xyq).

Let Y = (Y1, . . . , Yq) be the queries of P on input Z, and let Y ′ = (Y ′1 , . . . , Y
′
q ) be the

queries of P on input R.
We have that P (Z) is not η-close to P (R). This implies that ZY is not η-close to RY ′ .

Note that by definition RY ′ is a uniform string of length m · q. Thus, we have that ZY ′ is
not η-close to Um·q. By Pinsker’s lemma (Lemma 3.1) this implies that: H(ZY ) < q ·m− η2

By the chain rule for entropy, and the fact that ZY is a function of Z we have that:

H(Z) = H(Z,ZY ) = H(ZY ) +H(Z|ZY ).

We use that to show:

H(Z|ZY ) = H(Z)−H(ZY ) ≥ H(Z)− (q ·m− η2).

By averaging, there exists z′ ∈ ({0, 1}m)q such that:

H(Z|ZY = z′) ≥ H(Z|ZY ) ≥ H(Z)− q ·m+ η2.

Note that (Y |ZY = z′) is a constant rather than a random variable. Specifically, there is a
fixed y = (y1, . . . , yq) such that (Y |ZY = z′) = y. This is because fixing the answers to q
queries, also fixes the variables queried by a decision tree. Thus, setting B = {y1, . . . , yq}
(and we can assume w.l.o.g. that the q queries are distinct) we have that:

H(Z|ZB = z′) ≥ H(Z)− q ·m+ η2,

as required.

We are now ready to prove Lemma 3.12.

Proof. (of Lemma 3.12) We apply Lemma 3.12 iteratively, until there is no q-query ({0, 1}m)N -
decision tree P for which P (Z) and P (R) are not η-close. At step i, we have fixed i · q
variables, let Bi (of size i ·q) be the set of variables we have fixed, and vi ∈ ΣBi be the values
to which we fixed them. At this point we hold a distribution Zi = (Z|Bi = vi) which has
N − i · q variables that were not yet fixed. Therefore, H(Zi) ≤ (N − i · q) ·m. On the other
hand, as we started with H(Z0) ≥ N ·m− a, by Lemma 3.13 we have that at step i,

H(Zi) ≥ H(Z0)− i · q ·m+ i · η2 ≥ N ·m− a− i · q ·m+ i · η2 = (N − i · q) ·m− a+ i · η2.

It follows that this process must stop after at most a/η2 steps, and so the final Bi is of size
no more than a·q

η2 as required. When the process stops we are guaranteed that there does not

exist a q-query ({0, 1}m)N -decision tree P for which P (Z|ZBi = vi) and P (R|RBi = vi) are
not η-close.
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3.4 An alternative proof of the fixed-set lemma

In this section we give a slightly different proof of the fixed-set lemma, suggested by an
anonymous referee whom we thank. This alternative proof follows the same strategy in
the previous section, but it is a bit simpler because it essentially replaces the measure of
“entropy” by measuring “support size” (which is equivalent to entropy if one maintains a
distribution that is uniform over a subset). This removes the need for Pinsker’s inequality
and saves a square in the dependency on η. This is interesting because (i) it is a tight bound
and (ii) it is better than what one can have for forbidden-set lemmas: it is well-known that in
the forbidden-set lemma a quadratic dependence on η is necessary even for q = 1 (condition
n bits on the majority being 1). (The quadratic improvement on η is inconsequential for our
applications.)

The proof only easily applies to random variables that are uniform on their support, but
that is all that we need for the zoom lemma. First we state the lemma, which generalizes
Lemma 1.4 from the introduction to m > 1.

Lemma 3.14 (Alternative version of fixed set lemma). Let N,m, a, q be integers. Let Z =
(Z1, . . . , ZN) be a distribution over ({0, 1}m)N that is uniform over a set of size at least
2N ·m−a. Let R ← UN ·m. For every η > 0, there exists a set B ⊆ [N ] of size O(a · q/η), and
v ∈ ({0, 1}m)B such that the following holds: Let Z ′ = (Z|ZB = v) and let R′ = (R|RB = v).
For every q-query ({0, 1}m)N -decision tree P , P (Z ′) and P (R′) are η-close.

Proof. While there is a set T ⊆ [N ] of size q and values a = (a1, a2, . . . , aq) ∈ {0, 1}m such
that Pr[ZT = a] ≥ (1 + η)/2mq, let Z∗ := (Z|ZT = a). Note that Z∗ is still uniform over its
support. We claim that the density of Z∗ increases. Indeed

|Supp(Z∗)|
2m(N−q) =

|Supp(Z)| · PrZ [ZT = a]

2m(N−q) ≥ |Supp(Z)|(1 + η)2−mq

2m(N−q) =
|Supp(Z)|(1 + η)

2mN
.

Hence the density increased by a factor of (1 + η). Since at the beginning the density was
≥ 2−a. This can happen at most O(a/η) times.

Let B be the collection of variables that were fixed, and v the corresponding values. By
above, |B| ≤ O(qa/η). Now consider a q-query decision tree P . Let Π be the collection
of paths leading to output 1. Each path π ∈ Π is specified by a set Tπ of variables and
corresponding values aπ. Without loss of generality |Tπ| = q always. We have

Pr[P (Z ′) = 1] =
∑
π∈Π

Pr[Z ′Tπ = aπ] ≤
∑
π∈Π

Pr[R′Tπ = aπ](1 + η) ≤ Pr[P (R′) = 1](1 + η).

The same can be established for Pr[P (Z ′) = 0], and the result follows.

