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Abstract. We study the planar front solution for a class of reaction diffusion equations in
multidimensional space in the case when the essential spectrum of the linearization in the direction
of the front touches the imaginary axis. At the linear level, the spectrum is stabilized by using an
exponential weight. A priori estimates for the nonlinear terms of the equation governing the evolution
of the perturbations of the front are obtained when perturbations belong to the intersection of the
exponentially weighted space with the original space without a weight. These estimates are then
used to show that in the original norm, initially small perturbations to the front remain bounded,
while in the exponentially weighted norm, they algebraically decay in time.
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1. Introduction. Planar traveling fronts are solutions to partial differential
equations posed on multidimensional infinite domains that move in a preferred di-
rection with constant speed without changing their shape and that are asymptotic to
spatially constant steady-state solutions.

Stability theory of the traveling fronts in reaction-diffusion equations is a vast
subject that has a long history and is very active today; see, e.g., [H, KP, Sa, VVV]
and the literature cited in these books, as well as [BGHL, BKSS, K, KV, LX, LW,
R1, R2, R3, R4, TZKS, X] and the bibliographies therein.

The cornerstone of the stability analysis of the fronts (or pulses), in general, is to
determine the location of the spectrum of the linearization of the underlying system
about the wave. The spectrum may contain isolated eigenvalues of finite algebraic
multiplicity and the essential spectrum; the latter may consist of curves and domains
filled with spectrum, which is due to the dynamics near the asymptotic rest states of
the wave. Presence of unstable discrete eigenvalues points to the absolute instability of
the wave when the perturbations to the wave grow exponentially and eventually lead
to unrecoverable distortion of the wave. Absence of an unstable spectrum indicates
the resilience of the wave to small perturbations, if the nonlinear effects are negligibly
small compared to the linear dynamics. In the case when the only unstable spectrum
is a subset of the essential spectrum on the imaginary axis, the balance between
linear growth and nonlinear effects becomes crucial. We call the essential spectrum
marginally unstable if it extends up to the imaginary axis. The marginally unstable
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essential spectrum in reaction-diffusion systems as well as discrete eigenvalues located
on the imaginary axis are indicative of an instability. In this paper we are interested
in identifying the character of instability of a planar front with a marginally unstable
spectrum.

Although a great deal of the literature is devoted to the multidimensional reaction-
diffusion equations [BKSS, LMNT, LX, LW, HPSS, T, X, K], the theory in this case
is still not as well developed as in the one-dimensional situation. One of the most
high impact works is the 1997 paper [K] by Kapitula, who demonstrated, under very
general conditions, that the stability of a multidimensional planar front is related to
the stability of the associated one-dimensional front profile. More precisely, Kapitula
in [K] proved the algebraic decay of perturbations to a planar front in a general
reaction-diffusion system in the case when the spectrum of the linearization along the
associated one-dimensional front is located in the stable half-plane. The case of a
marginally unstable essential spectrum has been open since 1990. In the current work
it is settled for a special class of reaction-diffusion systems.

For the problems posed on one-dimensional space that exhibit traveling waves
with a marginally unstable essential spectrum, there exists an important technique
for stability analysis based on applying exponential weights that are not bounded away
from zero. It goes back to the celebrated work [PW, S] and amounts to recalculating
the spectrum of the operator obtained by linearizing the equation about the wave in
a function space equipped with an exponential weight. Since the exponential weights
in some situations may stabilize the system at the linear level by shifting the essen-
tial spectrum of the linearization into the stable half-plane, one can then exploit the
decay of the related linear semigroup to investigate whether the nonlinear effects in
the underlying system are negligible in the introduced exponentially weighted norm.
Instability of the essential spectrum in the original norm and stability of the wave
in an exponentially weighted norm point to the convective nature of instability [SS]
which is the instability characterized by pointwise decay of the perturbations. Also,
exponential and polynomial weights have been successfully used to establish stability
of traveling waves in viscous conservation laws; see, for example, [JGK], [KM]. Yet
another powerful method developed for conservation laws is based on pointwise semi-
group techniques (cf., e.g., [ZH]), where certain pointwise estimates are obtained for
the integral kernel of the semigroup generated by the linearized equation, which are
then used in the variation of constants formula to produce estimates on the solutions
of the nonlinear equation.

To the best of our knowledge, the current paper is the first where this technique
is used to analyze the stability of multidimensional traveling waves with a marginal
or unstable essential spectrum in reaction-diffusion systems. We mention, however,
an important paper [BKSS], where Brand et al. successfully used a combination of
weights in a reaction-diffusion-convection system to investigate the nonlinear stability
of the zero solution. The reaction terms in [BKSS] are assumed to be exponentially
localized, unlike the reaction terms considered here.

In a recent series of papers [G, GLSS, GLS, GLS1] the method of exponential
weights was used for a traveling front with a marginally unstable essential spectrum
in a class of reaction-diffusion systems posed in one space dimension. These equations
originate in combustion theory where the combustion front captures the propagation
of the highest temperature zone. We refer to [GLSR, BGHL, BaM, SKMS1, VaV] and
references therein for the results on existence and spectral stability of the combus-
tion fronts. A recent paper [GLSR] contains an overview of the exponential weights
technique and further references. The results were formulated as the orbital stability
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of the traveling front in an exponentially weighted norm, against perturbations that
belong to the space obtained by intersecting the original space (a Sobolev space or the
space of bounded uniformly continuous functions) with the same space but equipped
with the exponentially weighted norm. The orbital stability of the wave in the expo-
nentially weighted norm may be interpreted as convective instability.

In the current paper, we investigate nonlinear stability of the planar front of a
certain special class of systems of reaction-diffusion equations. The front is assumed
to have a special feature: for the associated one-dimensional front, the instability is
related not to the presence of unstable eigenvalues but to the essential spectrum touch-
ing imaginary axis. More precisely, our objective is to relate the type of stability of the
planar front to the convective nature of instability of the associated one-dimensional
fronts. The system considered in the current paper has a certain special structure in
the reaction term similar to that of the equations studied in [GLSS, GLS, GLS1] for
the one-dimensional case. Indeed, our motivation comes from the system

{ult(tax) = Awul(tvx) + u2(t’ x)g(ul(t7m))a

(1.1) uge(t, ) = eAgua(t,x) — rus(t, z)g(uy (¢, x)),

with frequently considered in combustion problems nonlinearity

1
e 1 ifu; >0,
1.2 uy) =
(1.2) g(u1) {0 ifu, <0,

where u1, us € R, t € RT, z € R? (d > 2), and the parameters ¢ and r satisfy
0<e<landk >0.

Ultimately, we would like to develop a technique to study nonlinear stability in
weighted spaces for a marginally unstable front in the general system of the type

(1.3) ug(t,z) = DAu(t,x) + f(u(t,x)), u € R", z € R d>2, t € RT,

but here we focus on the case when the diffusion matrix D is the identity matrix.
The reaction term in (1.3) satisfies some additional assumptions that are described in
detail in section 3. In particular, the nonlinearity f(u) is assumed to have a special
“product-triangular” structure,

Alul —|—f1(U1,U2)U2> 3 n; n n; .
1.4 u) = ~ , fi i R™M xR"™ — R™, ¢=1,2,
R O Y I

where ny + no = n for the splitting u = (uy, us) such that f(u1,0) = (Ajuq,0) with
a constant matrix A;, and fl and fg are given smooth maps.

Our plan of study can be summarized as follows. For the nonlinear system (1.3),
(1.4) with D being the identity matrix we obtain a nonlinear system of evolution
equations for perturbations of the front. We apply an exponential weight in the direc-
tion of propagation of the front in order to stabilize the marginal essential spectrum
of the associated linear one-dimensional operator generated by the front profile. Fur-
thermore, using the “product-triangular” structure of the reaction term as described
in (1.4), we are able to control the decay of perturbations of the front with small
initial data in the exponentially weighted norm and establish merely boundedness of
the component u; of the perturbations in the norm without the weight. The decay
in the exponentially weighted norm proved in this paper is comparable to the de-
cay obtained in [K, Lemma 3.5]; cf. Proposition 8.6 below. This is a consequence of
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the similarity of the spectral pictures for the associated linearization along the one-
dimensional front in [K] (in the space with no weight) and in the current paper (in
the space with the exponential weight). However, unlike the one-dimensional case
(cf. [GLSS, GLS, GLS1]), in the multidimensional situation (in both [K] and the cur-
rent paper) the decay of perturbations is not exponential but merely algebraic due to
the lack of a gap between the spectrum of the multidimensional linearized operator
and the imaginary axes. The main new technical difficulty that we had to overcome
in this paper is related to the unfavorable influence of the exponential weights at
the nonlinear term; this is exactly the point where we use the assumption on the
“product-triangular” structure of nonlinearity.

The restriction imposed by choosing the diffusion matrix D to be the identity
matrix is not necessarily technical. Distinct diffusion rates are known to be responsible
for a variety of dynamical phenomena such as Turing instability or sideband instability.
Removing this condition or identifying situations when this condition can be removed
is generally speaking an open problem. A stronger assumption sufficient to guarantee
asymptotic stability of a planar traveling wave against localized in transverse direction
perturbations in the reaction-diffusion systems with nonequal diffusion, in addition
to the spectral stability of the associated one-dimensional front, includes quadratic
tangency of the dispersion relation near critical Fourier mode. We refer readers to
[HS] for the proof and the discussion.

We mention an interesting open question of whether the pointwise semigroup
techniques could be applied to the reaction-diffusion systems studied in the current
paper. In particular, it is not clear if our assumption on the nonlinearity can play
the role of the additional structure that balances out the fact that the system is not
a conservation law.

To summarize, for a class of reaction terms in the system (1.3) with the identity
diffusion matrix, we developed a technique that effectively combines the approach
introduced in [K] with techniques from [GLSS, GLS, GLS1] to prove nonlinear sta-
bility in a weighted multidimensional space for a planar front that has an unstable or
marginally stable essential spectrum.

2. The plan of the paper and notation. The plan of the paper is as follows.
In section 3 we list the assumptions imposed on the system. We study the spectrum
of the operator obtained by linearizing the system about the planar front in section
4. Also, in this section we study projections in the multidimensional weighted spaces
associated with the spectral projections of the one-dimensional linearization along
the front. We obtain estimates of the semigroup generated by the multidimensional
linearized operator in section 5. In section 6 we derive a system of partial differential
evolution equations for the perturbations of the planar front to be studied and give
some preliminary estimates associated with the drift along the front. In section 7
we estimate the nonlinear terms in the system. In this estimate we heavily use the
“product-triangular” structure of nonlinearity. In particular, it allows one to control
the weighted norm of the nonlinear terms by the product of the weighted and un-
weighted norms of the perturbation. We complete the proof of stability of the front
in section 8. The proof is based on a bootstrap argument where we first control the
perturbation in the unweighted norm, then use this and the exponential decay of the
linear part in the weighted norm to show decay in the weighted norm, which in turn
allows us to establish boundedness of the perturbation in the unweighted norm. The
main estimates are given in Proposition 8.6 (for the weighted norm) and in Proposition
8.7 (for the unweighted norm); the main stability result is formulated in Theorem 8.8.
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We consistently use the same symbol to denote the space of scalar valued func-
tions and the space of respective vector valued functions, whenever it is clear from
the context, e.g., we use the same notation H*(R?) for the Sobolev space of scalar
functions and for the Sobolev space of vector functions (H*(R%))™ when n > 1.

In the physical space R? we associate z € R with the direction of the propagation
of the planar front. The complement of z we denote y € R4~1.

For a fixed weight function v,(z) and (z,y) € RY, we denote HY(R) = {v :
Yov € HF¥(R)}, and HE(RY) = {u : (2,y) = Ya(2)u(z,y) € H*(R?)}. The spaces
are equipped with the norm ||ul| gk ray = || Yol g ey Also, we use H to denote the
intersection space

(1) Hi= HERY 0 HERD), with fully = max{ full e ey, [l s -

Throughout, B(X,Y") denotes the space of bounded operators from X to Y, and
we abbreviate B(X) = B(X, X). We denote by Sp(T) and Spess(T) the spectrum
and the essential spectrum of the operator 7 and by ranT and ker 7 its range and
nullspace. Throughout the paper, we denote by C' a generic positive constant.

3. Assumptions. In this section we introduce the reaction-diffusion system to
be studied. In the one-dimensional situation similar assumptions on the system were
originally developed in [GLS, GLS1]. We consider the system of reaction-diffusion
equations

(3.1) u(t, ) = Agu(t, z) + f(u(t, z)),

where u(t,r) € R", € R? t € R, and the function f(-) : R* — R" is smooth.

We assume that this system has a planar wave that moves in the direction of
the vector e = (1,0,...,0) € S? with a certain speed ¢ > 0. In the co-moving frame
z=umx1 — ct, (3.1) reads

(3.2) uy = Au+ cu, + f(u),

where A =02+ 092 +---+ 02 .

A traveling wave ¢(z) for system (3.1) is a time-independent function of z € R
such that

2o do

3.3 0=—+c— )
(33) CL el ()
We further assume that the wave converges to its rest states ¢+ € R™ exponentially.
The wave is called a front if ¢_ # ¢ ; otherwise, it is called a pulse. Without loss of
generality, we assume that ¢_ = 0.

To study the stability of ¢, we first linearize (3.2) about ¢. We define the linear
variable-coefficient differential expression L by

(3.4) L=A+co, +df (),

where df (¢) is the differential of the function f evaluated at ¢(-). The linear stability
of the front is determined by the spectral information of the operator £ associated
with L and acting on the Sobolev space H*(R®)" for k > 1. For k > [%] the
spaces H¥(R?) are, in fact, Banach algebras and thus are convenient for the nonlinear

stability analysis.
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Using the tensor product notation, we write H*(RY) = H*(R) ® H*(R4~1) and
note that for any v € HF(R) and v € HF(RI!) the function (z,a,...,74)
u(2)v(wa, ..., 24) belongs to H¥(R?). From now on, we decompose v € R? as z =
(2,9) € R® RI¥"! where 2 = z; — ¢t and y = (v2,...,74). Thus we can use the
decomposition of £ on H*(R?) as follows:

L= L1 @ Igrmi-1yn + Igrmyn @Ay,
where £, is associated with the one-dimensional differential expression
(3.5) Ly =92 + c0, + df(¢)
that depends only on z, and
(3.6) Ay=082, +--+02,.

We next introduce an exponential weight to counteract the marginally unstable
essential spectrum. We call 7, € C*+3(R) the weight function of class a = (a_,a,) €
R? if 7,(2) > 0 for all z € R, and

e“-% for z negative, |z| large,
(3.7) Yal2) =94 ... iy
e*+# for z positive and large.

