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Abstract

Imitation learning (IL) consists of a set of tools
that leverage expert demonstrations to quickly
learn policies. However, if the expert is subop-
timal, IL can yield policies with inferior per-
formance compared to reinforcement learning
(RL). In this paper, we aim to provide an algo-
rithm that combines the best aspects of RL and
IL. We accomplish this by formulating sev-
eral popular RL and IL algorithms in a com-
mon mirror descent framework, showing that
these algorithms can be viewed as a variation
on a single approach. We then propose LOKI, a
strategy for policy learning that first performs
a small but random number of IL iterations be-
fore switching to a policy gradient RL method.
We show that if the switching time is prop-
erly randomized, LOKI can learn to outperform
a suboptimal expert and converge faster than
running policy gradient from scratch. Finally,
we evaluate the performance of LOKI experi-
mentally in several simulated environments.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a promis-
ing technique to tackle complex sequential decision
problems. When empowered with deep neural networks,
RL has demonstrated impressive performance in a range
of synthetic domains (Mnih et al., 2013; Silver et al.,
2017). However, one of the major drawbacks of RL is
the enormous number of interactions required to learn a
policy. This can lead to prohibitive cost and slow con-
vergence when applied to real-world problems, such as
those found in robotics (Pan et al., 2017).

Imitation learning (IL) has been proposed as an alter-
nate strategy for faster policy learning that works by

leveraging additional information provided through ex-
pert demonstrations (Pomerleau, 1989; Schaal, 1999).
However, despite significant recent breakthroughs in our
understanding of imitation learning (Ross et al., 2011;
Cheng and Boots, 2018), the performance of IL is still
highly dependent on the quality of the expert policy.
When only a suboptimal expert is available, policies
learned with standard IL can be inferior to the policies
learned by tackling the RL problem directly with ap-
proaches such as policy gradients.

Several recent attempts have endeavored to combine RL
and IL (Ross and Bagnell, 2014; Chang et al., 2015;
Nair et al., 2017; Rajeswaran et al., 2017; Sun et al.,
2018). These approaches incorporate the cost informa-
tion of the RL problem into the imitation process, so
the learned policy can both improve faster than their RL-
counterparts and outperform the suboptimal expert pol-
icy. Despite reports of improved empirical performance,
the theoretical understanding of these combined algo-
rithms are still fairly limited (Rajeswaran et al., 2017;
Sun et al., 2018). Furthermore, some of these algorithms
have requirements that can be difficult to satisfy in prac-
tice, such as state resetting (Ross and Bagnell, 2014;
Chang et al., 2015).

In this paper, we aim to provide an algorithm that com-
bines the best aspects of RL and IL. We accomplish this
by first formulating first-order RL and IL algorithms in a
common mirror descent framework, and show that these
algorithms can be viewed as a single approach that only
differs in the choice of first-order oracle. On the basis
of this new insight, we address the difficulty of com-
bining IL and RL with a simple, randomized algorithm,
named LOKI (Locally Optimal search after K-step Im-
itation). As its name suggests, LOKI operates in two
phases: picking K randomly, it first performs K steps
of online IL and then improves the policy with a pol-
icy gradient method afterwards. Compared with previ-
ous methods that aim to combine RL and IL, LOKI is
extremely straightforward to implement. Furthermore, it



has stronger theoretical guarantees: by properly random-
izingK, LOKI performs as if directly running policy gra-
dient steps with the expert policy as the initial condition.
Thus, not only can LOKI improve faster than common
RL methods, but it can also significantly outperform a
suboptimal expert. This is in contrast to previous meth-
ods, such as AGGREVATTE (Ross and Bagnell, 2014),
which generally cannot learn a policy that is better than a
one-step improvement over the expert policy. In addition
to these theoretical contributions, we validate the perfor-
mance of LOKI in multiple simulated environments. The
empirical results corroborate our theoretical findings.

2 PROBLEM DEFINITION

We consider solving discrete-time γ-discounted infinite-
horizon RL problems.1 Let S and A be the state and the
action spaces, and let Π be the policy class. The objective
is to find a policy π ∈ Π that minimizes an accumulated
cost J(π) defined as

minπ∈Π J(π), J(π) := Eρπ [
∑∞
t=0 γ

tc(st, at)] , (1)

in which st ∈ S, at ∈ A, c is the instantaneous
cost, and ρπ denotes the distribution of trajectories
(s0, a0, s1, . . . ) generated by running the stationary pol-
icy π starting from s0 ∼ p0(s0).

We denoteQπ(s, a) as the Q-function under policy π and
Vπ(s) = Ea∼πs [Qπ(s, a)] as the associated value func-
tion, where πs denotes the action distribution given state
s. In addition, we denote dπ,t(s) as the state distribu-
tion at time t generated by running the policy π for the
first t steps, and we define a joint distribution dπ(s, t) =
(1 − γ)dπ,t(s)γ

t which has support S × [0,∞). Note
that, while we use the notation Ea∼π , the policy class Π
can be either deterministic or stochastic.

We generally will not deal with the objective function in
(1) directly. Instead, we consider a surrogate problem

min
π∈Π

Es,t∼dπEa∼πs [Aπ′(s, a)], (2)

where Aπ′ = Qπ′ − Vπ′ is the (dis)advantage function
with respect to some fixed reference policy π′. For com-
pactness of writing, we will often omit the random vari-
able in expectation; e.g., the objective function in (2) will
be written as EdπEπ[Aπ′ ] for the remainder of paper.

By the performance difference lemma below (Kakade
and Langford, 2002), it is easy to see that solving (2)
is equivalent to solving (1).

