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ABSTRACT. Assuming a symmetric matrix-valued potential
that approaches constant endstates with a sufficient asymptotic
rate, we relate the Maslov and Morse indices for Schrödinger
operators on R. In particular, we show that with our choice
of convention, the Morse index is precisely the negative of the
Maslov index. Our analysis is motivated, in part, by appli-
cations to stability of nonlinear waves, for which the Morse
index of an associated linear operator typically determines sta-
bility. In a series of three examples, we illustrate the role of our
result in such applications.

1. INTRODUCTION

We consider eigenvalue problems

(1.1) Hy := −y ′′ + V(x)y = λy ; dom(H) = H2(R),

and also (for any s ∈ R)

(1.2) Hsy := −y ′′ + sy ′ + V(x)y = λy ; dom(Hs) = H2(R),

where λ ∈ R, y(x) ∈ Rn and V ∈ C(R;Rn×n) is a real-valued symmetric matrix
potential satisfying the following asymptotic conditions:

(A1) The limits limx→±∞ V(x) = V± exist, and for each M ∈ R,

∫∞

−M
(1+ |x|)|V(x) − V+|dx <∞;

∫M

−∞
(1+ |x|)|V(x) − V−|dx <∞.
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(A2) The eigenvalues of V± are all positive. We denote the smallest among all
these eigenvalues νmin > 0.

The domain for H is often expressed as the set

D := {y ∈ L2(R) : y,y ′ ∈ ACloc(R), −y ′′ + V(x)y ∈ L2(R)}.

We note that in the current setting (i.e., under our assumptions on V ), this is
equivalent to H2(R) (see, e.g., [69]). With this domain, H is self-adjoint.

Our particular interest lies in counting the number of negative eigenvalues for
H (i.e., the Morse index). We proceed by relating the Morse index to the Maslov
index, which is described in Section 3. In essence, we find that the Morse index
can be computed in terms of the Maslov index, and that while the Maslov index
is less elementary than the Morse index, it can be computed (numerically) in a
relatively straightforward way.

The Maslov index has its origins in the work of V. P. Maslov [56] and sub-
sequent development by V. I. Arnol′d [3]. It has now been studied extensively,
both as a fundamental geometric quantity [12, 14, 24, 28, 62, 64] and as a tool for
counting the number of eigenvalues on specified intervals [7, 11, 15, 17, 18, 22,
23, 27, 43, 44, 46, 57]. In this latter context, there has been a strong resurgence of
interest following the analysis by Deng and Jones (i.e., [23]) for multidimensional
domains. Our aim in the current analysis is to rigorously develop a relationship
between the Maslov index and the Morse index in the relatively simple setting of
(1.1). Our approach is adapted from [22, 23, 42].

As a starting point, we define what we will mean by a Lagrangian subspace of
R2n.

Definition 1.1. We say ℓ ⊂ R2n is a Lagrangian subspace if ℓ has dimension
n and

(Ju,v)R2n = 0,

for all u,v ∈ ℓ. Here, (·, ·)R2n denotes the Euclidean inner product on R2n, and

J =
(

0 −In
In 0

)
,

with In the n × n identity matrix. We sometimes adopt standard notation for
symplectic forms, ω(u,v) = (Ju,v)R2n . In addition, we denote by Λ(n) the
collection of all Lagrangian subspaces ofR2n, and we refer to this as the Lagrangian
Grassmannian.

A simple example, important for intuition, is the case n = 1, for which
(Ju,v)R2 = 0 if and only if u and v are linearly dependent. In this case, we
see that any line through the origin is a Lagrangian subspace of R2. More gen-
erally, any Lagrangian subspace of R2n can be spanned by a choice of n linearly
independent vectors in R2n. We will find it convenient to collect these n vectors
as the columns of a 2n × n matrix X, which we refer to as a frame (sometimes
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Lagrangian frame) for ℓ. Moreover, we will often write X = ( XY
)
, where X and Y

are n×n matrices.
Suppose ℓ1(·), ℓ2(·) denote paths of Lagrangian subspaces ℓi : I → Λ(n),

for some parameter interval I. The Maslov index associated with these paths,
which we will denote Mas(ℓ1, ℓ2; I), is a count of the number of times the paths
ℓ1(·) and ℓ2(·) intersect, counted with both multiplicity and direction. (Precise
definitions of what we mean in this context by multiplicity and direction will be
given in Section 3.) In some cases, the Lagrangian subspaces will be defined along
some contour in the (α,β)-plane

Γ = {(α(t), β(t)) : t ∈ I},

and when it is convenient we will use the notation Mas(ℓ1, ℓ2; Γ ).
We will verify in Section 2 that under our assumptions on V(x), and for

λ < νmin, (1.1) hasn linearly independent solutions that decay to zero as x → −∞,
and n linearly independent solutions that decay to zero as x → +∞. We express
these as, respectively,

ϕ−
n+j(x;λ) = eµ−n+j(λ)x(r−j +E−j (x;λ)),

ϕ+
j (x;λ) = eµ+j (λ)x(r+n+1−j +E+j (x;λ)),

with also

∂xϕ
−
n+j(x;λ) = eµ−n+j(λ)x(µ−n+jr−j + Ẽ−j (x;λ)),

∂xϕ
+
j (x;λ) = eµ+j (λ)x(µ+j r+n+1−j + Ẽ+j (x;λ)),

for j = 1,2, . . . , n, where the nature of the µ±j ∈ R, r±j ∈ Rn, and the error terms

E±j (x;λ), Ẽ±j (x;λ) are developed in Section 2. The only detail we need for this
preliminary discussion is the observation that under assumptions (A1) and (A2),

(1.3) lim
x→±∞E

±
j (x;λ) = 0; lim

x→±∞ Ẽ
±
j (x;λ) = 0.

We will verify in Section 2 that if we create a frame

X−(x;λ) =
(
X−(x;λ)
Y−(x;λ)

)

by taking {ϕ−
n+j(x;λ)}nj=1 as the columns of X−(x;λ) and {∂xϕ−

n+j(x;λ)}nj=1

as the respective columns of Y−(x;λ), then X−(x;λ) is a frame for a Lagrangian
subspace, which we will denote ℓ−(x;λ). Likewise, we can create a frame

X+(x;λ) =
(
X+(x;λ)
Y+(x;λ)

)
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by taking {ϕ+
j (x;λ)}nj=1 as the columns of X+(x;λ) and {∂xϕ+

j (x;λ)}nj=1 as
the respective columns of Y+(x;λ). Then, X+(x;λ) is a frame for a Lagrangian
subspace, which we will denote ℓ+(x;λ).

In constructing our Lagrangian frames, we can view the exponential multipli-

ers eµ
±
j x as expansion coefficients, and if we drop these off we retain frames for the

same spaces. That is, we can create an alternative frame for ℓ−(x;λ) by taking the
expressions r−j + E−j (x;λ) as the columns of (a modification of ) X−(x;λ), and

the expressions µ−n+jr
−
j +Ẽ−j (x;λ) as the corresponding columns for (a modifica-

tion of ) Y−(x;λ). Using (1.3), we see that in the limit as x tends to −∞ (of the
resulting modified frames) we obtain the frame

R−(λ) =
(
R−

S−(λ)

)
,

where

R− =
(
r−1 r

−
2 · · · r−n

)
,

S−(λ) =
(
µ−n+1(λ)r

−
1 µ

−
n+2(λ)r

−
2 · · · µ−2n(λ)r−n

)
.

(The dependence on λ is specified here to emphasize the fact that S−(λ) depends
on λ through the multipliers {µ−n+j}nj=1.) We will verify in Section 2 that R−(λ)
is the frame for a Lagrangian subspace, and we denote this space ℓ−R(λ).

Proceeding similarly with ℓ+(x;λ), we obtain the asymptotic Lagrangian sub-
space ℓ+R(λ) with frame

R+(λ) =
(
R+

S+(λ)

)
,

where

R+ =
(
r+n r

+
n−1 · · · r+1

)
,

S+(λ) =
(
µ+1 (λ)r

+
n µ

+
2 (λ)r

+
n−1 · · · µ+n(λ)r+1

)
.

(The ordering of the columns of R+ is simply a convention, which follows natu-
rally from our convention for indexing {ϕ+

j }nj=1.)

Let Γ̄0 denote the contour in the (x, λ)-plane obtained by fixing λ = 0 and
letting x run from −∞ to +∞. We stress that, along Γ̄0, the path ℓ− depends on
x (i.e., we have ℓ−(x; 0), with x running from −∞ to +∞), while ℓ+R does not
depend on x (i.e., we have ℓ+R(0), independent of x).

We next state the main result of our paper, which relates the Morse index
Mor(H) to the Maslov index Mas(ℓ−, ℓ+R; Γ̄0). For purposes of exposition, we have
elected to postpone a precise (somewhat technical) definition of the Maslov index
until a later section (Section 3), but we note that intuitively Mas(ℓ−, ℓ+R; Γ̄0) can
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be viewed as the number of twists the path ℓ− has relative to the fixed Lagrangian
subspace ℓ+R, as x runs from −∞ to +∞. For example, in the case of a single
equation, the frame for ℓ−(x;λ) can be taken as (ϕ−(x;λ),ϕ− ′

(x;λ))t , for any
solutionϕ−(x;λ) that decays as x → −∞, and such frames can be identified with
points on S1 in the obvious way. The number of twists (half cycles of S1) can be
counted as the number of values x∗ ∈ R so that ϕ−(x∗;λ) = 0, corresponding
with the usual Sturm oscillation count.

Theorem 1.2. Let V ∈ C(R;Rn×n) be a real-valued symmetric matrix poten-
tial, and suppose (A1) and (A2) hold. Then, Mor(H) = −Mas(ℓ−, ℓ+R; Γ̄0).

Remark 1.3. The advantage of this theorem resides in the fact that the Maslov
index on the righthand side is generally straightforward to compute numerically.
(See, for example, [7, 15–18], and the examples we discuss in Section 6.) The
choice of λ = 0 for Γ̄0 is not necessary for the analysis, and indeed if we fix any
λ0 < νmin and denote by Γ̄λ0 the contour in the (x, λ)-plane obtained by fixing
λ = λ0 and letting x run from −∞ to +∞, then Mas(ℓ−, ℓ+R; Γ̄λ0) will be negative
the count of eigenvalues of H strictly less than λ0. Since Γ̄0 plays a distinguished
role, we refer to Mas(ℓ−, ℓ+R; Γ̄0) as the Principal Maslov Index (following [42]).
Here, we use Γ̄0 to emphasize that x ∈ [−∞,∞]; the notation Γ0 will be reserved
below for the contour obtained by fixing λ = 0 and letting x run from −∞ to x∞
for a fixed large x∞.

Remark 1.4. Our restriction in Remark 1.3 to the case λ0 < νmin keeps our
analysis strictly below the essential spectrum, and we briefly note here the primary
technical difficulty that arises if this restriction is not enforced. For simplicity,
suppose νmin = 0, and observe that in this case we will have at least one decay
solution of the form

p+n(x;λ) = e−
√
−λx

((
r+1

−
√
−λr+1

)
+ E+n(x;λ)

)

(typically referred to as a slow decay solution), and (as discussed in Lemma 2.2
below), a corresponding growth solution

p+n+1(x;λ) = e+
√
−λx

((
r+1

+
√
−λr+1

)
+ E+n+1(x;λ)

)

(typically referred to as a slow growth solution). Fundamentally, the difficulty we
run into in moving λ0 to νmin = 0 is that it is difficult to keep p+n(x;λ) and
p+n+1(x;λ) separated for λ small and x large.

Remark 1.5. In Section 3, our definition of the Maslov index will be for
compact intervals I. We will see that we are able to view ℓ−(·; 0) : x ֏ Λ(n) as
a continuous path of Lagrangian subspaces on [−1,1] by virtue of the change of
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variables

(1.4) x = ln
(

1+ τ
1− τ

)
, τ ∈ [−1,1].

We will verify in Section 5 that, for s ∈ R, any eigenvalue of Hs with real
part less than or equal to νmin must be real-valued. This observation will allow us
to construct the Lagrangian subspaces ℓ−(x;λ) and ℓ+R(λ) in that case through a
development that looks identical to the discussion above. We obtain the following
theorem.

Theorem 1.6. Let V ∈ C(R;Rn×n) be a real-valued symmetric matrix poten-
tial, and suppose (A1) and (A2) hold. Let s ∈ R, and let ℓ−(x; 0) and ℓ+R(0) denote
Lagrangian subspaces developed for (1.2). Then, Mor(Hs) = −Mas(ℓ−, ℓ+R; Γ̄0).

Remark 1.7. As described in more detail in Sections 5 and 6, equations of
forms (1.1) and (1.2) arise naturally when a gradient system ut + F ′(u) = uxx is
linearized about an asymptotically constant stationary solution ū(x) or a traveling
wave solution ū(x − st) (respectively). The case of solitary waves, for which
(without loss of generality)

lim
x→±∞ ū(x) = 0,

has been analyzed in [11, 15, 17–19] (with s 6= 0 in [11] and s = 0 in the others).
In particular, theorems along the lines of our Theorem 1.2 (though restricted to
the case of solitary waves) appear as Corollary 3.8 in [11] and Proposition 35 in
Appendix C.2 of [15]. The same framework can also be applied in the context
of periodic stationary solutions (see, e.g., [45, 59, 60]), but we do not pursue that
here.