For a fixed weight function v,, let H*(R) := {v : y,v € H*(R)}. We then denote
HERY) = HYR) @ HF (R = {u: (Yo @ Iyr(ga-1))u € H*(R?)}

with the norm [[ul| gx ray = [|Vaull gr®ay- Here, (Ya®@Igkga-1y)u(z,y) == va(2)u(2,y),
(2,y) € R%

DEFINITION 3.1.

1. £: HFRH™ — H¥(RH™ is the linear operator given by the formula u — Lu,
with L as in (3.4) where dom £ = H¥2(RY)™ ¢ HE(RH™, for k =1,2,...;

2. Ly : HE(R)™ — HF(R)" is the linear operator given by the formula u — Liu
with Ly as in (3.5), where dom £ = H*2(R)" ¢ H¥(R)";

3. Ay : HFYRIH" — HFRIN)" s the linear operator given by the formula
(3.6), with the domain H*+2(R4=1)";

4. Lo HERY" = HERYN" is the operator given by the formula u — Lu, with
L as in (3.4) and dom L, = H*2(R) @ HFT2(RI-1);

5 L1 : HYR)™ — HFR)™ is the operator given by u v+ Lyu, with Ly as in
(3.5) and dom L; , = HET2(R)" ¢ HF(R)";

6. Lq: H™ — H™ is the linear operator generated by u — Lu with L as in (3.4),
with the domain H*T2(RY) N HEH2(RY).

We summarize the assumptions on the system (3.1) considered on H as follows.
HyYPOTHESIS 3.2. The function f : R™ — R™ is in CFT3(R™)".

HyYPOTHESIS 3.3. The system (3.1) has a C**5-smooth planar front ¢(z), z =
x1 — ct,

lim ¢(z) = ¢z,

z—+oo

for which there exist numbers K > 0 and w_ < 0 < w4 such that

1p(2) = ¢

re < Ke =% for <0 and ||¢(2z) — ¢

re < Ke 9% for z > 0.
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Without loss of generality, in the rest of the paper we assume that ¢_ = 0.

HYPOTHESIS 3.4. There exists « = (a—, ;) € R? such that the following asser-
tions hold:
1) 0<a- < —w-_.
(2) 0 < a4 < Wy .
(3) For the linear operator Ly, : HF¥(R)™ — HE(R)", there exists v > 0 such
that
sup{Re A : A € Spess(L1,0)} < —v,
and the only element of Sp(L1,4) in {X: ReX > 0} is a simple eigenvalue 0.
Hypotheses 3.3 and 3.4 imply the following lemma.

LEMMA 3.5. If Hypotheses 3.3 and 3.4 hold, then

(1) y71¢ is a CET5(R)™ function that approaches zero exponentially as z — 00,

(2) Yot is a CFT3(R)™ function that exponentially approaches infinity as z — oo
and zero as z — —oo, while Yod'"™ approaches zero exponentially as z —
+oo, foranym=1,2, ..., k+5.

In addition, we assume that the nonlinearity in system (3.1) satisfies the following
hypothesis.

HYPOTHESIS 3.6. There exists a splitting u = (u1,us) € R™, where u; € R™ and
us € R™, and ny +ny = n, such that f(uy,0) = (Aju1,0) for some ny X ny constant
matriz Aq.

From Hypotheses 3.2 and 3.6 we have the following representation of function f:
(3.8)
flu) = (fl(ul’“2)> - (Al'“lf fl(ul’“2)“2> fi i R™ xR™ 5 R™ ji=1,2

fa(ur,u2) fa(ur, ug)us

where fl and fg are matrix-valued functions of size nj X no and ng X ns, respectively.
The system (3.1) in terms of u; and ug reads

Orur = Agur + f1(ug, ug),
Opua = Agug + fo(u,us),

and the system (3.2) reads

8tul = (azz + Ay)ul + Cazul + fl (ulﬂ u2)a
Qg = (02 + Ay)ug + cdyug + falur, usg).

Similarly, we write ¢(z) = (¢1(2), ¢2(2)) and ¢4+ = (¢1.4,¢2,+) and the differential
expressions obtained by linearizing (3.3) at 0 and ¢, respectively, are given by the
formulas

(3.9) Ly = 0., +c0, +df(0), L =0..+co.+df(oy).
In relation to the linearization about 0, we denote

(3.10) LY = 0., + cd. + dy, 1(0,0) = 0. + cd. + A,

(3.11) L = 0.. + cd. + du, £2(0,0),
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where d,,, f; is the Jacobian of f; with respect to u;, ¢ = 1, 2. From (3.8) it follows
then that

™)
~ (LY du,f1(0,0
(3.12) Ly = ( (1) gg) )>.

We write L; defined in (3.5) as follows:

(3.13) Ly (Z;) _ (Lé” du2£1§g?70)> (z;) + (df (¢) — df (0)) (Z;) :

We now define the operators £§1) and £§2) as prescribed in item (2) of Defini-
tion 3.1. The next hypothesis implies, in part, the stability of the end state (0,0)
located behind the front.

HypOTHESIS 3.7. In addition to Hypotheses 3.4 and 3.6, we assume that the fol-
lowing is true:

(1) The analytic semigroup generated by the operator £(11) on H*(R)™ induced
by (3.10) in H¥(R) is bounded, that is, there ewists K > 0 such that

1et25 || serrnqry) < K for all t > 0.

(2) The spectrum Sp(£g2)) of the operator £§2) on H*(R)"2 introduced by (3.11)
is located strictly to the left of the imaginary axzis, that is, sup{ReX : X €

Sp(ng))} < 0. Therefore, there exist constants p > 0 and K > 0 such that
|\et£(12) |B(a+®r)) < Ke ** for allt > 0.

Remark 3.8. Hypothesis 3.7 implies that (a) sup{ReXA : X € Sp(ﬁgl))} < 0;
(b) sup{ReX : XA € Sp(L£y)} < 0, which in turn implies that sup{Rep : u €
Sp(du, f1(0,0)}} < 0, while sup{Rep : p € Sp(dy, f2(0,0)}} < 0. More informa-
tion on the relation of Hypothesis 3.7 and location of the spectra of the matrices
Sp(dy, fi(0,0) can be found in [GLSS, Appendix A].

4. Spectrum and projection operators. In this section we discuss the projec-
tion operator on the central direction that corresponds to the isolated zero eigenvalue
of the linear operator £; , associated with (3.5), on the weighted space H(R)", and
describe the central projection for the operator £, in HX(R?)™.

We recall that for a closed densely defined operator T, the resolvent set p(7) is
the set of A € C such that 7 — AI has a bounded inverse. The complement of p(T)
is the spectrum Sp(7). It includes the discrete spectrum, Sp,(7 ), which is the set of
isolated eigenvalues of T of finite algebraic multiplicity. The rest of the spectrum is
called the essential spectrum and denoted by Sp...(7).

The spectrum of the linearization touching the imaginary axis complicates the
stability analysis of system (3.1) in multidimensional space. In the one-dimensional
case [GLS], the authors have imposed the hypotheses under which the front is spec-
trally stable in H}(R)", i.e., the linear operator associated with the one-dimensional
differential expression Ly = D92 + ¢, +df (¢) has only one simple, isolated eigenvalue
at 0 while the rest of the spectrum is located to the left of the imaginary axis. More
precisely, let L] and L] be defined as in (3.9). By [GLS, Lemma 3.5], the right-
most boundary of the corresponding Spess(£1,q) is the rightmost boundary of the set
Sp(£y,) U Sp(ﬁia), where

SP(L14) ={A€C|F € R : det (6 +if(c — 2a_)] — AI
+(a? — ca_)I +df(0)) = 0},
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Sp(Lf,) ={r € C|F0 € R : det (6 4 il(c — 204 )] — AT
+ (o — cap)I +df(4)) = 0}.

It is assumed that the rightmost boundary is located strictly to the left of the imagi-
nary axis. Thus, in the one-dimensional case the essential spectrum of the linearization
in the exponentially weighted space is located in the open left plane.

For the multidimensional case the situation is by far more complicated. Here,
one concern regarding the spectrum of L, is that the zero eigenvalue, which is an
isolated eigenvalue for a one-dimensional operator considered on HX(R), is no longer
an isolated point of the spectrum of £, in H¥(RY).

In Figure 1, we illustrate the influence of the exponential weight on the location
of the essential spectrum and the issue arising in the multidimensional system when
the same method of passing to the exponentially weighted spaces is applied.

Indeed, the following proposition holds, showing that the essential spectrum of L,,
is no longer bounded away from the imaginary axis on the weighted space H%(R%)"
as it was for d = 1.

PROPOSITION 4.1. Let d > 1, let the assumptions of Hypothesis 3.4 hold, and let
the linear operators Lo and L1, be the operators defined according to Definition 3.1
associated with L and Ly introduced in (3.4) and (3.5), respectively. Each point
n € Sp(Ly14) generates a horizontal half-line {A € C : ReA < Ren, ImA = Imn}
that belongs to the essential spectrum Spess(Ley). In particular, the half-line {\ € R :
Re A < 0} belongs to the essential spectrum of L.

Proof. The result follows from [RS4, Theorem XIII.34, Theorem XIII.35, and
Corollary 1]. Indeed, since £ and I,A, are the generators of bounded analytic
semigroups on Hilbert spaces H¥(R) and H*(R?~!), respectively, we have

SP(L1,a ® Igkma-1) + Igrm) ® Ay) = Sp(L1,a) + Sp(Ay),

which implies the conclusions of the proposition. ]

Since by Hypothesis 3.4, 0 is a simple, isolated eigenvalue of £L; ,, we can define
the Riesz spectral projection P, of £, on H, k(R)™ onto the one-dimensional space
ker(Lq,,). The projection P, commutes with e**1e for all ¢t > 0. Since the operator

Im A\ Im A\ Im A\
° °
0 e 0 Re \ 0 Re A
° ° L
Sp (Lo; Hi(R?)(R)) Sp (La; Hy(RY)(R)) Sp (La; Hy(RY)(R?))

F1a. 1. The first panel: the rightmost boundary of the essential spectrum and the eigenvalue at
the origin of the linearization of (1.1)-(1.2) about the front in the space with no exponential weight.
The second panel: the rightmost boundary of the essential spectrum and the eigenvalue at the origin
of the linearization of (1.1)-(1.2) about the front in the case of a one-dimensional spatial variable
in the exponentially weighted space. The essential spectrum in the one-dimensional case is bounded
away from the imaginary azis. The third panel: the multidimensional case. The essential spectrum
in the weighted space is not bounded away from the imaginary axis.
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L1 « is Fredholm of index zero, standard operator theory (see, e.g., [DL, Lemma 2.13])
yields that H*(R)" = ran Liq@ker Ly, and ker Py, =ran Ly 4.

Hypothesis 3.4 implies that ran P, = ker £; ,, is spanned by ¢’. Reasoning as in
[K] or as in the proof of Lemma 3.8 in [GLS], that is, by invoking Palmer’s theorem
[Pa], one can show that there exists a unique H*-smooth function é : R — R”
such that the function v;(-)é(+) is exponentially decaying, and é solves the adjoint
equation L} & = 0 and satisfies [;(é(s), ¢'(s))rnds = 1, where (, )gn is the standard
inner product in R™. Then for V € H¥(R)", the operator P, can be written as follows:

(PuV)(z) = </R (e(5),V(s))gn d5> #'(2), z € R.

Let Q, = I — P, be the projection in H*(R)™ onto ran L1 o with kernel ker(L4 4).
The operator @, also commutes with e/“t.« for all + > 0. Next, for U € HF(R)" ®
HF(RY=1)" we denote

(4.1) (raU)(0) = [ (E(6). Vs, ds

and introduce an operator on H*(R4)" = H¥(R)" @ H*(R?~!) defined by
PU = (Pa (9 IHk(]Rd—l)) U,

so that
(PU)(z,y) = (A(é(S)’U(S,y))RndS) ¢'(2) = (maU) (1)¢' (), (2,9) € R™.

In what follows we frequently use the following lemma from [RS1, p. 299].

LEMMA 4.2. Let A and B be bounded operators on Hilbert spaces Hi and Hs.
Then

1A ® Blls(meH) = Al 1Bl
We now show that 7, and P have the following properties.
LEMMA 4.3. Letk > [“2] and a = (a—,ay) € R% be as in Hypothesis 3.4. Then
P e B(HERY) N HFRY) and 7, € B(H*(RY) N HE(RY), HF(RY)) .
Moreover,
Ta € B(LL(R) @ LY(R* ), LY RY)).

Proof. Since |v51(2)é(2)||gn — 0 exponentially fast as |z| — oo, there exist
(- <0 < ¢4 and K > 0 such that ||y 1(2)é(2)||gn < Ke ¢-* for z < 0, and
72t (2)é(2)lrn < Ke=$+% for z > 0. We pick U € H¥(RY)" n HE(RY)", and first
consider the L?-norm, so that

ooy = [ || G2 @2 206U (5. 9) e ds

<[.( / I @666 s ) [ a0 ) s )

2
dy
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by Holder’s inequality. Since

Ke -5 for s
s

0,
Ke $+5 for 0

<
2

)

e ()()HR"\{

then

0 o
(4.2) /||7 8)||Bnds < K (/ e‘QC*sds—&-/ e 2+s ds) <C
—00 0

for some constant C' > 0. Thus,
(43) [ImaUlZ2ga-1) < ClvaUllf2maey < Cmax{|U|72a), U7z ey} < CIUII,-

For H*-norms, we use the equivalent Sobolev norm (see, e.g., [NS, p. 316]) given
as follows: Let z = (z,y) € R and y = (2, ...,24) € R4™1; then

ak
az

Il e a1y ~ (| fll L2 @a-1) + Z m

as+-+aa=k

)

LQ(Rd—l)

where the sum extends over all (d — 1)-tuples (as,...,aq) of nonnegative integers
with 2?12 a; = k, and %
i=2...., d.