Lemma 1. (Kakade and Langford, 2002) Let π and π′

be two policies and Aπ′(s, a) = Qπ′(s, a) − Vπ′(s) be

1LOKI can be easily adapted to finite-horizon problems.

the (dis)advantage function with respect to running π′.
Then it holds that

J(π) = J(π′) +
1

1− γEdπEπ[Aπ′ ]. (3)

3 FIRST-ORDER RL AND IL

We formulate both first-order RL and IL methods within
a single mirror descent framework (Nemirovski et al.,
2009), which includes common update rules (Sutton
et al., 2000; Kakade, 2002; Peters and Schaal, 2008; Pe-
ters et al., 2010; Rawlik et al., 2012; Silver et al., 2014;
Schulman et al., 2015b; Ross et al., 2011; Sun et al.,
2017). We show that policy updates based on RL and
IL mainly differ in first-order stochastic oracles used, as
summarized in Table 1.

3.1 MIRROR DESCENT

We begin by defining the iterative rule to update policies.
We assume that the learner’s policy π is parametrized by
some θ ∈ Θ, where Θ is a closed and convex set, and
that the learner has access to a family of strictly convex
functionsR.

To update the policy, in the nth iteration, the learner re-
ceives a vector gn from a first-order oracle, picks Rn ∈
R, and then performs a mirror descent step:

θn+1 = Pn,gn(θn) (4)

where Pn,gn is a prox-map defined as

Pn,gn(θn) := arg min
θ∈Θ

〈gn, θ〉+
1

ηn
DRn(θ||θn). (5)

ηn is the step size, and DRn is the Bregman divergence
associated with Rn (Bregman, 1967): DRn(θ||θn) :=
Rn(θ)−Rn(θn)− 〈∇Rn(θn), θ − θn〉.
By choosing proper Rn, the mirror descent framework
in (4) covers most RL and IL algorithms. Common
choices of Rn include negative entropy (Peters et al.,
2010; Rawlik et al., 2012), 1

2‖θ‖22 (Sutton et al., 2000;
Silver et al., 2014), and 1

2θ
>F (θn)θ with F (θn) as the

Fisher information matrix (Kakade, 2002; Peters and
Schaal, 2008; Schulman et al., 2015a).

3.2 FIRST-ORDER ORACLES

While both first-order RL and IL methods can be viewed
as performing mirror descent, they differ in the choice
of the first-order oracle that returns the update direction
gn. Here we show the vector gn of both approaches can
be derived as a stochastic approximation of the (partial)
derivative of EdπEπ[Aπ′ ] with respect to policy π, but
with a different reference policy π′.



Table 1: Comparison of First-Order Oracles

Method First-Order Oracle

POLICY GRADIENT (Section 3.2.1) Edπn (∇θEπ) [Aπn ]
DAGGERED (Section 3.2.2) Edπn (∇θEπ) [Eπ∗ [d]]
AGGREVATED (Section 3.2.2) Edπn (∇θEπ) [Aπ∗ ]
SLOLS (Section 6) Edπn (∇θEπ) [(1− λ)Aπn + λAπ∗ ]

THOR (Section 6) Edπn (∇θEπ) [AH,π
∗

πn,t ]

3.2.1 Policy Gradients

A standard approach to RL is to treat (1) as a stochas-
tic nonconvex optimization problem. In this case, gn in
mirror descent (4) is an estimate of the policy gradient
∇θJ(π) (Williams, 1992; Sutton et al., 2000).

To compute the policy gradient in the nth iteration, we
set the current policy πn as the reference policy in (3)
(i.e. π′ = πn), which is treated as constant in θ in
the following policy gradient computation. Because
Eπn [Aπn ] = Eπn [Qπn ]− Vπn = 0, using (3), the policy
gradient can be written as2

(1− γ)∇θJ(π)|π=πn

= ∇θEdπEπ[Aπn ]|π=πn

= (∇θEdπ ) [0] + Edπ (∇θEπ) [Aπn ]|π=πn

= Edπ (∇θEπ) [Aπn ]|π=πn (6)

The above expression is unique up to a change of base-
lines: (∇θEπ) [Aπn ] is equivalent to (∇θEπ) [Aπn + b],
because (∇θEπ) [b(s)] = ∇θb(s) = 0, where b : S→ R
is also called a control variate (Greensmith et al., 2004).

The exact formulation of (∇θEπ) [Aπn ] depends on
whether the policy π is stochastic or deterministic.
For stochastic policies,3 we can compute it with the
likelihood-ratio method and write

(∇θEπ) [Aπn ] = Eπ[Aπn∇θ log π] (7)

For deterministic policies, we replace the expectation as
evaluation (as it is the expectation over a Dirac delta
function, i.e. a = π(s)) and use the chain rule:

(∇θEπ) [Aπn ] = ∇θAπn(s, π) = ∇θπ∇aAπn (8)

Substituting (7) or (8) back into (6), we get the equa-
tion for stochastic policy gradient (Sutton et al., 2000) or
deterministic policy gradient (Silver et al., 2014). Note
that the above equations require the exact knowledge, or

2We assume the cost is sufficiently regular so that the order
of differentiation and expectation can exchange.

3A similar equation holds for reparametrization (Grathwohl
et al., 2017).

an unbiased estimate, of Aπ . In practice, these terms
are further approximated using function approximators,
leading to biased gradient estimators (Konda and Tsitsik-
lis, 2000; Schulman et al., 2015b; Mnih et al., 2016).