We conclude this section by stating a straightforward corollary of (the proofs
of ) Theorems 1.2 and 1.6 (see particularly Claim 4.11). We comment on this in
part to observe the relationship between the current analysis and the elegant anal-
yses in [10] and [66], in which the authors use exponential dichotomy techniques
to establish that the spectrum of H on R (and indeed for a much larger class of
operators) can be approximated by the spectrum of H on a bounded (sufficiently
large) interval I, with appropriate boundary conditions. The primary differences
between the results of [10] and the corollary stated here are the following:

(1) Our corollary is for a half-line problem instead of a bounded-interval
problem.

(2) Our boundary condition depends on the spectral parameter λ.

Before stating our corollary, we note that if λ0 is an eigenvalue of Hs satisfying
λ0 < νmin, then it must be isolated, because it is away from essential spectrum (see
Section 2). In this way, we can find ε0 > 0 sufficiently small so that λ0 is the only
eigenvalue of Hs in the disk

Dε0 := {λ ∈ C : |λ− λ0| ≤ ε0},
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and we can additionally take ε0 small enough so that for all λ ∈ Dε0 we have
λ < νmin. Let E denote the eigenspace associated with λ0 (as an eigenvalue of
Hs). For L taken sufficiently large in the corollary, we will consider the half-line
problem

HLy := −y ′′ + V(x)y = λy,
y ∈ H2((−∞, L]), y(L) ∈ ℓ+R(λ),

and for any 0 < ε ≤ ε0, we denote by σ εL the collection of eigenvalues ofHL inDε
(i.e., σ εL = σ(HL) ∩Dε). Finally, we denote by EεL the direct sum of eigenspaces
associated with the eigenvalues of HL in σ εL .

Corollary 1.8. Let the assumptions of Theorem 1.6 hold, as well as the notation
in the preceding paragraph. Given any 0 < ε ≤ ε0, there exists x∞ sufficiently large so
that for all L ≥ x∞,

dimE = dimEεL.

In particular, the number of eigenvalues of HL in Dε, counted with multiplicity, is
equal to the multiplicity of λ0 as an eigenvalue of H.

Plan of the paper. In Section 2, we develop several relatively standard results
from ODE theory that will be necessary for our construction and analysis of the
Maslov index. In Section 3, we define the Maslov index, and discuss some of its
salient properties, and in Section 4 we prove Theorem 1.2. In Section 5, we verify
that the analysis can be extended to the case of any s ∈ R, and finally, in Section
6, we provide some illustrative applications.

2. ODE PRELIMINARIES

In this section, we develop preliminary ODE results that will serve as the founda-
tion of our analysis. This development is standard, and follows [70, pp. 779–781]
(see, e.g., [6, 21] for similar analyses). We begin by clarifying our terminology.

Definition 2.1. We define the point spectrum of H, denoted σpt(H), as the
set

σpt(H) = {λ ∈ R : Hϕ = λϕ for someϕ ∈ H2(R) \ {0}}.

We define the essential spectrum of H, denoted σess(H), as the values in R that are
not in the resolvent set of H and are not isolated eigenvalues of finite multiplicity.

We note that the total spectrum is σ = σpt(H)∪σess(H), and the discrete spec-
trum is defined as σdiscrete(H) = σ \σess(H). Since our analysis takes place entirely
away from essential spectrum, the eigenvalues we are counting are elements of the
discrete spectrum.

As discussed, for example, in [37, 48], the essential spectrum of H is deter-
mined by the asymptotic equations

(2.1) −y ′′ + V±y = λy.
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In particular, if we look for solutions of the form y(x) = eikxr , for some scalar
constant k ∈ R and (non-zero) constant vector r ∈ Rn, then the essential spec-
trum will be confined to the allowable values of λ. For (2.1), we find

(k2I + V±)r = λr ,

so that

λ(k) ≥ (V±r , r)Rn‖r‖2
.

Applying the min-max principle, we see that σess(H) ⊂ [νmin,∞) (keeping in
mind that νmin > 0).

Away from the essential spectrum, we begin our construction of asymptot-
ically decaying solutions to (1.1) by looking for solutions of (2.1) of the form
ϕ(x;λ) = eµxr , where in this case µ is a scalar function of λ, and r is again a
constant vector in Rn. In this case, we obtain the relation

(−µ2I + V± − λI)r = 0,

from which we see that the values of µ2 + λ will correspond with eigenvalues of
V±, and the vectors r will be eigenvectors of V±. We denote the spectrum of V±
by σ(V±) = {ν±j }nj=1, ordered so that j < k implies ν±j ≤ ν±k , and we order
the eigenvectors correspondingly so that V±r±j = ν±j r±j for all j ∈ {1,2, . . . , n}.
Moreover, since V± are symmetric matrices, we can choose the set {r−j }nj=1 to be
orthonormal, and similarly for {r+j }nj=1.

We have
µ2 + λ = ν±j -⇒ µ = ±

√
ν±j − λ.

We will denote the admissible values of µ by {µ±j }2n
j=1, and for consistency we

choose our labeling scheme so that j < k implies µ±j ≤ µ±k (for λ ≤ νmin). This
leads us to the specifications

µ±j (λ) = −
√
ν±n+1−j − λ,

µ±n+j(λ) =
√
ν±j − λ,

for j = 1,2, . . . , n.

We now express (1.1) as a first-order system, with p =
(
p
q

)
=
(
y
y ′
)
. We find

(2.2)
dp

dx
= A(x;λ)p; A(x;λ) =

(
0 I

V(x)− λI 0

)
,

and we additionally set

A±(λ) := lim
x→±∞A(x;λ) =

(
0 I

V± − λI 0

)
.
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We note that the eigenvalues of A± are precisely the values {µ±j }2n
j=1, and the

associated eigenvectors are

{
r
±
j

}n
j=1 =

{(
r±n+1−j

µ±j rn+1−j±

)}n

j=1

and

{
r
±
n+j

}n
j=1 =

{(
r±j

µ±n+jr
±
j

)}n

j=1

.

Lemma 2.2. Let V ∈ C(R;Rn×n) be a real-valued symmetric matrix potential,
and suppose (A1) and (A2) hold. Then, for any λ < νmin there exist n linearly inde-
pendent solutions of (2.2) that decay to zero as x → −∞, and n linearly independent
solutions of (2.2) that decay to zero as x → +∞. Respectively, we can choose these so
that they can be expressed as

p−n+j(x;λ) = eµ−n+j(λ)x(r−n+j + E−n+j(x;λ)); j = 1,2, . . . , n,

p+j (x;λ) = eµ+j (λ)x(r+j + E+j (x;λ)); j = 1,2, . . . , n,

where for any fixed λ0 < νmin and λ∞ > 0 (with −λ∞ < λ0), we have E−n+j(x;λ) =
O((1+ |x|)−1), uniformly for λ ∈ [−λ∞, λ0], and similarly for E+j (x;λ).

Moreover, there exist n linearly independent solutions of (2.2) that grow to infin-
ity as x → −∞, and n linearly independent solutions of (2.2) that grow to infinity as
x → +∞. Respectively, we can choose these so they can be expressed as

p−j (x;λ) = eµ−j (λ)x(r−j + E−j (x;λ)); j = 1,2, . . . , n,

p+n+j(x;λ) = eµ+n+j(λ)x(r+n+j + E+n+j(x;λ)); j = 1,2, . . . , n,

where for any fixed λ0 < νmin and λ∞ > 0 (with −λ∞ < λ0), we have E−j (x;λ) =
O((1+ |x|)−1), uniformly for λ ∈ [−λ∞, λ0], and similarly for E+n+j(x;λ).

Proof. Focusing on solutions that decay as x → −∞, we express (2.2) as

dp

dx
= A−(λ)p +R−(x)p; R−(x) = A(x;λ)−A−(λ) =

(
0 0

V(x)− V− 0

)
.

We have seen that asymptotically decaying solutions to the asymptotic equation

dp/dx = A−(λ)p have the form p−n+j(x;λ) = eµ−n+j(λ)r−n+j, and so it is natural
to look for solutions of the form

p−n+j(x;λ) = eµ−n+j(λ)xz−n+j(x;λ),
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for which we have

(2.3)
dz−n+j(x;λ)

dx
= (A−(λ)− µ−n+j(λ)I)z−n+j(x;λ)+R−(x)z−n+j(x;λ).

Let P−n+j(λ) project onto the eigenspace of A−(λ) associated with eigenvalues
σ(A−(λ)) ∋ µ ≤ µ−n+j , and let Q−n+j(λ) likewise project onto the eigenspace
of A−(λ) associated with σ(A−(λ)) ∋ µ > µ−n+j . Notice particularly that there
exists some η > 0 so that µ − µ−n+j ≥ η for all µ associated with Q−n+j(λ).

For some fixed M > 0, we will look for a solution to (2.3) in L∞(−∞,−M] of
the form

z−n+j(x;λ)(2.4)

= r−n+j +
∫ x

−∞
e(A−(λ)−µ

−
n+j(λ)I)(x−ξ)P−n+j(λ)R−(ξ)z−n+j(ξ;λ)dξ

−
∫ −M

x
e(A−(λ)−µ

−
n+j(λ)I)(x−ξ)Q−n+j(λ)R−(ξ)z−n+j(ξ;λ)dξ.

We proceed by contraction mapping, defining T z−n+j(x;λ) to be the righthand
side of (2.4). Let z−n+j,w

−
n+j ∈ L∞(−∞,−M], so that

|T z−n+j −Tw−
n+j| ≤ K‖z−n+j −w−

n+j‖L∞(−∞,−M]

×
{∫ x

−∞
|R−(ξ)|dξ +

∫ −M

x
eη(x−ξ)|R−(ξ)|dξ

}

=: I1 + I2,

for some constant K > 0.
By assumption (A1), we know

∫ 0

−∞
(1+ |x|)|R−(x)|dx = C < ∞,

so that ∫ −M

−∞
(1+M)|R−(ξ)|dξ ≤

∫ −M

−∞
(1+ |ξ|)|R−(ξ)|dξ ≤ C,

giving the inequality

∫ −M

−∞
|R−(ξ)|dx ≤ C

1+M .

Likewise, we can check that for x ∈ (−∞,−M],
∫ −M

x
eη(x−ξ)|R−(ξ)|dx ≤ C

1+M .
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We see that

|T z−n+j −Tw−
n+j| ≤

2KC
1+M ‖z

−
n+j −w−

n+j‖L∞(−∞,−M]

for all x ∈ (−∞,−M] so that

‖T z−n+j −Tw−
n+j‖L∞(−∞,−M] ≤

2KC
1+M ‖z

−
n+j −w−

n+j‖L∞(−∞,−M],

and for M large enough we have the desired contraction. Moreover, the exponen-
tial decay in I2 allows us to see that

lim
x→−∞z

−
n+j(x;λ) = r−n+j,

with the asymptotic rate indicated.
Finally, we note that the case x → +∞ is similar. ❐

Recall that we denote by X−(x;λ) the 2n×nmatrix obtained by taking each
p−n+j(x;λ) from Lemma 2.2 as a column. In order to check that X−(x;λ) is
the frame for a Lagrangian subspace, let ϕ,ψ ∈ {p−n+j(x;λ)}nj=1, and consider
ω(ϕ,ψ) = (Jϕ,ψ). First,

d

dx
ω(ϕ,ψ) =

(
J
dϕ

dx
,ψ

)
+
(
Jϕ,

dψ

dx

)
= (JAϕ,ψ)+ (Jϕ,Aψ).

It is important to note at this point that we can express A as A = JB, for the
symmetric matrix

B(x;λ) =
(
V(x)− λI 0

0 −I

)
.

Consequently,

d

dx
ω(ϕ,ψ) = (J2

Bϕ,ψ)+ (Jϕ, JBψ) = −(Bϕ,ψ)− (J2ϕ,Bψ)

= −(Bϕ,ψ)+ (ϕ,Bψ) = 0,

where the final equality follows from the symmetry of B. We conclude that
ω(ϕ,ψ) is constant in x, but since limx→−∞ω(ϕ,ψ) = 0, this constant must
be 0.

Proceeding in the same way, we can verify that X+(x;λ) is also a frame for a
Lagrangian subspace.

We end this section by verifying that R−(λ) (specified in the Introduction) is
the frame for a Lagrangian subspace. To see this, we change notation a bit from
the previous calculation and take

(
ϕ
µϕ

)
,

(
ψ
νψ

)
∈ {r−n+j

}n
j=1.
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We compute

ω

((
ϕ
µϕ

)
,

(
ψ
νψ

))
=
(
J

(
ϕ
µϕ

)
,

(
ψ
νψ

))
= (ν − µ)(ϕ,ψ) = 0,

where the final equality follows from orthogonality of the eigenvectors of V−.
Likewise, we find that R+(λ) is a Lagrangian subspace.

3. THE MASLOV INDEX

Given any two Lagrangian subspaces ℓ1 and ℓ2, with associated frames X1 =
(
X1
Y1

)

and X2 =
(
X2
Y2

)
, we can define the complex n×n matrix

(3.1) W̃ = −(X1 + iY1)(X1 − iY1)
−1(X2 − iY2)(X2 + iY2)

−1.

As verified in [41], the matrices (X1− iY1) and (X2+ iY2) are both invertible, and
W̃ is unitary. We have the following theorem from [41].

