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Abstract: We propose an approach for mapping natural language instructions and
raw observations to continuous control of a quadcopter drone. Our model predicts
interpretable position-visitation distributions indicating where the agent should go
during execution and where it should stop, and uses the predicted distributions to
select the actions to execute. This two-step model decomposition allows for sim-
ple and efficient training using a combination of supervised learning and imitation
learning. We evaluate our approach with a realistic drone simulator, and demon-
strate absolute task-completion accuracy improvements of 16.85% over two state-
of-the-art instruction-following methods.
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1 Introduction

Executing natural language navigation instructions from raw observations requires solving language,
perception, planning, and control problems. Consider instructing a quadcopter drone using natural
language. Figure 1 shows an example instruction. Resolving the instruction requires identifying the
blue fence, anvil and tree in the world, understanding the spatial constraints fowards and on the right,
planning a trajectory that satisfies these constraints, and continuously controlling the quadcopter to
follow the trajectory. Existing work has addressed this problem mostly using manually-designed
symbolic representations for language meaning and environment [1, 2, 3, 4, 5, 6]. This approach
requires significant knowledge representation effort and is hard to scale. Recently, Blukis et al.
[7] proposed to trade-off the representation design with representation learning. However, their
approach was developed using synthetic language only, where a small set of words were combined
in a handful of different ways. This does not convey the full complexity of natural language, and
may lead to design decisions and performance estimates divorced from the real problem.

In this paper, we study the problem of executing instructions with a realistic quadcopter simulator
using a corpus of crowdsourced natural language navigation instructions. Our data and environment
combine language and robotic challenges. The instruction language is rich with linguistic phenom-
ena, including object references, co-references within sentences, and spatial and temporal relations;
the environment simulator provides a close approximation of realistic quadcopter flight, including a
realistic controller that requires rapid decisions in response to continuously changing observations.

We address the complete execution problem with a single model that is decomposed into two stages
of planning and plan execution. Figure 2 illustrates the two stages. The first stage takes as input the
language and the observations of the agent, and outputs two distributions that aim to to solve differ-
ent challenges: (a) identifying the positions that are likely to be visited during a correct instruction
execution, and (b) recognizing the correct goal position. The second stage of the model controls the
drone to fly between the high probability positions to complete the task and reach the most likely
goal location. The two stages are combined into a single neural network. While the approach does
not require designing an intermediate symbolic representation, the agent plan is still interpretable by
simple visualization of the distributions over a map.

Our approach introduces two learning challenges: (a) estimate the model parameters with the limited
language data available and a realistic number of experiences in the environment; and (b) ensure the
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different parts of the model specialize to solve their intended tasks. We address both challenges by
training each of the two stages separately. We train the visitation prediction stage with supervised
learning using expert demonstrations, and the plan execution stage by mapping expert visitation
distributions to actions using imitation learning. At test time, the second stage uses the predicted
distributions from the first. This learning method emphasizes sample efficiency. The first stage
uses supervised learning with training demonstrations; the second stage is independent from the
complex language and visual reasoning required, allowing for sample-efficient imitation learning.
This approach also does not suffer from the credit assignment problem of training the complete
network using rewards on actions only. This ensures the different parts of the network solve their
intended task, and the generated interpretable distributions are representative of the agent reasoning.

To evaluate our approach, we adapt the LANI corpus [8] for the realistic quadcopter simulator
from Blukis et al. [7], and create a continuous control instruction following benchmark. The LANT
corpus includes 27,965 crowdsourced natural language instructions paired with human demonstra-
tions. We compare our approach to the continuous-action analogs of two recently proposed ap-
proaches [9, 10], and demonstrate absolute task-completion accuracy improvements of 16.85%. We
also discuss a generalization of our position visitation prediction approach to state-visitation dis-
tribution prediction for sequential decision processes, and suggest the conditions for applying it to
future work on robot learning problems. The models, dataset, and environment are publicly available
athttps://github.com/clic-lab/drif.