3.2.2 Imitation Gradients

An alternate strategy to RL is IL. In particular, we con-
sider online IL, which interleaves data collection and pol-
icy updates to overcome the covariate shift problem of
traditional batch IL (Ross et al., 2011). Online IL as-
sumes that a (possibly suboptimal) expert policy π∗ is
available as a black-box oracle, from which demonstra-
tions a∗ ∼ π∗(s) can be queried for any given state
s ∈ S. Due to this requirement, the expert policy in on-
line IL is often an algorithm (rather than a human demon-
strator), which is hard-coded or based on additional com-
putational resources, such as trajectory optimization (Pan
et al., 2017). The goal of IL is to learn a policy that can
perform similar to, or better than, the expert policy.

Rather than solving the stochastic nonconvex optimiza-
tion directly, online IL solves an online learning problem
with per-round cost in the nth iteration defined as

ln(π) = EdπnEπ[c̃] (9)

where c̃ : S × A → R is a surrogate loss satisfying the
following condition: For all s ∈ S and π ∈ Π, there
exists a constant Cπ∗ > 0 such that

Cπ∗Eπ[c̃] ≥ Eπ[Aπ∗ ]. (10)

By Lemma 1, this implies J(πn) ≤ J(π∗)+ Cπ∗
1−γ ln(πn).

Namely, in the nth iteration, online IL attempts to mini-
mize an online upper-bound of J(πn).

DAGGER (Ross et al., 2011) chooses c̃ to be a strongly
convex function c̃(s, a) = Ea∗∼π∗(s)[d(a, a∗)] that pe-
nalizes the difference between the learner’s policy and
the expert’s policy, where d is some metric of space A
(e.g., for a continuous action space Pan et al. (2017)
choose d(a, a∗) = ‖a − a∗‖2). More directly, AGGRE-
VATTE simply chooses c̃(s, a) = Aπ∗(s, a) (Ross and
Bagnell, 2014); in this case, the policy learned with on-
line IL can potentially outperform the expert policy.



First-order online IL methods operate by updating poli-
cies with mirror descent (4) with gn as an estimate of

∇θln(πn) = Edπn (∇θEπ) [c̃]|π=πn (11)

Similar to policy gradients, the implementation of (11)
can be executed using either (7) or (8) (and with a control
variate). One particular case of (11), with c̃ = Aπ∗ , is
known as AGGREVATED (Sun et al., 2017),

∇θln(πn) = Edπn (∇θEπ) [Aπ∗ ]|π=πn . (12)

Similarly, we can turn DAGGER into a first-order
method, which we call DAGGERED, by using gn as an
estimate of the first-order oracle

∇θln(πn) = Edπn (∇θEπ)Eπ∗(s)[d]. (13)

A comparison is summarized in Table 1.

4 THEORETICAL COMPARISON

With the first-order oracles defined, we now compare the
performance and properties of performing mirror descent
with policy gradient or imitation gradient. We will see
that while both approaches share the same update rule
in (4), the generated policies have different behaviors:
using policy gradient generates a monotonically improv-
ing policy sequence, whereas using imitation gradient
generates a policy sequence that improves on average.
Although the techniques used in this section are not com-
pletely new in the optimization literature, we specialize
the results to compare performance and to motivate LOKI
in the next section. The proofs of this section are in-
cluded in Appendix B.

4.1 POLICY GRADIENTS

We analyze the performance of policy gradients with
standard techniques from nonconvex analysis.

Proposition 1. Let J be β-smooth and Rn be αn-
strongly convex with respect to norm ‖ · ‖. Assume
E[gn] = ∇θJ(πn). For ηn ≤ 2αn

β , it satisfies

E [J(πn+1)] ≤ J(π0) + E
[∑N

n=1
2ηn
αn
‖∇θJ(πn)− gn‖2∗

]
+ 1

2E
[∑N

n=1

(
−αnηn +

βη2n
2

)
‖∇̂θJ(πn)‖2

]
where the expectation is due to randomness of sampling
gn, and ∇̂θJ(πn) := 1

ηn

(
θn − Pn,∇θJ(πn)(θn)

)
. is a

gradient surrogate.

Proposition 1 shows that monotonic improvement can be
made under proper smoothness assumptions if the step

size is small and noise is comparably small with the gra-
dient size. However, the final policy’s performance is
sensitive to the initial condition J(π0), which can be
poor for a randomly initialized policy.

Proposition 1 also suggests that the size of the gradient
‖∇̂θJ(πn)‖2 does not converge to zero on average. In-
stead, it converges to a size proportional to the sampling
noise of policy gradient estimates due to the linear depen-
dency of 2ηn

αn
‖∇θJ(πn)−gn‖2∗ on ηn. This phenomenon

is also mentioned by Ghadimi et al. (2016). We note that
this pessimistic result is because the prox-map (5) is non-
linear in gn for general Rn and Θ. However, when Rn
is quadratic and Θ is unconstrained, the convergence of
‖∇̂θJ(πn)‖2 to zero on average can be guaranteed (see
Appendix B.1 for a discussion).

4.2 IMITATION GRADIENTS

While applying mirror descent with a policy gradient can
generate a monotonically improving policy sequence,
applying the same algorithm with an imitation gradient
yields a different behavior. The result is summarized be-
low, which is a restatement of (Ross and Bagnell, 2014,
Theorem 2.1), but is specialized for mirror descent.
Proposition 2. Assume ln is σ-strongly convex with re-
spect to Rn.4 Assume E[gn] = ∇θln(πn) and ‖gn‖∗ ≤
G <∞ almost surely. For ηn = 1

σ̂n with σ̂ ≤ σ, it holds

1
NE

[∑N
n=1 J(πn)

]
≤ J(π∗) + Cπ∗

1−γ (εclass + εregret)

where the expectation is due to randomness of sampling
gn, εclass = sup{πn} infπ∈Π

1
N

∑N
n=1 ln(π) and εregret =

G2(logN+1)
2σ̂N .