Remark 3.15 (Tightness of Lemma 3.12). Lemma 3.14 gives a set B of size O(a · q/η)
whereas Lemma 3.12 gives a set B of size O(a · q/η2). We now observe that the bound
in Lemma 3.12 cannot be improved, and B must have size at least Ω(a · q/η2) under the
conditions of Lemma 3.12. Loosely speaking, this follows because H(1

2
−η) = 1−O(η2) while

22



the statistical distance between the distributions (1/2 − η, 1/2 + η) and (1/2, 1/2) on {0, 1}
is η.

Specifically let Z = (Z1, . . . , ZN) be independent indicator random variables, where the
first t bits are distributed like a coin with bias p = 1

2
− η/√q, and the remaining N − t bits

are uniform. Note that:

H(Z) = t ·H(p) +N − t = t · (1−O(η2/q)) +N − t ≥ N − a,

by setting t = Θ(q · a/η2). However, for any fixing of t − q = Ω(q · a/η2) bits of Z, at least
q of the first t bits of Z remain unfixed (and are distributed like q biased coins with bias
p = 1

2
− β for β = η/

√
q). The distance of such a distribution from uniform is at least

Ω(
√
q · β) = Ω(η) (assuming

√
q · β ≤ 1/10).7 Thus, a depth q decision tree can distinguish

with advantage Ω(η) (even nonadaptively). This argument also shows the tightness of the
size of B in Lemma 3.12.

4 The zoom lemma

In this section we prove the zoom lemma. Given a black-box hardness amplification (Con,Red)
the lemma allows to “zoom in” on a particular reduction Red(x, α) that can be used to dis-
tinguish uniform noise from noise that is ε-close to uniform.

We first need a couple of definitions and a lemma. First we define “noise.”

Definition 4.1. We use NoiseNp to denote the distribution of N i.i.d. random variables over

{0, 1}, where each one has probability p to be one. For some finite set V , we use NoiseVp to
denote such a distribution over N = |V | variables, indexed by elements in V (rather than by
[V ]).

7For completeness, we include a proof for this claim (as we can’t find a reference). Specifically, let Noiseqp
denote the distribution of q i.i.d. indicator random variables where each one has probability p to be one.
We show that assuming

√
q · β < 1/10, the statistical distance between Noiseq1

2
and Noiseq1

2−β
is at least

Ω(
√
q · β). Let A =

{
x ∈ {0, 1}q : |x| ≥ q/2 +

√
q
}

, where |x| denotes
∑
xi (i.e., the hamming weight of x).

It is sufficient to show that Noiseq1
2
(A) − Noiseq1

2−β
(A) ≥ Ω(

√
q · β). As |A| = Ω(2q), it is sufficient to show

that for every x ∈ A, Pr[Noiseq1
2−β

= x] ≤ 2−q · (1− Ω(
√
q · β)). For this we observe that for x ∈ A:

Pr[Noiseq1
2−β

= x] = (
1
2

+ β)q−|x| · (1
2
− β)q−|x| · (1

2
− β)2|x|−q

=
(1 + 2β)q−|x| · (1− 2β)q−|x| · (1− 2β)2|x|−q

2q

=
(1− 4β2)q−|x| · (1− 2β)2|x|−q

2q

≤ 1− Ω(β · (2|x| − q))
2q

≤ 2−q · (1− Ω(
√
q · β)).
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We have two kinds of random access procedures: The first is ΣV -decision trees, and the
second is oracle circuits C(·). It will be natural to view an input to a tree as an oracle to a
circuit, and vice-versa.

Definition 4.2 (Identification of functions and truth tables). For a finite alphabet Σ and a
finite set V , we can view elements D ∈ ΣV in two ways:

• As functions D : V → Σ.

• As strings, namely we order V in some way, and view D as a string of length |V | over
alphabet Σ defined by D = (Dy)y∈V .

We will allow ourselves to hold both views (without introducing different notations for the
two views).

We will typically have that Σ = {0, 1} and V = {0, 1}n for some integer n. We shall also
need to talk about hard functions.

Definition 4.3 (Hard functions). We say that a function f : {0, 1}k → {0, 1} is ρ-hard for
circuits of size s, if for every circuit C of size s, Prx←{0,1}k [C(x) = f(x)] ≤ p for p = 1

2
+ ρ.

The following lemma follows by a standard counting argument.

Lemma 4.4 (Existence of hard functions). There exists a constant λ > 0 such that for every
sufficiently large k, there exists a function f : {0, 1}k → {0, 1} that is 1

s
-hard for circuits of

size s = 2λ·k.

We can now state the zoom lemma. Following [SV10] we want to use Red to distinguish
noise 1/2− ε from noise 1/2. The next lemma gives a fixed advice α and a fixed input x for
which Red(x, α) distinguishes.

Lemma 4.5 (Zoom Lemma). There exist constants δ0, ν > 0 and d > 1 such that: Let
(Con,Red) be a δ → (1

2
− ε) black-box hardness amplification with input lengths k and n, and

list size 2a. Suppose for every x and α the reduction Red is a circuit of size r that makes
at most q oracle queries. Assume n, a, q, 1

ε
≤ r ≤ 2ν·k, and δ ≤ δ0. Let η := δ + 2−ν·k, and

V = {0, 1}n. Let f : {0, 1}k → {0, 1} be a function that is 1/200-hard for circuits of size
s = rd.

