
Mapping Navigation Instructions to Continuous
Control Actions with Position-Visitation Prediction

Valts Blukis†♢ Dipendra Misra†♢ Ross A. Knepper† Yoav Artzi†♢

†Department of Computer Science, Cornell University, Ithaca, New York, USA
♢Cornell Tech, Cornell University, New York, New York, USA

{valts, dkm, rak, yoav}@cs.cornell.edu

Abstract: We propose an approach for mapping natural language instructions and
raw observations to continuous control of a quadcopter drone. Our model predicts
interpretable position-visitation distributions indicating where the agent should go
during execution and where it should stop, and uses the predicted distributions to
select the actions to execute. This two-step model decomposition allows for sim-
ple and efficient training using a combination of supervised learning and imitation
learning. We evaluate our approach with a realistic drone simulator, and demon-
strate absolute task-completion accuracy improvements of 16.85% over two state-
of-the-art instruction-following methods.

Keywords: Natural language understanding; Quadcopter; Simulation; Instruction
Following; Imitation Learning

1 Introduction

Executing natural language navigation instructions from raw observations requires solving language,
perception, planning, and control problems. Consider instructing a quadcopter drone using natural
language. Figure 1 shows an example instruction. Resolving the instruction requires identifying the
blue fence, anvil and tree in the world, understanding the spatial constraints towards and on the right,
planning a trajectory that satisfies these constraints, and continuously controlling the quadcopter to
follow the trajectory. Existing work has addressed this problem mostly using manually-designed
symbolic representations for language meaning and environment [1, 2, 3, 4, 5, 6]. This approach
requires significant knowledge representation effort and is hard to scale. Recently, Blukis et al.
[7] proposed to trade-off the representation design with representation learning. However, their
approach was developed using synthetic language only, where a small set of words were combined
in a handful of different ways. This does not convey the full complexity of natural language, and
may lead to design decisions and performance estimates divorced from the real problem.

In this paper, we study the problem of executing instructions with a realistic quadcopter simulator
using a corpus of crowdsourced natural language navigation instructions. Our data and environment
combine language and robotic challenges. The instruction language is rich with linguistic phenom-
ena, including object references, co-references within sentences, and spatial and temporal relations;
the environment simulator provides a close approximation of realistic quadcopter flight, including a
realistic controller that requires rapid decisions in response to continuously changing observations.

We address the complete execution problem with a single model that is decomposed into two stages
of planning and plan execution. Figure 2 illustrates the two stages. The first stage takes as input the
language and the observations of the agent, and outputs two distributions that aim to to solve differ-
ent challenges: (a) identifying the positions that are likely to be visited during a correct instruction
execution, and (b) recognizing the correct goal position. The second stage of the model controls the
drone to fly between the high probability positions to complete the task and reach the most likely
goal location. The two stages are combined into a single neural network. While the approach does
not require designing an intermediate symbolic representation, the agent plan is still interpretable by
simple visualization of the distributions over a map.

Our approach introduces two learning challenges: (a) estimate the model parameters with the limited
language data available and a realistic number of experiences in the environment; and (b) ensure the

2nd Conference on Robot Learning (CoRL 2018), Zürich, Switzerland.

Go towards the blue fence pass-
ing the anvil and tree on the right

Figure 1: An example task from
the LANI dataset, showing the
environment, agent, and the nat-
ural language instruction.

Move towards the banana and
curve around its right side

Stage 1:
Visitation
Prediction

Stage 2:
Plan

Execution

Visitation Distributions

Image It

Pose Pt

Instruction u

Action

,

Figure 2: High-level illustration of our model. The model is de-
composed into a visitation prediction component that predicts
which areas in the environment to visit, and an execution com-
ponent that outputs actions to drive the agent through predicted
high-likelihood regions. The visitation prediction component
predicts the positions to visit (red) and where to stop (green).

different parts of the model specialize to solve their intended tasks. We address both challenges by
training each of the two stages separately. We train the visitation prediction stage with supervised
learning using expert demonstrations, and the plan execution stage by mapping expert visitation
distributions to actions using imitation learning. At test time, the second stage uses the predicted
distributions from the first. This learning method emphasizes sample efficiency. The first stage
uses supervised learning with training demonstrations; the second stage is independent from the
complex language and visual reasoning required, allowing for sample-efficient imitation learning.
This approach also does not suffer from the credit assignment problem of training the complete
network using rewards on actions only. This ensures the different parts of the network solve their
intended task, and the generated interpretable distributions are representative of the agent reasoning.

To evaluate our approach, we adapt the LANI corpus [8] for the realistic quadcopter simulator
from Blukis et al. [7], and create a continuous control instruction following benchmark. The LANI
corpus includes 27,965 crowdsourced natural language instructions paired with human demonstra-
tions. We compare our approach to the continuous-action analogs of two recently proposed ap-
proaches [9, 10], and demonstrate absolute task-completion accuracy improvements of 16.85%. We
also discuss a generalization of our position visitation prediction approach to state-visitation dis-
tribution prediction for sequential decision processes, and suggest the conditions for applying it to
future work on robot learning problems. The models, dataset, and environment are publicly available
at https://github.com/clic-lab/drif.

2 Technical Overview

Task Let U be the set of natural language instructions, S be the set of world states, and A be the
set of all actions. An instruction u is a sequence of l tokens ⟨u1, . . . , ul⟩. An action a is either a
tuple (v, ω) of forward and angular velocities or the completion action STOP. The state s contains
information about the current configuration of all objects in the world. Given a start state s1 ∈ S and
an instruction u ∈ U , the agent executes u by generating a sequence of actions, where the last action
is the special action STOP, which indicates task completion. The agent behavior is determined by
its configuration ρ. An execution of length T is a sequence ⟨(s1, a1), . . . , (sT , aT)⟩, where st ∈ S
is the state at timestep t, at ∈ A is the action updating the agent configuration, and the last action
is aT = STOP. Given an action at = (vt, ωt), we set the agent configuration ρ = (vt, ωt), which
specifies the controller setpoint. Between actions, the agent maintains its configuration.