Proposition 2 is based on the assumption that ln is
strongly convex, which can be verified for certain prob-
lems (Cheng and Boots, 2018). Consequently, Proposi-
tion 2 shows that the performance of the policy sequence
on average can converge close to the expert’s perfor-
mance J(π∗), with additional error that is proportional
to εclass and εregret.

εregret is an upper bound of the average regret, which is
less than Õ( 1

N ) for a large enough step size.5 This char-
acteristic is in contrast to policy gradient, which requires
small enough step sizes to guarantee local improvement.

εclass measures the expressiveness of the policy class Π.
It can be negative if there is a policy in Π that outper-

4A function f is said to be σ-strongly convex with respect
toR on a setK if for all x, y ∈ K, f(x) ≥ f(y)+〈∇f(y), x−
y〉+ σDR(x||y).

5The step size should be large enough to guarantee Õ( 1
N

)

convergence, where Õ denotes Big-O but omitting log depen-
dency. However, it should be bounded since εregret = Θ

(
1
σ̂

)
.



Algorithm 1 LOKI

Parameters: d, Nm, NM
Input: π∗
1: Sample K with probability in (15).
2: for t = 1 . . .K do # Imitation Phase
3: Collect data Dn by executing πn
4: Query gn from (11) using π∗

5: Update πn by mirror descent (5) with gn
6: Update advantage function estimate Âπn by Dn
7: end for
8: for t = K + 1 . . . do # Reinforcement Phase
9: Collect data Dn by executing πn.

10: Query gn from (6) f using Âπn
11: Update πn by mirror descent (5) with gn
12: Update advantage function estimate Âπn by Dn
13: end for

forms the expert policy π∗ in terms of c̃. However, since
online IL attempts to minimize an online upper bound
of the accumulated cost through a surrogate loss c̃, the
policy learned with imitation gradients in general cannot
be better than performing one-step policy improvement
from the expert policy (Ross and Bagnell, 2014; Cheng
and Boots, 2018). Therefore, when the expert is subop-
timal, the reduction from nonconvex optimization to on-
line convex optimization can lead to suboptimal policies.

Finally, we note that updating policies with imitation
gradients does not necessarily generate a monotonically
improving policy sequence, even for deterministic prob-
lems; whether the policy improves monotonically is
completely problem dependent (Cheng and Boots, 2018).
Without going into details, we can see this by comparing
policy gradient in (6) and the special case of imitation
gradient in (12). By Lemma 3, we see that

Edπn (∇θEπ) [Aπn ]

= (∇θEdπ )Eπn [Aπ∗ ] + Edπn (∇θEπ) [Aπ∗ ].

Therefore, even with c̃ = Aπ∗ , the negative of the direc-
tion in (12) is not necessarily a descent direction; namely
applying (12) to update the policy is not guaranteed to
improve the policy performance locally.

5 IMITATE-THEN-REINFORCE

To combine the benefits from RL and IL, we propose
a simple randomized algorithm LOKI: first perform K
steps of mirror descent with imitation gradient and then
switch to policy gradient for the rest of the steps. De-
spite the algorithm’s simplicity, we show that, when K
is appropriately randomized, running LOKI has similar
performance to performing policy gradient steps directly
from the expert policy.

5.1 ALGORITHM: LOKI

The algorithm LOKI is summarized in Algorithm 1. The
algorithm is composed of two phases: an imitation phase
and a reinforcement phase. In addition to learning
rates, LOKI receives three hyperparameters (d,Nm,NM )
which determine the probability of random switching at
time K. As shown in the next section, these three hyper-
parameters can be selected fairly simply.

Imitation Phase Before learning, LOKI first randomly
samples a number K ∈ [Nm, NM ] according to the pre-
scribed probability distribution (15). Then it performsK
steps of mirror descent with imitation gradient. In our
implementation, we set

Eπ[c̃] = KL(π∗||π), (14)

which is the KL-divergence between the two policies. It
can be easily shown that a proper constant C∗ exists sat-
isfying the requirement of c̃ in (10) (Gibbs and Su, 2002).
While using (14) does not guarantee learning a policy
that outperforms the expert due to εclass ≥ 0, with an-
other reinforcement phase available, the imitation phase
of LOKI is only designed to quickly bring the initial pol-
icy closer to the expert policy. Compared with choosing
c̃ = Aπ∗ as in AGGREVATED, one benefit of choosing
KL(π∗||π) (or its variants, e.g. ‖a− a∗‖2) is that it does
not require learning a value function estimator. In ad-
dition, the imitation gradient can be calculated through
reparametrization instead of a likelihood-ratio (Tucker
et al., 2017), as now c̃ is presented as a differentiable
function in a. Consequently, the sampling variance of
imitation gradient can be significantly reduced by using
multiple samples of a ∼ πn (with a single query from
the expert policy) and then performing averaging.

Reinforcement Phase After the imitation phase, LOKI
switches to the reinforcement phase. At this point, the
policy πK is much closer to the expert policy than the
initial policy π0. In addition, an estimate of AπK is also
available. Because the learner’s policies were applied to
collect data in the previous online imitation phase, Aπn
can already be updated accordingly, for example, by min-
imizing TD error. Compared with other warm-start tech-
niques, LOKI can learn both the policy and the advantage
estimator in the imitation phase.