Theorem 3.1. Suppose ℓ1, ℓ2 ⊂ R2n are Lagrangian subspaces, with respective

frames X1 =
(
X1
Y1

)
and X2 =

(
X2
Y2

)
, and let W̃ be as defined in (3.1). Then,

dim ker(W̃ + I) = dim(ℓ1 ∩ ℓ2).

That is, the dimension of the eigenspace of W̃ associated with the eigenvalue −1 is
precisely the dimension of the intersection of the Lagrangian subspaces ℓ1 and ℓ2.

Following [12, 28], we use Theorem 3.1, along with an approach to spectral
flow introduced in [62], to define the Maslov index. Given a parameter interval
I = [a, b], which can be normalized to [0,1], we consider maps ℓ : I → Λ(n),
which will be expressed as ℓ(t). In order to specify a notion of continuity, we
need to define a metric on Λ(n), and following [28, p. 274], we do this in terms
of orthogonal projections onto elements ℓ ∈ Λ(n). Specifically, let Pi denote the
orthogonal projection matrix onto ℓi ∈ Λ(n) for i = 1,2. That is, if Xi denotes
a frame for ℓi, then Pi = Xi(XtiXi)−1Xti . We take our metric d on Λ(n) to be
defined by

d(ℓ1, ℓ2) := ‖P1 −P2‖,
where ‖ · ‖ can denote any matrix norm. We will say that ℓ : I → Λ(n) is
continuous provided it is continuous under the metric d.

Given two continuous maps ℓ1(t), ℓ2(t) on a parameter interval I, we denote
by L(t) the path

L(t) = (ℓ1(t), ℓ2(t)).

In what follows, we will define the Maslov index for the path L(t), which will
be a count, including both multiplicity and direction, of the number of times the
Lagrangian paths ℓ1 and ℓ2 intersect. In order to be clear about what we mean by
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multiplicity and direction, we observe that associated with any path L(t) we have
a path of unitary complex matrices as described in (3.1). We have already noted
that the Lagrangian subspaces ℓ1 and ℓ2 intersect at a value t0 ∈ I if and only if
W̃(t0) has −1 as an eigenvalue. In the event of such an intersection, we define
the multiplicity of the intersection to be the multiplicity of −1 as an eigenvalue
of W̃ (since W̃ is unitary, the algebraic and geometric multiplicites are the same).
When we talk about the direction of an intersection, we mean the direction the
eigenvalues of W̃ are moving (as t varies) along the unit circle S1 when they cross
−1 (we take counterclockwise as the positive direction). We note that we need
to take care with what we mean by a crossing in the following sense: we must
decide whether to increment the Maslov index upon arrival or upon departure.
Indeed, there are several different approaches to defining the Maslov index (see,
e.g., [14, 64]), and they often disagree on this convention.

Following [12, 28, 62] (and in particular Definition 1.4 from [12]), we pro-
ceed by choosing a partition a = t0 < t1 < · · · < tn = b of I = [a, b], along
with numbers εj ∈ (0, π) so that ker(W̃(t)− ei(π+εj)I) = {0} for tj−1 ≤ t ≤ tj ;
that is, ei(π+εj) ∈ C \ σ(W̃(t)), for tj−1 ≤ t ≤ tj and j = 1, . . . , n. Moreover,
we notice that for each j = 1, . . . , n and any t ∈ [tj−1, tj], there are only finitely
many values θ ∈ [0, εj) for which ei(π+θ) ∈ σ(W̃(t)).

Fix some j ∈ {1,2, . . . , n}, and consider the value

k(t, εj) :=
∑

0≤θ<εj
dim ker(W̃ (t)− ei(π+θ)I).

for tj−1 ≤ t ≤ tj . This is precisely the sum, along with multiplicity, of the number
of eigenvalues of W̃(t) that lie on the arc

Aj := {ei(π+θ) : θ ∈ [0, εj)}

(See Figure 3.1.) The stipulation that ei(π±εj) ∈ C \ σ(W̃(t)), for tj−1 ≤ t ≤ tj ,
asserts that no eigenvalue can enter Aj in the clockwise direction or exit in the
counterclockwise direction during the interval tj−1 ≤ t ≤ tj . In this way, we see
that k(tj , εj) − k(tj−1, εj) is a count of the number of eigenvalues that enter Aj
in the counterclockwise direction (i.e., through −1) minus the number that leave
in the clockwise direction (again, through −1) during the interval [tj−1, tj].

In dealing with the catenation of paths, it is particularly important to under-
stand the difference k(tj , εj) − k(tj−1, εj) when an eigenvalue resides at −1 at
either t = tj−1 or t = tj (i.e., if an eigenvalue begins or ends at a crossing). If an
eigenvalue moving in the counterclockwise direction arrives at −1 at t = tj , then
we increment the difference forward, while if the eigenvalue arrives at −1 from the
clockwise direction we do not (because it was already in Aj prior to arrival). On
the other hand, suppose an eigenvalue resides at −1 at t = tj−1 and moves in the
counterclockwise direction. The eigenvalue remains inAj , and so we do not incre-
ment the difference. However, if the eigenvalue leaves in the clockwise direction
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x

x

x

x

x = eigenvalue of W̃

Aj

ei(π+εj)

FIGURE 3.1. The arc Aj

then we decrement the difference. In summary, the difference increments forward
upon arrivals in the counterclockwise direction, but not upon arrivals in the clock-
wise direction, and it decrements upon departures in the clockwise direction, but
not upon departures in the counterclockwise direction.

We are now ready to define the Maslov index.

Definition 3.2. Let L(t) = (ℓ1(t), ℓ2(t)), where ℓ1, ℓ2 : I → Λ(n) are
continuous paths in the Lagrangian-Grassmannian. The Maslov index Mas(L; I)
is defined by

Mas(L; I) =
n∑

j=1

(k(tj , εj)− k(tj−1, εj)).

Remark 3.3. As discussed in [12], the Maslov index does not depend on the
choices of {tj}nj=0 and {εj}nj=1, so long as they follow the specifications above.

One of the most important features of the Maslov index is homotopy in-
variance, for which we need to consider continuously varying families of La-
grangian paths. To set some notation, we denote by P(I) the collection of all
paths L(t) = (ℓ1(t), ℓ2(t)), where ℓ1, ℓ2 : I → Λ(n) are continuous paths in
the Lagrangian-Grassmannian. We say that two paths L,M ∈ P(I) are homo-
topic provided there exists a family Hs so that H0 = L, H1 = M, and Hs(t) is
continuous as a map from (t, s) ∈ I × [0,1] into Λ(n).
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The Maslov index has the following properties (see, e.g., [41] in the current
setting, or Theorem 3.6 in [28] for a more general result):

(P1) (Path Additivity) If a < b < c, then

Mas(L; [a, c]) = Mas(L; [a, b])+Mas(L; [b, c]).

(P2) (Homotopy Invariance) If L,M ∈ P(I) are homotopic, with L(a) =
M(a) and L(b) = M(b) (i.e., if L,M are homotopic with fixed end-
points), then Mas(L; [a, b]) = Mas(M; [a, b]).

4. APPLICATION TO SCHRÖDINGER OPERATORS

For H in (1.1), a value λ ∈ R is an eigenvalue (see Definition 2.1) if and only if
there exist coefficient vectors α(λ), β(λ) ∈ Rn and an eigenfunction ϕ(x;λ) so

that p =
(
ϕ
ϕ′
)

satisfies

X−(x;λ)α(λ) = p(x;λ) = X+(x;λ)β(λ).

This clearly holds if and only if the Lagrangian subspaces ℓ−(x;λ) and ℓ+(x;λ)
have non-trivial intersection. Moreover, the dimension of intersection will corre-
spond with the geometric multiplicity of λ as an eigenvalue. In this way, we can
fix any x ∈ R and compute the number of negative eigenvalues of H, including
multiplicities, by counting the intersections of ℓ−(x;λ) and ℓ+(x;λ), including
multiplicities. Our approach will be to choose x = x∞ for a sufficiently large value
x∞ > 0. Our tool for counting the number and multiplicity of intersections will
be the Maslov index, and our two Lagrangian subspaces (in the roles of ℓ1 and ℓ2

above) will be ℓ−(x;λ) and ℓ+∞(λ) := ℓ+(x∞;λ). We will denote the Lagrangian
frame associated with ℓ+∞ by

X+∞(λ) =
(
X+∞(λ)
Y+∞(λ)

)
,

where X+∞(λ) = X+(x∞;λ) and Y+∞(λ) = Y+(x∞;λ).

Remark 4.1. We will verify in Appendix A that while the limit

ℓ−+∞(λ) := lim
x→+∞ℓ

−(x;λ)

is well defined for each λ < νmin, the resulting limit is not necessarily continuous
as a function of λ. This is our primary motivation for working with x∞ rather
than with the asymptotic limit.

Our analysis will be based on computing the Maslov index along a closed path
in the x-λ plane, determined by sufficiently large values x∞, λ∞ > 0. First, if we
fix λ = 0 and let x run from −∞ to x∞, we denote the resulting path Γ0 (the right
shelf ). Next, we fix x = x∞ and let Γ+ denote a path in which λ decreases from 0
to −λ∞. Continuing counterclockwise along our path, we denote by Γ∞ the path
obtained by fixing λ = −λ∞ and letting x run from x∞ to −∞ (the left shelf ).



1780 PETER HOWARD, YURI LATUSHKIN & ALIM SUKHTAYEV

Finally, we close the path in an asymptotic sense by taking a final path, Γ−, with λ
running from −λ∞ to 0 (viewed as the asymptotic limit as x → −∞; we refer to
this as the bottom shelf ). (See Figure 4.1.)

Γ+

Γ−

Γ∞

−λ∞

x∞

x

0

−∞

λ

Γ0

FIGURE 4.1. The Maslov Box

We recall that we can take the vectors in our frame X−(x;λ) to be

r
−
n+j + E−n+j(x;λ),

whence we see that ℓ−(x;λ) approaches the asymptotic frame R−(λ) as x → −∞.
Introducing the change of variables

x = ln
(

1+ τ
1− τ

)
⇐⇒ τ = e

x − 1
ex + 1

,

we see that ℓ− can be viewed as a continuous map on the compact domain
[
−1,

ex∞ − 1
ex∞ + 1

]
× [−λ∞,0].

Our evolving Lagrangian subspaces have frames X−(x;λ) and X+∞(λ) in the
setting of (1.1), so that W̃ from (3.1) becomes

W̃ (x;λ) = −(X−(x;λ)+ iY−(x;λ))(X−(x;λ)− iY−(x;λ))−1(4.1)

× (X+∞(λ)− iY+∞(λ))(X+∞(λ)+ iY+∞(λ))−1.
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Since W̃ (x;λ) is unitary, its eigenvalues are confined to the unit circle in C, S1.
In the limit as x → −∞ we obtain

W̃−
x∞(λ) := lim

x→−∞ W̃ (x;λ)

= −(R− + iS−(λ))(R− − iS−(λ))−1

× (X+∞(λ)− iY+∞(λ))(X+∞(λ)+ iY+∞(λ))−1.

4.1. Monotonicity. Our first result for this section asserts that the eigenval-
ues of W̃ (x;λ) and W̃−

x∞(λ) rotate monotonically as λ varies along R. In order
to prove this, we will use a lemma from [42], which we state as follows (see also
Theorem V.6.1 in [5]).

Lemma 4.2 ([42, Lemma 3.11]). Let W̃ (τ) be a C1 family of unitary n × n
matrices on some interval I, satisfying a differential equation

(d/dτ)W̃ (τ) = iW̃ (τ)Ω̃(τ),

where Ω̃(τ) is a continuous, self-adjoint and negative-definite n× n matrix. Then,
the eigenvalues of W̃(τ) move (strictly) monotonically clockwise on the unit circle as τ
increases.

We are now prepared to state and prove our monotonicity lemma.

Lemma 4.3. Let V ∈ C(R;Rn×n) be a real-valued symmetric matrix poten-
tial, and suppose (A1) and (A2) hold. Then, for each fixed x ∈ R, the eigen-
values of W̃ (x;λ) rotate (strictly) monotonically clockwise as λ ∈ (−∞, νmin) in-
creases. Moreover, the eigenvalues of W̃−

x∞(λ) rotate (strictly) monotonically clockwise
as λ ∈ (−∞, νmin) increases.

Remark 4.4. The monotonicity described in Lemma 4.3 seems to be generic
for self-adjoint operators in a broad range of settings (see, e.g., [42]); monotonicity
in x is not generic.

Proof. Following [42], we begin by computing ∂W̃/∂λ, and for this calcula-
tion it is convenient to write W̃ (x;λ) = −W̃1(x;λ)W̃2(λ), where

W̃1(x;λ) = (X−(x;λ) + iY−(x;λ))(X−(x;λ) − iY−(x;λ))−1

W̃2(λ) = (X+∞(λ)− iY+∞(λ))(X+∞(λ)+ iY+∞(λ))−1.

For W̃1, we have (suppressing independent variables for notational brevity)

∂W̃1

∂λ
= (X−λ + iY−λ )(X− − iY−)−1

− (X− + iY−)(X− − iY−)−1(X−λ − iY−λ )(X− − iY−)−1

= (X−λ + iY−λ )(X− − iY−)−1 − W̃1(X
−
λ − iY−λ )(X− − iY−)−1.
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If we multiply by W̃∗
1 we find

W̃∗
1
∂W̃1

∂λ
= (X−t + iY−t)−1(X−t − iY−t)(X−λ + iY−λ )(X− − iY−)−1

− (X−λ − iY−λ )(X− − iY−)−1

= (X−t + iY−t)−1
{
(X−t − iY−t)(X−λ + iY−λ )

− (X−t + iY−t)(X−λ − iY−λ )
}
(X− − iY−)−1

= ((X− − iY−)−1)∗{2iX−tY−λ − 2iY−tX−λ }(X− − iY−)−1.