Model The agent does not have access to the world state. At timestep t, the agent observes the
agent context ct = (u, I1, · · · , It, P1, · · ·Pt), where u is the instruction and Ii = IMG(si) and
Pi = LOCALIZE(si), i = 1 . . . t are monocular first-person RGB images and 6-DOF agent poses
observed at time step i. The pose Pi is a pair (pi, γi), where pi is a position and γi is an orientation.
Given an agent context ct, we predict two visitation distributions that define a plan to execute and the
actions required to execute the plan. A visitation distribution is a discrete distribution over positions
in the environment. The trajectory-visitation distribution dp puts high probability on positions in the
environment the agent is likely to go through during execution, and the goal-visitation distribution dg

puts high probability on positions where the agent should STOP to complete its execution. Given dp

and dg , the second stage of the model predicts the actions to complete the task by going through high

2

https://github.com/clic-lab/drif

probability positions according to the distributions. As the agent observes more of the environment
during execution, the distributions are continuously updated.

Learning We assume access to a training set of N examples {(u(i), s
(i)
1 ,Ξ(i))}Ni=1, where u(i) is

an instruction, s(i)1 is a start state, and Ξ(i) = ⟨p(i)1 , . . . , p
(i)
T ⟩ is a sequence of positions that defines a

trajectory generated from a human demonstration execution of u. Learning is decomposed into two
stages. We first train the visitation distributions prediction given the visitation distributions inferred
from the oracle policy π∗. We then use imitation learning using π∗ to generate the sequence of
actions required given the visitation distributions.

Evaluation We evaluate on a test set of M examples {(u(i), s
(i)
1 , p

(i)
g)}Mi=1, where u(i) is an in-

struction, s(i)1 is a start state, and p
(i)
g is the goal position. We consider the task successfully com-

pleted if the agent outputs the STOP action within a predefined Euclidean distance of p
(i)
g . We

additionally evaluate the mean and median Euclidean distance to the goal position.

3 Related Work

Natural language instruction following has been studied extensively on physical robots [11, 12, 13, 2,
14, 12, 15, 16] and simulated agents [17, 18, 19, 3, 20, 21]. These methods require hand-engineering
of intermediate symbolic representations, an effort that is hard to scale to complex domains. Our ap-
proach does not require a symbolic representation, instead relying on a learned spatial representation
induced directly from human demonstrations. Our approach is related to recent work on executing
instructions without such symbolic representations using discrete environments [9, 22, 23, 8]. In
contrast, we use a continuous environment. While we focus on the challenge of using natural lan-
guage, this problem was also studied using synthetic language with the goal of abstracting natural
language challenges and focusing on navigation [24, 10] and continuous control [7].

Our approach is related to recent work on learning visuomotor control policies for grasping [25,
26, 27], dexterous manipulation [28, 29, 30] and visual navigation [31]. While these methods have
mostly focused on learning single robotic tasks, or transferring a single task between multiple do-
mains [30, 32, 33, 34], our aim is to train a model that can execute navigation tasks specified using
natural language, including previously unseen tasks during test time.

Treating planning as prediction of visitation probabilities is related to recent work on neural network
models that explicitly construct internal maps [35, 7, 36], incorporate external maps [31, 37], or do
planning [32]. These architectures take advantage of domain knowledge to provide sample-efficient
training and interpretable representations. In contrast, we cast planning as an image-to-image map-
ping [38, 39], where the output image is interpreted as a probability distribution over environment
locations. Our architecture borrows building blocks from prior work. We use the ResNet architec-
ture for perception [40] and the neural mapping approach of Blukis et al. [7] to construct a dynamic
semantic map. We also use the LINGUNET conditional image translation module [8]. While it was
introduced for first-person goal location prediction, we use it to predict visitation distributions.

Learning from Demonstrations (LfD) approaches have previously decomposed robot learning into
learning high-level tasks and low-level skills (e.g. Dynamic Movement Primitives [41, 42, 43, 44]).
Our approach follows this general idea. However, instead of using trajectories or probabilities as
task representations [45], we predict visitation distributions using a neural network. This results in
a reactive approach that defers planning of the full trajectory and starts task execution under uncer-
tainty that is gradually reduced with additional observations. This approach does not assume access
to the full system configuration space or a symbolic environment representation. Furthermore, the
learned representation is not constrained to a specific robot. For example, the same predicted visita-
tion distribution could potentially be used on a humanoid or a ground vehicle, each running its own
plan execution component.

4 Model

We model the agent behavior using a neural network policy π. The input to the policy at time t
is the agent context ct = (u, I1, · · · , It, P1, · · ·Pt), where u is the instruction and Ii = IMG(si)
and Pi = LOCALIZE(si), i = 1 . . . t are first-person images and 6-DOF agent poses observed at
timestep i and state si. The policy outputs an action at = (vt, ωt), where vt is a forward velocity

3

ResNet13

Move towards
the banana
and curve
around its
right side

Conv1x1

LingUNet

Semantic Map

Grounding
Map

Visitation Distributions

Pinhole Camera
Projection

Temporal Map
Accumulation

MLP

Action

Conv3x3 + LeakyReLU

DeConv3x3 + LeakyReLU

Instance Normalization

Conv1x1 with precomputed weights

Linear + L2-normalization

Copy

Input
Image

Output
Image

Instruction
Embedding

64x64x3

16x16x48

8x8x48

4x4x48

2x2x48

32x32x48

2x2x24

4x4x24

8x8x24

16x16x24

32x32x24
Softmax

LSTM

Inputs at time t

Plan Execution

Transform to
Egocentric

Crop

Visitation Prediction

LingUNet

(green)

F0

F1

F2

F3

F4

F5

G1

G2

G3

G4

G5

H5

H4

H3

H2

H1

u

(red)

Figure 3: An illustration of our model architecture. The instruction u is encoded into an instruction
embedding u using an LSTM network. At each timestep t, image features FC

t are produced with
a custom residual network [ResNet; 40], projected to the world reference frame through a pinhole
camera model, and accumulated through time into a globally persistent semantic map SW

t . The map
is used to predict the visitation distributions dp and dg by using u to create a grounding map RW

t
and generate the distributions using the LINGUNET architecture. A simple execution network then
transforms the distributions to an egocentric reference frame and generates the next action.