We already have the estimates for ||1oU]||p2 a1y for U € HERH" 0 HF(RY)".
From Holder’s inequality and (4.2) it follows that

is the a;th differentiation of functions with respect to x;,

2

k
‘ a28 adﬂ-OCU
(93;‘2 "'5%' L2 (Rd—1)
o ?
o Ya(s) = U (s, ds) d
/Rdl(/w e 1) g Do) | )y
OU(s,y) ||

<[ ([ ||Rnds) ( e g e | s )

(4.4) < CUJZ < CIU |3,

thus implying 7, € B (HE(RY)" 0 HF(RY)", HF(RIY)).
For the L'-norm of 7,U, analogously,

(4.5) [maUllLr®a-1) € CllVaUllpr ey < CIUI L1 )yoLr (RE-1)-

We now consider PU for U € H*¥(R?)" noting that P = P, @I (ra-1). As shown
in [GLS, section 3.3], the projection P, is a bounded operator from HY(R) N H*(R)
to H¥(R) N H*(R). Therefore, by Lemma 4.2 we have

P53y = 1 Pallsia: @nmk @) 1 8k @a-1)) < C,

which completes the proof. O

LEMMA 4.4. The operator P is a bounded operator (i) from HF(R?) to H*(RY);
(ii) from H to HE(R?); (iii) from HE(R?) to H*(R?); and (iv) from H to HF(RY).
The complementary projection Q = I — P is a bounded operator (i) from HE(R?) to
H and (ii) from H to H.
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Proof. Indeed, Lemma 4.3 and the definition PU(z,y) = (m.U)(y)¢' (2), 2,y €
R?, imply that

IPU]
||7DU||H’€(1Rd) = ||7TocU||H’“(]Rd*1)H(blHHk(R)

mr @) = 7o Ull g a1y |9 | 1 r) < ClNUN e eyl x )y < CNU Nl 1]k (my
< <

ClU1 | 1z

and the statement above follows. 0

CNU g way 10" | e my

The projection P, is initially defined as the Riesz projection for the operator
Ly o. To verify that PL, = L,P, we recall that P,Ly o = L1 4P, which implies
that £, and P commute since PL, = PoL1,a ® Igrma-1yn + Po ® Ay and L, P =
El,aPa ® IHk(]Rd—l)n + P, ® Ay

Remark 4.5. When the diffusion matrix D in (1.3) is not a multiple of an identity
matrix, the relation PL, = L,P does not hold in general. Indeed, £, = L, ®
Ik @a-1yn + DIgr@yn ® Ay, and, in general, D doesn’t commute with F,. This is
the main obstacle that prevents us from dealing with nonscalar diffusion matrices.

5. The semigroup estimates. In this section we provide estimates for the
semigroups generated by the linear operators L., L3, Ay, and L9 for i =1,2; cf.
(3.4), (3.10), and (3.11), and see Lemmas 5.1, 5.2, 5.3, and 5.5 below. Hypothesis 3.4
implies the following standard fact about analytic semigroups.

LEMMA 5.1. If v > 0 is such that sup{Re A : A € Spess(L1,0)} < —v, then there
exists K > 0 such that HewlanaHB(H&c(R)) < Ke ™" fort > 0.

Moreover, the following lemma is true.

LEMMA 5.2. Assume Hypothesis 3.4. If sup{Re X : A € Sp(L1,o) and X # 0} <
—v, for some v > 0, then there exists K > 0 such that [|e"> Q|| g gx ra)) < Ke™"* for
allt > 0.

Proof. Since Q = Q, ® IHk(]Rd—l) and L, = ﬁl,a o2y IHk(]Rd—l) + IH(E(R) ® Ay, by
the proof of [RS4, Theorem XIIL35] we have e“eQ = e'“1.2Q, ® €' Ik (ga-1). The
operators £y o and A, both generate bounded semigroups on ran ), = ran£; o, and
H¥(RI~1) (cf. Lemmas 5.1 and 5.5.a); thus by Lemma 4.2 we infer

€71 Qa @ €2 Iy a=1y | (rrx (ray) = 1€ Qall e oy €™ ls(ar a1y,

which completes the proof. ]

We consider the operator £~ on H*(R?) associated with the differential expression
(5.1) L™ =Ly @ Igrga-1y) + Igrw) ® Ay,
where L] is defined in (3.12), and let
(5.2) LU = Ay + ¢, + A1 = L8 @ Iyegay + Iyey © A,

L® = A+ ¢O, + dy, f2(0) = LgQ) X IHk(Rd—l) + IHk(]R) ® Ay,

where A; is introduced in Hypothesis 3.6, and Lgi), i =1, 2, are as in (3.10) and
(3.11). Thus

@
(5.3) L~ = (LO d“z{é)(o)> :

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/19/19 to 161.130.253.37. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

STABILITY OF A PLANAR FRONT 5581

and the linearization (3.4) about the front is given by the formula
(5.4) L=1L"+(df(¢) — df(0)) ® Ik (ga—1y-

As in [GLS, Lemma 8.2(1)], the operator df(¢) — df(0) is a bounded operator
from HE(R) into H*(R). We therefore have

(5:5) (df (¢) — df (0)) @ Ly (ga-1) € B(HG(RT), H*(RY)).

LEMMA 5.3. Assume Hypotheses 3.7. Let L), i = 1,2, be the operators given
by the differential expressions (5.2) on HF¥(RY). If sup{Re): \ € Sp(£§2)) and A #
0} < —p, for some p > 0, then there exists K > 0 such that

(1) (2) _
(5.6) e M@y <K, 1€ @) < Ke™,

for allt = 0. Moreover, the operator L~ given by the differential expression (5.1)
generates a bounded semigroup on H*(RY), that is,

(5.7) €™ (| g(are may) < K for all t > 0.
Proof. We shall use the fact [RS4, Theorem XIII1.35] that

(%) (i) (i) .
oL et(ﬁl OF ke wd—1yH gk () ®By) _ etfl ® By for i = 1, 2.

By Hypothesis 3.7(1), the operator Egl) generates a bounded semigroup on H*(R),
thus, by Lemma 4.2, ||et£§1) ® ethy|| = ||et£§1)H||etAy|| < K for some K > 0 and
all ¢ > 0. Similarly, from Hypothesis 3.7(2) and Lemma 4.2, ||et£§2) ® ety =

2)
[[et£57|[[|etAv || < Ke#t for some K > 0 and all £ > 0.

To prove (5.7), we notice that the triangular structure of the operator £~ yields
the triangular structure of the semigroup e**~, that is,

@ ERYIE s£®
5.8 o _ (€57 fy eI 0, f1(0)e ds
(5.8) € = 0 oL .
Equation (5.8) and inequalities (5.6) imply (5.7). O

We next use Lemmas 5.2 and 5.3 to show that the semigroup generated by the
operator £ on H is also bounded.

LEMMA 5.4. Assume Hypotheses 3.7. Let Ly be the operator given by the dif-
ferential expressions (3.4) on H = HF(R?) N HE(R?). There exists K > 0 such that
e"“# sy < K for all t > 0.

Proof. Let the operator Qy be given by restricting Q to H; then by Lemma 5.2
(5.9) €% Qayl p(are (may) < Ke ™.

Therefore, it remains to estimate [|e"“* Qy|| (3, rre(ray) and |5 Pyl p(30)-
Since ran Qy = ran Lo, NH™ and Qy commutes with £y, and e*“*, the variation
of constant formula and (5.4) yield

etr =t / e (dF(6) — dF(0)) Lk 1) ds,
0
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from where, by (5.5) and Lemma 4.4, as well as (5.7) and (5.9),

€™ Qallpeae, v may) < 1€ [l pcars may | Qull B e rey)
t
[ 1 ey 107 (4)

— df (0)l| (e mey, 1 ety €% Q| g ety 1| Qo | B3, 113 (ryy ds < K.

Combined with (5.9) this shows that the semigroup {e'** Qg };>0 is bounded in
ran Q.

We note that H = ran Py @ ran Qy and et“* = £ Py @ % Q4. In order to
finish the proof of Lemma 5.4, we will need to show that the seimigroup {e***Py} is
bounded in ranPy. Since Py projects onto the kernels of £ defined on H*(R?) and
L, defined on HY(R?), then, by Lemma 4.4, e“«Py, = Py, and e'£ Py, = Py, where
Py € B(H, H*(RY)) and Py € B(HX(RY)), and, therefore, for all t > 0,

1€ Pyl e, e ray) = | Prcll e, e rayy < K and

e Prcll s rey) = IPrllsy e < K. ’

We also recall the following standard estimates; see, e.g., [K, Lemma 3.2].

LEMMA 5.5. The semigroup Sa,(t) generated by the linear operator A, for all
t > 0 satisfies the following decay estimates with some > 0:

(@) 1Sa, (B)ull gk @a-1y < Cllull gr@a-1y,

(b) [ISa, (t)ull gr@a-1y < C(1 + t)_%HUHLI(RM) + Ce™PH|ul| i (ga-1y,

(©) [VySa, @ull s @iy < C2||ull grga-1),

(@) 19,8, Ol ety < OO+ D5 [l s sy + O e 8l g oy

6. The system of evolution equations. In this section we derive the system of
evolution equations (6.15) governing the perturbation of the planar front, by following
[K] with modifications needed to accommodate the presence of the weight.

We denote ran P = {U € H¥RY" : U = PU} and ranQ = {U € HF(R?)" :
U = QU}. In fact, if U € ran Q, then m,U = 0 because PU = 0. Hypothesis
3.4 and Lemma 3.5 imply that ¢/ € H™; therefore if v € H" — HF(RY)", then
Pv € H™, and then Qu = (I — P)v € H"™. Hence we may define Py and Q to be
the restrictions of P and Q to H". Since H" — H¥(R?)", the operators Py and Qy
are also bounded. It follows from Lemmas 4.3 and 4.4 that H™ = ran Py @ ran Q,
where ran Py = ran L, N H".

The following lemma shows that for any sufficiently small © € H™, there exists a
unique pair (v,q) € ran Qy x H¥(R?1) such that ¢ + © can be uniquely expressed
by means of (v, q).

LEMMA 6.1. Assume Hypothesis 3.4 and k > [*EL]. For any © € H" small

enough, there exists (v,q) € ran Qy x H*(RY™1) such that
(6.1) $(2) +0(2,y) = ¢(= — a(y)) + v(2,y), (2,y) €RL

Proof. As in the proof of [K, Lemma 2.2], for any ¢ € H*(R?!) we write

1
o(z —q(y)) — d(2) = *q(y)/o ¢’ (z = sq(y)) ds.
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Since ¢ € H¥(R?™1) < L>*(R?"1), we have
' (2 = sq(y))| < Kewslmsal) ¢ Ceme?,

where C' is a constant that depends on gq. By Hypothesis 3.4 then

Iy 2.2 d <C< > —2w4z 2a+zd
/R|¢><z sq(y)) P2 (=) d / e~2onzg z+/

—0o0

0
6—2wz62azdz> ,

and, thus, ||¢'(- — sq(-))q(-)H%a(Rd) < Cllgllp2ri-1y, so ¢(- —q) — ¢(-) € H" if q €
HF (R,
We then write (6.1) as

(6.2) U(z,y) = v(z,y) — q(y)/0 ¢'(z = sq(y)) ds

and apply 7, (see (4.1)). Since v € ran Q3 = ker Py,

7a(5(29)) = —a(y) ( / (@2 sq(y)))ds) .

We consider the mapping (g,?) — G(g,?) defined by

1
Gla(w). 5(z,9)) = ma(5(219)) + a(y) ( | et e = s0) ds)

as a mapping from H¥(RI~1) x H" to H*(R9~1) such that G(0,0) = 0 and g—g(O7 0) =
I. For any v near v = 0, the implicit function theorem yields the existence of a unique
q as a function of ¥ so that G(g,v) = 0.

So, given a ¥, we first find ¢ from the equation G(q, ) = 0 and then, to identify
v that corresponds to that ¢, we apply Qy to (6.2) and set v = Qyv, thus obtaining
the following formula:

1
v=0Ounv+ OQx (q/o W(-—Sq)ds). I

Since the coordinate system (v, ¢) € ran Q3 ® H*(R?~1) is well defined by Lemma
6.1, we can decompose solutions of (3.2) that are close to the front ¢ as a sum of
a spatial translation component, i.e., the component in the direction of the front
¢(z —q(y,t)), and a normal component v, so that v = v(+,y,t) belongs to ran Q, =
ran L1 o, for each (y,t) € R4-1 x Rt. In other words, we can write a solution u of
(3.2) in H™ as

(6.3) u(z,y,t) = ¢z — ay, 1) +v(z,y,1), (2,9) € RY,
where (v,q) € ran Qy ® H¥(RY~1). For convenience, in what follows, we denote
$q(2) = ¢(z — q).

We substitute (6.3) into (3.2). Repeating computations from [K, section 2], we
see that v solves the equation

(6.4) 9w = Lv + (df (¢q) — df (#)) v + N(¢g, v)v + (0ea — Bya) & + (Vya - Vya)dy,

where L is the differential expression defined in (3.4), Vyq = (04,4, - - -, 0z,9), and
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1
(6.5) N(u,v) = /0 df (u + sv) — df (u)ds

is an n X n matrix-valued function of (u,v).
We assume that v(-,-,t) € ran Qy N H™ for every ¢t > 0, that is, Pyv = 0, and
apply the projection Py to (6.4), thus obtaining an equation for g,
(6.6)
(_Wa(b;)atq = (7Ta¢;')(qu : Vy‘l) - (Wa(b:;)qu + 7o ((df (q) — df (¢)) v+ N(¢g, v)v).
The following result is proved in [K, Lemma 2.3]. It shows that 7 (¢ )(y) is not
close to zero.

LEMMA 6.2. There are positive constants dg and C such that if ||q|| ;o re-1) < do,
then for all y € RI~!

1—Cdy <1—=Cllgllpoora-1) < [7a(9) ()] < 1+ Cllgl oo (ra-1y < 1+ Cdg,

C(1=d0) < C(L = llgllzee ra-1)) < |maldq) (W) < C(L+ [lgll Lo ra-1)) < C(1 + o).
For ¢ as in Lemma 6.2, we assume that |[g|| - gre-1) < o and denote
(6.7)

G(v.0) = (df(6g) — dF @) v + N(op)o,  Kalg) = — 222 !

Tadl’

Lemma 6.2 allows us to divide both sides of (6.6) by 7, ¢ and obtain

(6.8) g = Ayq + K1(q)(Vyq) - (Vya) + K2(q)7a (G (v, q)).

The following lemma is proved by minor modifications of the argument leading
to [K, equation (2.23)]. It will be used to derive various estimates for nonlinearities
in evolution equations studied below.

LEMMA 6.3. Let the functions K1 = Ki(q)(y) and Ko = Ks(q)(y) for q €
HF(RI~Y) be defined as in (6.7). There exist positive constants dg and C such that
for ||ql| grr(ra-1) < 0o we have

(6.9) [Ki(@)lloe@a-1) < COA A+ gl ar@a-r)), i = 1,2.

Moreover, the formulas for K;, i = 1,2, define locally Lipschitz mappings q¢ — K;(q)
from HE(RI™1) to L>°(RI-1).

We return to the task of deriving the evolution equation for the perturbation
¢q +v. Applying the projection operator Qz to (6.4) yields the equation

(6.10) O = Lv+ Qy (G(v, q) + (8tq - qu)gb; + (Vyq) - (qu)qﬁg),
where G(v, q) is defined in (6.7). Combining (6.10) and (6.8) we have the system

dv = Lo+ Qu(G(v,q) + (0rg — Ayq) ¥y + (Vya) - (Vy@) o),
(6.11) g = Ayq+ K1(q)(Vyq) - (Vyq) + K2(¢)7aG(v, q).