2 Technical Overview

Task Let U be the set of natural language instructions, S be the set of world states, and .4 be the
set of all actions. An instruction u is a sequence of [ tokens (u1,...,u;). An action a is either a
tuple (v, w) of forward and angular velocities or the completion action STOP. The state s contains
information about the current configuration of all objects in the world. Given a start state s; € S and
an instruction v € U, the agent executes u by generating a sequence of actions, where the last action
is the special action STOP, which indicates task completion. The agent behavior is determined by
its configuration p. An execution of length T is a sequence {(s1,a1),...,(sT,ar)), where s; € S
is the state at timestep ¢, a; € A is the action updating the agent configuration, and the last action
is ap = STOP. Given an action a; = (v, w;), we set the agent configuration p = (v¢,w;), which
specifies the controller setpoint. Between actions, the agent maintains its configuration.

Model The agent does not have access to the world state. At timestep ¢, the agent observes the
agent context ¢; = (u, Iy, -, I, P1,--- P;), where u is the instruction and I; = IMG(s;) and
P, = LOCALIZE(s;), i = 1...t are monocular first-person RGB images and 6-DOF agent poses
observed at time step . The pose P; is a pair (p;,y;), where p; is a position and -; is an orientation.
Given an agent context c;, we predict two visitation distributions that define a plan to execute and the
actions required to execute the plan. A visitation distribution is a discrete distribution over positions
in the environment. The trajectory-visitation distribution d? puts high probability on positions in the
environment the agent is likely to go through during execution, and the goal-visitation distribution d?
puts high probability on positions where the agent should STOP to complete its execution. Given d?
and d9, the second stage of the model predicts the actions to complete the task by going through high
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probability positions according to the distributions. As the agent observes more of the environment
during execution, the distributions are continuously updated.

Learning We assume access to a training set of IV examples {(u®, s ZO)IN where u(® is

an instruction, sgi) is a start state, and 2(*) = (pgl), R pgf)) is a sequence of positions that defines a

trajectory generated from a human demonstration execution of u. Learning is decomposed into two
stages. We first train the visitation distributions prediction given the visitation distributions inferred
from the oracle policy 7*. We then use imitation learning using 7* to generate the sequence of
actions required given the visitation distributions.

Evaluation We evaluate on a test set of M examples {(u(®,s{” p{")}M |

(f) is a start state, and pg(f) is the goal position. We consider the task successfully com-

where % is an in-
struction, s

pleted if the agent outputs the STOP action within a predefined Euclidean distance of pgi). We
additionally evaluate the mean and median Euclidean distance to the goal position.

3 Related Work

Natural language instruction following has been studied extensively on physical robots [11, 12, 13, 2,
14, 12, 15, 16] and simulated agents [17, 18, 19, 3, 20, 21]. These methods require hand-engineering
of intermediate symbolic representations, an effort that is hard to scale to complex domains. Our ap-
proach does not require a symbolic representation, instead relying on a learned spatial representation
induced directly from human demonstrations. Our approach is related to recent work on executing
instructions without such symbolic representations using discrete environments [9, 22, 23, 8]. In
contrast, we use a continuous environment. While we focus on the challenge of using natural lan-
guage, this problem was also studied using synthetic language with the goal of abstracting natural
language challenges and focusing on navigation [24, 10] and continuous control [7].

Our approach is related to recent work on learning visuomotor control policies for grasping [25,
26, 27], dexterous manipulation [28, 29, 30] and visual navigation [31]. While these methods have
mostly focused on learning single robotic tasks, or transferring a single task between multiple do-
mains [30, 32, 33, 34], our aim is to train a model that can execute navigation tasks specified using
natural language, including previously unseen tasks during test time.

Treating planning as prediction of visitation probabilities is related to recent work on neural network
models that explicitly construct internal maps [35, 7, 36], incorporate external maps [31, 37], or do
planning [32]. These architectures take advantage of domain knowledge to provide sample-efficient
training and interpretable representations. In contrast, we cast planning as an image-to-image map-
ping [38, 39], where the output image is interpreted as a probability distribution over environment
locations. Our architecture borrows building blocks from prior work. We use the ResNet architec-
ture for perception [40] and the neural mapping approach of Blukis et al. [7] to construct a dynamic
semantic map. We also use the LINGUNET conditional image translation module [8]. While it was
introduced for first-person goal location prediction, we use it to predict visitation distributions.