5.2 ANALYSIS

We now present the theoretical properties of LOKI. The
analysis is composed of two steps. First, we show the
performance of J(πK) in Theorem 1, a generalization of
Proposition 2 to consider the effects of non-uniform ran-
dom sampling. Next, combining Theorem 1 and Propo-



sition 1, we show the performance of LOKI in Theorem 2.
The proofs are given in Appendix C.
Theorem 1. Let d ≥ 0, Nm ≥ 1, and NM ≥ 2Nm. Let
K ∈ [Nm, NM ] be a discrete random variable such that

P (K = n) = nd/
∑NM
m=Nm

md. (15)

Suppose ln is σ-strongly convex with respect to Rn,
E[gn] = ∇θln(πn), and ‖gn‖∗ ≤ G <∞ almost surely.
Let {πn} be generated by running mirror descent with
step size ηn = nd/σ̂

∑n
m=1m

d. For σ̂ ≤ σ, it holds that

E [J(πK)] ≤ J(π∗) + ∆,

where the expectation is due to sampling K and
gn, ∆ = Cπ∗

1−γ
(
εwclass + 2−dσ̂DR +G2CNM /σ̂NM

)
,

DR = supR∈R supπ,π′∈ΠDR(π′||π), εwclass :=

sup{wn},{πn} infπ∈Π

∑N
n=1 wnln(π)∑N

n=1 wn
, and

CNM =

{
log(NM ) + 1, if d = 0
8d
3 exp

(
d
NM

)
, if d ≥ 1

SupposeNM � d. Theorem 1 says that the performance
of J(πK) in expectation converges to J(π∗) in a rate of
Õ(d/NM ) when a proper step size is selected. In ad-
dition to the convergence rate, we notice that the per-
formance gap between J(π∗) and J(πK) is bounded by
O(εwclass + 2−dDR). εwclass is a weighted version of the ex-
pressiveness measure of policy class Π in Proposition 2,
which can be made small if Π is rich enough with respect
to the suboptimal expert policy. DR measures the size of
the decision space with respect to the class of regulariza-
tion functions R that the learner uses in mirror descent.
The dependency on DR is because Theorem 1 performs
a suffix random sampling with Nm > 0. While the pres-
ence of DR increases the gap, its influence can easily
made small with a slightly large d due to the factor 2−d.

In summary, due to the sublinear convergence rate of IL,
NM does not need to be large (say less than 100) as long
as NM � d; on the other hand, due to the 2d factor, d is
also small (say less than 5) as long as it is large enough
to cancel out the effects of DR. Finally, we note that,
like Proposition 2, Theorem 1 encourages using larger
step sizes, which can further boost the convergence of
the policy in the imitation phase of LOKI.

Given Proposition 1 and Theorem 1, now it is fairly easy
to understand the performance of LOKI.
Theorem 2. Running LOKI holds that

E [J(πN )] ≤ J(π∗) + ∆

+ E
[∑N

n=K+1
2ηn
αn
‖∇θJ(πn)− gn‖2∗

]
+ 1

2E
[∑N

n=K+1

(
−αnηn +

βη2n
2

)
‖∇̂θJ(πn)‖2

]
,

where the expectation is due to sampling gn and K.

Firstly, Theorem 2 shows that πN can perform better than
the expect policy π∗, and, in fact, it converges to a locally
optimal policy on average under the same assumption as
in Proposition 1. Compare with to running policy gradi-
ent steps directly from the expert policy, running LOKI
introduces an additional gap O(∆ + K‖∇̂θJ(π)‖2).
However, as discussed previously, ∆ and K ≤ NM �
N are reasonably small, for usual N in RL. Therefore,
performing LOKI almost has the same effect as using the
expert policy as the initial condition, which is the best we
can hope for when having access to an expert policy.

We can also compare LOKI with performing usual pol-
icy gradient updates from a randomly initialized pol-
icy. The performance difference can be easily shown as
O(J(π∗) − J(π0) + ∆ + K‖∇̂θJ(π)‖2). Therefore, if
performing K steps of policy gradient from π0 gives a
policy with performance worse than J(π∗) + ∆, then
LOKI is favorable.

6 RELATED WORK

We compare LOKI with some recent attempts to incor-
porate the loss information c of RL into IL so that it
can learn a policy that outperforms the expert policy.
As discussed in Section 4, when c̃ = Aπ∗ , AGGRE-
VATE(D) can potentially learn a policy that is better than
the expert policy (Ross and Bagnell, 2014; Sun et al.,
2017). However, implementing AGGREVATE(D) ex-
actly as suggested by theory can be difficult and ineffi-
cient in practice. On the one hand, while Aπ∗ can be
learned off-policy using samples collected by running
the expert policy, usually the estimator quality is unsat-
isfactory due to covariate shift. On the other hand, if
Aπ∗ is learned on-policy, it requires restarting the system
from any state, or requires performing 1

1−γ -times more
iterations to achieve the same convergence rate as other
choices of c̃ such as KL(π∗||π) in LOKI; both of which
are impractical for usual RL problems.

Recently, Sun et al. (2018) proposed THOR (Trun-
cated HORizon policy search) which solves a trun-
cated RL problem with the expert’s value function as
the terminal loss to alleviate the strong dependency
of AGGREVATED on the quality of Aπ∗ . Their al-
gorithm uses an H-step truncated advantage function
defined as AH,π

∗

πn,t = Eρπn [
∑t+H−1
τ=t γτ−tc(sτ , aτ ) +

γHVπ∗(st+H)−Vπ∗(st)]. While empirically the authors
show that the learned policy can improve over the expert
policy, the theoretical properties of THOR remain some-
what unclear.6 In addition, THOR is more convoluted to

6The algorithm actually implemented by Sun et al. (2018)



implement and relies on multiple advantage function es-
timators. By contrast, LOKI has stronger theoretical guar-
antees, while being straightforward to implement with
off-the-shelf learning algorithms.

Finally, we compare LOKI with LOLS (Locally Optimal
Learning to Search), proposed by Chang et al. (2015).
LOLS is an online IL algorithm which sets c̃ = Qπ̂λn ,
where λ ∈ [0, 1] and π̂λn is a mixed policy that at each
time step chooses to run the current policy πn with prob-
ability 1−λ and the expert policy π∗ with probability λ.
Like AGGREVATED, LOLS suffers from the impractical
requirement of estimating Qπ̂λn , which relies on the state
resetting assumption.