Then, there exists a set B ⊆ {0, 1}n of size (aq/η)O(1), a string v ∈ {0, 1}B, x ∈ {0, 1}k
and α ∈ {0, 1}a such that

• Pr
D←NoiseV1

2−2ε

[RedConf⊕D(x, α) = f(x)|D(B) = v] ≥ 1− 2
√
δ − 2−ν·k,

• Pr
D←NoiseV1

2

[RedConf⊕D(x, α) = f(x)|D(B) = v] ≤ 0.51.
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4.1 Proof

In this proof we fix V = {0, 1}n. We first show that there exists a string α ∈ {0, 1}a for
which the reduction succeeds with probability about 2−a on the oracle Conf ⊕ NoiseV1

2
−2ε.

Lemma 4.6. There exist α ∈ {0, 1}a and A ⊆ {0, 1}V such that:

Pr
D←NoiseV1

2−2ε

[D ∈ A] ≥ 2−(a+1)

and for every D : {0, 1}n → {0, 1} such that D ∈ A,

Pr
X←{0,1}k

[RedConf⊕D(X,α) = f(X)] ≥ 1− δ.

Proof. The proof amounts to a Chernoff bound and an averaging argument. Specifically, by
a Chernoff bound, with probability 1− 2−Ω(ε2·2n) over NoiseV1

2
−2ε the Hamming weight of the

obtained 2n-bit long string D is less than (1
2
−ε) ·2n. This means that Conf⊕D (1

2
+ε)-agrees

with Conf . Therefore, for every D ∈ {0, 1}V with that property, there exists α ∈ {0, 1}a
such that

Pr
X←{0,1}k

[RedConf⊕D(X,α) = f(X)] ≥ 1− δ.

Therefore, by an averaging argument, there must exist some α ∈ {0, 1}a, and A ⊆ {0, 1}V
that satisfy the required properties.

We now apply the fixed set lemma (Lemma 3.11) with the following choices:

• Let Σ = {0, 1} and we consider the distribution Conf ⊕ Noise1
1
2
−2ε on Σ.

• Let N = 2n, and we identify V = {0, 1}n with [N ].

• We use the event A ⊆ {0, 1}V which we interpret as A ⊆ {0, 1}N .

Recall that the parameter η is chosen in the statement of the lemma. We obtain a set
B ⊆ V of size poly(a, q, 1/η), and v ∈ {0, 1}B such that for every x ∈ {0, 1}k,

| Pr
D←NoiseV1

2−2ε

[RedConf⊕D(x, α) = 1|D(B) = v]−

Pr
D←NoiseV1

2−2ε

[RedConf⊕D(x, α) = 1|D(B) = v,D ∈ A]| ≤ η. (2)

This follows as for every x ∈ {0, 1}k, RedConf⊕D(x, α) can be viewed as q-query {0, 1}V -
decision tree with input D ∈ {0, 1}V .

It follows from Lemma 4.6 that:

Pr
X←{0,1}k,D←NoiseV1

2−2ε

[RedConf⊕D(X,α) = f(X)|D(B) = v,D ∈ A] ≥ 1− δ.
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Specifically, the lemma guaranteed this for every D ∈ A. So in particular it also holds for
every D ∈ A that satisfies the further condition D(B) = v.

By a Markov argument, for a (1 −
√
δ)-fraction of x ∈ {0, 1}k,

Pr
D←NoiseV1

2−2ε

[RedConf⊕D(x, α)(D) = f(x)|D(B) = v,D ∈ A] ≥ 1−
√
δ.

Combining this equation with Equation (2) yields

Pr
D←NoiseV1

2−2ε

[RedConf⊕D(x, α)(D) = f(x)|D(B) = v] ≥ 1− 2
√
δ − 2−ν·k. (3)

Recall that f is 1
200

-hard for circuits of size s. Using the hardness of f , the bound on |B|,
and the restriction on the size of Red, it follows that:

Lemma 4.7. Pr
X←{0,1}k,D←NoiseV1

2

[RedConf⊕D(X,α) = f(X)|D(B) = v] ≤ 1
2

+ 1
200

.

Proof. Consider the randomized circuit R that on input x, simulates Red(·)(x, α) and when-
ever Red makes an oracle query y, then if y ∈ B, then R answers the query by Conf (y)⊕ vy,
and otherwise it answers by a fresh random coin. We claim that for every x ∈ {0, 1}k,

Pr[R(x) = f(x)] = Pr
D←NoiseV1

2

[RedConf⊕D(x, α) = f(X)|D(B) = v].

This is because the distribution Conf ⊕ NoiseV1
2

is the same as NoiseV1
2
. Note that R is a

(distribution over) circuits of size r+ (n · |B|)O(1). By the bound on |B| and our parameters,
we can choose the constant d to be sufficiently large so that R is of size at most s = rd.
By averaging, we get that there exists a fixing for R’s random coins so that the obtained
deterministic circuit R′ satisfies:

Pr
X←{0,1}k,D←NoiseV1

2

[RedConf⊕D(X,α) = f(X)|D(B) = v] = Pr
X←{0,1}k

[R′(X) = f(X)] ≤ 1

2
+

1

200
.

Where the last inequality follows by the fact that f is 1
200

-hard for size s circuits.