Learning from Demonstrations (LfD) approaches have previously decomposed robot learning into
learning high-level tasks and low-level skills (e.g. Dynamic Movement Primitives [41, 42, 43, 44]).
Our approach follows this general idea. However, instead of using trajectories or probabilities as
task representations [45], we predict visitation distributions using a neural network. This results in
a reactive approach that defers planning of the full trajectory and starts task execution under uncer-
tainty that is gradually reduced with additional observations. This approach does not assume access
to the full system configuration space or a symbolic environment representation. Furthermore, the
learned representation is not constrained to a specific robot. For example, the same predicted visita-
tion distribution could potentially be used on a humanoid or a ground vehicle, each running its own
plan execution component.

4 Model

We model the agent behavior using a neural network policy . The input to the policy at time ¢
is the agent context ¢; = (u, I, -+, I, Py, -+ P;), where u is the instruction and I; = IMG(s;)
and P, = LOCALIZE(s;), ¢ = 1...t are first-person images and 6-DOF agent poses observed at
timestep 4 and state s;. The policy outputs an action a; = (v, w), where v; is a forward velocity
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Figure 3: An illustration of our model architecture. The instruction w is encoded into an instruction
embedding u using an LSTM network. At each timestep ¢, image features Ff are produced with
a custom residual network [ResNet; 40], projected to the world reference frame through a pinhole
camera model, and accumulated through time into a globally persistent semantic map S}". The map
is used to predict the visitation distributions d? and d9 by using u to create a grounding map R}
and generate the distributions using the LINGUNET architecture. A simple execution network then
transforms the distributions to an egocentric reference frame and generates the next action.
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Figure 4: Predicted visitation distributions for the the instruction from the LANT development set go
around the barrel and then move towards the phone booth. The left-most image shows top-down
view with the human demonstration trajectory (red) and our model trajectory (blue). The next four
images are predicted visitation distributions, d” (red) and dY (green), as the execution progresses
(left to right). The white circle represents agent’s current position. The uncertainty over the stopping
position decreases with time as the semantic map accumulates more information. The right image
shows the first three channels of the final semantic map S'V.

and w; is an angular velocity, and a probability for the STOP action pitOp. We decompose the policy

to visitation prediction and plan execution. Visitation prediction VISIT(¢;) computes a 2D discrete
semantic map S}". Each position in S}V corresponds to an area in the environment, and represents it
with a learned vector. The map is used to generate two probability distributions: trajectory-visitation
distribution d% (j | c;) and goal-visitation distribution d?(p | c;), where p is a position in S}V The
first distribution models the probability of visiting each position as part of an optimal policy execut-
ing the instruction u, and the second the probability of each position being the goal where the agent
should select the STOP action. We update the semantic map S} at every timestep with the latest
observations. The distributions d? and df are only computed every T, timesteps. When not updat-
ing the distributions, we set d¥ = d}_; and df = dJ_,. This allows for periodic re-planning and
limits the computational workload. In the second stage, plan execution ACT(d?},d], P;) generates

the action a; and the stop probability pitoP. Figure 3 illustrates our architecture, and Figure 4 shows
example visitation distributions generated by our approach.

4.1 Stage 1: Visitation Prediction

Feature Projection and Semantic Mapping We predict the visitation distributions over a learned
semantic map of the environment. We construct the map using the method of Blukis et al. [7].
The full details of the process are specified in the original paper. Roughly speaking, the semantic
mapping process includes three steps: feature extraction, projection, and accumulation. At timestep
t, we process the currently observed image [; using a 13-layer residual neural network RESNET to
generate a feature map F¢' = RESNET(I;) of size Wy x Hy x C. We compute a feature map in the
world coordinate frame F}" by projecting F' with a pinhole camera model onto the ground plane
at elevation zero. The semantic map of the environment S}" at time ¢ is an integration of F}" and
S}V, the map from the previous timestep. The integration equation is given in Section 4c in Blukis

et al. [7]. This process generates a tensor S}" of size W,, x H,, x C that represents a map, where

each location [S}"] (z,y) 18 @ C-dimensional feature vector computed from all past observations I,



each processed to learned features th and projected onto the environment ground in the world
frame at coordinates (z,y). This map maintains a learned high-level representation for every world
location (z, y) that has been visible in any of the previously observed images. We define the world
coordinate frame using the agent starting pose P;: the agent position is the coordinates (0,0), and
the positive direction of the x-axis is along the agent heading. This gives consistent meaning to
spatial language, such as furn left or pass on the left side of.