Multiplying back through by W̃1, we conclude

∂W̃1

∂λ
= iW̃1Ω̃1,

where

Ω̃1 = ((X− − iY−)−1)∗{2X−tY−λ − 2Y−tX−λ }((X− − iY−)−1).

Likewise, we find that

∂W̃2

∂λ
= iW̃2Ω̃2,

where

Ω̃2 = ((X+∞ + iY+∞)−1)∗{2Y+∞t∂λX+∞ − 2X+∞
t
∂λY

+
∞}((X+∞ + iY+∞)−1).

Combining these observations, we find

∂W̃

∂λ
= −∂W̃1

∂λ
W̃2 − W̃1

∂W̃2

∂λ
= −iW̃1Ω̃1W̃2 − iW̃1W̃2Ω̃2

= −iW̃1W̃2(W̃
∗
2 Ω̃1W̃2)− iW̃1W̃2Ω̃2 = iW̃ Ω̃,

where (recalling that W̃ = −W̃1W̃2), we have Ω̃ = W̃∗
2 Ω̃1W̃2 + Ω̃2.

We see that the behavior of ∂W̃/∂λ will be determined by the quantities
X−tY−λ − Y−tX−λ and Y+∞

t ∂λX+∞ − X+∞t ∂λY+∞ . For the former, we differentiate
with respect to x to find

∂

∂x
{X−tY−λ − Y−

t
X−λ }

= X−txY−λ +X−
t
Y−λx − Y−

t
xX

−
λ − Y−

t
X−λx

= Y−tY−λ +X−
t
(VX− − λX−)λ − (VX− − λX−)tX−λ − Y−

t
Y−λ

= −X−tX−,
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where we have used X−x = Y− and Y−x = V(x)X− − λX−. Integrating from −∞
to x, we find

X−tY−λ − Y−
t
X−λ = −

∫ x

−∞
X−t(y ;λ)X−(y ;λ)dy,

from which it is clear that X−tY−λ −Y−tX−λ is negative definite, which implies that
Ω̃1 is negative definite.

Likewise, even though x∞ is fixed, we can differentiate

Y+(x;λ)tX+λ (x;λ)−X+(x;λ)tY+λ (x;λ)

with respect to x and evaluate at x = x∞ to find

Y+∞
t
∂λX

+
∞ −X+∞t ∂λY+∞ = −

∫ +∞

x∞
X−t(y ;λ)X−(y ;λ)dy,

from which it is clear that Y+∞
t ∂λX+∞−X+∞t ∂λY+∞ is negative definite, which implies

that Ω̃2 is negative definite.
We conclude that Ω̃ is negative definite, at which point we can employ Lemma

3.11 from [42] to obtain the claim.
For the case of W̃−

x∞(λ), we have W̃−
x∞(λ) = −W̃1(λ)W̃2(λ), where

W̃1(λ) = (R− + iS−)(R− − iS−)−1,

and W̃2(λ) is as above. Computing as before, we find

∂W̃1

∂λ
= iW̃1Ω̃1,

where in this case

Ω̃1 = ((R− − iS−)−1)∗{2R−tS−λ − 2S−tR−λ }((R− − iS−)−1).

Recalling that R−λ = 0, we see that the nature of Ω̃1 is determined by R−tS−λ .
Recalling that

S−(λ) =
(
µ−n+1(λ)r

−
1 µ

−
n+2(λ)r

−
2 · · · µ−2n(λ)r−n

)
,

we have (recalling µ+n+j(λ) =
√
ν−j − λ )

S−λ (λ) = −
1
2

(
1

µ−n+1(λ)
r−1

1
µ−n+2(λ)

r+2 · · · 1
µ−2n(λ)

r−n
)
.
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In this way, orthogonality of the {r−j }nj=1 leads to the relation

R−tS−λ = −
1
2




1
µ−n+1(λ)

0 · · · 0

0
1

µ−n+2(λ)
. . . 0

...
...

. . .
...

0 0 · · · 1
µ−2n(λ)




.

Since the {µ−n+j}nj=1 are all positive (for λ < νmin), we see that Ω̃1 is self-adjoint
and negative definite.

The matrix W̃2 is unchanged, so we can draw the same conclusion about
monotonicity. ❐

4.2. Lower bound on the spectrum of H. We have already seen that the
essential spectrum of H is confined to the interval [νmin,+∞). For the point spec-
trum, if λ is an eigenvalue of H, then there exists a corresponding eigenfunction
ϕ(·;λ) ∈ H2(R). If we take an L2(R) inner product of (1.1) with ϕ, we find

λ
∥∥ϕ

∥∥2
2 =

∥∥ϕ′∥∥2
2 + 〈Vϕ,ϕ〉 ≥ −C

∥∥ϕ
∥∥2

2,

for some constant C > 0 taken so that |〈Vϕ,ϕ〉| ≤ C‖ϕ‖2
2 for all ϕ ∈ H2(R).

We conclude that σpt(H) ⊂ [−C,∞). For example, C = ‖V‖∞ clearly works.
In what follows, we will take a value λ∞ sufficiently large, and in particular we
will take λ∞ > C (additional requirements will be added as well, but they can all
be accommodated by taking λ∞ larger, so that this initial restriction continues to
hold).

4.3. The top shelf. Along the top shelf Γ+, the Maslov index counts inter-
sections of the Lagrangian subspaces ℓ−(x∞;λ) and ℓ+∞(λ) = ℓ+(x∞;λ). Such
intersections will correspond with solutions of (1.1) that decay at both ±∞, and
hence will correspond with eigenvalues ofH. Moreover, the dimension of these in-
tersections will correspond with the dimension of the space of solutions that decay
at both ±∞, and so will correspond with the geometric multiplicity of the eigen-
values. Finally, we have seen that the eigenvalues of W̃ (x;λ) rotate monotonically
counterclockwise as λ decreases from 0 to −λ∞ (i.e., as Γ+ is traversed), and so the
Maslov index on Γ+ is a direct count of the crossings, including multiplicity (with
no cancellations arising from crossings in opposite directions). We conclude that
the Maslov index associated with this path will be a count, including multiplicity,
of the negative eigenvalues of H; that is, of the Morse index. We can express these
considerations as

Mor(H) = Mas(ℓ−, ℓ+∞; Γ+).



The Maslov and Morse Indices for System Schrödinger Operators on R 1785

4.4. The bottom shelf. For the bottom shelf, we have

W̃−
x∞(λ) = −(R− + iS−(λ))(R− − iS−(λ))−1

× (X+∞(λ)− iY+∞(λ))(X+∞(λ)+ iY+∞(λ))−1.

By choosing x∞ suitably large, we can ensure that the frame X+∞(λ) is as close as
we like to the frame R+(λ), where we recall

R− =
(
R−

S−

)
and R+ =

(
R+

S+

)
.

(As noted in Remark 4.1, ℓ−+∞(λ) is not necessarily continuous in λ, but ℓ+R(λ)
certainly is continuous in λ.) We will proceed by analyzing the matrix

W̃−
R (λ) := −(R− + iS−(λ))(R− − iS−(λ))−1(R+ − iS+(λ))(R+ + iS+(λ))−1,

for which we will be able to conclude that for λ < νmin, −1 is never an eigenvalue.
By continuity, we will be able to draw conclusions about W̃−

x∞(λ) as well.

Lemma 4.5. For any λ < νmin the spectrum of W̃−
R (λ) does not include −1.

That is, dim(ℓ−R(λ)∩ ℓ+R(λ)) = 0 for all such λ.

Proof. We need only show that for any λ < νmin the 2n vectors comprising the
columns of R− and R+ are linearly independent. We proceed by induction, first
establishing that any single column of R− is linearly independent of the columns
of R+. Suppose not. Then, there is some j ∈ {1,2, . . . , n}, along with some
collection of constants {ck}nk=1 so that

r
−
n+j =

n∑

k=1

ckr
+
k .(4.2)

Recalling the definitions of r−n+j and r+k , we have the two equations

r−j =
n∑

k=1

ckr
+
n+1−k

µ−n+jr
−
j =

n∑

k=1

ckµ
+
k r

+
n+1−k.

Multiplying the first of these equations by µ−n+j , and subtracting the second equa-
tion from the result, we find

0 =
n∑

k=1

(µ−n+j − µ+k )ckr+n+1−k.
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Since the collection {r+n+1−k}nk=1 is linearly independent, and since µ−n+j−µ+k > 0
for all k ∈ {1,2, . . . , n} (for λ < νmin), we conclude that the constants {ck}nk=1
must all be zero, but this contradicts (4.2).

For the induction step, suppose that, for some 1 ≤m< n, anym elements of
the collection {r−n+j}nj=1 are linearly independent of the set {r+k }nk=1. We want to
show that anym+1 elements of the collection {r−n+j}nj=1 are linearly independent
of the set {r+k }nk=1. If not, then by a change of labeling if necessary, there exist
constants {c−l }m+1

l=2 and {c+k }nk=1 so that

r
−
n+1 =

m+1∑

l=2

c−l r
−
n+l +

n∑

k=1

c+k r
+
k .(4.3)

Again, we have two equations

r−1 =
m+1∑

l=2

c−l r
−
l +

n∑

k=1

c+k r
+
n+1−k

µ−n+1r
−
1 =

m+1∑

l=2

c−l µ
−
n+lr

−
l +

n∑

k=1

c+k µ
+
k r

+
n+1−k.

Multiplying the first of these equations by µ−n+1, and subtracting the second equa-
tion from the result, we obtain the relation

0 =
m+1∑

l=2

c−l (µ
−
n+1 − µ−n+l)r−l +

n∑

k=1

c+k (µ
−
n+1 − µ+k )r+n+1−k.

By our induction hypothesis, the vectors on the righthand side are all linearly
independent, and since µ−n+1 − µ+k > 0 for all k ∈ 1,2, . . . , n, we can conclude
that c+k = 0 for all k ∈ 1,2, . . . , n. (Notice we make no claim about the c−l .)
Returning to (4.3), we obtain a contradiction to the linear independence of the
collection {r−n+j}nj=1.

Continuing the induction up tom = n− 1 gives the claim. ❐

Remark 4.6. It is important to note that we do not include the case λ = νmin

in our lemma, and indeed the lemma does not generally hold in this case. For
example, consider the case in which V(x) vanishes identically at both ±∞ (i.e.,
V− = V+ = 0, so in particular νmin = 0). In this case, we can take R− = I,
S− =

√
−λI, R+ = Ǐ, and S+ = −

√
−λǏ, where

Ǐ =




0 0 · · · 1
0 0 1 0
...

...
...

...
1 0 . . . 0



.
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We easily find

W̃−
R (λ) = −

(1+ i
√
−λ)2

(1− i
√
−λ)2 I,

and we see explicitly that W̃−
x∞(0) = −I, so that all n eigenvalues reside at −1.

Moreover, as λ proceeds from 0 toward −∞ the eigenvalues of W̃−
R (λ) remain

coalesced, and move monotonically counterclockwise around S1, returning to −1
in the limit as λ → −∞. In this case, we can conclude that for the path from 0 to
−λ∞, the Maslov index does not increment.

We immediately obtain the following lemma.

Lemma 4.7. Let V ∈ C(R;Rn×n) be a real-valued symmetric matrix potential,
and suppose (A1) and (A2) hold. Then, for any λ0 < νmin, we can choose x∞
sufficiently large so that we have

dim(ℓ−R(λ)∩ ℓ+∞(λ)) = 0 for all λ ∈ [−λ∞, λ0].

It follows by taking λ0 = 0 that

Mas(ℓ−, ℓ+∞; Γ−) = 0.

Proof. First, according to Lemma 4.5, none of the eigenvalues of W̃−
R (λ) is

−1 for any λ ∈ [−λ∞, λ0]. In particular, since the interval [−λ∞, λ0] is compact,
there exists some ε > 0 so that each eigenvalue ω̃(λ) of W̃−

R (λ) satisfies

|ω̃(λ)+ 1| > ε for all λ ∈ [−λ∞, λ0].

Much as above, we can make the change of variables

x∞ = ln
(

1+ τ∞
1− τ∞

)
⇐⇒ τ∞ = e

x∞ − 1
ex∞ + 1

.

This allows us to view W̃−
x∞ as a continuous function on the compact domain

(x∞, λ) ∈ [1 − δ,1] × [−λ∞, λ0], where δ > 0 is small, indicating that x∞ is
taken to be large. We see that W̃−

x∞ is uniformly continuous, and so by choosing

τ∞ sufficiently close to 1, we can force the eigenvalues of W̃−
x∞ to be as close to the

eigenvalues of W̃−
R (λ) as we like. We take τ∞ sufficiently close to 1 so that for

each λ ∈ [−λ∞, λ0] and each eigenvalue ω̃ of W̃−
R (λ), there is a corresponding

eigenvalue of W̃−
x∞ , which we denote ω(λ), so that |ω̃(λ) −ω(λ)| < ε/2. But

then

ε < |ω̃(λ)+ 1| = |ω̃(λ)−ω(λ)+ω(λ)+ 1|
≤ |ω̃(λ)−ω(λ)| + |ω(λ)+ 1| < ε

2
+ |ω(λ)+ 1|,

from which we conclude that |ω(λ)+ 1| ≥ ε
2
, for all λ ∈ [−λ∞, λ0]. ❐
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4.5. The left shelf. For the left shelf Γ∞, we need to understand the Maslov
index associated with W̃ (x;−λ∞) (with λ∞ sufficiently large) as x goes from −∞
to x∞ (keeping in mind that the path Γ∞ reverses this flow). To accomplish this,
we follow the approach of [30, 70] in developing large-|λ| estimates on solutions
of (1.1), uniformly in x. For λ < 0, we set ξ =

√
−λx and phi(ξ) = y(x), so

that (1.1) becomes

ϕ′′(ξ)+ 1
λ
V

(
ξ√
−λ

)
ϕ = ϕ.