By a Markov argument we obtain that for a 1
200

-fraction of x ∈ {0, 1}k,

Pr
D←NoiseV1

2

[RedConf⊕D(x, α) = f(x)|D(B) = v] ≤ 0.51. (4)

We can pick the constant δ0 so that for δ ≤ δ0,
√
δ < 1

200
, and by a union bound, there

must exists x′ ∈ {0, 1}k such that for this x′, both Equation (3) and (4) hold. This concludes
the proof.
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4.2 Making Conf easy to compute

The zoom lemma proved in the previous section is sufficient to prove our lower bound on
the number of queries. For our results on the necessity of majority we need to simulate

the circuits RedConf⊕D(x, α). The straightforward simulation involves computing Conf .
Although this can be done in some cases8 in general it is not clear how to do that. We now
use an argument of Gutfreund and Rothblum [GR08] that removes the need to compute
Conf altogether.

Lemma 4.8. Let the hypothesis of the zoom lemma be satisfied. Further assume that
Red.(x, α) is an oracle circuit of depth H. Then there exists a circuit C : {0, 1}q → {0, 1} of
size poly(r) and depth O(H) such that∣∣∣Pr

[
C(Noiseq1/2−2ε) = 1

]
− Pr

[
C(Noiseq1/2) = 1

]∣∣∣ ≥ Ω(1/H).

Proof. We apply the zoom lemma to obtain B, v, x, and α. Here, we don’t expect to gain in
the case that δ is very small, and will therefore assume that δ is a sufficiently small constant,
so that it doesn’t affect the size of B. If y ∈ B ⊆ {0, 1}n we write v(y) for the corresponding
bit of v. Because Red.(x, α) has depth H we can think of its gates as being arranged in H
layers, where Layer 1 is the input and Layer H is the output.

Let U1, U2, . . . , UH be sampled from NoiseN1/2 andB1, B2, . . . , BH be sampled from NoiseV1
2
−2ε,

where V = {0, 1}n. Consider the function g which maps H input oracles o1, o2, . . . , oH :
{0, 1}n → {0, 1} to a bit as follows. g simulates Red(·)(x, α). Whenever Red makes an oracle
query y ∈ {0, 1}n, g answers it as follows. If y ∈ B then the answer is (Conf ⊕ v)(y). If
y 6∈ B and the query is made at level i then g answers it with oi.

Note that by definition

Pr[g(Conf ⊕ U1,Conf ⊕ U2, . . . ,Conf ⊕ UH) = f(x)]

= Pr
D←NoiseV1

2

[RedConf⊕D(x, α) = f(x)|D(B) = v],

and

Pr[g(Conf ⊕ B1,Conf ⊕ B2, . . . ,Conf ⊕ BH) = f(x)]

= Pr
D←NoiseV1

2−2ε

[RedConf⊕D(x, α) = f(x)|D(B) = v].

8For XOR lemma, this can be accomplished using parity gates as follows. Pick f that in addition to
being hard for size s only depends on O(log s) bits and therefore can be computed with slightly larger circuit
size poly(s). Using such an f one can verify that Conf can also be computed in size poly(s) using parity
gates. One can also handle Con that is obtained by concatenating the Reed-Muller and the Hadamard code
reasoning similarly and following [Vio06], Section 6.2.2.
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By the conclusion of the zoom lemma, using that δ is sufficiently small∣∣Pr[g(Conf ⊕ B1,Conf ⊕ B2, . . . ,Conf ⊕ BH) = f(x)]

− Pr[g(Conf ⊕ U1,Conf ⊕ U2, . . . ,Conf ⊕ UH) = f(x)]
∣∣ ≥ Ω(1).

We can now consider H + 1 hybrid distributions where the first i− 1 oracles are Bj and
the rest are Uj. By the triangle inequality, there exists an i such that the i and i+ 1 hybrid
exhibit a gap of Ω(1/H):∣∣Pr[g(Conf ⊕ B1, . . . ,Conf ⊕ Bi−1,Conf ⊕ Bi,Conf ⊕ Ui+1, . . . ,Conf ⊕ UH) = f(x)]

−Pr[g(Conf⊕B1, . . . ,Conf⊕Bi−1,Conf⊕Ui,Conf⊕Ui+1, . . . ,Conf⊕UH) = f(x)]
∣∣ ≥ Ω(1/H).

Note that Conf ⊕ Uj = Uj hence we get∣∣Pr[g(Conf ⊕ B1, . . . ,Conf ⊕ Bi−1,Conf ⊕ Bi, Ui+1, . . . , UH) = f(x)]

− Pr[g(Conf ⊕ B1, . . . ,Conf ⊕ Bi−1,Conf ⊕ Ui, Ui+1, . . . , UH) = f(x)]
∣∣ ≥ Ω(1/H).

By averaging we can fix the first i−1 oracles to maintain the gap. Thus there exist functions
bj : {0, 1}n → {0, 1} such that∣∣Pr[g(Conf ⊕ b1, . . . ,Conf ⊕ bi−1,Conf ⊕ Bi, Ui+1, . . . , UH) = f(x)]︸ ︷︷ ︸

A

− Pr[g(Conf ⊕ b1, . . . ,Conf ⊕ bi−1,Conf ⊕ Ui, Ui+1, . . . , UH) = f(x)]︸ ︷︷ ︸
B

∣∣ ≥ Ω(1/H).

Consider the computations of Red corresponding to the above evaluations of g. Note that
the answers to the queries in the first i− 1 layers are fixed. Hence they can be hardwired in
the circuit. This makes the queries in Layer i fixed as well. So one can hardwire the values
of Conf at those queries as well. The next queries are not fixed, but they are answered by a
random bit, except at points in B.

The circuit C can now be given. First, we claim that there exists a distribution on circuits
C ′ such that

Pr
C′,Noiseq1/2−2ε

[
C ′(Noiseq1/2−2ε) = f(x)

]
= A

Pr
C′,Noiseq1/2

[
C ′(Noiseq1/2) = f(x)

]
= B.