Instruction Embedding We represent the instruction v = (uq,---wu;) as an embedded vector
u. We generate a series of hidden states h; = LSTM(¢(u;),h;—1), ¢ = 1...1, where LSTM
is a Long-Short Term Memory [46] Recurrent Neural Network (RNN) and ¢ is a learned word-
embedding function. The instruction embedding is the last hidden state u = h;.

Position Visitation Distribution Prediction We use image generation to predict the visitation
distributions d? and dj. For each of the two distributions, we generate a matrix of dimension W,, x
H,,, the height and width dimensions of the semantic map S}, and normalize the values to compute
the distribution. To generate these matrices we use LINGUNET, a language-conditioned image-to-
image encoder-decoder architecture [8].

The input to LINGUNET is the semantic map S}" and a grounding map R}" that incorporates the
instruction u into the semantic map. We create R}” with a 1x 1 convolution R} = S}V ® K. The
kernel K¢ is computed using a learned linear transformation K¢ = Wgu + b, where u is the
instruction embedding.

The grounding map R}" has the same height and width as S}, and during training we optimize the
parameters so it captures the objects mentioned in the instruction u (Section 5).

LINGUNET uses a series of convolution and deconvolution operations. The input map Fy =
[S}Y,R}V] is processed through L cascaded convolutional layers to generate a sequence of feature
maps Fj, = CNN(Fy_1), k = 1...L." Each Fy is filtered with a 1x 1 convolution with weights
K. The kernels K, are computed from the instruction embedding u using a learned linear trans-
formation K3 = W} u + b} This generates [ language-conditioned feature maps G = F;, ® Ky,
k=1...L. Aseries of L deconvolution operations computes L feature maps of increasing size:
He — { DECONV([Hy41,Gr]), if1<k<L-1
¥ =1 DECONVL(Gy), ifk=1 >

The output of LINGUNET is H;, which is of size W, x H,, x 2. The full details of LINGUNET are
specified in Misra et al. [8]. We apply a softmax operation on each channel of H; separately to gen-
erate the trajectory-visitation distribution d} and the goal-visitation distribution df. In Section 5, we
describe how we estimate the parameters to ensure that d” and d9 model the visitation distributions.

4.2 Stage 2: Plan Execution

The action generation component ACT(d?, d?, P;) generates the action values from the two visita-
tion distributions d% and dJ and the current agent pose P;. We first perform an affine transformation
of the most recent visitation distributions to align them with the current agent egocentric reference
frame as defined by its pose P;, and crop a K x K region centered around the agent’s position. We fill
the positions outside the semantic map with zeros. We flatten and concatenate the cropped regions
of the distributions into a single vector x of size 2K?2, and compute the feed-forward network:

P v we = WP x; LEAKYRELU{0, W x + bMWY + b® |

where [;] denotes concatenation of vectors and LEAKYRELU is a leaky ReLU non-linearity [47].
If the stopping probability p;*°® = o(e*°P) is above a threshold « the agent takes the stop action.

Otherwise, we set the controller configuration using the forward velocity v; and angular velocity wy.

S Learning

Our model parameters can be divided into two groups. The visitation prediction VISIT(-) parameters
60 include the parameters of the functions ¢, LSTM, and RESNET, W, b¢, and the components
of LINGUNET: {CNNy}£_,, {DECONV H-_ |, {W} |, {b¥}L_,. The plan execution ACT(:)
parameters 6 are W), b)), W) b(®) We use supervised learning to estimate the visitation
prediction parameters and imitation learning for the plan execution parameters.

'[-, -] denotes concatenation along the channel dimension.



Estimating Visitation Prediction Parameters We assume access to training examples (u, s1, 2),
where u is an instruction, s; is a start state, and = = (py,...,pr) is a sequence of 7" positions.’

We convert the sequence = to a sequence of positions in the semantic map E = (p,...,pr).
We generate expert trajectory-visitation distribution d% by assigning high probability for positions
around the demonstration trajectory, and goal-visitation distribution df by assigning high probability
around the goal position pr. For each location p = (x,y) in the semantic map, we calculate the
probability of visiting and stopping there as:

EE)= 5 3 9llino)  dap) = S glblir.o) |
P _ = g

PtEE
where g(-|u, o) is a Gaussian probability density function with mean y and variance o2, and Z,
and Z, are normalization terms. The distributions are computed efficiently by applying a Gaus-
sian filter on an image of the human trajectory. We then generate a sequence of agent contexts c;
by executing an oracle policy 7*, which is implemented with a simple control rule that steers the
quadcopter along the human demonstration trajectory =. We create a training example (cq, d%, d¥)
for each time step t = 1,7y + 1,273 + 1,... in the oracle trajectory when we compute the visi-
tation distributions, and minimize the KL divergence between the expert and predicted distribution:
D (d¥ || dP(- | et)) + Dir(d? || d9(- | ¢;)). The data and objective do not consider the incre-
mental update of the distributions, and we always optimize towards the full visitation distributions.