Figure 4: Predicted visitation distributions for the the instruction from the LANI development set go
around the barrel and then move towards the phone booth. The left-most image shows top-down
view with the human demonstration trajectory (red) and our model trajectory (blue). The next four
images are predicted visitation distributions, dp (red) and dg (green), as the execution progresses
(left to right). The white circle represents agent’s current position. The uncertainty over the stopping
position decreases with time as the semantic map accumulates more information. The right image
shows the first three channels of the final semantic map SW

T .

and ωt is an angular velocity, and a probability for the STOP action pstopt . We decompose the policy
to visitation prediction and plan execution. Visitation prediction VISIT(ct) computes a 2D discrete
semantic map SW

t . Each position in SW
t corresponds to an area in the environment, and represents it

with a learned vector. The map is used to generate two probability distributions: trajectory-visitation
distribution dpt (p̃ | ct) and goal-visitation distribution dgt (p̃ | ct), where p̃ is a position in SW

t . The
first distribution models the probability of visiting each position as part of an optimal policy execut-
ing the instruction u, and the second the probability of each position being the goal where the agent
should select the STOP action. We update the semantic map SW

t at every timestep with the latest
observations. The distributions dpt and dgt are only computed every Td timesteps. When not updat-
ing the distributions, we set dpt = dpt−1 and dgt = dgt−1. This allows for periodic re-planning and
limits the computational workload. In the second stage, plan execution ACT(dpt , d

g
t , Pt) generates

the action at and the stop probability pstopt . Figure 3 illustrates our architecture, and Figure 4 shows
example visitation distributions generated by our approach.

4.1 Stage 1: Visitation Prediction

Feature Projection and Semantic Mapping We predict the visitation distributions over a learned
semantic map of the environment. We construct the map using the method of Blukis et al. [7].
The full details of the process are specified in the original paper. Roughly speaking, the semantic
mapping process includes three steps: feature extraction, projection, and accumulation. At timestep
t, we process the currently observed image It using a 13-layer residual neural network RESNET to
generate a feature map FC

t = RESNET(It) of size Wf ×Hf ×C. We compute a feature map in the
world coordinate frame FW

t by projecting FC
t with a pinhole camera model onto the ground plane

at elevation zero. The semantic map of the environment SW
t at time t is an integration of FW

t and
SW
t−1, the map from the previous timestep. The integration equation is given in Section 4c in Blukis

et al. [7]. This process generates a tensor SW
t of size Ww ×Hw × C that represents a map, where

each location [SW
t](x,y) is a C-dimensional feature vector computed from all past observations I<t,

4

each processed to learned features FC
<t and projected onto the environment ground in the world

frame at coordinates (x, y). This map maintains a learned high-level representation for every world
location (x, y) that has been visible in any of the previously observed images. We define the world
coordinate frame using the agent starting pose P1: the agent position is the coordinates (0, 0), and
the positive direction of the x-axis is along the agent heading. This gives consistent meaning to
spatial language, such as turn left or pass on the left side of.

Instruction Embedding We represent the instruction u = ⟨u1, · · ·ul⟩ as an embedded vector
u. We generate a series of hidden states hi = LSTM(ϕ(ui),hi−1), i = 1 . . . l, where LSTM
is a Long-Short Term Memory [46] Recurrent Neural Network (RNN) and ϕ is a learned word-
embedding function. The instruction embedding is the last hidden state u = hl.

Position Visitation Distribution Prediction We use image generation to predict the visitation
distributions dpt and dgt . For each of the two distributions, we generate a matrix of dimension Ww ×
Hw, the height and width dimensions of the semantic map SW

t , and normalize the values to compute
the distribution. To generate these matrices we use LINGUNET, a language-conditioned image-to-
image encoder-decoder architecture [8].

The input to LINGUNET is the semantic map SW
t and a grounding map RW

t that incorporates the
instruction u into the semantic map. We create RW

t with a 1×1 convolution RW
t = SW

t ⊛KG. The
kernel KG is computed using a learned linear transformation KG = WGu + bG, where u is the
instruction embedding.

The grounding map RW
t has the same height and width as SW

t , and during training we optimize the
parameters so it captures the objects mentioned in the instruction u (Section 5).

LINGUNET uses a series of convolution and deconvolution operations. The input map F0 =
[SW

t ,RW
t] is processed through L cascaded convolutional layers to generate a sequence of feature

maps Fk = CNNk(Fk−1), k = 1 . . . L.1 Each Fk is filtered with a 1×1 convolution with weights
Kk. The kernels Kk are computed from the instruction embedding u using a learned linear trans-
formation Kk = Wu

ku+bu
k . This generates l language-conditioned feature maps Gk = Fk ⊛Kk,

k = 1 . . . L. A series of L deconvolution operations computes L feature maps of increasing size:

Hk =

{
DECONVk([Hk+1,Gk]), if 1 ≤ k ≤ L− 1
DECONVk(Gk), if k = L

,

The output of LINGUNET is H1, which is of size Ww ×Hw ×2. The full details of LINGUNET are
specified in Misra et al. [8]. We apply a softmax operation on each channel of H1 separately to gen-
erate the trajectory-visitation distribution dpt and the goal-visitation distribution dgt . In Section 5, we
describe how we estimate the parameters to ensure that dp and dg model the visitation distributions.