The circuit C ′ answers queries as follows. First, it checks if a query lands in B. If so it
answers it with Conf ⊕ v. This computation can be implemented by a circuit of constant
depth and size polynomial in |B|. Because |B| ≤ poly(r), this check can be implemented in
the required resources. Otherwise, recall from above that the answers to the queries in the
first i− 1 levels are hardwired. The answers to the queries in level i are answered by picking
the “noise” part from the input and again hardwiring the values of Conf . The queries at
levels larger than i are answered by flipping a coin.

By an averaging argument we can fix the latter coins and maintain the gap. Then we
can define C to be C ′ with this fixing, possibly complementing the output.
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5 Limitations on black-box hardness amplification and

PRG constructions

In this section we use the zoom lemma to prove lower bounds on hardness amplification
proofs. In Section 5.1 we prove Theorem 1.7 (showing a lower bound for the number of
queries). In Section 5.2 we prove Theorem 1.9 (showing that hardness amplification proofs
imply majority). In Section 5.3 we consider a variant of hardness amplification task (that
was studied by Watson [Wat15] under the name “errorless amplification” and Artemenko
and Shaltiel [AS14] under the name “basic hardness amplification”). This form of hardness
amplification corresponds to a coding theoretic setting where Red is a local list decoding
algorithm that recovers from erasures rather than from errors (as in standard hardness
amplification). We prove tight lower bounds on the number of queries required in this setting.
Finally, in Section 5.4 we state and prove our limitations on black-box PRG constructions.

5.1 Lower bound on the number of queries

In this section we prove Theorem 1.7. We need a lemma from [SV10] giving a lower bound
on the number q of bits sufficient to distinguish Noiseq1/2 from Noiseq1/2−ε. See [SV10] for
further discussion and related results.

Lemma 5.1. Let g : {0, 1}q → {0, 1} be a function such that

1. PrNoiseq1/2−ε

[
g(Noiseq1/2−ε) = 1

]
≤ p ≤ 0.4, and

2. PrNoiseq1/2

[
g(Noiseq1/2) = 1

]
≥ 0.49.

Then q ≥ Ω(log(1/p)/ε2).

Proof of Theorem 1.7. We apply the Zoom Lemma 4.5, where the function f is obtained
from Lemma 4.4. We claim there exists a function g such that, for both z = 0 and z = ε:
the distribution of g(D) for D sampled from Noiseq1/2−z is the same as the distribution of

(RedConf⊕D(x, α)|D(B) = v) for D sampled from NoiseV1/2−z. The function g simulates Red,
answering queries in B with the corresponding value of Conf ⊕ v and the others with the
corresponding value of Conf ⊕D. Note that x, α and f are fixed.

Hence either g or 1−g satisfies the hypothesis of Lemma 5.1, and the proof is concluded.

Remark 5.2 (Removing the assumption that Red(·) is a small circuit). It is pointed out in
Remark 1.8 that the assumption that Red(·) is an oracle circuit of size r ≤ 2ν·k can be omitted
from Theorem 1.7. We now explain this claim.

The assumption that Red(·) is a small circuit is used in the “zoom lemma”, and more
particularly in Lemma 4.7. Specifically, in the proof of Theorem 1.7, we use the zoom lemma
(Lemma 4.5) with a function f that is 1/200-hard for size rd (that is guaranteed by Lemma
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4.4). The hardness of f is used in Lemma 4.7 to show that when Red is supplied with a
uniformly chosen oracle, a short advice string α, and a short string v, then this computation
can be simulated by a small circuit, and therefore cannot compute f too well.

Nevertheless, for every fixed choice of Red(·) (which might not be a small oracle circuit)
a simple counting argument shows that a random function f is unlikely to be computed well
by the computation considered above. This is because a random function f : {0, 1}k → {0, 1}
has description size 2k which is significantly larger than |B| and the length of α and v (that
have total length 2αk for some small constant α < 1).

Therefore, for every reduction Red(·), there exists a function f with which Lemma 4.7 and
Lemma 4.5 follow, and Theorem 1.7 follows without the assumption.

5.2 Hardness amplification proofs require majority

We need other results from [SV10]. Intuitively, we would like to say that any circuit that
distinguishes Noiseq1/2 from Noiseq1/2−ε can be used to compute majority on 1/ε bits. Actually

we do not know if that is true. As in [SV10] we need the assumption for every ε′ > ε.

Proof of Theorem 1.9. Note that a δ → (1/2 − ε) hardness amplification is also a δ →
(1/2 − ε′) hardness amplification for every ε′ > ε. Hence for every ε′ > ε we can apply the
Zoom Lemma 4.5 and Lemma 4.8, with the function f obtained from Lemma 4.4, to obtain
a circuit Cε′ of size poly(r) and depth O(H) such that

|Pr
[
Cε′(Noiseq1/2−ε′) = 1

]
− Pr

[
Cε′(Noiseq1/2) = 1

]
| ≥ Ω(1/H) ≥ Ω(log(1/ε)).

The last inequality holds by the assumption of Theorem 1.9.
From the circuits Cε′ , the argument in Section 5 of [SV10] gives a circuit C of depth

O(H) and size poly(r) that computes majority on 1/ε bits. The circuit C is an AC0 circuit
with oracle gates for certain circuits Cε′ .