Here we show that such difficulty can be addressed by us-
ing the mirror descent framework with gn as an estimate
of ∇θlλn(πn), where lλn(π) := EdπnEπ[(1 − λ)Aπn +
λAπ∗ ]. That is, the first-order oracle is simply a convex
combination of policy gradient and AGGREVATED gra-
dient. We call such linear combination SLOLS (simple
LOLS ) and we show it has the same performance guar-
antee as LOLS.

Theorem 3. Under the same assumption in Proposi-
tion 2, running SLOLS generates a policy sequence, with
randomness due to sampling gn, satisfying

1

N
E

[
N∑
n=1

J(πn)− ((1− λ)J∗πn + λJ(π∗))

]
≤
ελclass + ελregret

1− γ

where J∗πn = minπ∈Π EdπnEπ[Qπn ] =: Edπn [V ∗πn ] and
ελclass = minπ∈Π

1
N

(
∑N
n=1 EdπnEπ[(1− λ)Qπn + λQπ∗ ])

− 1
N

(
∑N
n=1 Edπn [(1− λ)V ∗πn + λVπ∗ ]).

In fact, the performance in Theorem 3 is actually a lower
bound of Theorem 3 in (Chang et al., 2015).7 Theorem 3
says that on average πn has performance between the
expert policy J(π∗) and the intermediate cost J∗πn , as
long as ελclass is small (i.e., there exists a single policy in
Π that is better than the expert policy or the local im-
provement from any policy in Π). However, due to the
presence of ελclass, despite J∗πn ≤ J(πn), it is not guar-
anteed that J∗πn ≤ J(π∗). As in Chang et al. (2015),
either LOLS or SLOLS can necessarily perform on aver-
age better than the expert policy π∗. Finally, we note
that recently both Nair et al. (2017) and Rajeswaran et al.
(2017) propose a scheme similar to SLOLS, but with the
AGGREVATE(D) gradient computed using offline batch
data collected by the expert policy. However, there is no
theoretical analysis of this algorithm’s performance.

does not solve precisely the same problem analyzed in theory.
7The main difference is due to technicalities. In Chang et al.

(2015), ελclass is compared with a time-varying policy.

7 EXPERIMENTS

We evaluate LOKI on several robotic control tasks from
OpenAI Gym (Brockman et al., 2016) with the DART
physics engine (Lee et al., 2018)8 and compare it with
several baselines: TRPO (Schulman et al., 2015a), TRPO
from expert, DAGGERED (the first-order version of
DAGGER (Ross et al., 2011) in (13)), SLOLS (Section 6),
and THOR (Sun et al., 2018).

7.1 TASKS

We consider the following tasks. In all tasks, the discount
factor of the RL problem is set to γ = 0.99. The details
of each task are specified in Table A in Appendix A.

Inverted Pendulum This is a classic control problem,
and its goal is to swing up an pendulum and to keep it
balanced in a upright posture. The difficulty of this task
is that the pendulum cannot be swung up directly due to
a torque limit.

Locomotion The goal of these tasks (Hopper, 2D
Walker, and 3D Walker) is to control a walker to move
forward as quickly as possible without falling down. In
Hopper, the walker is a monoped, which is subjected to
significant contact discontinuities, whereas the walkers
in the other tasks are bipeds. In 2D Walker, the agent is
constrained to a plane to simplify balancing.

Robot Manipulator In the Reacher task, a 5-DOF
(degrees-of-freedom) arm is controlled to reach a ran-
dom target position in 3D space. The reward consists of
the negative distance to the target point from the finger
tip plus a control magnitude penalty. The actions corre-
spond to the torques applied to the 5 joints.

7.2 ALGORITHMS

We compare five algorithms (LOKI, TRPO, DAGGERED,
THOR, SLOLS) and the idealistic setup of performing
policy gradient steps directly from the expert policy
(Ideal). To facilitate a fair comparison, all the algo-
rithms are implemented based on a publicly available
TRPO implementation (Dhariwal et al., 2017). Further-
more, they share the same parameters except for those
that are unique to each algorithm as listed in Table A in
Appendix A. The experimental results averaged across
25 random seeds are reported in Section 7.3.

Policy and Value Networks Feed-forward neural net-
works are used to construct the policy networks and the

8The environments are defined in DartEnv, hosted at
https://github.com/DartEnv.



value networks in all the tasks (both have two hidden lay-
ers and 32 tanh units per layer). We consider Gaussian
stochastic policies, i.e. for any state s ∈ S, π(a|s) is
Gaussian distributed. The mean of the Gaussian π(a|s),
as a function of state, is modeled by the policy network,
and the covariance matrix of Gaussian is restricted to be
diagonal and independent of state. The policy networks
and the value function networks are initialized randomly,
except for the ideal setup (TRPO from expert), which is
initialized as the expert.

Expert Policy The same sub-optimal expert is used by
all algorithms (LOKI, DAGGERED, SLOLS, and THOR).
It is obtained by running TRPO and stopping it before
convergence. The estimate of the expert value function
Vπ∗ (required by SLOLS and THOR) is learned by mini-
mizing the sum of squared TD(0) error on a large sepa-
rately collected set of demonstrations of this expert. The
final explained variance for all the tasks is more than 0.97
(see Appendix A).