4.2 Stage 2: Plan Execution

The action generation component ACT(dpt , d
g
t , Pt) generates the action values from the two visita-

tion distributions dpt and dgt and the current agent pose Pt. We first perform an affine transformation
of the most recent visitation distributions to align them with the current agent egocentric reference
frame as defined by its pose Pt, and crop a K×K region centered around the agent’s position. We fill
the positions outside the semantic map with zeros. We flatten and concatenate the cropped regions
of the distributions into a single vector x of size 2K2, and compute the feed-forward network:

estopt , vt, ωt = W(2)[x; LEAKYRELU{0,W(1)x+ b(1)}] + b(2) ,

where [;] denotes concatenation of vectors and LEAKYRELU is a leaky ReLU non-linearity [47].
If the stopping probability pstopt = σ(estopt) is above a threshold κ the agent takes the stop action.
Otherwise, we set the controller configuration using the forward velocity vt and angular velocity ωt.

5 Learning

Our model parameters can be divided into two groups. The visitation prediction VISIT(·) parameters
θ1 include the parameters of the functions ϕ, LSTM, and RESNET, WG, bG, and the components
of LINGUNET: {CNNk}Lk=1, {DECONVk}Lk=1, {Wu

k}Lk=1, {bu
k}Lk=1. The plan execution ACT(·)

parameters θ2 are W(1), b(1), W(2), b(2). We use supervised learning to estimate the visitation
prediction parameters and imitation learning for the plan execution parameters.

1[·, ·] denotes concatenation along the channel dimension.

5

Estimating Visitation Prediction Parameters We assume access to training examples (u, s1,Ξ),
where u is an instruction, s1 is a start state, and Ξ = ⟨p1, . . . , pT ⟩ is a sequence of T positions.2

We convert the sequence Ξ to a sequence of positions in the semantic map Ξ̃ = ⟨p̃1, . . . , p̃T ⟩.
We generate expert trajectory-visitation distribution dp∗ by assigning high probability for positions
around the demonstration trajectory, and goal-visitation distribution dg∗ by assigning high probability
around the goal position pT . For each location p̃ = (x, y) in the semantic map, we calculate the
probability of visiting and stopping there as:

dp∗(p̃) =
1

Zp

∑
p̃t∈Ξ̃

g(p̃|p̃t, σ) dg∗(p̃) =
1

Zg
g(p̃|p̃T , σ) ,

where g(·|µ, σ) is a Gaussian probability density function with mean µ and variance σ2, and Zp

and Zg are normalization terms. The distributions are computed efficiently by applying a Gaus-
sian filter on an image of the human trajectory. We then generate a sequence of agent contexts ct
by executing an oracle policy π∗, which is implemented with a simple control rule that steers the
quadcopter along the human demonstration trajectory Ξ. We create a training example (ct, d

p
∗, d

g
∗)

for each time step t = 1, Td + 1, 2Td + 1, . . . in the oracle trajectory when we compute the visi-
tation distributions, and minimize the KL divergence between the expert and predicted distribution:
DKL(d

p
∗ || dp(· | ct)) +DKL(d

g
∗ || dg(· | ct)). The data and objective do not consider the incre-

mental update of the distributions, and we always optimize towards the full visitation distributions.

We additionally use three auxiliary loss functions from Blukis et al. [7] to bias the different compo-
nents in the model to specialize as intended: (a) the object recognition loss Jpercept to classify visible
objects using their corresponding positions in the semantic map; (b) the grounding loss Jground to
classify if a visible object in the semantic map is mentioned in the instruction u; and (c) the language
loss Jlang to classify if objects are mentioned in the instruction u. To compute Jground and Jlang,
we use alignments between words and object labels that we heuristically extract from the training
data using pointwise mutual information. Please refer to the supplementary material for full details.

The complete objective for an example (ct, d
p
∗, d

g
∗) for time t is:

J(θ1) = DKL(d
p
∗ || dp(· | ct)) +DKL(d

g
∗ || dg(· | ct)) +

+ λperceptJpercept(θ1) + λgroundJground(θ1) + λlangJlang(θ1) ,

where λ(·) is a hyperparameter weighting the contribution of the corresponding auxiliary loss.

Estimating Plan Execution Parameters We train the plan execution stage ACT(dp, dg, P) us-
ing imitation learning with the oracle policy π∗. During imitation learning, we use the visita-
tion distributions dp∗ and dg∗ induced from the human demonstrations. This provides the model
access to the same information that guides the oracle policy, which it learns to imitate. We use
DAGGERFM [7], a variant of DAGGER [48] for low-memory usage. DAGGERFM performs K it-
erations of training. For each iteration k and a training example (u, s1,Ξ), we generate an execution
⟨(s1, a1), (s2, a2) · · · (sT , aT)⟩ using a mixture policy. The mixture policy selects an action at time
t using π∗ with probability βk or the learned policy ACT(dp∗, d

g
∗, Pt) with probability 1− βk, where

β ∈ (0, 1) is a hyperparameter. The states generated in the execution are aggregated in a dataset
across iterations. After each iteration, we prune the dataset to a fixed size and perform one epoch
of supervised learning. We use a binary cross-entropy loss for the STOP probability pstop, and a
mean-squared-error loss for the velocities. When the oracle selects STOP, both velocities are zero.
We initialize imitation learning with supervised learning using the oracle policy π∗ trajectories.

Discussion Our approach is an instance of learning state-visitation distributions in Markov Deci-
sions Processes (MDP). Consider an MDP ⟨S,A, R, T , H, µ⟩, where S is a set of states, A is a set
of actions, R : S → [0, Rmax] is a reward function, T : S×A → Pr(S) is a probabilistic transition
function, H is the time horizon, and µ is the start-state distribution.3 The state-visitation distribution
of a policy π : S → Pr(A) is defined as d(s;π, µ) = 1

H

∑
t dt(s;π, µ), where dt(s;π, µ) is the

probability of visiting state s at time t following policy π with the initial state-distribution µ.

Reasoning about the entire state space S is challenging. Instead, we consider an alternative discrete
state space S̃ with a mapping ϕ : S → S̃ and a reward function R̃ : S̃ → R

+. For example, in a

2To simplify notation, we describe learning for a single example.
3Pr(·) denotes a probability distribution.