5.3 Lower bounds on the erasure version of hardness amplification

We now consider a variant of hardness amplification. While Definition 1.6 corresponds to
locally list decodable codes against errors, the variant we consider here corresponds to locally
list decodable codes against erasures. We therefore call this variant “hardness amplification
with erasures”.

We start by giving a definition of black-box hardness amplification with erasures. We
need the following notion of “agreement with erasures”, which extends the standard notion
of agreement in Definition 1.6.

Definition 5.3 (erasure-agreement of functions). Let g1 : W → O ∪ {⊥}, g2 : W → O be
functions, where W is a finite domain and O does not include the special symbol ‘⊥’. We
say that g1 p-erasure-agrees with g2 if g1 p-agrees with g2, and for every w ∈ W , g1(w) 6= ⊥
⇒ g1(w) = g2(w).
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Note that unlike agreement of functions, this relation isn’t symmetric.
The following definition is analogous to Definition 1.6, and this form of hardness ampli-

fication was termed “basic hardness amplification” in [AS14]. Loosely speaking, it requires
less than Definition 1.6 as the reduction is required to perform only if D erasure-agrees with
Conf .

Definition 5.4 (black-box hardness amplification with erasures [AS14]9). A δ → ε black-box
erasure hardness amplification with input lengths k and n, list size 2a, and output length o is
a pair (Con,Red) such that:

• A construction Con is a map from functions f : {0, 1}k → {0, 1} to functions Conf :
{0, 1}n → {0, 1}o.

• A reduction Red is an oracle circuit Red(·)(x, α) that accepts two inputs: x ∈ {0, 1}k
and α ∈ {0, 1}a (we call α a “nonuniform advice string”). Red also receives oracle
access to a function D : {0, 1}n → {0, 1}o.

We require that for all functions f : {0, 1}k → {0, 1} and D : {0, 1}n → {0, 1}o such that D
ε-erasure-agrees with Conf , there exists α ∈ {0, 1}a such that RedD(x, α) (1− δ)-agrees with
f . Note that for if δ < 2−k then it follows that RedD(x, α) 1-agrees with f .

A few comments are in order:

• Given a function D that ε-erasure agrees with a boolean function g, we can consider
the (probabilistic) function D′ which answers like D, except that whenever D answers
‘⊥’, D′ tosses a coin. It follows that D′ (1

2
+ ε/2)-agrees with g.

• Consequently, any δ → 1
2
− ε black-box amplification translates into a δ → 2 · ε black-

box erasure hardness amplification. Meaning that, lower bounds on black-box erasure
hardness amplification immediately translate into lower bounds on (standard) hardness
amplification.

• Every black-box proof for a concatenation (or direct product) lemma, namely the case
that Conf (x1, . . . , xt) = (f(x1), . . . , f(xt)), (and note that Conf isn’t boolean) can be
transformed into a black-box erasure hardness amplification, and so, lower bounds
on black-box erasure hardness amplification apply to concatenation lemmas (or direct
product lemmas).

• Another variant termed “errorless amplification”, was considered by Bogdanov and
Safra [BS07] and Watson [Wat15]. In our terminology, this corresponds to the more
stringent requirement in Definition 5.4 that RedD(x, α) 1 − δ-erasure-agrees with f .
(That is, the reduction is allowed to answer ⊥ with probability δ, but is not allowed to
err.) As this requires more from the reduction, any errorless amplification is in partic-
ular erasure hardness amplification, and lower bounds for black-box erasure hardness
amplification translate to the case of errorless amplification.

9We use a different terminology than Artemenko and Shaltiel [AS14]. In [AS14], this task is called
“function generic basic hardness amplification”.
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• Unlike (standard) hardness amplification – erasure hardness amplification, errorless
amplification, and direct product lemmas “do not imply majority”. Namely, there
are reductions in the literature which for small ε, are constant depth circuits without
majority gates [IJKW10, Wat15]. This was observed already in [Vio06] for the direct
product lemma, and can be verified by inspection for example of [Wat15] for error-less
hardness amplification, see [AS14] for discussion. Moreover, these reductions make
less queries than is possible for (standard) hardness amplification, and achieve q =

O( log(1/δ)
ε

) whereas by Theorem 1.7 q = Ω( log(1/δ)
ε2

) are required for black-box hardness
amplification.

In light of the last comment, in the case of black-box erasure hardness amplification, we
can only hope to prove lower bounds on the number of queries, and are shooting for lower
bounds of the form q = Ω( log(1/δ)

ε
).

Watson [Wat15] proved such a lower bound for nonadaptive reductions, by observing that
the proof of Shaltiel and Viola [SV10] extends to the setup of erasures, and gives this bound.
Artemenko and Shaltiel proved a lower bound of q = Ω(1

ε
) which holds even for adaptive

reductions.
In this paper we prove a tight lower bound of q = Ω( log(1/δ)

ε
) on black-box erasure hardness

amplification that holds for adaptive reductions.

Theorem 5.5 (Lower bound on the number of queries for erasures). There exist constants
δ0, ν > 0 such that: Let (Con,Red) be a δ → ε black-box erasure hardness amplification with
input lengths k and n, list size 2a and output length o. Assume that:

• Red(·) is a size r oracle circuit, that makes at most q (possibly adaptive) queries.

• n, a, 1
ε
≤ r ≤ 2ν·k and 2−2k ≤ δ ≤ δ0.

Then q = Ω( log(1/δ)
ε

).