First-Order Oracles The on-policy advantage Aπn in
the first-order oracles for TRPO, SLOLS, and LOKI (in the
reinforcement phase) is implemented using an on-policy
value function estimator and Generalized Advantage Es-
timator (GAE) (Schulman et al., 2015b). For DAG-
GERED and the imitation phase of LOKI, the first-order
oracle is calculated using (14). For SLOLS, we use the es-
timate Aπ∗(st, at) ≈ c(st, at) + γV̂π∗(st+1)− V̂π∗(st).
And for THOR, AH,π

∗

πn,t of the truncated-horizon problem
is approximated by Monte-Carlo samples with an on-
policy value function baseline estimated by regressing on
these Monte-Carlo samples. Therefore, for all methods,
an on-policy component is used in constructing the first-
order oracle. The exponential weighting in GAE is 0.98;
the mixing coefficient λ in SLOLS is 0.5; NM in LOKI is
reported in Table A in Appendix A, and Nm =

⌊
1
2NM

⌋
,

and d = 3.

Mirror Descent After receiving an update direction
gn from the first-order oracle, a KL-divergence-based
trust region is specified. This is equivalent to setting
the strictly convex function Rn in mirror descent to
1
2θ
>F (θn)θ and choosing a proper learning rate. In our

experiments, a larger KL-divergence limit (0.1) is se-
lected for imitation gradient (14) (in DAGGERED and in
the imitation phase of LOKI), and a smaller one (0.01)
is set for all other algorithms. This decision follows
the guideline provided by the theoretical analysis in Sec-
tion 3.2.2 and is because of the low variance in calculat-
ing the gradient of (14). Empirically, we observe using
the larger KL-divergence limit with policy gradient led
to high variance and instability.

7.3 EXPERIMENTAL RESULTS

We report the performance of these algorithms on vari-
ous tasks in Figure 1. The performance is measured by
the accumulated rewards, which are directly provided by
OpenAI Gym.

We first establish the performance of two baselines,
which represent standard RL (TRPO) and standard IL
(DAGGERED). TRPO is able to achieve considerable and
almost monotonic improvement from a randomly initial-
ized policy. DAGGERED reaches the performance of the
suboptimal policy in a relatively very small number of it-
erations, e.g. 15 iterations in 2D Walker, in which the
suboptimal policy to imitate is TRPO at iteration 100.
However, it fails to outperform the suboptimal expert.

Then, we evaluate the proposed algorithm LOKI and
Ideal, the performance of which we wish to achieve in
theory. LOKI consistently enjoys the best of both TRPO
and DAGGERED: it improves as fast as DAGGERED at
the beginning, keeps improving, and then finally matches
the performance of Ideal after transitioning into the re-
inforcement phase. Interestingly, the on-policy value
function learned, though not used, in the imitation phase
helps LOKI transition from imitation phase to reinforce-
ment phase smoothly.

Lastly, we compare LOKI to the two other baselines
(SLOLS and THOR) that combine RL and IL. LOKI out-
performs these two baselines by a considerably large
margin in Hopper, 2D Walker, and 3D Walker; but sur-
prisingly, the performance of SLOLS and THOR are in-
ferior even to TRPO on these tasks. The main reason
is that the first-order oracles of both methods is based
on an estimated expert value function V̂π∗ . As V̂π∗ is
only regressed on the data collected by running the ex-
pert policy, large covariate shift error could happen if
the dimension of the state and action spaces are high,
or if the uncontrolled system is complex or unstable. For
example, in the low-dimensional Pendulum task and the
simple Reacher task, the expert value function can gen-
eralize better. As a result, in these two cases, LOLS and
THOR achieve super-expert performance. However, in
more complex tasks, where the effects of covariant shift
amplifies exponentially with the dimension of the state
space, THOR and SLOLS start to suffer from the inac-
curacy of V̂π∗ , as illustrated in the 2D Walker and 3D
Walker tasks.

8 CONCLUSION

We present a simple, elegant algorithm, LOKI, that com-
bines the best properties of RL and IL. Theoretically, we
show that, by randomizing the switching time, LOKI can
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Figure 1: Learning curves. Shaded regions correspond to ± 1
2 -standard deviation.

perform as if running policy gradient steps directly from
the expert policy. Empirically, LOKI demonstrates su-
perior performance compared with the expert policy and
more complicated algorithms that attempt to combine RL
and IL.
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A Task Details

Pendulum Hopper 2D Walker 3D Walker Reacher

Observation space dimension 3 11 17 41 21
Action space dimension 1 3 6 15 5
Number of samples per iteration 4k 16k 16k 16k 40k
Number of iterations 100 200 200 1000 500
Number of TRPO iterations for expert 50 50 100 500 100
Upper limit of number of imitation steps of LOKI 10 20 25 50 25
Truncated horizon of THOR 40 40 250 250 250

The expert value estimator V̂π∗ needed by SLOLS and THOR were trained on a large set of samples (50 times the
number of samples used in each batch in the later policy learning), and the final average TD error are: Pendulum
(0.972), Hopper (0.989), 2D Walker (0.975), 3D Walker (0.983), and Reacher (0.973), measured in terms of explained
variance, which is defined as 1- (variance of error / variance of prediction).

B Proof of Section 4

B.1 Proof of Proposition 1

To prove Proposition 1, we first prove a useful Lemma 2.

Lemma 2. Let K be a convex set. Let h = E[g]. Suppose R is α-strongly convex with respect to norm ‖ · ‖.

y = arg min
z∈K

〈g, z〉+
1

η
DR(z||x) =: Pg,η(x)

where η satisfies that −αη + βη2

2 ≤ 0. Then it holds

E[〈h, y − x〉+
β

2
‖x− y‖2] ≤ 1

2

(
−αη +

βη2

2

)
E
[
‖H‖2

]
+

2η

α
E
[
‖g − h‖2∗

]
where H = 1

η (x− Ph,η(x)). In particular, if ‖ · ‖ = ‖ · ‖W for some positive definite matrix W , R is quadratic, and
K is Euclidean space,

E[〈h, y − x〉+
β

2
‖x− y‖2] ≤

(
−αη +

βη2

2

)
E
[
‖H‖2

]
+
βη2

2
E[‖H −G‖2]

Proof. Let G = 1
η (x−Pg,η(x)). First we show for the special case (i.e. suppose R(x) = 1

2 〈x,Mx〉 for some positive
definite matrix M , and therefore G = M−1g and H = M−1h).