We further denote

w(y) = Vyq(y), y € R,
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(612) Fy (Uv q, U)) = G(U7 Q) + (6tq - qu) QS; + (UJ : w)d);’7
(6.13) Fy(v,q,w) = K1(q)(w - w) + Ka(q)ma G (v, q).

Using (6.8) in (6.13), we obtain a relation between F; and Fj,
(614) Fl (’U, q, 'U.)) = G(Uv Q) + FQ(va q, w)(;S; + (w : w)¢g

From (6.4), using v € ran Q4 and ¢;, € ker Py, we obtain

P (G(v,q) + (9g — Dyq) &)y + (w - w)¢y) =0,

which implies that Iy (v, ¢, w) = Qu F1(v,q,w) = G(v,q) + (0rq — Ayq)#, + (w - w) .
Thus applying V,, to (6.11) we finally arrive to the system for (v, ¢, w) € ran Qy X
HF (R x HF(R4=1)4=1 that we shall study,

8t11 =Lv+ Fl(U7Q7w)7
(615) atq = qu + FQ(”?Qaw)v
Btw = Ayw + Vy : FQ(U,C],'UJ)~

7. Estimates for the nonlinear terms. In this section we obtain estimates
for the nonlinear terms in (6.15). Below we use the fact [AF, Theorem 4.39] that, for
2k > d, the Sobolev embedding yields the inequality

(7.1) [wvll gemay < Cllull grgay |0l gx way-

LEMMA 7.1. For k > [%£L], the following assertions hold:

(1) If u, v € H*(RY), then wv € H*(R?). Moreover, there exists a constant
C > 0 such that |[uv|| grgay < Cllull ge ey |0]| e ray for all u, v € H*(R).

(2) Ifu, v €M, thenuv € HF(RY). Moreover, there exists a constant C' > 0 such
that |luv| gxmay < Cllullgr@allvll gx@ay for allu, v € H.

(3) If u, v € H, then uv € H. Moreover, there exists a constant C > 0 such that
[wvll < Cllullallvllw for all u, v e H.

Proof. The proof is similar to the one-dimensional estimates in [GLS, Proposition
7.1].

LEMMA 7.2. For k > [*E], if ¢, go € H*(R?™1) and ¢ € H*2(R) 4s such that

' (2) = 0 exponentially as z — Loo; then the function o(z,y) = ¥ (z — ¢1(y))q2(y),
(z,y) € R4, satisfies
lloll gxray < Cllg2ll gx a1y,

where C' = C(||9¥||zo®), 1V r+1(m), 1911 % (ra-1)) is bounded in each ball {q1 :
lqull e a1y < K}

Proof. The derivatives of ¢ are given by

%Z ="z — a1 ()aey),
12 L g L v - W)L, =2
. oz, = aw)a(v)5, Bz, =2

Since 1’ is exponentially decaying to 0, we have
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13 Nolm = [ ([ 106 aG)P &) la)P s < g,

Similarly,
Iq1(y Jq
’ V(2 = a(y))a2(y) al(_ ) < Cllga]| oo ra-1) ‘31
x] LZ(Rd) x] Lz(Rd—l)
(7.4) < COllg2ll gr a1yl | v ra-1y-

The statement of the lemma then is proved by a calculation similar to the proof of
Proposition A.3 in the appendix. Indeed, instead of (A.7) in the proof of Proposition
A.3, we may use relations

k E_k §_|_1> . E_FL_ . d—1

P A A A T
which proves the embedding H*(R4~1) — W"i-Pi(R~1) by Lemma A.1 in the ap-
pendix. 0

Using Lemma 7.2 we now prove the following estimates of the H*(R%)-norm and
the weighted norm of the nonlinear term G(v, ¢) introduced in (6.7).

PROPOSITION 7.3. Assume Hypotheses 3.2 and 3.3. For k > [%], the following

assertions hold:

(1) Formula (v,q) ~ (df(¢,) — df(®))v defines a mapping from H*(RI)"™ x
HE(RIY) to HF(R?)™ that is locally Lipschitz on any set of the form {(v,q) :
vl e ray + gl o ra-1) < K}. On such a set there is a constant C depend-
ing on K such that

[(df (¢q) — df(¢))”||Hk(Rd) < CK”Q”H’C(Rd*l)”vHH’ﬁ(Rd)-

(2) Formula (v,q) — (df (¢q) — df (¢))v defines a mapping from H™ x H*(RI~1)
to H™ that is locally Lipschitz on any set of the form {(v,q) : ||v|lx +
llall g ra-1y < K} On such a set there is a constant Cx depending on
K such that

[(df (q) — df (P))vll g rety < Crcllqll mrrma—1y |V]] 5 (may 5
and, therefore,
1(df (bq) — df (#))vll3 < Ccllall e ma—r)llvll2-
Proof. We define p(q,v) € H*(R?) for ¢ € H*(R4!) and v € H*(R?) by the

formula
p(q.)(221) = <df(¢(z —aly) - df(¢(Z)))v(x),

so that

1 1
15) plaw)= [ (ol —sa)ds == [ R~ ) (@ - sa)a.0) ds

0

Since z — d?f(¢(z — sq(y))) is a smooth function with bounded derivatives, using
Lemma 7.2 we conclude that

plg,v) € Hk(Rd) and ||p(Qav)||Hk(Rd) < CK”QHH’C(Rd*)||U||Hk(Rd)-
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We then multiply (7.5) by v, and infer

”p(Qav)”Hg(Rd) < CKHQHHk(RH)||v||Hg;(Rd)~

To show the local Lipschitz estimates for p(g,v) and y,p(g,v), we pass to com-
ponents in the vector equation (7.5). It is enough to show that the map (g1, g2, v)
(g1, g2,v) defined by

(a1, 02,0)(2,9) = 1((z — a1 (@)Y (2 — a1 (y))a2(y)v(@), © = (2,y) € R

is a locally Lipschitz map from H*(R9™1) x H*¥(R4~1) x H*(R?) into H*(R?). Here
1 : R — R is a function that is exponentially decaying to some constants L as
2 — 400, the derivatives /(™) (2) = 0, m =1, 2,...,k+2, as z — oo exponentially,
and [ : R — R is a C**3 function with bounded derivatives.

Recall that k > [4F2] and thus H*(R?) — L*(RY). The derivatives of [ are
bounded, so by Lemma 7.2 we have

11(g1, g2, )| mrx may < Cllllon+sl|g2ll e a1y [0 e rays

and thus the map [ is well defined. B
We will now proceed with the local Lipschitz estimates for [. To show the estimate
for the variation in ¢q;, we fix g2, v and write

(a1, 42.v) — [(@. g2.0) =(z(w<- “ ) I - «n)))w- ~ @)
(W —q) (W' —q) =¥ (- — @),

1
100 = () = 0= @) = | 10— a) — (= D) ~ @) d

Applying Lemma 7.2 again we get

Hl(ﬁf(‘ - lh)) - 1(1/1(' - (71))||Hk(1Rd) < Crllar — @l e ma—1y-
On the other hand,

V(- ) -V —al / L (2= auly) ~ - Do) ~ @ (»))) ds

- / V() (@) - @ () ds.

Another application of Lemma 7.2 yields

(g1, g2, v) — i(dla‘]%”)”H’“(Rd) < Okllgr — @l e a1y

The estimate for the variation in g is similar. The estimate for the variation in v
follows from Proposition A.3 in the appendix by fixing ¢; and g».

Multiplying ! by 7, and working with I(¢)(- — ¢1))¥'(- — q1)g2vav gives the local
Lipschitz estimate of p(q, v) in the weighted norm. d
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The next statement concerns the nonlinearity N defined in (6.5).

PROPOSITION 7.4. Assume Hypotheses 3.2 and 3.3, and let k > [*FL].

(1) Formula (v,q) + N(¢q4,v) defines a mapping from HF(RH" x HF(RI!)
to H*(RH)"" that is locally Lipschitz and O(|[vl| gxray) as [[v]|gr@ey — 0
uniformly on any bounded neighborhood of (0,0) in H*(RY)™ x H*(RI~1),

(2) Formula (v,q) — N(¢q4,v)v defines a mapping from H*(RY)™ x HF(RI!)
to H*(RH™ that is locally Lipschitz on any bounded neighborhood of (0,0) in
Hk(Rd)n X Hk(Rd—l)

Proof. To prove (1), we note first that

N (g, v) // (df ¢q+s7'v))d7dsf/ / d? f(dg + sTv)svdr ds.

It is enough to show that the following map [ : H*(R4~1) x H*(R?) x H*(RY) —
H¥(R?) is locally Lipschitz. We define

Z(%“?”)(Z?y) =1 (Z/}(Z - Q(y))vu(x» ’U(‘T)7 T = (Zay) € Rd7

where ¥ : R — R is a function exponentially decaying to some constants iy as
z — 400 and (™) (2) — 0 exponentially, for any m =1, 2,...,and [ : R x R — R is
a C**+3_smooth bounded function with bounded derivatives.

Again, k > [%F], so that H¥(RY) — L°°(R?), and then (g, u,v) Mir2may <
[lllgr+s||v]l 2 (ray- If I denotes the derivative with respect to the jth variable, then

% =0 ()Y (z —q(y)v(= )+l2()§1: (x)+l(-)%,
ol dq ou O

= LYz —aW)v(@) 5= + ()5 —v(@) +1()g = j =2 ....d

87%- Oz, Z ox;’
Since 11, 15, ¢', and ‘zfj are bounded, I(q,u,v) € H'(R?). A similar calculation

(cf. the proof of Proposition A.3) with ¢(z,y) in the proof replaced by ¢'(z — q(y))
shows that I(¢,u,v) € H¥(R?). Thus, the map [ is well defined. Next we proceed
with the proof of the local Lipschitz property.

Variation in ¢ gives

1
i(q,u,v)—[((j,u,v):/o dil(i/}(z—q—(s—1)(q—(j)),u>vds
1
—— [ OO guds

0
Since I} and its derivatives are bounded, the main part of the estimate
H[(Qa uvv) - i(d,u U)HH’“ R4) < CKHC] - CﬂlH’C (Ra-1)

on sets of the form {(q,u,v) : [|q|| gr@a-1) + |[ul gr@ey + |V gr@ey < K} is reduced
to Lemma 7.2.
For variation in u, the estimate

11(g, u,v) — U(q, @, 0) || grray = [| (1@ (2 — @), u) = Lp(z — @), @) 0| e may
< Ckllu — | gx (ray

follows from Proposition A.3 considered for the mapping u + (1, u) from H*(R?)
into H*(R?).
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The estimate for the variation in v also follows from Proposition A.3 for fixed ¢
and u. This concludes the proof of, the first assertion in part (1) of Proposition 7.4.
Using the Lipschitz property and the property N(¢q,0) = 0 we conclude that

IN(@g; 0) || may = [N (¢q,v) = N(¢g, 0)llsix(rey < Ok [0l s (o)

on any set of the form {(v,q) : [lg||gxga-1) + [[v]| g+ re) < K} as required.
The proof of part (2) follows from part (1) since H*(R?) is an algebra (see (7.1));
for instance, the estimate of the variation in q is

[N (¢g, v)v — N(%»U)U”Hk(u@d) = ||(l~(q,U7U) —Uq,u, U))”HHk(]Rd)
< g, w,v) = UG w, ) || e ey 0] e (e
< Ckllg = gl gr@e—)1v] r (ray -

The estimate for variation in v follows from Proposition A.3, where we fix ¢ and

consider the map v — I(¢g, v)v. d

PROPOSITION 7.5. Assume Hypotheses 3.2 and 3.3 and let k > [%]

(1) If v € H™, then N(¢q4,v)v € H*RN", and for any ball of radius K centered
at (0,0) in H"™ x H*(RY™1) there is a constant Cx > 0 depending on K such
that for any (v, q) in the ball one has

IN(¢q, V)0l x ray < Crl|v]l ey [0l 15 ey -

(2) Formula (v,q) — N(¢q,v) defines a mapping from H™ x H*(RI™1) to H
that is locally Lipschitz on any bounded meighborhood of (0,0) in H™ X
HFE(RI-1).

(3) Formula (v,q) — N(¢4,v)v defines a mapping from H™ x HF(RI1) to
H™ that is locally Lipschitz on any bounded neighborhood of (0,0) in H™ x
HF(RIL),

Proof. (1) Using (7.1) and Proposition 7.4(1) we infer

[N (¢, U)U||H§(Rd) = ||N(¢qvv)7avHHk(]Rd)
< CIN(¢g; V)| vy 1o | 70 Ry < Cke [|V]] 8 ey 10| 712 (R -

To show the local Lipschitz property in parts (2) and (3) of the proposition, we note
that

1 .1
VaN(qu,U):/O /0 d? f(pq + 5TV) 8V dT ds.

The Lipschitz assertion then is proved by repeating arguments from Proposition 7.4(1)

and (2) for I(q, u, yav). d

PROPOSITION 7.6. Assume Hypotheses 3.2 and 3.3, and let k > [d—;l] The
formula (q,w) — (w - w)¢, defines a locally Lipschitz mapping from HF(RI1) x
H*(RI1)4=1 to H™ on any bounded set of the form {(q, w) : ||q|| grrga—1)+|w]| e @a-1)

< K}, and the mapping satisfies
I - 0)¢! vy < Crcllwllpuggasy  and (- w)]) iy < Cclleol 2 sy,

Proof. Recall that, by Hypothesis 3.4, ¢”" and its derivatives are exponentially
decaying to 0 as z — +oo, and, by Lemma 3.5, 7,06, for m = 1,..., k + 1, is
exponentially decaying to 0 as z — £oo.
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For a fixed ¢ € H*(R?™1), to show the local Lipschitz estimate in w, we use
the Sobolev embedding H*(R?) — L*°(R?) and inequality (7.1) for H*(R?~!) with
k>[4 > % and observe that, using Lemma 7.2 with ¢ = w - w — @ - w, we
have

l(w - w =@ - @) o

[(w = @) - (w+ )| e a1y

lw + 0| grr (ma-1y |w — D] rr (ra-1)

[(w —w) - (w+ D) || e (ra—1)

C

C

Ckllw — @| g ga-1),
[(w - w — @ - )] || xray < C
C

lw + @ grx ga-)llw — @ g ra-r)

INCINCIN NN N

CKHU} — U}”Hk(Rd—l)

with some Ck > 0 that depends on K. This completes the proof.