Setting Φ1 = ϕ, Φ2 = ϕ′, and Φ =
(
Φ1
Φ2

)
∈ R2n, we can express this equation as

Φ′ = A(ξ;λ)Φ; A(ξ;λ) =



0 I

I − 1
λ
V

(
ξ√
−λ

)
0


 .

We begin by looking for solutions that decay as x → −∞ (and so as ξ → −∞);
that is, we begin by constructing the frame X−(x;−λ∞). It is convenient to write

A(ξ;λ) = A−(λ)+ E−(ξ;λ),

where

A−(λ) =



0 I

I − 1
λ
V− 0


 ; E−(ξ;λ) =




0 0
1
λ

(
V− − V

(
ξ√
−λ

))
0


 .

Fix any M ≫ 0, and note that according to (A1), we have

∫M

−∞
|E−(ξ;λ)|dξ ≤ 1

|λ|
∫M

−∞

∣∣∣∣V
(
ξ√
−λ

)
− V−

∣∣∣∣ dξ

= 1
|λ|

∫M/√−λ

−∞
|V(x)− V−|

√
−λdx ≤ K√

−λ,

for some constant K = K(M). Recalling we are denoting the eigenvalues of V− by
{ν−j }nj=1, we readily check that the eigenvalues of A−(λ) can be expressed as

µ̂−j (λ) = −
√

1−
ν−n+1−j
λ

= 1√
−λµ

−
j

µ̂−n+j(λ) =
√

1−
ν−j
λ
= 1√

−λµ
−
n+j ,

for j = 1,2, . . . , n (ordered, as usual, so that j < k implies µ̂−j ≤ µ̂−k ). In order
to select a solution decaying with rate µ̂−n+j (as ξ → −∞), we look for solutions of
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the form Φ−n+j(ξ;λ) = eµ̂−n+j(λ)ξZ−n+j(ξ;λ), for which Z−n+j satisfies

Z−
′

n+j = (A−(λ)− µ̂n+j(λ)I)Z−n+j + E−(ξ;λ)Z−n+j .

Proceeding similarly as in the proof of Lemma 2.2, we obtain a collection of
solutions

Z−n+j(ξ;λ) = r̂−n+j +O(|λ|−1/2),

where the O(·) terms are uniform for x ∈ (−∞,M]. These lead to

Φ−n+j(ξ;λ) = eµ̂−n+j(λ)ξ(r̂−n+j +O(|λ|−1/2)),

where r̂ corresponds with r, with µ replaced by µ̂. Returning to the original
coordinates, we construct the frame X−(x;λ) out of basis elements

(
y(x)
y ′(x)

)
= e

√
−λµ̂−n+j(λ)x

((
r−j√

−λµ̂−n+jr−j

)
+
(
O(|λ|−1/2)
O(1)

))
.

Recalling that when specifying a frame for ℓ− we can view the exponential
multipliers as expansion coefficients, we see that we can take as our frame for ℓ−

the matrices

X−(x;λ) = R− +O(|λ|−1/2),

Y−(x;λ) = S− +O(1),

where the O(·) terms are uniform for x ∈ (−∞,M], and we have observed that
µ−j =

√
−λµ̂−j , for j = 1,2, . . . ,2n. Likewise, we find that for −λ > 0 sufficiently

large,

X+∞(λ) = R+ +O(|λ|−1/2),

Y+∞(λ) = S+ +O(1).

Turning to W̃ (x;λ), we first observe that S−(λ)−1 can easily be identified by
using the orthogonality of R−; in particular, we see that the i-th row of S−(λ)−1

is (1/µ−n+i)(r
−
i )
t , which is O(|λ|−1/2). In this way, we see that

X−(x;λ)− iY−(x;λ) = R− +O(|λ|−1/2)− iS−(λ)+O(1)
= −iS−(λ){iS−(λ)−1(R− +O(1)) + I}
= −iS−(λ)(I +O(|λ|−1/2)),

and so

(X−(x;λ)− iY−(x;λ))−1 = i(I +O(|λ|−1/2))−1S−(λ)−1

= i(I +O(|λ|−1/2))S−(λ)−1,
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by Neumann approximation. Likewise,

X−(x;λ)+ iY−(x;λ) = R− +O(|λ|−1/2)+ iS−(λ)+O(1)
= (iI + (R− +O(1))S−(λ)−1)S−(λ)

= (iI +O(|λ|−1/2))S−(λ).

In this way, we see that

(X−(x;λ)+ iY−(x;λ))(X−(x;λ)− iY−(x;λ))−1

= (iI +O(|λ|−1/2))S−(λ)i(I +O(|λ|−1/2))S−(λ)−1

= (iI +O(|λ|−1/2))(iI +O(|λ|−1/2))

= −I +O(|λ|−1/2).

Proceeding similarly for X∞(λ), we have

(X+∞(λ)+ iY+∞(λ)(X+∞(λ)− iY+∞(λ))−1 = −I +O(|λ|−1/2),

and so
W̃ (x;λ) = −I +O(|λ|−1/2)

uniformly for x ∈ (−∞,M]. We see that for λ∞ sufficiently large the eigenvalues
of W̃ (x;−λ∞) are near −1 uniformly for x ∈ (−∞,M].

Turning to the behavior of W̃(x;λ) as x tends to +∞ (i.e., for x ≥ M), we
recall from Section 4.2 that if λ∞ is large enough, then −λ∞ will not be an eigen-
value of H. This means the evolving Lagrangian subspace ℓ− cannot intersect the
space of solutions asymptotically decaying as x → +∞, and so the frame X−(x;λ)
must be comprised of solutions that grow as x tends to +∞. The construction
of these growing solutions is almost identical to our construction of the decaying
solutions Φ−j , and we will be brief.

In this case, it is convenient to write A(ξ;λ) = A+(λ)+ E+(ξ;λ), where

A+(λ) =



0 I

I − 1
λ
V+ 0


 ; E+(ξ;λ) =




0 0
1
λ

(
V+ − V

(
ξ√
−λ

))
0


 .

The eigenvalues of A+(λ) can be expressed as

µ̂+j (λ) = −
√

1−
ν+m+1−j
λ

= 1√
−λµ

+
j ,

µ̂+n+j(λ) =
√

1−
ν+j
λ
= 1√

−λµ
+
n+j ,
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for j = 1,2, . . . , n (ordered, as usual, so that j < k implies µ̂+j ≤ µ̂+k ). In order to
select a solution growing with rate µ̂+n+j (as ξ → +∞), we look for solutions of the

form Φ+n+j(ξ;λ) = eµ̂+n+j(λ)ξZ+n+j(ξ;λ), for which Z+n+j satisfies

Z+
′

n+j = (A+(λ)− µ̂+n+j(λ)I)Z+n+j + E+(ξ;λ)Z+n+j .

Proceeding as with the frame of solutions that decay as x → −∞, we find
that for M sufficiently large (so that asymptotically decaying solutions become
negligible), we can take as our frame for ℓ−

X+(x;λ) = R+ +O(|λ|−1/2),

Y+(x;λ) = S̃+ +O(1),

where
S̃+ =

(
µ+n+1r

+
n µ

+
n+2r

+
n−1 · · · µ+2nr+1

)
,

and the O(·) terms are uniform for x ∈ [M,∞). Proceeding now almost exactly
as we did for the interval (−∞,M], we find that for λ∞ sufficiently large, the
eigenvalues of W̃ (x;−λ∞) are near −1 uniformly for x ∈ [M,∞).

We summarize these considerations in a lemma.

Lemma 4.8. Let V ∈ C(R;Rn×n) be a real-valued symmetric matrix potential,
and suppose (A1) and (A2) hold. Then, given any ε > 0, there exists λ∞ > 0 suffi-
ciently large so that for all x ∈ R and for any eigenvalueω(x;−λ∞) of W̃(x;−λ∞),
we have |ω(x;−λ∞)+ 1| < ε.

Remark 4.9. We note it would be insufficient to simply take M = x∞ in our
argument (thus avoiding the second part of the argument, based on asymptotically
growing solutions). This is because our overall argument is structured in such a
way that we choose λ∞ first, and then choose x∞ sufficiently large, based on this
value. (This is for the bottom shelf argument.) But λ∞ must be chosen based on
M , so M should not depend on the value of x∞.

We now make the following claim.

Lemma 4.10. Let V ∈ C(R;Rn×n) be a real-valued symmetric matrix poten-
tial, and suppose (A1) and (A2) hold. Then, given any M > 0, there exists λ∞ > 0
sufficiently large so that

Mas(ℓ−, ℓ+∞; Γ∞) = 0, for any x∞ > M.

Proof. We begin by observing that by taking λ∞ sufficiently large, we can en-
sure that for all x∞ > M the eigenvalues of W̃(x∞;−λ∞) are all near −1. To
make this precise, given any ε > 0 we can take λ∞ sufficiently large so that the
eigenvalues of W̃ (x∞;−λ∞) are confined to the arc Aε = {eiθ : |θ − π| < ε}.
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Moreover, we know from Lemma 4.3 that as λ decreases toward −λ∞ the eigen-
values of W̃ (x∞;λ) will monotonically rotate in the counterclockwise direction,
and so the eigenvalues of W̃ (x∞;−λ∞) will in fact be confined to the arc A+

ε =
{eiθ : −ε < θ − π < 0}. (See Figure 4.2; we emphasize that none of the eigen-
values can cross −1, because such a crossing would correspond with an eigen-
value of H, and we have assumed λ∞ is large enough so there are no eigenvalues
for λ ≤ −λ∞.) Likewise, by the same monotonicity argument, we see that the
eigenvalues of W̃−

x∞(−λ∞) (characterizing behavior on the bottom shelf ) are also
confined to A+

ε .

x

x

x
x
ei(π−ε)

x = eigenvalue of W̃

A+ε

FIGURE 4.2. Eigenvalues confined to A+ε

Turning now to the flow of eigenvalues as x proceeds from x∞ to −∞ (i.e.,
along Γ∞), we note by uniformity of our large-|λ| estimates that we can take λ∞
large enough so that the eigenvalues of W̃ (x;−λ∞) are confined to Aε (not nec-
essarily A+

ε ) for all x ∈ R. Combining these observations, we conclude that the
eigenvalues of W̃(x;−λ∞)must begin and end inA+

ε , without completing a loop
of S1, and consequently the Maslov index along the entirety of Γ∞ must be 0. ❐

4.6. Proof of Theorem 1.2. Let Γ denote the contour obtained by proceed-
ing counterclockwise along the paths Γ0, Γ+, Γ∞, Γ−. By the catenation property of
the Maslov index, we have

Mas(ℓ−, ℓ+∞; Γ ) =Mas(ℓ−, ℓ+∞; Γ0)+Mas(ℓ−, ℓ+∞; Γ+)
+ Mas(ℓ−, ℓ+∞; Γ∞)+Mas(ℓ−, ℓ+∞; Γ−).
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Moreover, by the homotopy property, and since Γ is homotopic to an arbitrarily
small cycle attached to any point of Γ , we can conclude that Mas(ℓ−, ℓ+∞; Γ ) = 0.
By Lemma 4.7 we have that Mas(ℓ−, ℓ+∞; Γ0) = 0, and by Lemma 4.10 we have
Mas(ℓ−, ℓ+∞; Γ∞) = 0. Since Mas(ℓ−, ℓ+∞; Γ+) = Mor(H), it follows immediately
that

Mas(ℓ−, ℓ+∞; Γ0)+Mor(H) = 0.

We will complete the proof with the following claim.

Claim 4.11. Under the assumptions of Theorem 1.2, and for x∞ sufficiently
large,

Mas(ℓ−, ℓ+∞; Γ0) = Mas(ℓ−, ℓ+R; Γ̄0).

Proof. As usual, let W̃ (x;λ) denote the unitary matrix (4.1) (which we recall

depends on x∞), and let W̃(x;λ) denote the unitary matrix

W̃(x;λ) = −(X−(x;λ) + iY−(x;λ))(X−(x;λ)− iY−(x;λ))−1

× (R+ − iS+(λ))(R+ + iS+(λ))−1.

That is, W̃(x;λ) is the unitary matrix used in the calculation of Mas(ℓ−, ℓ+∞; Γ0),
and W̃ (x;λ) is the unitary matrix used in the calculation of Mas(ℓ−, ℓ+R; Γ̄0).
Likewise, set

W̃−
x∞(λ) = lim

x→−∞ W̃(x;λ),

W̃−
R (λ) = lim

x→−∞W̃(x;λ),

both of which are well defined. (Notice that while the matrix W̃ (x;λ) has not
previously appeared, the other matrices here, including W̃−

R (λ), are the same as
before.)