We additionally use three auxiliary loss functions from Blukis et al. [7] to bias the different compo-
nents in the model to specialize as intended: (a) the object recognition 10ss Jpercept to classify visible
objects using their corresponding positions in the semantic map; (b) the grounding 10ss Jground to
classify if a visible object in the semantic map is mentioned in the instruction u; and (c) the language
loss Jiang to classify if objects are mentioned in the instruction u. To compute Jground and Jiang,
we use alignments between words and object labels that we heuristically extract from the training
data using pointwise mutual information. Please refer to the supplementary material for full details.

The complete objective for an example (c;, d%, d7) for time ¢ is:

J(01) = Drr(d? || d”(- | et)) + Drr(dd || d(- | e)) +
+ Apercethpercept (01) + Agrounnground(el) + )\lang Jlang(el) 5

where A() is a hyperparameter weighting the contribution of the corresponding auxiliary loss.

Estimating Plan Execution Parameters We train the plan execution stage ACT(dP,d?, P) us-
ing imitation learning with the oracle policy 7*. During imitation learning, we use the visita-
tion distributions d¥ and d? induced from the human demonstrations. This provides the model
access to the same information that guides the oracle policy, which it learns to imitate. We use
DAGGERFM [7], a variant of DAGGER [48] for low-memory usage. DAGGERFM performs K it-
erations of training. For each iteration & and a training example (u, s1, E), we generate an execution
((s1,a1), (s2,a2) -+ (s7,ar)) using a mixture policy. The mixture policy selects an action at time
t using 7* with probability 3* or the learned policy ACT(d%, dJ, P;) with probability 1 — ¥, where
B € (0,1) is a hyperparameter. The states generated in the execution are aggregated in a dataset
across iterations. After each iteration, we prune the dataset to a fixed size and perform one epoch
of supervised learning. We use a binary cross-entropy loss for the STOP probability p*t°P, and a
mean-squared-error loss for the velocities. When the oracle selects STOP, both velocities are zero.
We initialize imitation learning with supervised learning using the oracle policy 7* trajectories.

Discussion Our approach is an instance of learning state-visitation distributions in Markov Deci-
sions Processes (MDP). Consider an MDP (S, A, R, T, H, 1), where S is a set of states, A is a set
of actions, R : & — [0, Ryyq] is a reward function, 7 : S x A — Pr(S) is a probabilistic transition
function, H is the time horizon, and p is the start-state distribution.? The state-visitation distribution
of a policy m : & — Pr(A) is defined as d(s;m, 1) = 4 >, di(s;m, j1), where dy(s; , ) is the
probability of visiting state s at time ¢ following policy 7 with the initial state-distribution .

Reasoning about the entire state space S is challenging. Instead, we consider an alternative discrete
state space S with a mapping ¢ : S — S and a reward function R : S — IR*. For example, in a

2To simplify notation, we describe learning for a single example.
3 Pr(-) denotes a probability distribution.



robot navigation scenario, § can be the robot pose estimate s = P, or the positions in our semantic
map S". In a manipulation setup, § can be the manipulator configuration. This choice is task-
specific, but should include variables that are are measurable and relevant to task completion. The
state-visitation distribution in S is d(5; 7, 1) = [1{¢(s) = §}d(s;, u)ds. In general, we construct

S as a small set to support efficient computation of the visitation distribution, and enable our two
stage learning. In the first stage, we train a visitation model to predict the visitation distribution

CZ(~; 7*, ) for the oracle policy 7*, and in the second stage, we learn a plan execution model using
the oracle visitation distribution d(-; 7*, ;1) using imitation learning.