6

robot navigation scenario, s̃ can be the robot pose estimate s̃ = P , or the positions in our semantic
map SW . In a manipulation setup, s̃ can be the manipulator configuration. This choice is task-
specific, but should include variables that are are measurable and relevant to task completion. The
state-visitation distribution in S̃ is d̃(s̃;π, µ) =

∫
1{ϕ(s) = s̃}d(s;π, µ)ds. In general, we construct

S̃ as a small set to support efficient computation of the visitation distribution, and enable our two
stage learning. In the first stage, we train a visitation model to predict the visitation distribution
d̃(·;π∗, µ) for the oracle policy π∗, and in the second stage, we learn a plan execution model using
the oracle visitation distribution d̃(·;π∗, µ) using imitation learning.

There is a strong relation between learning the state distribution and policy learning. For predicted
visitation distributions d̂ with a bounded error in regard to the optimal visitation distribution, the
sub-optimality error of policies that accurately follow the predicted distribution is bounded as well:

Theorem 5.1. Suppose DKL(d̃(·;π∗, µ) || d̂) ≤ ϵ and let Π(η) = {π | DKL(d̂ || d̃(·;π, µ)) ≤ η}
be the set of all policies whose approximate state-visitation distribution has at maximum η KL
divergence from d̂. Assume that for every s ∈ S there holds |R(s)− R̃(ϕ(s))| ≤ α. Then:

sup
s∈S

sup
π∈Π(η)

V ∗(s)− V π(s) ≤ H (Rmax + α)
(√

2ϵ+
√

2η
)

.

6 Experimental Setup

Data and Environments We evaluate our approach on the LANI corpus [8]. LANI contains
27, 965 crowd-sourced instructions for navigation in an open environment. Each datapoint in-
cludes an instruction, a human-annotated ground-truth demonstration trajectory, and an environ-
ment with various landmarks and lakes. The dataset train/dev/test split is 19,758/4,135/4,072. Each
environment specification defines placement of 6–13 landmarks within a square grass field of size
50m×50m. We use the quadcopter simulator environment from Blukis et al. [7] based on the Unreal
Engine,4 which uses the AirSim plugin [49] to simulate realistic quadcopter dynamics.

Data Augmentation We create additional data for visitation prediction learning by rotating the
semantic map SW and the gold distributions, dp∗ and dg∗, by a random angle α ∼ N (0, 0.5rad). This
allows the agent to generalize beyond the common behavior of heading towards the object in front.

Evaluation Metric We measure the stopping distance of the agent from the goal as ∥pg − pT ∥,
where pg is the end-point of the human annotated demonstration and pT is the position where the
agent output the STOP action. A task is completed successfully if the stopping distance is < 5.0m,
10% of the environment edge-length. We also report the average and median stopping distance.

Systems We compare our Position-visitation Network (PVN) approach to the CHAPLOT [10] and
GSMN [7] approaches. CHAPLOT is an instruction following model that makes use of gated at-
tention. Similar to our approach, GSMN builds a semantic map, but uses simple language-derived
convolutional filters to infer the goal location instead of computing visitation probabilities. We also
report ORACLE performance as an upper bound and two trivial baselines: (a) STOP: stop immedi-
ately; and (b) AVERAGE: fly forward for the average number of steps (18) with the average velocity
(0.88m/s), both computed with the ORACLE policy from the training data. Hyperparameter settings
are provided in the supplementary material.

7 Results

Table 1 shows the performance on the test set and our ablations on the development set. The low
performance of the STOP and AVERAGE baselines shows the hardness of the problem. Our full
model PVN demonstrates absolute task-completion improvement of 16.85% over the second-best
system (GSMN), and a relative improvement of 12.7% on average stopping distance and 32.3%
on the median stopping distance. The relatively low performance of GSMN compared to previous
results with the same environment but synthetic language [7], an accuracy drop of 54.8, illustrates
the challenges introduced by natural language. The performance of CHAPLOT similarly degrades by
9.6 accuracy points compared to previously reported results on the same corpus but with a discrete
environment [8]. This demonstrates the challenges introduced by a realistic simulation.

4https://www.unrealengine.com/

7

Method SR (%) AD MD
Test Results
STOP 5.72 15.8 14.8
AVERAGE 16.43 12.5 10.1
CHAPLOT 21.34 11.2 9.35
GSMN 24.36 9.94 8.28
PVN 41.21 8.68 6.26
ORACLE 100.0 1.38 1.29
Development Ablations and Analysis
PVN 40.44 8.56 6.28
PVN NO AUX 30.77 10.1 7.94
PVN NO dg 35.98 9.25 7.2
PVN NO DAGGER 38.87 9.18 6.69
PVN NO u 23.07 11.6 10.1
PVN IDEAL ACT 45.70 8.42 6.25
PVN FULL OBS 60.59 5.67 4.0
PVN height ÷ 2 39.51 8.95 6.55
PVN ω × 2 41.09 8.6 6.12

Table 1: Test and development results, includ-
ing model analysis. We evaluate success rate
(SR), average stopping distance (AD), and me-
dian stopping distance (MD).

turn right and curve
counter clockwise
around the barrel

fly to the left side of
the chair

fly to the right side of
the barrel

`follow the blue fence
and make a right
curve around the

barrel

go towards the blue
fence crossing the

water between the 2
homes

go straight until you
reach the well

Figure 5: Our model executing engineered in-
structions from a single starting position (top)
and representative instructions from the LANI
development set (bottom). The maps show hu-
man demonstrations (red), our model trajecto-
ries (blue), and goal regions (white circles).

Our ablations show that all components of the methods contribute to its performance. Removing the
auxiliary objectives (PVN NO AUX) or the goal-distribution prediction to rely only on the trajectory-
visitation distribution (PVN NO dg) both lower performance significantly. While using imitation
learning shows a significant benefit, model performance degradation is less pronounced when only
using supervised learning for the second stage (PVN NO DAGGER). The low performance of the
model without access to the instruction (PVN NO u) illustrates that our model makes effective use
of the input language. Figure 5 shows example trajectories executed by our model, illustrating the
ability to reason about spatial language. The supplementary material includes more examples.