The local Lipschitz estimate in ¢ is proved similarly to Proposition 7.4 using
Lemma 7.2. O

PROPOSITION 7.7. Assume Hypotheses 3.2 and 3.3, and let k > [42]. Formula
(6.7) for G(v,q), formula (6.12) for Fi(v,q,w), and formula (6.13) for Fs(v,q,w)
define locally Lipschitz mappings from H™ x H¥(RI™1) x HF(RI=H4=1 to H™, H",
and H*(R*™1Y), respectively, on any set of the form {(v,q,w) : |[v||ls + |lql| gr®a-1) +
lw|l g ra-1y < K}. Moreover, if |[vll3 + |lg|| gxga-1y + |w] gr@a-1y < K, then for
some C'i > 0 depending on K one has

(@) G, )l mrwey < Crlllvllmemaey + llallmr®e-)) vl ms ®ay,

(b) ||F1(UaQ»w)||Hgg(Rd) < CK(”UHH’C(W)||UHH§(Rd) + ||Q||Hk(Rd*1)||UHH(’;(Rd)
+Hw||2Hk(Rd—1)),

(O) [1F1(v, ¢ w) || ey < Cre([[vl| ey 0]z may + @l e a1 1] 222 ey

+ lwllF a1y + Wl ar@ay o2l e ey ), where v = (vi, v2)"

with v; € H™, i =1, 2,

(c) ”F?(vv%w)”H’“(]Rd*l) < CK(HU”Hk(JRd)||'U||Hg;(Rd) + ||Q||Hk(Rd*1)||UHH§(Rd) +
Hw”%{k(Rd—l))a

(d) ||F2(UvQ7w)||L1(]Rd—1) < CK(HU”Hk(Rd)HU||H§(Rd) + ||Q||Hk(Rd—1)||UHHg(Rd) +

Hw”i]k(n{d—l))-

Proof. The local Lipschitz property of (df (¢4) — df (¢))v on H™ has been proved
in Proposition 7.3, and the local Lipschitz property of N (¢4, v)v on H" x H*(R4~1)
has been proved in Proposition 7.5(3). The local Lipschitz properties of these terms
imply the locally Lipschitz property of G(v,q) on H™ x H¥(R?~1). The proof of (a)
follows from (6.7) and Propositions 7.3 and 7.5.

In formula (6.13) for F5(v, g, w), we first consider the term K (q)(w-w). The Lip-
schitz estimate of the variation in ¢ follows from the triangular inequality, inequality
(7.1), and Lemma 6.3 because

[ K1(q)(w - w — K1(q) (w0 - @)|| e (ra-1)
<|[K1(q) — K1(@)| g a1y lw - wl| e ga-1)
+ 1K1 (D )| e a1y | (w - w — @ - D)|| i a1y

< Ok (Ilg = @ll g1y + [[w = @] i zary) -
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We then consider the term Ks5(q)moG (v, q). The Lipschitz estimate of the variation
in ¢ follows from the triangular inequality, (7.1), Lemma 4.3, the Lipschitz property
of G(v,q) on H" x H¥(R?1), Lemma 6.3, and the estimates in part (a) because

[ K2(q)7aG(v, q) — K2(qQ)TaG(v, @) || e (ra-1y
< ||K2(q)maG(v, q) — K2(q)Ta G (v, @) || x (ra-1)
+ [[K2(q)maG (v, q) — K2(@) TG (v, @)l e ra-1)
< K2 (D oo a1 1 Tall B3, e (ra-1)) [|G (v, @) — G(v, @) |1
+ | K2(q) = K2(q) | oo ra-1y 17all B2, rx (ra-1) |G (0, @) 130 < Crellg — Gl e (ma-1)-

The estimate in part (c) follows from (7.1), (4.3), (4.4), and (6.9). Indeed,

(7.6)
1K (0)maG 0, @)l e ey < K2 (@)l sy 1m0 G 0, @) 75 oy
< CK||G(UaQ)||H§(Rd) < CK(””HHk(Rd)||’U||H§;(Rd) + ”U”H(’g(Rd)HQHH’C(Rd*))a
(7.7)
1K1(a) (w - w) || g a1y < [K1(@)]| o a1y w0 - w] o a1y < Cre[[wllpe ga-ry-
Combining estimates in part (a), (7.6), and (7.7) we have part (c).

For part (b), in formula (6.14) of F; (v, g, w), we already have the Lipschitz prop-
erty of G(v,q) mapping into H™ by part (a) and the Lipschitz property of the term
(w-w)¢" (q) mapping into H™ by Proposition 7.6. To prove the Lipschitz estimate for
qbleg (v, q,w) of the variation in v and w, we apply the Lipschitz property of the map
(v,q) = F3(v,q,w) for a fixed q. To prove the Lipschitz property of the variation in

q— ¢, F2(v, q,w), we use the fact that ¢’ decays exponentially to 0 and Lemma 7.2
with ¢go = Fa(v,q,w). We have the inequality

1710, ¢, w)ll vy < NG, Qs may +CllF2 (v, ¢ w) [ ra—1) +l|7Va (W - w) gl ey -

We can now use the estimates on G(v,q) in part (a) to deal with the first term, then
use the estimates for Fy(v,q,w) in part (c), while the estimates of the last term are
given by Proposition 7.6.

Similarly, for part (b'), we refer to Proposition 7.6 and then use Lemma 7.2 to
estimate the second term in the formula (6.14) for Fy,

||¢;F2(U,q7w)||Hk(Rd) < C(””HH’C(Rd)”vHH(@(Rd)+||Q||Hk(Rd*1)”U”H(’i(Rd)JerH?'ik(JRd*l))'
Similarly to the proof of Proposition 7.7(b), the third term in (6.14) is estimated as
|0y (w - w) | v (ray < CHU’H%WRH)'

We obtain an estimate for G(v,q) = (df(¢q) — df (¢))v + N(¢q,v)v by using from
Lemma 7.9(2)—(3),

G (v, @) rmay < [1(df (dg) — df ()] r ey + [N (Pgs V)] rk(ma)
< K(”Q”H’“(Rd*U”’UHHQ(Rd) + ||v||Hk(Rd)||”||Hg(Rd)

+ o]l e ey lv2 [l 7+ mey)-

Adding the above inequalities for the terms of (6.14) finishes the proof of (b').
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To prove part (d), we use the Cauchy—Schwarz inequality, (4.5), Proposition
7.4(1), and Lemma 4.3,

[7aG (v, @)L (a1 VG (v, D) L1 (ra)

([[VaN (¢q, v)0|| 1 may + [|7a(df (Dq) — df (9))v]| L1 (ra))
(IN(Pgs ) 2@y [[Vav [l L2 (R

+ |ldf (¢q) — df (D)l L2 re) 1Vav | L2 (Ra))

< Cr (vl ey [0l mrs ma)

<C
<C
<C

+ gl zx a1y |vl| 5 (RaY )-

Similarly, using the Cauchy—Schwarz inequality, we infer

[w - w1 a1y < [Jw]|g2@e-1)[[w][L2@e-1) < ||w||?{k‘(]l§d—1)’

and thus we have

(ImaG (v, @)l L1 @a-1) + lw - wl[ L1 ga-1))

HFQ(U7q7w)HL1(Rd 1) < C
< Ck ([[vll e @ay vl s ay + gl e a1y [[0]| 5 (e
+

||w||Hk (Rd- 1))

This finishes the proof of the required inequalities in part (d). O

We next formulate lemmas whose proofs resemble the proofs in [GLS, Lemmas
8.1, 8.2, and 8.3]. We will use them later to prove boundedness of the components of
the solutions in H*(R?)-norm.

LEMMA 7.8. Assume Hypotheses 3.2 and 3.3, and let k > @. Then the entries
of the matriz-valued function (df (¢) — df(0))y5" belong to H*(R).

Proof. This follows from the formula df (¢) — df (0) = ¢ fo d*f(s¢)ds, where f(-)
is a C**3 smooth function by Hypothesis 3.2 and from the fact that ¢y;! € H¥(R)
using Lemma 3.5(1). d

We will now use Lemma 7.2 to prove an analogue of Proposition 7.3(1) with
[[v]| % (rey in the right-hand side replaced by [|v[|gxge) and Proposition 7.5(1) with
Il - | % (rey in the left-hand side replaced by || - || gk (gray. We recall that ¢ = ¢(z) and
that the function (z,y) — (df (¢(z — q(y))) — df (0))v(y) is in H*(R?).

LEMMA 7.9. Assume Hypotheses 3.2 and 3.3, and let k > [%] For each K > 0,
there is a constant Cx > 0 such that if ¢ € HF(R™Y) and v € H satisfy ||v]|n +
||q||Hk(]Rd—l) < K, then

(1) [I(df (¢) = df (0))vll rrey < Cr o]l g ey s

(2) II(df(¢q) — df (P))vll e ey < Crellqll e |Vl s ray s

(3) for (v,q) in a bounded neighborhood of (0,0) in H"™ x H¥(RI™1), and v =

(v1,v2)T with v; € H™, i = 1,2, one has for N(-,-) defined in (6.5),

IN(¢q, V)v[| e ey < Crcl|vll e ey (10 mrx ey + 02l e (Ra))-

Proof. Lemma 7.8 and (7.1) yield (1) since

1(df (¢) — df (0))vll rremay < 1(df () = df (0))va ey Ve vl ey < Ccllvll e (ra-
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To prove (2), we write, as in (7.5),

1
(7.8)  (df(¢q) — df(9))v = —/0 & f(d(2 = sa(y))) (731 ¢ (2 = sa(y))a, vav) ds.
We next use an argument similar to the one in Lemma 7.2 to prove that

(7.9) 1(df (¢q) — df ()0l s (ray < Ok llall mre a—1) |0l 2 ety -

Indeed, the main steps in the proof of (7.9) are as follows.
We consider (7.8) componentwise. The proof of (7.9) is then reduced to a proof
of the inequality

(7.10) ol zr@ay < Cllall grra-1y,

where o(z,y) = 7,1 (2)¢'(z — q(y))q(y), z = (2,y) € R?, and 9 as required in Lemma
7.2 has exponentially decaying derivatives. Indeed, as soon as (7.10) is proved, the
inequality
19'(- = sa(-))aC)o( )l ay < Moz rayllvll g ey
yields (7.9) from (7.8).
To prove (7.10), we denote m(z,y) = va(z — q(y))75 ' (2) so that

o(z,y) = m(z,y)(va ") (z — q(y))q(y).

We note that v, !(2)y’(z) exponentially decays at z — +o0o. Using ¢ € H¥(R9™1)
L>®(R%1) and formula (3.7) for 7,(2), we conclude that m(z,y) = e *-W) for
z < —r and m(z,y) = e~ *+9W) for z > r for some large r > 0 uniformly in y € R1;
moreover, v, (—¢q(+)) € L= (R?!), with the norm bounded by a constant that depends
on K. Similarly to the calculation in (7.3), the L?(R%)-norm of ¢ can be estimated
as

(7.11)
loll 2@y < mlle @1y, [1(va 9" = a(-))a()lL2@a—) < Ok llall v a—r)-

We now show how to estimate the L?(R?)-norm of the derivatives of 0. The z-
derivative,

do 1

5, = 02 (= = aw)aly) + 72 ()9 (= = a®))a(w),
is the sum of two terms that can be handled similarly to (7.11). Taking derivatives
with respect to z;, j =2,...,d, yields, as in (7.2),

Jo

112) G = q(y»;jjq(y) s @Yz — aw)

91
8Ij.

The L?(R%)-norm of the first term can be estimated as in (7.4) and (7.11), that is, by
a calculation similar to (7.3), we have

_ dq
bt - atngta
i 2 ey
—1 41 Jq
< il poe ma—1y gl Lo a1y || (Ve @) (- *(J('))%
i L2 (ra)
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dq

< o (=g lpee -1y gl oo (ma-1) ‘(valaﬁ”)(' —a())g5 -

L2(R%)

< Ok llqll gx a1y,

where Ck is a K-dependent constant different from the constant in (7.11). A similar
calculation works for the second term in (7.12). This proves assertion (7.10) for k = 1.
We conclude the proof of assertion (2) by pointing out that higher order derivatives
are handled as described in the proof of Proposition A.3.

To prove (3), we recall the following representation of the nonlinearity v =
(v1,v2)T = N(¢g,v)v borrowed from the proof of [GLS, Lemma 8.3]:

N(¢q,v)v =11 (v) + I2(v) + I3(v) + 14(v) + I5(v),

where ¢q = (¢1(z — q), d2(z — @) = (d1,4, P2,9)T, v = (v1,02)7,
1
I(v) = / (Bus (g + 1) — D (64)) V1.l

1 1
L(v) = /O (O (g + t0)01) buadt,  Ty(v)— /O (O (g + 1) — D, r(g)) vahs gt
1

L(v) = / (Bur(6g + to)on) tosdt,  In(v) = / (F(Bq + tv) — () v,

and the n x n matrix-valued C* function r = r(uy, us) is given by

1
r(uy,u) =/ Ou, f (U1, suz)ds.
0

The proof of the required estimates for each I, j =1, 2,..., 5, is similar to the proof
of assertion (2) above and uses Lemma 3.5. For instance, for j = 1, passing in the
integral to the third derivative of f (which is a C*-bounded function by Hypothesis
3.2), we reduce the problem to obtaining an estimate for ||vv1¢a g || gk (ray. If we write
V1024 = (Yav1) (75 td2,4) and use that H¥(R?) is an algebra, then, in order to prove
that

(7.13) 11 (0) |+ ey < Clloll e @ay lv1ll 5 ey

it suffices to show that the H*(R?)-norm of o(2,y) = v, *(2)p2(2—q(y))w(z) with w =
Yov1 is bounded by Cl|w]| gr(ray. This follows because ¢ € H¥(RY™1) — L>(R*1)
yields the existence of a large > 0 such that, uniformly for y € R?~!, we have

. Ke a-ze~w-(z=a(v)) o < —p,

el (2)é2(z —q(y))| < {Kea+z(|¢2| I ) T
Using e? € L*>®(R9"!) and Hypothesis 3.4 we conclude that v;'(-)g2(- — q(-)) is
bounded. A similar argument, as in the proof of (2) above, applies for the deriva-
tives of o. This completes the proof of (7.13). For j = 2, ..., 5, the estimates
125 ()] zr+ray < Cllvl| e rayl|v2|| rx (ray are straightforward since each integral has a
factor vo and both derivatives of f and ¢, 4 are k-smooth with bounded derivatives.
Combining the estimates for j =1, ..., k yields assertion (3).
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8. Nonlinear stability.

8.1. Local in time existence and bounds. In this section we analyze the
system (6.15). We denote

(8.1) X =ran Qg x H¥ (R x HF(RITHI-L,

We also will assume as before that k& > [%] Let Sg,, (t) = e'“* be the semigroup
generated by the operator L (see Definition 3.1(6)). Let (v°,q° w°) be the initial
perturbation to the front. Since Sa, (t)VFy = V,Sa, (t)F2, the variation of constants
formula implies that the mild solution to (6.15) on X satisfy the equations

v(t) = Sy, (t)v° + /0 Sea, (= s)Fr(v(s),q(s), w(s))ds,
0lt) = Sa,(06° + [, (1= ) Fato(s) (o). w(s))ds.