By taking x∞ sufficiently large we can ensure that the spectrum of W̃−
x∞(0)

is arbitrarily close to the spectrum of W̃−
R (0) in the following sense: given any

ε > 0, we can take x∞ sufficiently large so that for any ω ∈ σ(W̃−
x∞(0)), there

exists ω̃ ∈ σ(W̃−
R (0)) so that |ω− ω̃| < ε.

Turning to the other end of our contours, we recall that W̃ (x∞; 0) will have
−1 as an eigenvalue if and only if λ = 0 is an eigenvalue of H, and the multi-
plicity of −1 as an eigenvalue of W̃ (x∞; 0) will correspond with the geometric

multiplicity of λ = 0 as an eigenvalue of H. For W̃(x; 0), set

W̃+(0) = lim
x→∞W̃ (x; 0),

which is well defined by our construction in Appendix A.
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Claim 4.12. As with W̃ (x∞; 0), W̃+(0) will have −1 as an eigenvalue if and
only if λ = 0 is an eigenvalue of H, and the multiplicity of −1 as an eigenvalue of
W̃+(0) will correspond with the geometric multiplicity of λ = 0 as an eigenvalue ofH.

Proof. We first consider the case in which λ = 0 is not an eigenvalue of H. In
this case, the construction in Appendix A shows that we can construct a frame for
ℓ−(x;λ) entirely from the solutions of (2.2) that grow as x → +∞. In this way,
we see that ℓ−+∞(0) = ℓ+R̃(0), where ℓ+

R̃
(0) denotes the Lagrangian subspace with

frame

R̃ =
(
R+

S̃+

)

(i.e., the asymptotic space associated with growing solutions; see Section 4.5). It

follows that W̃+(0) detects intersections of ℓ+R(0) and ℓ+
R̃
(0). But dim(ℓ+R(0) ∩

ℓ+
R̃
(0)) = 0, so in this case W̃+(0) will not have −1 as an eigenvalue.

On the other hand, suppose λ = 0 is an eigenvalue of H. Then, using our
construction from Appendix A, we find that the frame for ℓ−(x;λ) must contain
at least one element that decays as x → +∞. But then dim(ℓ−+∞(0)∩ ℓ+R(0)) 6= 0,
and −1 will be an eigenvalue of W̃+(0). Moreover, suppose λ = 0 has geometric
multiplicity m so that there are m solutions of (2.2) that decay at both −∞ and
+∞. In order for our construction in Appendix A to include all of these solu-
tions, it must include at least m solutions that decay as x → +∞ (and it cannot
include more, or the multiplicity would be greater than m). We conclude that
dim(ℓ−+∞(0)∩ ℓ+R(0)) =m.

We see from the preceding discussion that −1 is an eigenvalue of W̃+(0) if
and only if λ = 0 is an eigenvalue of H, and that if λ = 0 is an eigenvalue of H

with multiplicitym then −1 will be an eigenvalue of W̃+(0) with multiplicitym.

It remains to show that if −1 is an eigenvalue of W̃+(0) with multiplicitym, then
λ = 0 will be an eigenvalue of H with multiplicitym. First, if −1 is an eigenvalue

of W̃+(0), then there exists some

ζ ∈ ℓ−+∞(0)∩ ℓ+R(0).

Since ζ ∈ ℓ+R(0), there exist constants {d+j }nj=1 so that

ζ =
n∑

j=1

d+j r
+
j ,

and likewise since ζ ∈ ℓ−+∞(0), there exist constants {d−j }nj=1 so that

ζ =
n∑

j=1

d−j s
+
k(j).
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In this way, we see that we must have the relation

n∑

j=1

d+j r
+
j −

n∑

j=1

d−j s
+
k(j) = 0.

The full set {r+j }2n
j=1 is linearly independent, so the set {s+k(j)}nj=1 must contain at

least one of the {r+j }nj=1, say with j = j∗. (A bit more precisely, there must be
some index j∗ so that s+k(j∗) can be expressed as a linear combination of {r+j }nj=1.)
But then

(4.4) eµ
+
k(j∗)x(s+k(j∗) + Ẽ+k(j∗)(x;λ))

will decay at both −∞ and +∞. We conclude that this serves as an eigenfunction
for H with λ = 0.

Likewise, if η ∈ ℓ−+∞(0) ∩ ℓ+R(0) is linearly independent of ζ, then we can
find constants {e+j }nj=1 and {e−j }nj=1 so that

η =
n∑

j=1

e+j r
+
j ; η =

n∑

j=1

d−j s
+
k(j).

Just as for ζ, there must exist some j∗∗ so that s+k(j∗∗) can be expressed as a linear
combination of {r+j }nj=1. If j∗∗ 6= j∗, then we obtain a second eigenfunction for
λ = 0,

eµ
+
k(j∗∗)x(s+k(j∗∗) + Ẽ+k(j∗∗)(x;λ)),

which is necessarily linearly independent of (4.4), and so the geometric multiplic-
ity of λ = 0 as an eigenvalue of H is at least 2. On the other hand, if j∗ = j∗∗,
then since ζ and η are linearly independent, we can find a linear combination
χ = aζ + bη from which s+k(j∗) has been eliminated. But we will still have
χ ∈ ℓ−+∞(0)∩ℓ+R(0), and so there must exist some j∗∗∗ 6= j∗ so that s+k(j∗∗∗) can
be expressed as a linear combination of the {r+j }nj=1. Again, we obtain a second
eigenfunction for H (for λ = 0), and conclude that λ = 0 has multiplicity at least
2. We have already seen that if λ = 0 is an eigenvalue of multiplicity greater than 2
then the dimension of ℓ−+∞(0)∩ ℓ+R(0) will be greater than 2, so if the dimension
of this intersection is 2 then the multiplicity of λ = 0 as an eigenvalue of H will
be exactly 2.

This completes the argument for multiplicities 1 and 2, and the argument for
higher-order multiplicities follows similarly. ❐

By choosing x∞ sufficiently large, we can ensure the eigenvalues of W̃ (x∞; 0)

are arbitrarily close to the eigenvalues of W̃+(0). That is, −1 repeats as an eigen-
value the same number of times for these two matrices, and the eigenvalues aside
from −1 can be made arbitrarily close.
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We see that the path of matrices W̃ (x; 0) as x runs from −∞ to x∞ can
be viewed as a small perturbation from the path of matrices W̃ (x; 0), as x runs
from −∞ to +∞. To clarify this, we recall that by using the change of variables
(1.4) we can specify our path of Lagrangian subspaces on the compact interval
[−1,1]. Likewise, we can use the same change of variables to compactify the
interval (−∞, x∞] to the compact interval

[−1, (ex∞ − 1)/(ex∞ + 1)].

For this latter interval, we can make the further change of variables

ξ = 2
1+ r∞

τ + 1− r∞
1+ r∞

,

where r∞ = (ex∞ − 1)/(ex∞ + 1), so that W̃ (x; 0) and W̃ (x; 0) can both be
specified on the interval [−1,1]. Finally, we see that

|ξ − τ| = (1+ τ)1− r∞
1+ r∞

,

so by choosing x∞ sufficiently large (and hence r∞ sufficiently close to 1), we
can take the values of ξ and τ as close as we like. By uniform continuity the
eigenvalues of the adjusted path will be arbitrarily close to those of the original
path. Since the endstates associated with these paths are arbitrarily close, and
since the eigenvalues of one path end at −1 if and only if the eigenvalues of the
other path do, we can conclude by a continuity argument that the spectral flow
must be the same along each of these paths, and this establishes the claim. ❐

Theorem 1.2 is now an immediate consequence of Claim 4.11.

5. EQUATIONS WITH CONSTANT CONVECTION

For a traveling wave solution ū(x + st) to the Allen-Cahn equation

ut + F ′(u) = uxx ,
it is convenient to switch to a shifted coordinate frame in which the wave is a
stationary solution ū(x) for the equation

ut + sux + F ′(u) = uxx.
In this case, linearization about the wave leads to an eigenvalue problem

(5.1) Hsy := −y ′′ + sy ′ + V(x)y = λy,
where V(x) = F ′′(ū(x)). Our goal in this section is to show that our develop-
ment for (1.1) can be extended to the case (5.1) in a straightforward manner. For
this discussion, we take any real number s 6= 0, and we continue to let assumptions
(A1) and (A2) hold.

The main issues we need to address are as follows:
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(1) We need to show that the point spectrum for Hs is real-valued.
(2) We need to show that the n-dimensional subspaces associated withHs are

Lagrangian.
(3) We need to show that the eigenvalues of the associated unitary matrix

W̃ (x;λ) rotate monotonically as λ increases (or decreases).

Once these items have been verified, the remainder of our analysis carries over
directly from the case s = 0.

5.1. Essential spectrum. As for the case s = 0, the essential spectrum for
s 6= 0 can be identified from the asymptotic equations

(5.2) −y ′′ + sy ′ + V±y = λy.

Specifically, the essential spectrum will correspond with values of λ for which (5.2)
admits a solution of the form y(x) = eikxr for some constant non-zero vector
r ∈ Cn. Upon substitution of this ansatz into (5.1) we obtain the relations

(k2I + iskI + V±)r = λr .

We see that for k ∈ R the admissible values for λ(k) − k2 − isk will be precisely
the eigenvalues of V±, which we continue to denote as {ν±j }nj=1. We can conclude
that the essential spectrum will lie on or to the right of the family of parabolas

λ(k) = ν±j + k2 + isk,

which can be characterized as

Reλ = ν±j +
1
s2
(Imλ)2.

In particular, we see that if Reλ < νmin, then λ will not be in the essential spec-
trum. For notational convenience, we denote by Ω the region in C on or to the
right of these parabolas.

5.2. In C \Ω the point spectrum of Hs is real-valued. For any λ ∈ C \Ω,
we can look for ODE solutions with asymptotic behavior y(x) = eµxr . Upon
substitution into (5.2) we obtain the eigenvalue problem

(−µ2 + sµ + V± − λ)r = 0.

As in Section 2, we denote the eigenvalues of V± by {ν±j }nj=1, with associated
eigenvectors {r±j }nj=1. We see that the possible growth/decay rates µ will satisfy

µ2 − sµ + λ = ν±j -⇒ µ =
s ±

√
s2 − 4(λ− ν±j )

2
.
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We label the 2n growth/decay rates much as we did in Section 2:

µ±j (λ) =
s −

√
s2 − 4(λ− ν±n+1−j)

2
,

µ±n+j(λ) =
s +

√
s2 − 4(λ− ν±j )

2
,

for j = 1,2, . . . , n.
Now, suppose λ ∈ C \Ω is an eigenvalue for Hs . For this fixed value, we can

obtain asymptotic ODE estimates on solutions of (5.1) with precisely the same
form as those described in Lemma 2.2 (keeping in mind that the specifications of
{µ±j }2n

j=1 are different). Letting ψ(x;λ) denote the eigenfunction associated with
λ, we conclude that ψ(x;λ) can be expressed both as a linear combination of the
solutions that decay as x → −∞ (i.e., those associated with rates {µ−n+j}nj=1) and as
a linear combination of the solutions that decay as x → +∞ (i.e., those associated
with rates {µ+j }nj=1).

Keeping in mind we are in the case s 6= 0, we make the change of variable
ϕ(x) = e−(s/2)xy(x) (following a similar analysis in [11]), for which a direct
calculation yields

Hsϕ := e−(s/2)xHse(s/2)xϕ = −ϕ′′ +
(
s2

4
+ V(x)

)
ϕ = λϕ.

Moreover, if y(x) is a solution of Hsy = λy that decays with rate µ−n+j(λ) as
x → −∞, then the corresponding ϕ(x) will decay as x → −∞ with rate

− s
2
+
s +

√
s2 − 4(λ− ν±j )

2
= 1

2

√
s2 − 4(λ− ν±j ) > 0,

and likewise if y(x) is a solution of Hsy = λy that decays with rate µ+j (λ) as
x → +∞, then the corresponding ϕ(x) will decay as x → +∞ with rate

− s
2
+
s −

√
s2 − 4(λ− ν±j )

2
= −1

2

√
s2 − 4(λ− ν±j ) < 0.

In this way, we see that ϕ(x;λ) = e−(s/2)xψ(x;λ) is an eigenfunction for
Hs , associated with the eigenvalue λ. But Hs is self-adjoint, and so its spectrum
is confined to R. We conclude that λ ∈ R.

Finally, we observe that although the real value λ = νmin is embedded in the
essential spectrum, it is already in R. In this way, we conclude that any eigenvalue
λ of Hs with Reλ ≤ νmin must be real-valued.
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5.3. Bound on the point spectrum of Hs . Suppose λ ∈ R is an eigenvalue
of Hs with associated eigenvector ψ(x;λ). Taking an L2(R) inner product of
Hsψ = λψ with ψ, we obtain the relation

‖ψ′‖2 + s〈ψ′,ψ〉 + 〈Vψ,ψ〉 = λ‖ψ‖2.

We see that

λ‖ψ‖2 ≥ ‖ψ′‖2 − |s| ‖ψ′‖‖ψ‖ + 〈Vψ,ψ〉

≥ ‖ψ′‖2 − |s|
(
ε

2
‖ψ′‖2 + 1

2ε
‖ψ‖2

)
− ‖V‖∞ ‖ψ‖2

≥ −
(

1
2ε
+ ‖V‖∞

)
‖ψ‖2,

from which we conclude that λ is bounded below. (In this calculation, ε > 0 has
been taken sufficiently small.)