We evaluate the quality of goal-visitation distribution dg with an ideal plan execution model that
stops perfectly at the most likely predicted stopping position p̃g = argmax dg(p̃). The performance
increase from using a perfect goal-visitation distribution with our model (PVN IDEAL ACT) illus-
trates the improvement that could be achieved by a better plan execution policy. We observe a more
drastic improvement with full observability (PVN FULL OBS), where the input image It is set to the
top-down view of the environment. This suggests the model architecture is capable of significantly
higher performance with improved exploration and mapping.

Finally, we do initial tests for model robustness against test-time variations. We test for visual
differences by flying at 2.5m (PVN height÷2), half the training height (5.0m). We test for dynamic
differences by doubling the angular velocity during testing for every output action (PVN ω × 2).
In both cases, the difference in model performance is relatively small, revealing the robustness of a
modular approach to small visual and dynamics differences.

8 Conclusion

We study the problem of mapping natural language instructions and raw observations to continuous
control of a quadcopter drone. Our approach is tailored for navigation. We design a model that
enables interpretable visualization of the agent plans, and a learning method optimized for sam-
ple efficiency. Our modular approach is suitable for related tasks with different robotics agents.
However, the effectiveness of our mapping mechanism with limited visibility, for example with a
ground robot, remains to be tested empirically in future work. Investigating the generalization of
our visitation prediction approach to other tasks also remains an important direction for future work.

Acknoledgements

This research was supported by Schmidt Sciences, NSF award CAREER-1750499, AFOSR award
FA9550-17-1-0109, the Amazon Research Awards program, and cloud computing credits from
Amazon. We thank the anonymous reviewers for their helpful comments.

8

References

[1] A. S. Huang, S. Tellex, A. Bachrach, T. Kollar, D. Roy, and N. Roy. Natural language command of an
autonomous micro-air vehicle. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2010.

[2] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. Gopal Banerjee, S. Teller, and N. Roy. Approaching
the Symbol Grounding Problem with Probabilistic Graphical Models. AI Magazine, 2011.

[3] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox. Learning to parse natural language commands to a
robot control system. In International Symposium on Experimental Robotics, 2012.

[4] J. Thomason, S. Zhang, R. J. Mooney, and P. Stone. Learning to interpret natural language commands
through human-robot dialog. In International Joint Conferences on Artificial Intelligence, 2015.

[5] D. Arumugam, S. Karamcheti, N. Gopalan, L. L. Wong, and S. Tellex. Accurately and efficiently inter-
preting human-robot instructions of varying granularities. In Robotics: Science and Systems, 2017.

[6] N. Gopalan, D. Arumugam, L. L. Wong, and S. Tellex. Sequence-to-sequence language grounding of
non-markovian task specifications. In Robotics: Science and Systems, 2018.

[7] V. Blukis, N. Brukhim, A. Bennet, R. Knepper, and Y. Artzi. Following high-level navigation instructions
on a simulated quadcopter with imitation learning. In Robotics: Science and Systems, 2018.

[8] D. Misra, A. Bennett, V. Blukis, E. Niklasson, M. Shatkin, and Y. Artzi. Mapping instructions to actions in
3D environments with visual goal prediction. In Conference on Empirical Methods in Natural Language
Processing, 2018.

[9] D. Misra, J. Langford, and Y. Artzi. Mapping instructions and visual observations to actions with rein-
forcement learning. In Conference on Empirical Methods in Natural Language Processing, 2017.

[10] D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Rajagopal, and R. Salakhutdinov. Gated-attention
architectures for task-oriented language grounding. AAAI Conference on Artificial Intelligence, 2018.

[11] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, and D. Fox. A Joint Model of Language and Percep-
tion for Grounded Attribute Learning. In International Conference on Machine Learning, 2012.

[12] F. Duvallet, T. Kollar, and A. Stentz. Imitation learning for natural language direction following through
unknown environments. In IEEE International Conference on Robotics and Automation, 2013.

[13] M. R. Walter, S. Hemachandra, B. Homberg, S. Tellex, and S. Teller. Learning Semantic Maps from
Natural Language Descriptions. In Robotics: Science and Systems, 2013.

[14] D. K. Misra, J. Sung, K. Lee, and A. Saxena. Tell me dave: Context-sensitive grounding of natural
language to mobile manipulation instructions. In Robotics: Science and Systems, 2014.

[15] S. Hemachandra, F. Duvallet, T. M. Howard, N. Roy, A. Stentz, and M. R. Walter. Learning models for
following natural language directions in unknown environments. In IEEE International Conference on
Robotics and Automation, 2015.

[16] R. A. Knepper, S. Tellex, A. Li, N. Roy, and D. Rus. Recovering from Failure by Asking for Help.
Autonomous Robots, 2015.

[17] M. MacMahon, B. Stankiewicz, and B. Kuipers. Walk the talk: Connecting language, knowledge, and
action in route instructions. In AAAI Conference on Artificial Intelligence, 2006.

[18] S. R. K. Branavan, L. S. Zettlemoyer, and R. Barzilay. Reading between the lines: Learning to map high-
level instructions to commands. In Annual Meeting of the Association for Computational Linguistics,
2010.

[19] C. Matuszek, D. Fox, and K. Koscher. Following directions using statistical machine translation. In
International Conference on Human-Robot Interaction, 2010.

[20] Y. Artzi and L. Zettlemoyer. Weakly supervised learning of semantic parsers for mapping instructions to
actions. Transactions of the Association for Computational Linguistics, 2013.

[21] A. Suhr and Y. Artzi. Situated mapping of sequential instructions to actions with single-step reward
observation. In Annual Meeting of the Association for Computational Linguistics, 2018.