(8.2) w(t) = Sa, ()’ + /0 V,Sa, (t — 8)Fa(u(s), q(s), w(s))ds.

Next we formulate a statement that shows the existence and uniqueness of the
mild solutions of (8.2).

PROPOSITION 8.1. For any initial data (v°,¢°,w®) € X system (6.15) has a
unique mild solution (that is, a solution of (8.2)) (v(t), q(t),w(t)) € X in the maximal
interval 0 < t < tpmax, where 0 < tpax < 00.

The proof can be found in [K, Lemma 3.4]. We just mention that the proof
only uses the fact that £, generates a strongly continuous semigroup, even though
we know that £, generates a bounded strongly continuous semigroup. Indeed, since
the operator £, generates a strongly continuous semigroup and the nonlinearities
Fy and F; are locally Lipschitz with Lipschitz constant Cx on the set {(v,q,w) :
vl + llgll zrx ma—1y + [|wl] grrma-1y < K}, the estimate from Lemma 5.5(c), which is
integrable at t = 0, yields the statement of Proposition 8.1.

For (6.15) on X from (8.1) we combine Proposition 8.1 and [SY, Theorem 64.2]
to obtain the next lemma.

LEMMA 8.2. For each § > 0, if 0 <y < 4, there exists T (0 <T < 00) such that
the following is true: if (v°,q°, w°) € X satisfies
(8.3) [0°]12 + HQOHH'@(Rd%) + ”wO”H’C(Rd*) <7

and 0 < t < T, then the solution (v(t),q(t),w(t)) € X of (8.2) with the initial data
(09, ¢% w°) is defined and satisfies

(3.4) Fo(®)ls + a0 anceasy + 0(t) o ey < 6.
DEFINITION 8.3. Let T'(0,7) denote the supremum of all T such that (8.4) holds
for all 0 < t < T whenever (8.3) is satisfied.

Having established the local in time existence of the solution of (6.15), we show
next the algebraic decay and boundedness of the solution.

COROLLARY 8.4. For any K > 0, there exists 69 < K such that for any v and
d satisfying 0 < v < 0 < dg, the mild solution V(t) = (v(t),q(t),w(t)) of (6.15)
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satisfying |V (¢)||x < d on the interval t € [0,T(8,7)) is continuous with respect to
the initial data VO = (v°,¢°, w®) satisfying ||[VO||x < ~y. Moreover,

(8.5) IV®)llax < CUE)|VOlx for all t € [0, min{1, T(5,7)}],

where C(K) is a constant that depends on K but is independent of 6 and ~y.

Proof. Since the estimate in Lemma 5.5 is integrable at ¢ = 0, the continuity with
respect to initial data is a simple modification of the standard argument; see [SY,
Theorem 64.2],

By Lemmas 5.4 and 5.5 the semigroup {T'(t) }1>0 = {Sc,, (t)®Sa, () DSa, (1) }ix0
is bounded. We define M = max{sup{|T(t)|[gx) : t = 0},C}, where C is the
constant from Lemma 5.5(c). The variation of constant formula (8.2) and Proposition
7.7 and Lemma 8.2 together with assumption 0 < ¢ < min{1,7(d,v)} < 1, for all
t € [0, min{1,7(d,7v)}), yield

t
V&)l < MIVO||x + MCycs / (t = 5)" V2|V (s)||xds
0

< M||VOx + 2MCgS sup ||[V(t)]x-
T(6,7)=0

We then choose dp < min{K,1/4MCxk} and conclude that for any 0 < § < dp and
0 <y <4, then [V(t)|[x < C(K)||[V°|x for some C(K) depending on K for all
t € [0,min{1,T(d,7)}). 0

8.2. The algebraic decay of solutions in weighted norm. In this subsection
we show that the weighted norm of the solution v(t) = (v1,v2) of (6.15) decays
algebraically as t — oo, the H*(R?)-norm of vy (#) also decays algebraically as t — oo,
while the H*(R%)-norm of vy (¢) is bounded provided the initial value of the solution is
sufficiently small. For the initial data (v°, ¢, w%) € ran Qy x H¥(R?~1) x H*(R4-1),
we denote the size of the initial values by

(8.6) By = [0l + 1° | ress a1y + 1° lwr a-1).

We assume ¢° € H¥1(RI-1) n W1 (RI-1) so that when (6.15) has a mild solution,
w(t) satisfies w(t) = V,q(t) and w(t) € HFRI")4=1 0 LY R4 thus (8.6)
contains the norm of [|w®| 1 (ga-1) in the last term.

The following estimates are proved by direct computation in [X].

LEMMA 8.5. Suppose a,b,c > 0; then

(1) 5/2(1—|—t—s)_b(1+s)_cd3<C’(l—!—t)_“, ifa<b,a<b+c—1,¢c#1, or

ifa<b, c=1;
(2) ftt/2(1+t—s)*b(1+s)’cds <CA+t) " ifa<c,a<b+c—1,b#1, or
ifa<ec, b=1;

(3) fg e Pt (1 4+ 5)"¢ds < C(1+1t)~°.

We now show that the weighted norm of v(t) and the H*(R?~!)-norms of ¢(t)
and w(t), in fact, decay to zero algebraically as long as ¢ grows but the H-norm of
v(t) and the H*(R?~1) norms of ¢(t) and w(t) remain small.

PROPOSITION 8.6. Assume Hypotheses 3.2, 3.3, and 3.7, and let k > [%]
Choose v > 0 as in Lemma 5.2. There exist 61 > 0 and Cy; > 0 such that for every
d € (0,01) and every v with 0 < v < 6, if E < v, then the solution (v(t),q(t),w(t))
of (6.15) with the initial data (v°,¢°,w®) for t € [0,T(8,v)) satisfies the estimates
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o)z (ray < Cl(l+t)*%Ek,
d—

lg()|| a1y < Cr(1 1) T B,
_an1

|w(t) | e ra-1y < Cr(1+1)" T Ej.

Proof. In Corollary 8.4 we have discussed the solution of (6.15) in a time pe-
riod [0,min{1,7(d,7)}); therefore, without loss of generality, we may assume that
T(6,7v) > 1.

We recall that ran Q3 = ran L, N H"™; thus for v € ran Q¢ we can replace Ly
by L, in (8.2). Applying the semigroup estimates from Lemmas 5.5 and 5.2 to (8.2)
yields

(8.7)
t

o)l e @ay < C (e_VtHUOHHf;(Rd) +/ e_y(t_S)Fl(S)HH';(Rd)dS) ;
0

_dea _
la@)[ zrx (ra-1y < C <(1 +t)7 3 ”qO”Ll(Rdfl) +e ﬁthOHHk(RH)

t
+/ e*B(t*S)||F2(5)||Hk(]Rd—l)d$+/
0 0

_ga+1 _ _
||w(t)||Hk(]Rd—1) < ((1 —|—t) 1 HqO”Ll(Rd—l) +t 1/26 ﬁt”(JOHH’“(Rd_l)

t

d—1
(14— s>4||F2<s>||L1(Ru>ds) |

t

t
(=) e P Es) sy + @ +t—s>—”’f||F2<s>||L1<Rd-1>ds),
0 0

where Fjo(s) = Fia2(v(s),q(s),w(s)). For ¢ > 1, there exist C' such that
e w0l g (rey < Ce™ "By and

d—1 d—1

T+ [[¢°) prga-1y + €7ﬁt\|q0||Hk(Rd—1) SC(+1t)" 7 By,

(L4075 g gy + 772 Pl ruary < CL+ )75 By
For any ¢’ and v such that 0 < v < ¢, if E < v, then, by Lemma 8.2,

lv(s)ll + lg(s)] s ma—1y + Jw(s) | grera-1) < §' for all s €[0,7(0,7)).
Within this bounded set, Proposition 7.7(b) and (c) states that
[F1(v(s), q(s), w(s))l| mxray < Cor ([[0(8)] e ey [v(s) | s r
+ lla() e @a-) 1o (8) |z may + 1w e ga-1))s

)
)
1F2(v(s), q(s), w(s)) e ra-1) < Cs ([(s) |l s ey [0 ()| 715 ety
+la(s) | e a1y l0(8) | rrt (ray + lw(8) 37 a-r))-

Using Proposition 7.7(d) the inequalities (8.7) can be rewritten as follows:
[o(®)] s (ray < Ce "' By,
t
+ CC@//O eI (Jlo(9) ey l0(8) | g ety + Na() | e a—) o(8) | et (may

+ () |7 oy ds,
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gl xma—1y < C(1 +1)" T E,
+ ocy, /Ot €= (o)l ey 11003 1 ety + 12(5) e s 1) e e
+ Hw(s)”%{k(ﬂw—l))ds
s /ot“ = 8) 75T ([0(5) Ly + N aecga-)o(s) g e
() By sy s
and
[w(®)[| e ge-1y < C(1 th)*dzle,C
oy [ (¢ )5 e PO (o(3) s oy + N8y 5) s e
+ ||w(5)||§1k(Rd71))d5
o [ Wt ) S (o) gy + ) o) 0(5) s ey

+ [w(s) 35 (ga-r))ds.

We denote
d+1
M,(t) = sup (1+5) 7 [[v(s)| mxwraey
0<s<t
d—1
My(t) = sup (1+s) 7 [lq(s)ll e (ma-1y,
0<s<t
d+1
My (t) = sup (1+s) & [[w(s)| gx(ma-1)
0<s<t

and note that for each § < ¢, and 0 < v < ¢, if Fx < 7, by Lemma 8.2, for all
5 € (0,7(0,7)), we have |[v(s)|| grwe) < [lv(s)][# < J, and therefore

t
()| ety < Ce™" By + CCl <6Mv(t) / eVt (1 1 5)" Frds
0

¢ - t
+ M (6)M, (1) / U= (1 4 )~ ds 1+ M2 (1) / e—”<t—s>(1+s)—d2“ds>,
0 0

t
gl mrr (ra-1y < C(1 + t)_d%Ek +CCys (6Mv(t)/ e A=) (1 4 s)—d%ds
0
t t
+Mv(t>Mq(t)/ e—ﬁ<t‘s)(1+s)—”%ds+M3](t)/ e B=9(1 4 5= ds
0 0

1

t
+5Mv(t)/ (14t — )~ (1 4 5)- 4 ds
0
t d—1 3d+1
+Mv(t)Mq(t)/ (14t s)~5 (14 8~ % ds
0

t
+M§,(t)/ (I+t—s)" 5 (1+ s)—d?lds> ,
0
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t
()| g1y < C(1+£) 5 B +CCy <5Mv(t)/ (t = )~ e=B0=3) (145~ 2 g
0
t
+Mv(t)Mq(t)/ (t— 5)Be A=) (1 4 5)~ 25 g
0
t
+M3;(t)/ (t—s>_%e—[3(t—s)(1+s)_%ds
0
t
+5Mv(t)/ (1+t75)7%(1+5),%d5
0

d+1

+ M, (£) M, (t) /t<1 Ft—s) T (14s) T ds

t
M2 (t) / (I+t—s)" " (1+ s)d?ds> .
0
By Lemma 8.5 then
[o(®)] e (ray < Ce " Ey,
+ CCs (M (t)(1+ 1)~ 5 + M, (£) My (t) (1 + )~
+ME()(L+ )T,
q(t) | g za—1y < C(L+ )T Ey-CCyr (S My (£)+ M, (1) M,y(£)+M2 (£)) (14+8)~ T
(&) gr a1y < C1A4E) T Byt CCss (8My (£)+ M, (£) My (H)+M2 (1)) (148) 5

'3d+1

One then has for some C' > 0,
(L4 6 o)l g ey < C ((14+6)F ™ By + 6M, (1)
ML (OM()(1+ 07T + M)
(1+8) T ()l zxa—ry < C (Bx + 8My (t) + My (£) My (t) + M2(2)) |
(1414) [ w(t)[| g ga-1y < C (Eg 4+ 6My(t) + My () My (t) + M (1)) -

Since M,(t), My(t), M,(t) are increasing functions, it can be concluded that for
t€[1,7(y,0)),
M,(t) < CEy 4+ C(6M,(t) + M, (t) My (t) + M2(t)),
(8:8) M, (t) < OBy + C(0My(t) + M, (1) My () + M3 (1)),
My (t) < CBy + C(6My(t) + My() My (t) + My (1))

If we set M (t) = M, (t) + My(t) + M, (t); then by (8.8), for all t € [1,T(v,0)) and for
some C > 0 that depends on ¢,

M(t) < CEy + CSM(t) + CM?(t).

Note that by Corollary 8.4 M(t) < C(§')Ej for 0 < ¢t < 1 and some constant C(d") >
0. Choose 01 < min{1/2C, ¢’} and 0 < v < § < &1; then absorbing the term M (%)
into the left-hand side, we have M (t) < 2CEj +2CM?(t) for all t € [0,T(d,~)). Since
this inequality holds for all ¢ € [0,7(d, 7)), by continuity of M(-), the expression M (t)
cannot “jump” over the first root of the respective quadratic equation. This root,
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in turn, can be controlled by KiFEj as long as Fj is sufficiently small. Indeed, let
M; =1 —+/1—16C2E},/4C be the first root of the equation 20M? — M +2CE), = 0.
If By < 1/16C2, then

B 16C2E),
- 4C(1 41— 16C2E},)

Since M (t) is continuous and M (0) = Ey, it follows that if §; < min{d’,1/2C,1/16C?},
then for all § € (0,01) and 0 < Ej, < v < ¢ (see Lemma 8.2) we have M (t) < M; <
K1 E}, for some Cq > 0 and all t € [0,T(6,7)). 0

M,y < 4CE}.

8.3. The boundedness of solutions in H*(R%)-norm. In this subsection, we
show that the H*(R?)-norm of the solution v(t) remains bounded for all ¢. Together
with the decay of the weighted norm for large ¢ this implies smallness of H-norm of the
solution when the initial conditions are small, which is the key step in the bootstrap
argument used in Theorem 8.8 proved below.

We point out that the algebraic decay of ||v(¢, -, -)||gx(ray implies convergence of
v to 0 for z close to oo, but it does not provide any information about the properties
of the solution at z = —oo. Indeed, since the weight function v4(z) with ay > 0
either is 1 or grows exponentially as z — 0o, the algebraic decay of the solution in the
weighted norm may be achieved only if the solution decays to 0 for large positive z
faster then the weight grows. On the other hand, since 7,(z) exponentially converges
to 0 as z — —o0, it is possible that v grows at —oo but that growth is compensated by
the decay of the weight. It is the “product-triangular” structure of the nonlinearity
that allows us to show the boundedness of the perturbations in the norm without a
weight.