The proof of Theorem 5.5 follows by modifying the proof of Theorem 1.7 as follows:
We prove a slightly modified version of the zoom lemma (Lemma 4.5). Specifically, for
a, b ∈ {0, 1} we define: a~ b to be a, if b = 0, and ⊥ otherwise. That is, the bit b “decides”
whether the bit a is kept or erased. As in the case of “⊕” we extend the definition of “~”
to strings and functions.

In the modified version of the zoom lemma, we replace the oracles Conf ⊕ Noises for
s = 1

2
or s = 1

2
− 2ε in the lemma, by Conf ~ Noises for s = 1 or s = 1 − 2ε (respectively).

Loosely speaking, this is analogous in the sense that Conf ⊕ Noise 1
2

and Conf ~ Noise1 both
“wipe out” the information in Conf making such an oracle useless for a reduction, while
Conf ⊕Noise 1

2
−2ε and Conf ~Noise1−2ε are oracles on which the respective reductions should

succeed. We state this version of the modified zoom-lemma below:

Lemma 5.6. There exist constants δ0, ν > 0 and d > 1 such that: Let (Con,Red) be a δ → ε
black-box erasure hardness amplification with input lengths k and n, list size 2a and output
length o. Suppose for every x and α the reduction Red is a circuit of size r that makes at
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most q oracle queries. Assume n, a, q, 1
ε
≤ r ≤ 2ν·k, and δ ≤ δ0. Let η := δ + 2−ν·k, and

V = {0, 1}n. Let f : {0, 1}k → {0, 1} be a function that is 1/200-hard for circuits of size
s = rd.

There exists a set B ⊆ {0, 1}n of size (aq/η)O(1), a string v ∈ {0, 1}B, x ∈ {0, 1}k and
α ∈ {0, 1}a such that

• Pr
D←NoiseV1−2ε

[RedConf~D(x, α) = f(x)|D(B) = v] ≥ 1− 2
√
δ − 2−ν·k,

• RedConf~Dv(x, α) 6= f(x), where Dv : V → {0, 1} is defined by D′(y) = v(y) if y ∈ B
and “one” otherwise.

The function Dv represents the case where D is chosen from the (fixed distribution)
NoiseV1 , except that on the indices in B, the value of Dv is set to v. The lemma states that
in this setting the reduction fails to compute f(x).

The proof of Lemma 5.6 follows using exactly the same argument as in Lemma 4.5 (with
the modification explained above). Theorem 5.5 follows in the same way as Theorem 1.7
follows from Lemma 4.5, using the fact that if a function g : {0, 1}q → {0, 1} distinguishes

Noiseq1 from Noiseq1−ε with advantage 1− δ, then q = Ω( log(1/δ)
ε

).

5.4 Limitations on black-box constructions of PRGs from hard
functions

Our lower bounds on black-box hardness amplification can be extended to the related setup
of “black-box constructions of pseudorandom generators from hard functions”. This setup
is often referred to as “hardness versus randomness” or “pseudorandom generators in the
Nisan-Wigderson setting”. This is an extensive and highly successful line of research that
is often the motivation for hardness amplification [NW94, BFNW93, Imp95, IW97, IW01,
STV01, SU05, Uma03].

All the constructions above use the “hybrid argument” [GM84, BM84, Yao82], and con-
sequently, in order to construct PRGs with error ε′ that outputs m bits, they need to am-
plify hardness and achieve “amplified hardness” of ε < ε′/n. (Some of the constructions
[SU05, Uma03] do not explicitly use hardness amplification. However, these constructions
“amplify hardness by themselves”, and yield hardness amplification as explained in [SU06]).

In this section we will consider the problem of constructing PRGs from hard functions
(without explicitly requiring a hardness amplification step). We do not know whether hard-
ness amplification to ε < 1/n is necessary in this setup. (The reader is referred to [FSUV13]
for a study on this problem, which shows that in some weak sense, the loss of the hybrid
argument can sometimes be avoided). Our techniques can be used to prove limitations on
black-box PRG constructions that yield PRGs with low error.

Formal definition of black-box PRG constructions. Below, we give a definition of
black-box PRG constructions. The main difference from hardness amplification is that in
this setup:
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• The task of Conf is to construct a “PRG” stretching ` bits to n bits.

• The reduction Red expects to receive oracle access to a function D : {0, 1}n → {0, 1}
that “breaks” the PRG Conf .

A precise definition follows.

Definition 5.7. A function D : {0, 1}n → {0, 1} ε-breaks a function G : {0, 1}` → {0, 1}n
if:

| Pr
S←U`

[D(G(S)) = 1]− Pr
Y←Un

[D(Y ) = 1]| > ε

Definition 5.8 (black-box PRG constructions). A δ → ε black-box PRG coonstruction with
input lengths k, seed length `, output length n, and list size 2a, is a pair (Con,Red) such that:

• A construction Con is a map from functions f : {0, 1}k → {0, 1} to functions Conf :
{0, 1}` → {0, 1}n.

• A reduction Red is an oracle circuit Red(·)(x, α) that accepts two inputs: x ∈ {0, 1}k
and α ∈ {0, 1}a (we call α a “nonuniform advice string”). Red also receives oracle
access to a function D : {0, 1}n → {0, 1}.

We require that for all functions f : {0, 1}k → {0, 1} and D : {0, 1}n → {0, 1} such that D
ε-breaks Conf , there exists α ∈ {0, 1}a such that RedD(x, α) (1− δ)-agrees with f . Note that
for if δ < 2−k then it follows that RedD(x, α) 1-agrees with f .