[22] P. Shah, M. Fiser, A. Faust, J. C. Kew, and D. Hakkani-Tur. Follownet: Robot navigation by following
natural language directions with deep reinforcement learning. arXiv preprint arXiv:1805.06150, 2018.

[23] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould, and A. v. d.
Hengel. Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real
environments. arXiv preprint arXiv:1711.07280, 2017.

[24] K. M. Hermann, F. Hill, S. Green, F. Wang, R. Faulkner, H. Soyer, D. Szepesvari, W. Czarnecki,
M. Jaderberg, D. Teplyashin, et al. Grounded language learning in a simulated 3d world. arXiv preprint

9

arXiv:1706.06551, 2017.

[25] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. The International Journal of
Robotics Research, 2015.

[26] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination for robotic grasping
with large-scale data collection. In International Symposium on Experimental Robotics, 2016.

[27] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine. Deep reinforcement learning for vision-
based robotic grasping: A simulated comparative evaluation of off-policy methods. IEEE International
Conference on Robotics and Automation, 2018.

[28] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. The
Journal of Machine Learning Research, 2016.

[29] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine. Combining self-supervised
learning and imitation for vision-based rope manipulation. In IEEE International Conference on Robotics
and Automation, 2017.

[30] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for transfer-
ring deep neural networks from simulation to the real world. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2017.

[31] S. Bhatti, A. Desmaison, O. Miksik, N. Nardelli, N. Siddharth, and P. H. Torr. Playing doom with slam-
augmented deep reinforcement learning. arXiv preprint arXiv:1612.00380, 2016.

[32] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn. Universal planning networks. International
Conference on Machine Learning, 2018.

[33] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz, P. Pas-
tor, K. Konolige, et al. Using simulation and domain adaptation to improve efficiency of deep robotic
grasping. IEEE International Conference on Robotics and Automation, 2018.

[34] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Vanhoucke. Sim-to-real:
Learning agile locomotion for quadruped robots. Robotics: Science and Systems, 2018.

[35] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping and planning for visual
navigation. In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[36] A. Khan, C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and D. D. Lee. Memory augmented control
networks. In International Conference on Learning Representations, 2018.

[37] N. Savinov, A. Dosovitskiy, and V. Koltun. Semi-parametric topological memory for navigation. Inter-
national Conference on Learning Representations, 2018.

[38] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image computing and computer-assisted intervention,
2015.

[39] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-consistent
adversarial networks. In International Conference on Computer Vision, 2017.

[40] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

[41] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of motor skills by learning
from demonstration. In IEEE International Conference on Robotics and Automation, 2009.

[42] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal. Skill learning and task outcome
prediction for manipulation. In IEEE International Conference on Robotics and Automation, 2011.

[43] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning from demonstration by construct-
ing skill trees. The International Journal of Robotics Research, 2012.

[44] G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Peters. Active incremental learning of robot movement
primitives. In Conference on Robot Learning, 2017.

[45] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann. Probabilistic movement primitives. In Advances
in Neural Information Processing Systems. 2013.

[46] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 1997.

[47] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network acoustic models.
In International Conference on Machine Learning, 2013.

[48] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction to no-
regret online learning. In International conference on artificial intelligence and statistics, 2011.

[49] S. Shah, D. Dey, C. Lovett, and A. Kapoor. Airsim: High-fidelity visual and physical simulation for
autonomous vehicles. In Field and Service Robotics, 2017.

10

A Details on Auxiliary Objectives

We use three additive auxiliary objectives to help the different components of the model specialize
as intended with limited amount of training data.

Object Recognition Loss The object-recognition objective Jpercept ensures the semantic map
SW
t stores information about locations and identities of various objects. At timestep t, for every

object o that is visible in the first person image It, we classify the element in the semantic map
SW
t corresponding to the object location in the world. We apply a linear softmax classifier to every

semantic map element that spatially corresponds to the center of an object. At a given timestep t the
classifier loss is:

Jpercept(θ1) =
−1

|OFPV|
∑

o∈OFPV

[ŷolog(yo)] ,

where ŷo is the true class label of the object o and yo is the predicted probability. OFPV is the set of
objects visible in the image It.

Grounding Loss For every object o visible in the first-person image It, we use the feature vector
from the grounding map RW

t corresponding to the object location in the world with a linear softmax
classifier to predict whether the object was mentioned in the instruction u. The objective is:

Jground(θ1) =
−1

|OFPV|
∑

o∈OFPV

[ŷolog(yo) + (1− ŷo)log(1− yo)] ,

where ŷo is a 0/1-valued label indicating whether the object o was mentioned in the instruction and
yo is the corresponding model prediction. OFPV is the set of objects visible in the image It.

Language Loss The instruction-mention auxiliary objective uses a similar classifier to the ground-
ing loss. Given the instruction embedding u, we predict for each of the 63 possible objects whether
it was mentioned in the instruction u. The objective is:

Jlang(θ1) =
−1

|O|
∑

o∈OFPV

[ŷolog(yo) + (1− ŷo)log(1− yo)] ,

where ŷo is a 0/1-valued label, same as above.

B Automatic Word-object Alignment Extraction

In order to infer whether an object o was mentioned in the instruction u, we use automatically ex-
tracted word-object alignments from the dataset. Let E(o) be the event that an object o occurs within
15 meters of the human-demonstration trajectory Ξ, let E(τ) be the event that a word type τ occurs
in the instruction u, and let E(o, τ) be the event that both E(o) and E(τ) occur simultaneously. The
pointwise mutual information between events E(o) and E(τ) over the training set is:

PMI(o, τ) = P (E(o, τ)) log
P (E(o, τ))

P (E(o))P (E(τ))
,

where the probabilities are estimated from counts over training examples {(u(i), s
(i)
1 ,Ξ(i))}Ni=1. The

output set of word-object alignments is:

{(o, τ) | PMI(o, τ) > TPMI ∧ P (τ) < Tτ} ,

where TPMI = 0.008 and Tτ = 0.1 are threshold hyperparameters.