There is a strong relation between learning the state distribution and policy learning. For predicted

visitation distributions d with a bounded error in regard to the optimal visitation distribution, the
sub-optimality error of policies that accurately follow the predicted distribution is bounded as well:

Theorem 5.1. Suppose Dy (d(-;7*, 1) || d) < e and let II(n) = {r | Dgr(d || d(-;7, p)) < n}
be the set of all policies whose approximate state-visitation distribution has at maximum n KL
divergence from d. Assume that for every s € S there holds |R(s) — R(¢(s))| < a. Then:

sup sup V7(s) = V™ (s) < H (Rmas + @) (f+f)

s€ES well(n)

6 Experimental Setup

Data and Environments We evaluate our approach on the LANI corpus [8]. LANI contains
27,965 crowd-sourced instructions for navigation in an open environment. Each datapoint in-
cludes an instruction, a human-annotated ground-truth demonstration trajectory, and an environ-
ment with various landmarks and lakes. The dataset train/dev/test split is 19,758/4,135/4,072. Each
environment specification defines placement of 6—13 landmarks within a square grass field of size
50mx50m. We use the quadcopter simulator environment from Blukis et al. [7] based on the Unreal
Engine,* which uses the AirSim plugin [49] to simulate realistic quadcopter dynamics.

Data Augmentation We create additional data for visitation prediction learning by rotating the
semantic map S" and the gold distributions, d% and d¢, by a random angle o ~ A(0,0.5rad). This
allows the agent to generalize beyond the common behavior of heading towards the object in front.

Evaluation Metric We measure the stopping distance of the agent from the goal as ||p, — pr||,
where p, is the end-point of the human annotated demonstration and pr is the position where the
agent output the STOP action. A task is completed successfully if the stopping distance is < 5.0m,
10% of the environment edge-length. We also report the average and median stopping distance.

Systems We compare our Position-visitation Network (PVN) approach to the CHAPLOT [10] and
GSMN [7] approaches. CHAPLOT is an instruction following model that makes use of gated at-
tention. Similar to our approach, GSMN builds a semantic map, but uses simple language-derived
convolutional filters to infer the goal location instead of computing visitation probabilities. We also
report ORACLE performance as an upper bound and two trivial baselines: (a) STOP: stop immedi-
ately; and (b) AVERAGE: fly forward for the average number of steps (18) with the average velocity
(0.88m/s), both computed with the ORACLE policy from the training data. Hyperparameter settings
are provided in the supplementary material.

7 Results

Table 1 shows the performance on the test set and our ablations on the development set. The low
performance of the STOP and AVERAGE baselines shows the hardness of the problem. Our full
model PVN demonstrates absolute task-completion improvement of 16.85% over the second-best
system (GSMN), and a relative improvement of 12.7% on average stopping distance and 32.3%
on the median stopping distance. The relatively low performance of GSMN compared to previous
results with the same environment but synthetic language [7], an accuracy drop of 54.8, illustrates
the challenges introduced by natural language. The performance of CHAPLOT similarly degrades by
9.6 accuracy points compared to previously reported results on the same corpus but with a discrete
environment [8]. This demonstrates the challenges introduced by a realistic simulation.

*https://www.unrealengine.com/



Method [SR(%) [ AD | MD |
Test Results ]

STop 5.72 | 15.8 14.8
AVERAGE 16.43 | 12.5 10.1
CHAPLOT 2134 | 11.2 9.35
GSMN 24.36 9.94 8.28
PVN 4121 | 8.68 | 626 Counter clochue | | 1110 the et side of | | fytothe riht side of
ORACLE 100.0 1.38 1.29 around the barrel
[ Development Ablations and Analysis ]
PVN 40.44 8.56 6.28
PVN NO AUX 30.77 | 10.1 7.94
PVN NO @7 35.98 9.25 7.2
PVN NO DAGGER | 38.87 9.18 6.69
PVN NO u 23.07 11.6 10.1 “follow the blue fence | go towards the blue I
PVN IDEAL ACT 4570 842 625 and make a right fence crossing the go straight until you
PVN FULL OBS 60.59 5.67 4.0 cwm’,baa:zv;ru;d the water b}f{fz&zﬂ the 2 reach the well
PVN height -2 39.51 8.95 | 6.55 Figure 5: Our model executing engineered in-
PVNw x 2 41.09 8.6 6.12 structions from a single starting position (top)

Table 1: Test and development results, includ-
ing model analysis. We evaluate success rate
(SR), average stopping distance (AD), and me-
dian stopping distance (MD).

and representative instructions from the LANI
development set (bottom). The maps show hu-
man demonstrations (red), our model trajecto-
ries (blue), and goal regions (white circles).