5.4. The spaces ℓ−(x;λ) and ℓ−R(λ) are Lagrangian. Since σp(H) ⊂ R,
we can focus on λ ∈ R, in which case the growth/decay rates {µ±j }2n

j=1 remain
ordered as λ varies. In light of this, the estimates of Lemma 2.2 remain valid
precisely as stated, with our revised definitions of these rates. The Lagrangian

property for R− =
(
R−
S−

)
can be verified precisely as before, but for

X−(x;λ) =
(
X−(x;λ)
Y−(x;λ)

)

the calculation changes slightly. For this, take λ < νmin and temporarily set

A(x;λ) := X−(x;λ)tY−(x;λ)− Y−(x;λ)tX−(x;λ),

and compute (letting prime denote differentiation with respect to x)

A′(x;λ) = X− ′
(x;λ)tY−(x;λ)+X−(x;λ)tY−

′
(x;λ)

− Y− ′
(x;λ)tX−(x;λ) − Y−(x;λ)tX−

′
(x;λ).

Using the relations

X−
′
(x;λ) = Y−(x;λ);(5.3)

Y−
′
(x;λ) = (V(x)− λI)X−(x;λ)+ sY−(x;λ),(5.4)

we find that A′(x;λ) = sA(x;λ). It follows immediately that e−sxA(x;λ) = c
for some constant c. But the rates of decay associated with A(x;λ) have the form

µ−n+j(λ)+ µ−n+k(λ) = s +
1
2

√
s2 − 4(λ− ν−j )+

1
2

√
s2 − 4(λ− ν−k ),
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from which we see that the exponents associated with e−sxA(x;λ) take the form

1
2

√
s2 − 4(λ− ν−j )+

1
2

√
s2 − 4(λ− ν−k ) > 0.

It is now clear that by taking x → −∞ we can conclude that c = 0. We conclude
that A(x;λ) = 0 for all x ∈ R, and it follows that X−(x;λ) is the frame for a
Lagrangian subspace (see Proposition 2.1 of [41]).

5.5. Monotoncity. In this case, according to Lemma 4.2 in [41], mono-
tonicity of W̃(x;λ) (in λ) will be determined by the matrices

X−(x;λ)∂λY−(x;λ)− Y−(x;λ)∂λX−(x;λ)(5.5)

and

X+∞(λ) ∂λY
+
∞(λ)− Y+∞(λ) ∂λX+∞(λ).(5.6)

On the bottom shelf, (5.5) will be replaced by

(R−)t ∂λS−(λ)− S−(λ)t ∂λR−.
Let us temporarily set

B(x;λ) := X−(x;λ)∂λY−(x;λ)− Y−(x;λ)∂λX−(x;λ),

and compute (letting prime denote differentiation with respect to x)

B′(x;λ) := X− ′
(x;λ)∂λY−(x;λ) +X−(x;λ)∂λY−

′
(x;λ)

− Y− ′
(x;λ)∂λX−(x;λ)− Y−(x;λ)∂λX−

′
(x;λ)

= −X−(x;λ)tX−(x;λ)+ sB(x;λ),

where we have used (5.3), (5.4) to get this final relation. Integrating this last
expression, we find that

B(x;λ) = −
∫ x

−∞
es(x−y)X−(y ;λ)tX−(y ;λ)dy,

from which we conclude that B(x;λ) is negative definite. We can proceed sim-
ilarly to verify that (5.6) is positive definite, and the matrix associated with the
bottom shelf can be analyzed as in the case s = 0.

6. APPLICATIONS

In this section, we discuss three illustrative examples that we hope will clarify the
analysis. For the first two, which are adapted from [17], we will be able to carry
out explicit calculations for a range of values of λ. The third example, adapted
from [39], will employ Theorem 1.2 more directly, in that we will determine that
a certain operator has no negative eigenvalues by computing only the principal
Maslov index.
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6.1. Example 1. We consider the Allen-Cahn equation

ut = uxx −u+u2,

which is known to have a pulse-type stationary solution

ū(x) = 3
2

sech2
(
x

2

)

(see [17]). Linearizing about ū(x), we obtain the eigenvalue problem

−y ′′ + (1− 2ū(x))y = λy,

which has the form (1.1) with n = 1 and V(x) = 1 − 2ū(x) (for which (A1)–
(A2) are clearly satisfied). Setting Φ =

(
y
y ′
)
, we can express this equation as a

first-order system Φ′ = A(x;λ)Φ, with

(6.1) A(x;λ) =
(

0 1
1− 2ū(x)− λ 0

)
; A± =

(
0 1

1− λ 0

)
.

As seen in [17], this equation can be solved exactly for all x ∈ R and λ < 1
(in this case, σess(H) ⊂ [1,∞)). In particular, if we set s = x/2, γ = 2

√
1− λ,

and
H±(s, λ) = ∓a0 + a1 tanh s ∓ tanh2 s + tanh3 s,

with

a0 = γ

15
(4− γ2); a1 = 1

5
(2γ2 − 3); a2 = −γ,

then (6.1) has (up to multiplication by a constant) exactly one solution that decays
as x → −∞,

Φ−(x;λ) = eγs



H−(s, λ)
1
2
(H−s (s, λ)+ γH−(s, λ))


 ,

and exactly one solution that decays as x → +∞,

Φ+(x;λ) = e−γs



H+(s, λ)

1
2
(H+s (s, λ)− γH+(s, λ))


 .

The target space can be obtained either from Φ+(x;λ) (by taking x → ∞) or
by working with A+(λ) directly (as discussed during our analysis), and in either
case we find that a frame for the target space is

R+ =
(
R+

S+

)
=
(

1
−
√

1− λ

)
.
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Computing directly, we see that

(R+ − iS+(λ))(R+ + iS+(λ))−1 = 1+ i
√

1− λ
1− i

√
1− λ.

Likewise, the evolving frame in this case can be taken to be

X−(x;λ) =
(
X−(x;λ)
Y−(x, λ)

)
=



H−(s, λ)
1
2
(H−s (s, λ)+ γH−(s, λ))


 .

We set

W̃(x;λ) = −(X−(x;λ) + iY−(x;λ))(X−(x;λ)− iY−(x;λ))−1

× (R+ − iS+(λ))(R+ + iS+(λ))−1,

which in this case we can compute directly. The results of such a calculation,
carried out in MATLAB, are depicted in Figure 6.1.

Remark 6.1. For the Maslov Box, we should properly use W̃ (x;λ) as de-
fined in (4.1) for some sufficiently large x∞, but for the purpose of graphical
illustration (see Figure 6.1) there is essentially no difference between working with

W̃(x;λ) and working with W̃ (x;λ) (i.e., taking the target Lagrangian subspace
to be ℓ+R(λ)). The lines at ±3 in Figure 6.1 are only drawn for illustration.

Referring to Figure 6.1, the curves comprise x-λ pairs for which W̃ (x;λ) has

−1 as an eigenvalue. The eigenvalues in this case are known to be − 5
4 , 0, and

3
4 , and we see that these are the locations of crossings along the top shelf. We
note particularly that the Principal Maslov Index is −1, because the path Γ̄0 is only
crossed once (the middle curve approaches Γ̄0 asymptotically, but this does not
increment the Maslov index).

6.2. Example 2. We consider the Allen-Cahn system

(6.2)
ut = uxx − 4u+ 6u2 − c(u− v)
vt = vxx − 4v + 6v2 + c(u− v),

where c > −2, with also c 6= 0. System (6.2) is known to have a stationary
solution

ū(x) = sech2x,

v̄(x) = sech2x
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FIGURE 6.1. Figure for Example 1

(see [17]). Linearizing about this vector solution, we obtain the eigenvalue system

(6.3)
−ϕ′′ + (4− 12ū(x)+ c)ϕ − cψ = λϕ,
−ψ′′ − cϕ + (4− 12v̄(x)+ c)ψ = λψ,

which can be expressed in form (1.1) with y =
(
ϕ
ψ

)
and

V(x) =
(
(4− 12ū(x)+ c) −c

−c (4− 12v̄ + c)

)
.

Following [17], we can solve this system explicitly in terms of functions

w−(x;κ) = e
√
κx(a0 + a1 tanhx + a2 tanh2x + tanh3 x),

w+(x;κ) = e−
√
κx(−a0 + a1 tanhx − a2 tanh2 x + tanh3x),

where

a0 = κ

15
(4− κ); a1 = 1

5
(2κ − 3); a2 = −

√
κ,

and the values of κ will be specified below.
We can now construct a basis for solutions decaying as x → −∞ as

p−3 (x;λ) =
(
w−(x;−λ+ 4)
w−(x;−λ+ 4)

)
; p−4 (x;λ) =

(
−w−(x;−λ+ 4+ 2c)
w−(x;−λ+ 4+ 2c)

)
,
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and a basis for solutions decaying as x → +∞ as

p+1 (x;λ) =
(
w+(x;−λ+ 4)
w+(x;−λ+ 4)

)
; p+2 (x;λ) =

(
−w+(x;−λ+ 4+ 2c)
w+(x;−λ+ 4+ 2c)

)
.

These considerations allow us to construct

X−(x;λ) =
(
w−(x;−λ+ 4) −w−(x;−λ+ 4+ 2c)
w−(x;−λ+ 4) +w−(x;−λ+ 4+ 2c)

)
;

X+(x;λ) =
(
w+(x;−λ+ 4) −w+(x;−λ+ 4+ 2c)
w+(x;−λ+ 4) +w+(x;−λ+ 4+ 2c)

)
,

with then Y−(x;λ) = X−x (x;λ) and Y+(x;λ) = X+x (x;λ).
In order to construct the target space, we write (6.3) as a first-order system by

setting Φ1 = ϕ, Φ2 = ψ, Φ3 =ϕ′, and Φ4 = ψ′. This allows us to write

Φ′ = A(x;λ)Φ; A(x;λ) =




0 0 1 0
0 0 0 1

−f (x;λ) −c 0 0
−c −f (x;λ) 0 0


 ,

where f (x;λ) = λ− 4− c + 12ū. We set

A+(λ) := lim
x→+∞A(x;λ) =




0 0 1 0
0 0 0 1

−λ+ 4+ c −c 0 0
−c −λ+ 4+ c 0 0


 .

If we follow our usual ordering scheme for indices, then for −2 < c < 0 we
have ν+1 = 4 + 2c and ν+2 = 4, with corresponding eigenvectors r+1 = (

1
−1

)
and

r+2 = (
1
1

)
. Accordingly, we have µ+1 (λ) = −

√
−λ+ 4, µ+2 (λ) = −

√
−λ+ 4+ 2c,

µ+3 (λ) =
√
−λ+ 4+ 2c, and µ+4 (λ) =

√
−λ+ 4. We conclude that a frame for

ℓ+R(λ) is

R+ =
(
R+

S+(λ)

)
,

where

R+ =
(

1 1
1 −1

)
; S+(λ) =

(
µ+1 (λ) µ

+
2 (λ)

µ+1 (λ) −µ+2 (λ)

)
.

The resulting spectral curves are plotted in Figure 6.2 for c = −1. In this
case, it is known that H has exactly six eigenvalues: −7, −5, −2, 0, 1, and 3 (the
eigenvalues 1 and 3 are omitted from our window). We see that the three crossings
along the line λ = 0 correspond with the count of three negative eigenvalues.
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FIGURE 6.2. Figure for Example 2

6.3. Example 3. Consider the Allen-Cahn system

(6.4) ut = uxx −DuF(u),

where

F(u1, u2) = u2
1u

2
2 +u2

1(1−u1 −u2)
2 +u2

2(1−u1 −u2)
2,

which is adapted from [39, p. 39]. In this setting, stationary solutions ū(x)
satisfying endstate conditions

lim
x→±∞ ū(x) = u±, for u− 6= u+

are called transition waves. A transition wave solution (numerically generated) for
(6.4) is depicted in Figure 6.3. In this case, we have u−1 = 1, u−2 = 0, u+1 = 0,
and u+2 = 1.

Upon linearization of (6.4) about ū(x), we obtain the eigenvalue problem

Hϕ = −ϕ′′ + V(x)ϕ = λϕ,

where V(x) := D2
uF(ū) denotes the usual Hessian matrix. In this case,

V− =
(

2 2
2 4

)
; V+ =

(
4 2
2 2

)
.
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FIGURE 6.3. Transition wave solution for a ternary Cahn-
Hilliard system

Using our usual labeling scheme, we have ν+1 = 3 − √5 and ν+2 = 3 + √5, with
respective eigenvectors

r+1 =



1

−1+√5
2


 ; r+2 =




1

−1−√5
2


 .

The corresponding values {µ+j }4
j=1 are then µ+1 = −

√
ν+2 − λ, µ+2 = −

√
ν+1 − λ,

µ+3 =
√
ν+1 − λ, and µ+4 =

√
ν+2 − λ.

For the target space ℓ+R we use the frame

R+(λ) =
(
R+

S+(λ)

)
=
(
r+2 r+1
µ+1 r

+
2 µ

+
2 r

+
1

)
.