The following is the analogue of Proposition 8.6 for H*(R%)-norm.

PROPOSITION 8.7. Assume Hypotheses 3.2, 3.3, and 3.7 and let k > [%] Choose
p >0 to satisfy
sup{Re A : A € Sp(L?)} < —p
and 61 as indicated in Proposition 8.6. There exist 65 € (0,01) and Co > 0 such that
for every 6 € (0,02) and every v with 0 < v < §, the following is true: if Ey < 7,
then the solution to (6.15) for t € [0,T(d,7)) satisfies the estimates

(8.9) o1 ()| e ray < C2E;
(8.10) loa ()| vy < Ca(l + )~ Ey.

Proof. Using (3.13), we write the first equation in (6.15) as follows:
(8.11) Ay = LWvy 4 dy, £(0,0)vy + Hy (g, w,v1,v2),
(8.12) vy = LD vy + Hy(q, w,v1,vs),
where

(o 2 = Fiou o) + (41(6) - O

(Uh V2,4, w)

Since (v, ve,q,w)(t) is a fixed solution of (6.15) in H™ x H¥(RI~1) x H¥(RI™!), we
may regard (8.11)—(8.12) as a nonautonomous linear system on H*(R?)". The mild
solutions of (8.11) and (8.12) satisfy the system of integral equations

(8.13) m@zaNW+£emwm@dmmw@+mw@m¢w@»m
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t
(8.14)  wa(t) = £Vl + / =LY 1, (0(s), q(s), w(s)) ds.
0

As in the proof of Proposition 8.6, we may assume that ¢ € [1,7(d,7)).

From Lemma 5.3 we know that [|et<” | B(ekray) < Ke™?*. By the definition of
T(6,7), for 0 < 6 < 4y, if 0 <y < § and Ey < 7, then for all s € [1,T(7,9))

lo(s)ll3 + lla()l mrwa-1) + [[w(S)l a1y <& < 01

It follows from Lemmas 7.9 and part (b’) of Proposition 7.7 that there exists a constant
Cs, > 0 such that

(8.15)
[ Hi(v1(s),v2(s), q(s), w(s)) | rrrray < Co, (I0(3) | e ray + 10(8) [ e ey [[v2(5) | 112 ety
+ ||v(3)||Hk(Rd)HU(S)”Hg(Rd) + ”‘Z(S)”H’“(Rd*)||v(s)||H(’§(R'i)
+ lw(s)l e ga-1y)
for ¢ = 1,2. Thus by Proposition 8.6, Lemma 8.5, and (8.15), and also because
lv(t)[ g+ ey < 0, formula (8.14) yields, for some K > 0 and all ¢ € [1,7(,9)),
t
Joa(0) sy < e Bi+ K [ =000, (o)l

+ ()l e ey l02(9) 12 ey
+ [[0(3) L ey [0 () g ety + () e o3 g e
+ Hw(S)H%{k(Rd*l))d&

We define M,, (t) = supg. <, (1 + s)% lv2(8) || fr# (rey and use Lemma 8.5 to obtain

t
oo (6) | e ey < K(1+6)~ 5 B +K5M,,2(t)/ P9 (1 1 5)~“F ds
0

d+1

S K(E +6M,, (8)(1+8)" %,

and thus, (14 t)% lv2(8) || irx (ray < K Ey + K6M,,(t). Because M,,(t) is increasing,
we conclude that

M,,(t) < KEy + KM, (t).
Choosing 62 < min{dy, 1/2K}, we obtain that if 0 < § < 2 and 0 <y < 4, then
5 a1
lv2(8) | (ray < Ca(14+1)" "2 B

for some Cy > 0 on the time interval ¢ € [1,T(,d)), thus finishing the proof of (8.10).

To prove (8.9), we first use Lemma 5.3 in (8.13) to infer Hewm B+ ®ey) < K.
We then find an estimate for the solution to (8.13) based on (8.15),

t

o1l e (ray < KE) + KCs, / [Cllva () ray + [10(8) | a1 ey
0

+ [lo(s

)
+ [ ey [0 () rx may + [1a(8) | ax ma-1) 10(8) | % (e
+ ||w(3)||§{k(Rd71)]d3»

| 7% (ray lv2 (8) || e (me)
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for some C' > 0. Since 0 < Ej, <7 < < do, fort € [1,T(v,0)) we have [[v(t)]| g gey <
d by Lemma 8.2 and Definition 8.3 of T'(d,y). Therefore,
¢
[o1(0) | 7 ray < K E), + KCs, / (Cllva ()l e ray + I0(8) |z ey + Sllva(8)l] ey
0
+ 8llo(s) e ey + gl zrr (a1 [0 () | e ey + 1w ()| e 1)) ds

t t
gKEk+K(c+5)/ ||v2(5)||Hk(Rd>ds+K(1+5)/ 10(8) | 2 ey s
0 0

t t
K [ el o gods + K [ 1006) By s
0 0

Finally, we apply Proposition 8.6, (8.10), and Lemma 8.5 to obtain that
! _d41
Jox (@l < K (i Coy(C OB, [ (145)7 8 ds
0

t
+0,(1 +5)Ek/ (145)" % ds
0

t t
+012Ek/ (1+s)*#ds+cﬂEk/ (1+s)d$1ds> < Co By
0 0

The proposition then holds with Ko = max{ég, C:'Q} O

8.4. Global existence and bounds. We now present the main result of this
paper. It relies on a bootstrap argument based on Propositions 8.6 and 8.7. The
constant dg in the next theorem can be taken to be §y = do, where &5 is chosen as in
Proposition 8.7.

THEOREM 8.8. Assume Hypotheses 3.2, 3.3, 3.4, and 3.7 and let k > [%]
There exist positive constants dg and C such that for each 0 < § < dqy there exists 0 <
n < & such that the following is true. Let (v°,¢°, w®) € H" x H*(RI~1)x HF(RI-1)d-1
be the initial condition satisfying

B = [[0°l3 + 8% i a1y + 1% lwr ma-1y <

and let (v(t),q(t),w(t)) € H™ x H¥RIL) x H¥RI1)I=L be the solution of the
evolution equation (6.15) with the initial condition (v°,q°,w®). Then for all t > 0,

(1) (v(t),q(t),w(t)) is defined in H™ x HF(RI~1) x HF(RI—1)d-1;

(2) lo@ N + g e @a-1y + |0 e ga-1y < 65

d+1
3) M@ lxra) < C(1+t)77Ek¢
(@) Nlg@®)lre(a-—ry < CA+1)~ T By;
d+1
(5) lw®)llmrga-1) < C(L+)" T Ey;
(6) 1 (D)l e ey < CEy;

(1) o2 (®)ll e ey < C(1+1)~ % By

Proof. We choose §y = §o, with d from Proposition 8.7, and then we fix C >
max{1,Cq,Cy} with C; and C5 from Propositions 8.6 and 8.7, respectively. We take
v such that 0 < v < § < § and set n = C~1y/3. Let (v°,¢°,w") € ran Qy x
HF R x H¥(RI-1)9=1 be the initial value of the solution (v(t),q(t),w(t)) €
ran Qy x HF(RI1) x H*¥(RI71)4=1 of (3.2) such that By < 5. Since n < vy < 6,
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we can apply Propositions 8.6 and 8.7 with « replaced by n and conclude that for all
t €10,T(v,n)) assertions (1)—(7) of the theorem hold.

We claim that T'(d,7) = oo; thus the theorem holds as soon as the claim is proved.
To prove the claim, we fix any T € (0,7(d,7n)). At that T, we note that by assertions
(3), (6), and (7) and the definition of the H norm, ||v(T,v°,¢°)||lx < V2CE) and
therefore

HU(Tv Uovq0>w0)H7'l + HQ(T7 voaqovwo)”H’“(Rd“) + ||w(T7 voaqoawO)HH’“(Rd*)
<(2+V2)CE, < (2+V2)Cn=1.

We now apply Lemma 8.2 to the solution with the initial data (v(T'),q(T),w(T)).
This lemma says that for all ¢ € [0,7(4,)) we have the inequality

[o(t + T)llae + llg(t + Tl ar a1y + lw(t + T) | 15 a-1) <6,
so, if By <, then [[v(t)|la + [l¢(0)l| grma-1) + [[w(E)|| grwa-1y < 0 for all ¢ € [0,

T(6,7)). By Definition 8.3 that means that T'(6,n7) > T + T(d,7) for each
(0,7(8,7)) and therefore T'(d,7y) = oo, which completes the proof.

T+
T €
a

Appendix A. Lipschitz properties of the Nemytskij operator. In this
appendix we prove the Lipschitz properties of the Nemytskij operator (A.1) induced
by the nonlinear term in system (3.2) that we consider. In order to do so, we need
the following lemma from [RS] and a generalized Holder’s inequality (see, e.g., [WZ]).

LEMMA A.1. For Sobolev spaces WP (R®) and Wko-Po(RY) | if k > ko and k:—% >
ko — z;io’ then the Sobolev embedding WHP(R9) — Wko:po(R2) holds.

LEMMA A.2. Assume that v € (0,00) and pi1,...,pn € (0,00] are such that

Sory pik = % Then for all p-measurable real or complex-valued functions f1,..., fn,

< PR (1)
H kllka“(“) < kl;[l | fell Low ()

In particular, fi, € LP*(u) for all k € {1,...,n} implies that [[,_, fx € L"(1).
Next we formulate an analogue of [GLS, Proposition 7.2].

PROPOSITION A.3. Assume that m : (q,u) — m(q,u) € R is a function from
CHH1(R?) with k > [*£L]. Consider the formula

(A1) (¢(x),u(z),v(z)) = mq(z),u(z))v(x),

where q(-), u(-), v(-) : R4+ R, and the variable v = (x1,...,14) € R
(1) Formula (A.1) defines a mapping from H*(RY) x H*(R%)? to H*(RY) that is
locally Lipschitz on any set of the form {(q,u,v) : ||q||gr@a)y + [|ull gr®ay +
v/l e ray < K}
(2) Formula (A.1) defines a mapping from H®(R?) x H? to H that is locally
Lipschitz on any set of the form {(q,u,v) : ||q|| g (way + [|ully + [Jv]l2 < K}

Proof. In the following proof, we will abbreviate the norm of ¢, u, v, for instance,
HF(R?) to H* since ¢, u,v are all R? — R. We shall use the equivalent Sobolev norm
(see, e.g., [NS]):
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Pl ~ 1+ 3 kHMf\

L2’
ai+-+aqg=
where the sum is over all d-tuples (ai,...,aq) of nonnegative integers such that
27:1 a; = k, and a(?::l is the a;th differentiation of functions with respect to z,
1

I=1,..,d
For variation in ¢, we write m(q + q,u) — m(q,u) = q( fol mq(q + tq,u)dt), and,
using embedding of H*(R?) in L>°(R), we obtain
Im(q + @ u)v —m(g, wvllz> < [mller@)lldllce vl < Imller @) lalasllvl 2.
The estimate of m(q + @, u)v — m(q,u)v in L2 (R) ® L?(R4~1) follows from
1 (m(q + @, w)v — m(g, w)v)llz2 < [Imllcr@e)llal o 1vav] 22
< Imller @) @l me lyvavll e
We denote mq (¢, q,u) = fol mq(q+tg, w)dt. To estimate the derivatives of mq (g, g, u)qv
in L2(R%), we need the general Leibniz rule [O]: if fi, ..., fm are all n-times differ-

entiable functions, then their product f;--- f,, is also n-times differentiable and its
nth derivative is given by

(flfQ...fm>("): Z (k17k277.l,.,km) H fl(kz)v

ki4kot - +km=n 1<t<m

where the sum extends over all m-tuples (ki,...,k;,) of nonnegative integers such
that ", k; = n and (kl,k;..,km) = m are the multinomial coefficients. We
then have
oF o

——(m1(q, G, u)qu
833(111”.83334( 1(q, G, u)qv)

o 9%d-1 ( aq )8bdm1 0%q 0%
= e

o0z} Ox,* byt e —as ba, cd, eq oz oxyt  Oxy

aa1+"'+ad—2 ( aq )
al ad—2 2 : b
0 -0 Cd, €
1 d=2 bytcgteq=aq > Cd> &d

( ag_1 ) abd—1+bdm1 acd—1+cdq Hed—11edy B

ba—10 b, Cd—14, Cqa €d—14, €qd
Oz 0x Ox 7 0rt Oz, O

ba—1,ca-1,€d-1
ba—1+cqg_1+eq_1=aq_1 ’ ’

< agq ay QbrtFbagy,
- Z by, Cq, € Z bi,c1,e b .. 9gbd
byt eatoa—a, \di Cds €d bytertei—a, \V1:CL € 0xy Oz,

gerteteag  gerteteay

' c1 cq el €q’
Ox{' ---O0zxyt Ox7'---0xy

where a; + -+ aqg = k.
We now refer to the higher chain formula (see, e.g., [Ts, Lemma 1]). We consider
a mapping

M:zeX R = (q(x),q(z),u(x)) EGCR37m1 € R,
g

where X, G are open subsets of R? and R3, respectively, and g, h are sufficiently
smooth functions. We denote (g1(x), g2(z), g3(z)) = (¢(x), d(z),u(x)). For each i in
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the set Jg of integers 1, 2,..., s, where s = by + --- + by, let t; denote one of the
independent variables x1,..., x4. A partition of Js is a family of pairwise disjoint
nonempty subsets of J; whose union is Js. Sets in a partition are called blocks. A
block’s function is to assign a label to each block of a partition. The set of all block
functions from a partition P of Jg into J3 is denoted by P;. The set of all partitions
of Js is denoted by P,. We then have

a2 2 ml =2 > {(;;[P 3gi3))m1}{g{(££)”(3>”‘

PcPs; AePs

B € P means that B runs through the list of all of the blocks of the partition P. The
number of blocks in the partition P is denoted by |P|. The partition P then can be
written as P = {B1,..., Bjp|}. Let |B;| be the size of the block B;, i =1, 2,..., |P|.
For fixed multinomial coefficients (bze) (i=1,...,d), fixed P € P; and A € P3 we

need to estimate the following term in both L?(R?) and L?(R) ® L?(R)4~1

c1tte e
{<Bl;lpagf(8))ml}{31;lp [( H oty )QA B)} }aicl : 8;? ai? H.a;gd’

where gy(p,) is one of (g1, 92,93) = (¢,q,u). To obtain the estimates we distinguish
several cases.