Our ablations show that all components of the methods contribute to its performance. Removing the
auxiliary objectives (PVN NO AUX) or the goal-distribution prediction to rely only on the trajectory-
visitation distribution (PVN NO d9) both lower performance significantly. While using imitation
learning shows a significant benefit, model performance degradation is less pronounced when only
using supervised learning for the second stage (PVN NO DAGGER). The low performance of the
model without access to the instruction (PVN NO ) illustrates that our model makes effective use
of the input language. Figure 5 shows example trajectories executed by our model, illustrating the
ability to reason about spatial language. The supplementary material includes more examples.

We evaluate the quality of goal-visitation distribution d¢ with an ideal plan execution model that
stops perfectly at the most likely predicted stopping position p, = arg max d?(p). The performance
increase from using a perfect goal-visitation distribution with our model (PVN IDEAL ACT) illus-
trates the improvement that could be achieved by a better plan execution policy. We observe a more
drastic improvement with full observability (PVN FULL OBS), where the input image I, is set to the
top-down view of the environment. This suggests the model architecture is capable of significantly
higher performance with improved exploration and mapping.

Finally, we do initial tests for model robustness against test-time variations. We test for visual
differences by flying at 2.5m (PVN height < 2), half the training height (5.0m). We test for dynamic
differences by doubling the angular velocity during testing for every output action (PVN w x 2).
In both cases, the difference in model performance is relatively small, revealing the robustness of a
modular approach to small visual and dynamics differences.

8 Conclusion

We study the problem of mapping natural language instructions and raw observations to continuous
control of a quadcopter drone. Our approach is tailored for navigation. We design a model that
enables interpretable visualization of the agent plans, and a learning method optimized for sam-
ple efficiency. Our modular approach is suitable for related tasks with different robotics agents.
However, the effectiveness of our mapping mechanism with limited visibility, for example with a
ground robot, remains to be tested empirically in future work. Investigating the generalization of
our visitation prediction approach to other tasks also remains an important direction for future work.
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A Details on Auxiliary Objectives

We use three additive auxiliary objectives to help the different components of the model specialize
as intended with limited amount of training data.

Object Recognition Loss The object-recognition objective Jyercept €nsures the semantic map
S}V stores information about locations and identities of various objects. At timestep ¢, for every
object o that is visible in the first person image I;, we classify the element in the semantic map
S}V corresponding to the object location in the world. We apply a linear softmax classifier to every
semantic map element that spatially corresponds to the center of an object. At a given timestep ¢ the
classifier loss is:

-1
Jpercept (01) = m

Z [Folog(yo)] ,
0€O0FpV
where g, is the true class label of the object o and vy, is the predicted probability. Oppy is the set of
objects visible in the image ;.

Grounding Loss For every object o visible in the first-person image I;, we use the feature vector
from the grounding map R}V corresponding to the object location in the world with a linear softmax
classifier to predict whether the object was mentioned in the instruction u. The objective is:

-1
Jground (01) =

= Oroe] 2 lieloglye) + (1= o)log(1 = wo)]

0€O0Fpv
where {, is a 0/1-valued label indicating whether the object o was mentioned in the instruction and
1o 1s the corresponding model prediction. Oppy is the set of objects visible in the image I;.

Language Loss The instruction-mention auxiliary objective uses a similar classifier to the ground-
ing loss. Given the instruction embedding u, we predict for each of the 63 possible objects whether
it was mentioned in the instruction u. The objective is:

Tang(0) = = 37 [gulog(ye) + (1~ Go)log(1 — )]

|O| 0€O0ppv
where ), is a 0/1-valued label, same as above.

B Automatic Word-object Alignment Extraction

In order to infer whether an object o was mentioned in the instruction u, we use automatically ex-
tracted word-object alignments from the dataset. Let E(0) be the event that an object o occurs within
15 meters of the human-demonstration trajectory =, let E/(7) be the event that a word type T occurs
in the instruction w, and let E(o, 7) be the event that both E(0) and E(7) occur simultaneously. The
pointwise mutual information between events E(o) and E(7) over the training set is:

PMI(07 7') = P(E(07 7')) IOg % ’

where the probabilities are estimated from counts over training examples { (u("), sgi), E@)NN | The
output set of word-object alignments is:

{(o,7) | PMI(0,7) > Tpm1 A P(1) < T-}

where Tppsr = 0.008 and 7% = 0.1 are threshold hyperparameters.