For the evolving Lagrangian subspace ℓ−(x;λ) we need a basis for the two-
dimensional space of solutions that decay as x → −∞. Generally, we construct
this basis from the solutions

p−2+j(x;λ) = eµ−2+j(λ)x(r−2+j + E−2+j(x;λ)), j = 1,2,

from Lemma 2.2, but computationally it is easier to note that for λ = 0, ūx is a
solution of (1.1) that decays as x → −∞. In [39] the authors check that ūx(x)
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decays at the slower rate (i.e., the rate of p−3 ), so we can take as our frame

X−(x; 0) =
(
p−4 (x; 0) ūx(x)
p−′4 (x; 0) ūxx(x)

)
,

which we scale to

X−(x; 0) =
(
e−µ

−
4 (λ)xp−4 (x; 0) e−µ

−
3 (λ)xūx(x)

e−µ
−
4 (λ)xp−

′
4 (x; 0) e−µ

−
3 (λ)xūxx(x)

)
.

The advantage of this is that ū(x) is already known, and the faster-decaying solu-
tion p−4 (x; 0) can be generated numerically in a straightforward way (see [39]).
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FIGURE 6.4. Spectral flow for W̃(x; 0) in Example 3

In practice, we compute W̃(x; 0) for x running from −10 to 10, and com-
pute Mas(ℓ−, ℓ+R; Γ̄0) by following the eigenvalues of W̃ (x; 0) as they move along
S1. For x = −10 the two eigenvalues of W̃ (x; 0) both have positive real part,
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as depicted on the left side of Figure 6.4. As x increases from −10, the eigen-
value in the first quadrant remains confined to the first quadrant, and so does
not contribute to the Maslov index. The eigenvalue in the fourth quadrant ro-
tates monotonically clockwise, nearing −1 as x approaches 10 (and without ever
making a complete loop). The final configuration of the eigenvalues of W̃(x; 0)
is depicted on the right side of Figure 6.4. In calculations of this sort, we must
take care with eigenvalues that start or stop near −1, because a crossing could be
indicated by roundoff error. In this case, we know that λ = 0 is an eigenvalue for
H (with eigenfunction ūx(x)), and we can conclude from this that (at least) one
of the eigenvalues of W̃(x; 0) will approach −1 as x → +∞. Since there is only
one such eigenvalue, we can conclude that it indeed approaches −1 as x → +∞.
Since it is approaching in the clockwise direction, it does not contribute to the
Maslov index, and we conclude that

Mas(ℓ−, ℓ+R; Γ̄0) = 0,

from which Theorem 1.2 asserts that H has no eigenvalues below λ = 0. (Strictly
speaking, this is only strong numerical evidence, not numerical proof.) Moreover,
since only one eigenvalue of W̃ (x; 0) approaches −1 as x → +∞, we can conclude
that λ = 0 is a simple eigenvalue of H. It follows from Theorem 1.2 of [40] that
ū(x) is asymptotically stable as a solution to (6.4).

We note that our ability to efficiently compute the Maslov index for the single
shelf λ = 0 hinged on the observation that the known value ūx(x) provided
the slowly decaying solution needed for the calculation. Computing the Maslov
index associated with any other fixed λ, as x runs from −∞ to +∞, is more
computationally intensive, and so we have not computed the full Maslov box for
this example. Indeed, one strength of Theorem 1.2 is precisely that it obviates the
need for such a calculation.

APPENDIX A.

In this short appendix, we construct the asymptotic Lagrangian path

ℓ−+∞(λ) = lim
x→+∞ℓ

−(x;λ), for λ < νmin,

and show that it is not generally continuous in λ. For a related discussion from a
different point of view, we refer to Lemma 3.7 of [2].

As a start, we recall that one choice of frame for ℓ−(x;λ) is

X−(x;λ) =
(
p−n+1(x;λ) p−n+2(x;λ) · · · p−2n(x;λ)

)
,

where we have from Lemma 2.2

p−n+j(x;λ) = eµ−n+j(λ)x(r−n+j + E−n+j(x;λ)); j = 1,2, . . . , n.
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Each of the p−n+j can be expressed as a linear combination of the basis of solutions

{p+k }2n
k=1, where we recall from Lemma 2.2 that the solutions {p+k }nk=1 decay as

x → +∞, while the solutions {p+k }2n
k=n+1 grow as x → +∞. That is, for each

j = 1,2, . . . , n, there exist coefficients {cjk(λ)}2n
k=1 so that

p−n+j(x;λ) =
2n∑

k=1

cjk(λ)p
+
k (x;λ),

and so the collection of vector functions on the righthand side provides an alter-
native way to express the same frame X−(x;λ).

Fix λ ∈ [−λ∞, νmin), and suppose the fastest growth mode p+2n(x;λ) appears
in the expansion of at least one of the p−n+j (i.e., the coefficient associated with this
mode is non-zero). (There may be additional modes that grow at the same rate
µ+2n, but they will have different, and linearly independent, associated eigenvectors
r
−
n+j, allowing us to distinguish them from p+2n(x;λ).) By taking appropriate

linear combinations, we can identify a new frame for ℓ−(x;λ) for which p+2n only
appears in one column. If p+2n(x;λ) does not appear in the sum for any p−n+j ,
we can start with p+2n−1 and proceed similarly, continuing until we get to the first
mode that appears. Since the {p−n+j}nj=1 form a basis for an n-dimensional space,
we will be able to distinguish n modes in this way. At the end of this process, we
will have created a new frame for X−(x;λ) with columns {p̃−j }nj=1, where

p̃−j (x;λ) = eµ+k(j)x(s+k(j) + Ẽ+k(j)(x;λ)),

for some appropriate map j ֏ k(j). If the rate µ+k(j) is distinct as an eigenvalue
of A+(λ), then we will have s+k(j) = r+k(j), but if µ+k(j) is not distinct, then s+k(j)
will generally be a linear combination of eigenvectors of A+(λ) (and so, of course,
still an eigenvector of A+(λ)). This process may also introduce an expansion
coefficient in front of s+k(j), but this can be factored out in the specification of the
frame.

As usual, we can view the exponential scalings eµ
+
k(j)x as expansion coeffi-

cients, and take as our frame for ℓ−(x;λ) the 2n × n matrix with columns
s+k(j) + Ẽ+k(j)(x;λ). Taking now the limit x → ∞ we see that we obtain the
asymptotic frame

X−+∞(λ) =
(
s+k(1) s

+
k(2) . . . s

+
k(n)

)
.

In order to see that X−+∞(λ) is indeed the frame for a Lagrangian subspace, we first
note that, by construction, the vectors {sk(j)}nj=1 will be linearly independent. For
the Lagrangian property, we have already verified that ℓ−(x;λ) is a Lagrangian
subspace, and that the matrix with columns s+k(j) + Ẽ+k(j)(x;λ) is a frame for
ℓ−(x;λ). This means that, for any i, j ∈ {1,2, . . . , n},

ω(s+k(i) + Ẽ+k(i)(x;λ), s+k(j) + Ẽ+k(j)(x;λ)) = 0
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for all x ∈ R. Taking x → +∞, we see that

ω(s+k(i), s
+
k(j)) = 0

for all i, j ∈ {1,2, . . . , n}, and this is precisely the Lagrangian property. We can
now associate ℓ−+∞(λ) as the Lagrangian subspace with this frame, verifying that
this Lagrangian subspace is well defined.

Last, we verify our comment that ℓ−+∞(λ) is not generally continuous as a
function of λ. To see this, we begin by noting that if λ0 ∈ [−λ∞, νmin) is not
an eigenvalue of H, then the leading modes selected in our process must all be
growth modes, and we obtain X−+∞(λ0) = R+(λ0), in agreement with Lemma 3.7
in [2]. Suppose, however, that λ0 ∈ [−λ∞, νmin) is an eigenvalue of H, and for
simplicity assume λ0 has geometric multiplicity 1. Away from essential spectrum,
λ0 will be isolated, and so we know that any λ sufficiently close to λ0 will not be
in the spectrum of H. We conclude that the frame for λ0 will comprise n− 1 of
the eigenvectors {r+n+j}nj=1, along with one of the {r+j }nj=1. Since the exchanged
vectors will lead to bases of different spaces, we can conclude that ℓ−+∞(λ) is not
continuous at λ0.

To clarify the discussion, we briefly consider the simple case n = 1. In this
case, we have (for λ < νmin) a single solution p−2 (x;λ) that decays as x → −∞,
and we can write

p−2 (x;λ) = c11(λ)p
+
1 (x;λ)+ c12(λ)p

+
2 (x;λ),

where p+1 (x;λ) decays as x → +∞ and p+2 (x;λ) grows as x → +∞. If λ0 is not
an eigenvalue of H, we must have c12(λ0) 6= 0, and so

p−2 (x;λ0) =
= c11(λ0)e

µ+1 (λ0)x(r+1 + E+1 (x;λ0))+ c12(λ0)e
µ+2 (λ0)x(r+2 + E+2 (x;λ0))

= c12(λ0)e
µ+2 (λ0)x

×
(
r
+
2 + E+2 (x;λ0)+ c11(λ0)

c12(λ0)
e(µ

+
1 (λ0)−µ+2 (λ0))x(r+1 + E+1 (x;λ0))

)

= c12(λ0)e
µ+2 (λ0)x(r+2 + Ẽ+2 (x;λ0)),

where Ẽ+2 (x;λ0) = O((1+ |x|)−1).
We can view r+2 + Ẽ+2 (x;λ0) as a frame for ℓ−(x;λ0), and it immediately

follows that, as x → ∞, the path of Lagrangian subspaces ℓ−(x;λ0) approaches
the Lagrangian subspace with frame r+2 (denoted ℓ−+∞(λ0) above). Moreover, since

r
+
1 serves as a frame for ℓ+R(λ0), we can construct W̃(x;λ0) from this pair. Taking

the limit as x →∞, we see that

W̃+(λ0) := lim
x→∞W̃(x;λ0) = −

r+1 + iµ+2 (λ0)r
+
1

r+1 − iµ+2 (λ0)r
+
1
· r

+
2 − iµ+1 (λ0)r

+
2

r+2 + iµ+1 (λ0)r
+
2
.
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By normalization, we take both r+1 and r+2 to be 1, and we must have µ+1 = −µ+2 ,
so

W̃+(λ0) = −
1+ iµ+2 (λ0)

1− iµ+2 (λ0)
· 1+ iµ+2 (λ0)

1− iµ+2 (λ0)
= −(1+ iµ

+
2 (λ0))2

(1− iµ+2 (λ0))2
,

which can only be −1 if µ+2 (λ0) = 0 (a case ruled out in this calculation).
On the other hand, if λ0 ∈ σpt(H), we have c12(λ0) = 0 (and c11(λ0) 6= 0).

In this case, the frame for ℓ−(x;λ0) will be r+1 + Ẽ+1 (x;λ0), and taking x → +∞,
we see that ℓ−(x;λ0) will approach the Lagrangian subspace with frame r+1 . Re-
calling again that r+1 serves as a frame for ℓ+R(λ0), we see that

W̃+(λ0) := lim
x→∞W̃(x;λ0)−

r+2 + iµ+1 (λ0)r
+
2

r+2 − iµ+1 (λ0)r
+
2
· r

+
2 − iµ+1 (λ0)r

+
2

r+2 + iµ+1 (λ0)r
+
2

= −1.

For Example 1 (Section 6), we have µ+1 (λ) = −
√

1− λ and µ+2 (λ) = +
√

1− λ.
We know that in that example λ0 = 0 is an eigenvalue, so we have W̃+(0) = −1,
but for λ 6= 0, |λ| < 1, we have

W̃+(λ) = −(1+ i
√

1− λ)2
(1− i

√
1− λ)2 .

If we substitute λ = 0 into this relation, we obtain +1, and so we see that W̃+(λ)
is not continuous in λ (at λ = 0 in this case).
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H. Poincaré Anal. Non Linéaire 24 (2007), no. 4, 589–603.
http://dx.doi.org/10.1016/j.anihpc.2006.06.002. MR2334994

[20] Ch. CONLEY and E. ZEHNDER, Morse-type index theory for flows and periodic solutions for
Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), no. 2, 207–253. http://dx.doi.
org/10.1002/cpa.3160370204. MR733717

[21] W. A. COPPEL, Stability and Asymptotic Behavior of Differential Equations, D.C. Heath and Co.,
Boston, Mass., 1965. MR0190463

[22] G. COX, Ch. K. R. T. JONES, Y. LATUSHKIN, and A. SUKHTAYEV, The Morse and Maslov in-
dices for multidimensional Schrödinger operators with matrix-valued potentials, Trans. Amer. Math.
Soc. 368 (2016), no. 11, 8145–8207. http://dx.doi.org/10.1090/tran/6801. MR3546796

[23] J. DENG and Ch. K. R. T. JONES, Multi-dimensional Morse index theorems and a symplectic view
of elliptic boundary value problems, Trans. Amer. Math. Soc. 363 (2011), no. 3, 1487–1508.
http://dx.doi.org/10.1090/S0002-9947-2010-05129-3 . MR2737274

[24] D. MCDUFF and D. SALAMON, Introduction to Symplectic Topology, Oxford Mathematical
Monographs, The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science
Publications. MR1373431

[25] J. J. DUISTERMAAT, On the Morse index in variational calculus, Advances in Math. 21 (1976),
no. 2, 173–195. http://dx.doi.org/10.1016/0001-8708(76)90074-8 . MR0649277

[26] N. DUNFORD and J. T. SCHWARTZ, Linear Operators Part II: Spectral Theory: Self Adjoint
Operators in Hilbert Space, Interscience Publishers John Wiley & Sons, New York-London, 1963.
With the assistance of William G. Bade and Robert G. Bartle. MR0188745



The Maslov and Morse Indices for System Schrödinger Operators on R 1813
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