C Hyperparameter Settings

Image and Feature Dimensions
Camera horizontal FOV: 90◦
Input image dimensions: 128× 72× 3
Feature map FC dimensions: 32× 18× 32
Semantic map SW dimensions: 64× 64× 32
Visitation distributions dg and dp dimensions: 64× 64× 1
Cropped visitation distribution dimensions: 12× 12× 1

11

Environment edge length in meters: 50m
Environment edge length in pixels on SW : 32

Model
Visitation prediction interval timesteps: Td = 6
STOP action threshold: κ = 0.07

General Learning
Auxiliary objective weights: λpercept = 1.0, λground = 1.0, λlang = 0.25

Supervised Learning
Learning library: PyTorch 0.3.0
Optimizer: ADAM
Learning Rate: 0.001
Weight Decay: 10−6

Batch Size: 1

Imitation Learning
Mixture decay: β = 0.92
Number of iterations: 100
Number of environments for policy execution per iteration: 10
Number of policy executions per iteration (executions): 47 on average
Memory size (number of executions): 600

D Proof of Theorem 5.1

Proof. Given that the state-visitation distribution of a policy π : S → Pr(A) is defined as
d(s;π, µ) = 1

H

∑
t dt(s;π, µ), we can write the state-value function for the policy π as:

V π(s) = H

∫
d(s′;π, δs)R(s′)ds′ ,

where δs is the start-state distribution that places the entire probability mass on state s.

Using the definition V π(s) and assuming π ∈ Π(η) we can write,

V ∗(s)− V π(s) = H

∫
d(s′;π∗, δs)R(s′)ds′ −H

∫
d(s′;π, δs)R(s′)ds′

= H

∫
{d(s′;π∗, δs)− d(s′;π, δs)}R(s′)ds′

≤ H

∫
{d(s′;π∗, δs)− d(s′;π, δs)} (R̃(ϕ(s′)) + α)ds′

= H

∫
{d(s′;π∗, δs)− d(s′;π, δs)} R̃(ϕ(s′))ds′ +

Hα

∫
{d(s′;π∗, δs)− d(s′;π, δs)} ds′

= H

∫
{d(s′;π∗, δs)− d(s′;π, δs)}R(ϕ(s′))ds′

Because d is a probability distribution, which gives∫
{d(s′;π∗, δs)− d(s′;π, δs)}ds′ =∫

d(s′;π∗, δs)ds
′ −

∫
d(s′;π, δs)ds

′ = 0 .

= H
∑
s̃∈S̃

R̃(s̃)

∫
1{ϕ(s′) = s̃} {d(s′;π∗, δs)− d(s′;π, δs)} ds′

= H
∑
s̃∈S̃

R̃(s̃)
{
d̃(s̃;π∗, δs)− d̃(s̃;π, δs)

}

12

≤ H
∑
s̃∈S̃

⏐⏐⏐R̃(s̃)
{
d̃(s̃;π∗, δs)− d̃(s̃;π, δs)

}⏐⏐⏐
≤ H

⎧⎨⎩∑
s̃∈S̃

⏐⏐⏐d̃(s̃;π∗, δs)− d̃(s̃;π, δs)
⏐⏐⏐
⎫⎬⎭max

s̃∈S
|R̃(s̃)|

Using Holder’s inequality

= H

⎧⎨⎩∑
s̃∈S̃

⏐⏐⏐d̃(s̃;π∗, δs)− d̂(s̃) + d̂(s̃)− d̃(s̃;π, δs)
⏐⏐⏐
⎫⎬⎭max

s̃∈S
|R(s̃)|

≤ H

⎧⎨⎩∑
s̃∈S̃

⏐⏐⏐d̃(s̃;π∗, δs)− d̂(s̃)
⏐⏐⏐+∑

s̃∈S̃

⏐⏐⏐d̂(s̃)− d̃(s̃;π, δs)
⏐⏐⏐
⎫⎬⎭max

s̃∈S
|R(s̃)|

≤ H

(√
2DKL(d̃(·;π∗, δs) || d̂) +

√
2DKL(d̂ || d̃(·;π, δs))

)
max
s̃∈S̃

|R̃(s̃)|

Using Pinsker’s inequality.

≤ H
(√

2ϵ+
√
2η

)
max
s̃∈S̃

|R̃(s̃)|

Using the theorem assumptions.

≤ H(Rmax + α)
(√

2ϵ+
√
2η

)
Without loss of generality we assume R̃(s̃) = 0 for s̃ s.t. there exists no s,

where ϕ(s) = s̃. Additionally, R̃ : S̃ → R
+ rewards are only positive.

Therefore, R̃(ϕ(s)) ≤ R(s) + α ⇒ max
s̃∈S̃

|R̃(s̃)| = max
s̃∈S̃

R̃(s̃) ≤ Rmax + α .

We did not use any information about π or s in the above steps except for π ∈ Π(η). Therefore
taking supremum over s and π ∈ Π(η) completes the proof.

E Additional instruction-following examples

Figure 6 shows example instructions from the development set along with the trajectories taken by
our model and the human demonstrators.

13

go straight and past
the banana and go

around it

robot please move
forward and go

around a tree on our
left and pass it

circle the booth
clockwise and head to

the yellow fence

go around the gorilla

walk to the pond and
fly over the pond and

come back to the
barrel

go straight until you
reach the wood

pass on the left of the
barrel and bush on

the way to the
windmill turn

go left of the house
and turn toward the

yellow fence

go right of the rock
and chest

go pas the lake

Figure 6: Instruction following results (blue) and human demonstration trajectories (red) on ran-
domly selected instructions from the LANI development set.

14

	Introduction
	Technical Overview
	Related Work
	Model
	Stage 1: Visitation Prediction
	Stage 2: Plan Execution

	Learning
	Experimental Setup
	Results
	Conclusion
	Details on Auxiliary Objectives
	Automatic Word-object Alignment Extraction
	Hyperparameter Settings
	Proof of Theorem 5.1
	Additional instruction-following examples