C Hyperparameter Settings

Image and Feature Dimensions

Camera horizontal FOV: 90°

Input image dimensions: 128 x 72 x 3

Feature map F dimensions: 32 x 18 x 32

Semantic map S" dimensions: 64 x 64 x 32

Visitation distributions d9 and d” dimensions: 64 x 64 x 1
Cropped visitation distribution dimensions: 12 x 12 x 1
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Environment edge length in meters: 50m
Environment edge length in pixels on SV': 32

Model
Visitation prediction interval timesteps: Ty = 6
STQOP action threshold: x = 0.07

General Learning
Auxiliary objective weights: Apercept = 1.0, Aground = 1.0, Mang = 0.25

Supervised Learning
Learning library: PyTorch 0.3.0
Optimizer: ADAM

Learning Rate: 0.001

Weight Decay: 10~6

Batch Size: 1

Imitation Learning

Mixture decay: 5 = 0.92

Number of iterations: 100

Number of environments for policy execution per iteration: 10
Number of policy executions per iteration (executions): 47 on average
Memory size (number of executions): 600

D Proof of Theorem 5.1

Proof. Given that the state-visitation distribution of a policy 7 : & — Pr(A) is defined as
d(s;m, ) = 4 3, di(s; m, ), we can write the state-value function for the policy 7 as:

V™(s)=H / d(s';m, 85)R(s")ds’
where J; is the start-state distribution that places the entire probability mass on state s.

Using the definition V™ (s) and assuming 7 € II(n) we can write,

Vi =V = [alsie R — [ a(sim 8RS
= H [ (7,8 — dls'sm, 8.} RS
< H [ {dlsse, 0 - d(ssm 8} (RG() + a)ds’
= H/{d(s’;w*,és) —d(s';m,05)} R(p(s"))ds' +
Ha/{d(s’;w*,és) —d(sm, 8,)} ds’

- / {d(s's 7", 8,) — d(s's 7,8,)} R(6(s))ds

Because d is a probability distribution, which gives
/{d(s';ﬂ*,(?s) —d(s';m,0s)}ds =
/d(s’;w*,&s)ds' —/d(s';w,(Ss)dS’ =0 .
— BY RG) / 1{6(s) = 5} {d(s's 7", 6,) — d(s': 7, 04)} d’

eS8

= HY R {dEn.6) - dEmo)}

5e8
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Using Holder’s inequality

max |R(3)]

se

= H{S 6, - dE) +d(3) - d(sim. )

5e8

Z‘d(é;w*,és)—a? ‘ Z‘d d(5;m,6,)

ses se8

H (ﬁpm(d‘(-m*,as) 1d)+ /2D (d | J(-;w,as») max | R(3)]
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IN

Using Pinsker’s inequality.

H (\/ﬂ + \/27;) max |R(3)|
5eS

Using the theorem assumptions.

H(Ryas +0) (V26 + /20)

Without loss of generality we assume f%(é) = 0 for 5 s.t. there exists no s,

IA

IN

where ¢(s) = 5. Additionally, R : S — R rewards are only positive.
Therefore, R(4(s)) < R(s) + a = max |R(3)| = max R(3) < Ryas + @ .
5es 5e8

We did not use any information about 7 or s in the above steps except for 7 € II(n). Therefore
taking supremum over s and 7 € II(n) completes the proof. O

E Additional instruction-following examples

Figure 6 shows example instructions from the development set along with the trajectories taken by
our model and the human demonstrators.
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go straight and past
the banana and go
around it

robot please move
forward and go
around a tree on our
left and pass it

circle the booth
clockwise and head to
the yellow fence

go around the gorilla

go right of the rock
and chest

walk to the pond and
fly over the pond and
come back to the
barrel

go straight until you
reach the wood

pass on the left of the
barrel and bush on
the way to the
windmill turn

go left of the house
and turn toward the
yellow fence

go pas the lake

Figure 6: Instruction following results (blue) and human demonstration trajectories (red) on ran-
domly selected instructions from the LANI development set.
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