We remark that black-box PRG constructions are closely related to seeded extractors
[Tre01] (see for example discussion in [Sha02]) and local list-decoding algorithms to “ex-
tractor codes” [TZ04]. Loosely speaking, this relation is “of the same kind” of black-box
hardness amplification to error correcting codes.

Our results on black-box PRG constructions. We can prove the following extension
of Theorems 1.7 and Theorem 1.9.

Theorem 5.9 (Lower bound on the number of queries for PRGs). There exist constants
δ0, ν > 0 such that: Let (Con,Red) be a δ → ε black-box PRG construction with input lengths
k, seed length `, output length n, and list size 2a. Assume that:

• Red(·) is a size r oracle circuit, that makes at most q (possibly adaptive) queries.

• n, a, 1
ε
≤ r ≤ 2ν·k, 2−2k ≤ δ ≤ δ0 and ` < n.

Then q = Ω( log(1/δ)
ε

).

Theorem 5.10 (Hardness amplification implies majority). There exist constants δ0, ν > 0
such that: Let (Con,Red) be a δ → ε black-box PRG construction with input lengths k, seed
length `, output length n, and list size 2a. Assume that:
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• Red(·) is a size r oracle circuit of depth d = O(log(1/ε)) (over a set of gates that
includes the standard boolean gates with unbounded fan-in)

• n, a, 1
ε
≤ r ≤ 2ν·k and δ ≤ δ0.

Then there exists a circuit R of size poly(r), and depth O(d) that uses the gates allowed to
Red, and computes the majority function on inputs of length Ω(1/ε).

Adapting the proofs to PRG constructions. We sketch the proofs of Theorem 5.9
and Theorem 5.10. The high level idea is to prove the following zoom lemma in this setting.
The lemma is identical to Lemma 4.5 except that, in the oracle, Conf is replaced by a
function Distf which we now define: on input y ∈ {0, 1}n, Distf (y) answers one iff there
exists s ∈ {0, 1}` such that Conf (s) = y.

Lemma 5.11 (Zoom Lemma for black-box PRG constructions). There exist constants
δ0, ν > 0 and d > 1 such that: Let (Con,Red) be a δ → ε black-box PRG construction
with input lengths k, seed length `, output length n, and list size 2a. Suppose for every x
and α the reduction Red is a circuit of size r that makes at most q oracle queries. Assume
n, a, q, 1

ε
≤ r ≤ 2ν·k, δ ≤ δ0, ` < n. Let η := δ + 2−ν·k. Let f : {0, 1}k → {0, 1} be a function

that is 1/200-hard for circuits of size s = rd.
Then, there exists a set B ⊆ {0, 1}n of size (aq/η)O(1), a string v ∈ {0, 1}B, x ∈ {0, 1}k

and α ∈ {0, 1}a such that

• Pr
D←NoiseV1

2−2ε

[RedDistf⊕D(x, α) = f(x)|D(B) = v] ≥ 1− 2
√
δ − 2−ν·k,

• Pr
D←NoiseV1

2

[RedDistf⊕D(x, α) = f(x)|D(B) = v] ≤ 0.51.

The high level idea is the following. We consider two oracles: Distf ⊕ NoiseN1
2

, and

Distf ⊕ NoiseN1
2
−2ε. In the first oracle, the noise completely masks out the information in

Distf , and so a reduction Red the receives access to this oracle cannot succeed. The second
oracle ε-breaks Conf , because ` < n, and so with this oracle the reduction must succeed.
From here the proof of the zoom lemma proceeds as in the case of hardness amplification.
The two theorems now follow from the zoom lemma, in the same manner as in the case of
hardness amplification.

6 Conclusion and open problems

This paper concludes a line of research initiated in [Vio04, Vio06] by establishing that hard-
ness amplification requires majority and many queries. Recall that a function f can be
written as the majority of a polynomial number of functions from a class C if and only if for
any distribution on the inputs there exists a function in C that computes f correctly with
probability ≥ 1/2 + 1/poly. (One direction can be proved via boosting [Fre95, Section 2.2]
or min-max/linear-programming duality [GHR92, Section 5]. The other direction follows
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from the “discriminator lemma” of [HMP+93].) Hence we offer the following alternative
interpretation of hardness amplification:

Black-box hardness amplification is a process that takes a function f that is already 1/2− ε
hard under some distribution, and produces another function f ′ that has roughly the same

hardness under the uniform distribution.

A fundamental question remains: is hardness amplification false? In particular, is the
XOR lemma true for restricted circuit classes, such as constant-depth circuits with parity
gates? One can show that the XOR lemma is false for the class of constant-depth circuits
with one majority gate. This follows by the bounds in [ABFR94], and the fact that the XOR
lemma applied to parity is again just parity. But that is essentially the only counterexample
that we know.

Our results apply to black-box techniques. We remark that one possible way to break
the black-box barrier is to come up with proofs that use the fact that D is a small circuit
(bypassing the black-box limitations). A potential non-black-box approach was presented
by Gutfreund, Shaltiel and Ta-Shma [GST07] (see also [Ats06, Gut06, GT07]) in a very
specific scenario that has some similarity to “worst-case to average case reductions in NP”.
The techniques of these papers provably break black-box limitations in a related setting. See
discussion by Gutfreund and Ta-Shma [GT07].

Another question, already highlighted in [SV10], is whether the construction of pseudo-
random generators with constant error requires majority. The techniques in this paper have
recently enabled the first progress on this question, see [Vio18].

Acknowledgments. We are grateful to Iftach Haitner for very helpful discussions. We
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