Case 1.1. If by + - +bg # 0, c1+ -+ +cqg # 0and e; +--- +eq # 0, we
use Lemma A.2 with 1 Z‘PIH pl , where p; will be chosen below. If we denote
P = {Bl,B%...,B|p‘} and [ = |P|+ 2 (note that 3 < [ < k), and introduce the
l-tuple

(nlanQ)"'anl) = (|Bl|a |BQ‘7~"7|Bl—2‘7cl + +cdael + +€d)7
then
(A.3)

0 o gortoteag  gertoote
H{(BEIP 59A(B)>m1}{ ;;[P [(bgg 8717)9”3)} } x5 - a;id Dz - .a;gd
c1t+ca -2
0 iq Lo 1:[1 H(bH %)
i= €B;

oxit .- 0z
< (7D . il
< my " Plre @y llgas lwe e - llga o) lwri-2 -z [|@llwri-veis [o]wree,

L2

gertteay

i .
= oz - - xy

Loo (R9) P

where W5P are the Sobolev spaces of k times differentiable functions from LP.
In (A.3), le‘ |B;| = Z?Zl b; because P is a partition of the by + - - - + by indices

of
(T1, Ty ey Ty e e vy Tq)
—— ——
by times bg times

and {B1,..., Bjp|} are all blocks in the partition P. Since all by +---+bg, ¢1+---+cq,
and ej + - - - + e4 are nonzero, it is obvious that k& > n;. By Lemma A.1 then, in order
to prove that W*2(R9) = H*(R?) — Wni-Pi (Rd)7 we must show that k— ¢ > n; — 4.

Pi
If we choosei:(% g) + 7, then Ez 1 L =2 and
d 1 kN1 n k d
”i—;—”i—d((a‘g)ﬁz)—rﬂ
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Since k > [%£!] and [ > 2, we can conclude that
d 1 d d
B T I T O 2
k 2>l(k 2> n iz l

Therefore H*(R?) can be embedded into W"-Pi(R?), i = 1,...,l. Following (A.3),
we then have

(1PD) ) 851+"'+qu oertteay
(A-4) Hm1 . BI;[P [(I)G]:L %)gA(B)} oxf - -0z 9x - 0xt e
|P|
< NmPP Nz Nallwrmrcs lollwnen [T lgacs lweer.
=1
|P|
< Clm N ol se ol o TT lgacao -
=1

Case 1.2. ey +---+cqg=e1+---+e5 =0 and |P| # 0, we use the Sobolev
embedding H*(R?) — L>°(RY) and Lemma 7.1(1), so that, similarly to Case 1.1,

(en 9 gt teag gertteay
Hml : H [(lgatb)g)\(B)} : axtlil.,.axgd : 83)?1"'837261

TL[(TT 57 )oves |
[T [(TI g5, oo

BeP  beB
We denote | = |P|. When |P| =1, we use the inequality

L2

P _
< m P oe sy Llavllz~

P
< C’||m§‘ DHL°°(]R3)

e el

L2 < ||uHHka

0
H ozt - 0z gi
where g; is one of (g1, 92,93) = (¢, q,u), and thus obtain

k
(1P) 9%gi _ (1) .
™ o - @] < Il vl
< Climllcz@2)llgill e @l e l[oll e
When | > 2, let P = {By, Bs,...,B;} and the I-tuple (n1,...,n;) = (|Bi],...,|Bi])-
We then use Lemmas A.1 and A.2 with z% = (% — %)% +%,i=1,..,1, to obtain

LPi

!
I TL[(T1 g5, o] . < I CIT g5, oo
BeP beB i€l beB;

l !
< H lgxcsollwniri < H lgxsllw
i€l i€l
from which we conclude that

ngl)(qvqa u) H [( H %)9)(8)](7”‘

BeP beB

L2
l

l _
< [ Nl s 1 g ol e [T Mo e
€1
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Case 1.3. Ifby+---+bg =c1+---+cqg=0and ey +- - -+eq # 0, we are evaluating
k
the term m1(q, g, u)(jwla_i” on L?(R%), based on the embedding H* < L*:

~0zq%d

kv

. .axdad

O*v
axlal e 8(Z?dad’

< Cllmllor @ gl mx ol mx-

(a5 < e e o~
2

L2

Similarly, if by + - +bg=e€e1+---+eqg=0and ¢; + -+ + cq # 0, we have

o*q

oy dwgea |, S Clmller@lola 1l

Hml ((J7 q_a U)’U

Case 1.4. If by +---+bg=0,but ¢c; +---+¢cq #0, and e; + --- + eq # 0, then
we set

(ni,ng) = (b1 +---+ba,e1 +--- +eq)

and apply Lemmas A.1 and A.2 with p% =(3- %)% + 5%, i=1,2,
B ac1+“'+cdq o1t teay

Hml (q’ q, u) ' 833(1:1 . 83731 : 8.’17?1 . axzd
801+"'+qu o1t teay
‘axil -0z Ox{' -+ - 0z

< Clmllor@llgllwnr[vllwnzre < Climllor@e) |l ms ol -

L2

< |lmal| poe rs)

LP1 Lr2

Case 1.5. If c;+ -4+ ¢4 =0, |P| #0 and e; + —|— eq # 0, we, similarly, using
LemmasAlandA2W1th L z(%—g)‘lgllﬂ —&-% i=1,..., |P|—i—17 obtain
) gerttea
||m(IP\)(q7q’ [( *) } "0 aer el
! BI;IP 113 ot Oxi* -0z
|P|

< Cllmllcieie gl llvll
i=1

and, ife; +---4+e4=0,|P| #0and ¢; + --- + ¢4 # 0, we obtain

P _ 861+ ~+cd B
s el g I [(T 5 o) oVl
BEP  beB d
1P|
< Climllirss oy ol e @l s- TT lloncs
i=1

Since |P| < k, the inequalities (A.4)—(A.5) imply

ocrt +°dq oerttedy

nglPl)(q ,u H KH o, )gA B)} 95 - Oz’ axil...ax?l

BeP beB

L2
|P|

< Nmllowss eyl ol TT lgacs -
i=1
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Similarly,
+-tcay a€1+ ~teq
(1Pl) [( ) } 6“ q v )‘
H%(ml (@aw- ] [(11 oty ) PP 9rta% 925 - 925 ) e
BEP ~ beB
(1PD |P|
< oo
[[my™ | oo (e HH( H ot )g,\ Lo
ocrt +('dq oertteay
H@xi“ SOz llLPipi+ %‘ax?...ax;d LPIPI+2
|P|
< Imallerei@sy vavllw ieice2ipive HHQ/\ P
=1
|P|
< Imllerrie @y 19l zx vavll g H gl e
i=1

The case |P| =0,¢1+---4+cq=0o0re;+---+eq =0 can be treated analogously.
For variations in w, the representation m(q, u+a) —m(q,u) = @ fol my (g, u+ta)dt
yields
[m(g, u+ w)v — m(q, u)v| 2 < [|mllcr@e)lltll o=l L2,
which, by the Sobolev embedding H*(R?) — L>°(R%), implies
lm(gq, u+ w)v — m(q, uvl| L2 < [[mllcr @) @l gellv] L2,

and
[Va (m(q,u + w)v —m(q, w)v) L2 < [Imllcre)l|@l g vavll e

Lot ma (g, u,0) = [y ma(gu + ta)dt, g1(x) = q(), g2(z) = u(x), and gs(x) = alz).
For Zle a; = k, we then have

ak
—a——=—a-m2(91, 92, g3)uv
al aq
Ox{" - - - 0xy
Huttaa ( ag ) abdm2 %y O%v
~ 901 ... 9,.%d-1 b Cd €d
ox{t - 0xy™ byt e —as bq, cd, eq o ! Ozt Oz

aq
)

ba+cateq=aq
< ai ) 8b1+"'+bdm2 gertteay  gertteay,
Z 5xli1 . axgd 333? 8xdd 8%? .. .@xzd

bl C1,€1
bit+citer=ay r

The same argument as the one that lead to (A.2) implies

D) - 5 S (T )b T[T o]}

PcP; AeP3

For fixed multinomial coefficients (b, a e_) (i=1,...,d), P € Ps,and A € P, we
shall find a bound on the term

Ocrtteay  pertrtedy,

{(ng 3gi3) JoH{ I (I 01 Vout oy o e

BeP beB
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in both L?(R?) and L2 (R) ® L2(R?~!). In order to do that we consider the following
cases.
Case 2.1. If |P|, c1 +---+cq, e1+---+eq >0, wedenote [ = |P|+2 (2<1<k)
and P ={Bj,...,B;_2}, and use Lemmas A.1 and A.2 with
(n1,...,m) ={|B1l,...,|Bi—2|,c1 + -+ cg,e1 + - +ea}

and pl = (% — %)% + % for i =1, 2,... [, to obtain the inequality

(A.6)
c1+-+c e1+---+e
I{ H 3gA(B Jm 2}{;;[13 KH Bt )wwﬂ}aim...a;} ail ...a:f}

L2
H H 801+ 'Hdu 8el+"'+edv -2 9
mallci-2R3) || 31 A.ca Il ... HpCd HH(Hi)
EM 025 025 lprar 925 02l m i=1  beB; Oty ke
< lmlle-1@)llgasllwries - llgasi_o llwm-zr-z lullwm-ve- [ollwnem
< C||m||cz—1(R2)||g)\(31)||Hk T ||g)\(Bz_2)||H’“||a”H’C||UHH’“'

When not all |P|, ¢; +---+cq, €1 + -+ - + €4 are positive, we have the following cases.

Case 2.2. If [Pl =0and ¢; + -+ 4+ cq,e1 + -+ + eq > 0, we apply Lemmas A.1
and A.2 with [ =2, (ny1,n2) = (c1 +-+-+cq,e1 + -+ +¢e4) and p%_ =(3-51+%s0
that H*(RY) — Wni:Pi(RY) for i = 1, 2, and obtain

‘ Ot teay  pertrtedy,

m2
Oxy - 0xlf Ot -+ Oxf?

2
gertteay Oertteay
||chl(]R2) c1 Cd el €q
Oyt - g || oy (|02 -+ Oz | 1y

< IImH01<R2>HUIlwwm [ollwnare < llmllor @) llall gx ol e

Case 2.3. If e +---+eq=0,and |P|,c; +---4+cqg>0,let I =|P|+1(2<
I <k)and P={By,...,B;_1}; then from Lemmas A.1 and A.2 with (ny,...,n;) =
(IBil,- -, |Bi-1],c1 + -+ -+ cq) and p%_ = (% - 7) + %, i=1,..., 1, and the Sobolev
embedding H*(R?) — L>°(R), we obtain

o) o, ) ) J;xd“ Iz
{CIT g ) HIL (T 5 oo} o)

<ttt |{ T [T oo 5

L2
0 ocrtteay
< CHTTLQHlel(]R-%)HUHHk H H( H (’Ttb) 1o | 926 - - 9% || e
i=1 bEB; 1 d
|P|
< Cllmallgr-s @) |allwmer ol e T llgacsa lwnir:
=1
|P|
< Clmllcr ey o)l e
=1
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Similarly, if ¢; + -+ c¢q =0 and |P|, e; + -+ + eq > 0, we have
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Case 24. f |[P|=e1+---4+eq=0and ¢; + -+ ¢4 # 0, we use the Sobolev
embedding H*(R?) < L>°(R9), and we obtain
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or, for |[Pl=c1+---+cq=0and e; +---+eq #0,

ot taay,

a1+---+adv
m R U
H 2(91 92,93) 933(111 93??‘

< |[lm ZHLOC(RB)HUHL“HW

L2 L2

< Clmller@e)llall gx([v]] e
Case 2.5. If c1 +---4+cqg =€1+---+eq =0 and |P| # 0, we denote | = |P|
(1<i<k)and P={Bi,...,B}: whenl =1, gxp)y = ¢i, i = 1, 2, 3. We then use
the inequality
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Sobolev embedding H*(R?) — L>*°(R?), and Lemma 7.1(1) to obtain for i = 1, 2, 3,
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When | > 2, we use the Sobolev embedding H*(R) < L°°(R), Lemma A.1, and
Lemma A.2 with (n1,...,n;) = (|B1],...,|Bi|) and p% =(3-E)F+%fori=1,...,1
and Lemma 7.1(1) to obtain
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Combining above inequalities (A.6)—(A.7), we can conclude that
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Similarly, we let | = |P|+2 (2 <1< k), P={DBi,...,B;_2} and 7, = e***, and use
Lemmas A.1 and A.2 with (n1,...,n;) = {|B1|,...,|Bi—2],c1+--+cqg,e1+---+eq}
and i = (% —%)%—l—% for i =1, 2,..., [, to obtain
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The cases when |P|, ¢1 +---+cq=0o0r ey +---+eq4 = 0 can be treated analogously.
Finally, for variations in v, we write m(q,u)(v + v) — m(q, u)v = m(g,u)v, and,

therefore,
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By the general Leibniz rule,
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where (§7) = iy Let s = b + -+ ba, (g1(2), ga(2)) = (q(x),u( ). We use
the hlgher chain formula, for each ¢ in the set Js of integers 1, 2.. s. Let again
t; denote one of the independent variables z1,..., 4. We c0n81der a partition of Js.
The set of all block functions from a partition P of Js into Jo is P> and P; is the set
of all partitions of Js. Then
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Thus, for fixed binomial coefficients (27), j=1,...,d, for fixed partition P € P, and
J
block function A € P> we need to estimate
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in L2(R9) and L2(R) ® L?(R?"!)-norms. To do so we consider the following cases.
Case 3.1. If by + -+ -+ bg = 0, then
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Case 3.2. H0O<by+---+bg<ay+---+aq,let P={B1,Bs,...,Bi_1}, and
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(n1,...,m) = (|B1l,...,|Bi—1],a1 — b1 + - - + aqg — ba),
then we use Lemmas A.1 and A.2 with i (% — 7) + %, i=1,..,1, and obtain
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Case 3.3. If by + -+ +bg = ay +--- + aq, when |P| =1, gxpy = gi, i = 1, 2, or
3, we use Sobolev embedding H*(RY) — L>(R?) and obtain
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When |P| =1 > 1, let P = {Bl,Bg, .., B} and (nl,...,m) = (|Bi],-.-,|Bil).

Lemmas A.1 and A.2 with i = (% — 7) + 72[, i =1,...,l, and the Sobolev embedding
H¥(R?) — L°°(R9) imply
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Similarly, let I = |P|+1, P = {Bi,...,Bi_1}, (na,...,n) = (|B1l,.. ., | Bi—1], a1 —
by + -+ aq — bg) and v, = e**1, then
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The case of weighted norm when by +---+bg=0,0r by +---4+byg =a1++--+aq can
be considered similarly.

Using Lipschitz estimates for variations in ¢, u, and v, one can easily show that the
mappings are locally Lipschitz on the given sets in H¥(R?) and in H*(R?); therefore
the mappings are also locally Lipschitz on the given sets H = H*(RY) N HF(R?). 0O
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