E[〈h, y − x〉] = −ηE[〈h,G〉] = −ηE[〈h,H〉] ≤ −αη‖H‖2

and because g is unbiased,

E
[
β

2
‖x− y‖2

]
= E

[
η2β

2
‖H‖2 +

η2β

2
‖G−H‖2

]
For general setups, we first separate the term into two parts

〈h, y − x〉 = 〈g, y − x〉+ 〈h− g, y − x〉

For the first term, we use the optimality condition

〈g +
1

η
∇R(y)− 1

η
∇R(x), z − y〉 ≥ 0, ∀z ∈ K



which implies

〈g, x− y〉 ≥ 1

η
〈∇R(y)−∇R(x), y − x〉 ≥ α

η
‖x− y‖2

Therefore, we can bound the first term by

〈g, y − x〉 ≤ −α
η
‖x− y‖2 = −αη‖G‖2

On the other hand, for the second term, we first write

〈h− g, y − x〉 = −η〈h− g,G〉
= −η〈h− g,H〉+ η〈h− g,H −G〉

and we show that

〈h− g,H −G〉 ≤ ‖h− g‖∗‖H −G‖ ≤
‖h− g‖2∗

α
(16)

This can be proved by Legendre transform:

Pg,η(x) = arg min
z∈K

〈g, z〉+
1

η
DR(z||x)

= arg min
z∈K

〈g − 1

η
∇R(x), z〉+

1

η
R(z)

= ∇
(

1

η
R

)∗(
1

η
∇R(x)− g

)

Because 1
ηR is α

η -strongly convex with respect to norm ‖ · ‖,
(

1
ηR
)∗

is η
α -smooth with respect to norm ‖ · ‖∗, we have

‖H −G‖ ≤ 1

η

η

α
‖g − h‖∗ =

1

α
‖g − h‖∗

which proves (16). Putting everything together, we have

E[〈h, y − x〉+
β

2
‖x− y‖2]

≤ E
[(
−αη +

βη2

2

)
‖G‖2

]
+ E

[
−η〈h− g,H〉+

η

α
‖g − h‖2∗

]
= E

[(
−αη +

βη2

2

)
‖G‖2

]
+ E

[ η
α
‖g − h‖2∗

]
Because

‖H‖2 ≤ 2‖G‖2 + 2‖H −G‖2 ≤ 2‖G‖2 +
2

α2
‖h− g‖2∗

it holds that

E[〈h, y − x〉+
β

2
‖x− y‖2]

≤ 1

2

(
−αη +

βη2

2

)
E
[
‖H‖2

]
+

2η

α
E
[
‖g − h‖2∗

]
�



Proof of Proposition 1 We apply Lemma 2: By smoothness of J ,

E [J(πn+1)]− J(πn) ≤ E
[
〈∇J(πn), θn+1 − θn〉+

β

2
‖θn+1 − θn‖2

]
≤ 1

2

(
−αnηn +

βη2
n

2

)
E
[
‖∇̂θJ(πn)‖2

]
+

2ηn
αn
‖∇θJ(πn)− gn‖2∗

This proves the statement in Proposition 1. We note that, in the above step, the general result of Lemma 2. For the
special case Lemma 2, we would recover the usual convergence property of stochastic smooth nonconvex optimization,
which shows on average convergence to stationary points in expectation.

B.2 Proof of Proposition 2

We use a well-know result of mirror descent, whose proof can be found e.g. in (Juditsky et al., 2011).

Lemma 3. LetK be a convex set. Suppose R is α-strongly convex with respect to norm ‖ · ‖. Let g be a vector in some
Euclidean space and let

y = arg min
z∈K

〈g, z〉+
1

η
DR(z||x) = Pg,η(x)

Then for all z ∈ K

η〈g, x− z〉 ≤ DR(z||x)−DR(z||y) +
η2

2
‖g‖2∗

Next we prove a lemma of performing online mirror descent with weighted cost. While weighting it not required in
proving Proposition 2, it will be useful to prove Theorem 2 later in Appendix C.

Lemma 4. Let fn be σ-strongly convex with respect to some strictly convex function Rn, i.e.

fn(x) ≥ fn(y) + 〈∇fn(y), x− y〉+ σDRn(x||y)

and let {wn}Nn=1 be a sequence of positive numbers. Consider the update rule

xn+1 = arg min
z∈K

〈wngn, x〉+
1

ηn
DRn(z||xn)

where gn = ∇fn(xn) and ηn = 1
σ̂
∑n
m=1 wm

. Suppose σ̂ ≤ σ. Then for all x∗ ∈ K, N ≥M ≥ 1, it holds that

N∑
n=M

wnfn(xn)− wnfn(x∗) ≤ σ̂DRM (x∗||xM )
M−1∑
n=1

wn +
1

2σ̂

N∑
n=1

w2
n‖gn‖2∗∑n
m=1 wm

Proof. The proof is straight forward by strong convexity of fn and Lemma 3.

N∑
n=M

wn(fn(xn)− fn(x∗))

≤
N∑

n=M

wn (〈gn, xn − x∗〉 − σDRn(x∗||xn)) (σ-strong convexity)

≤
N∑

n=M

1

ηn
DRn(x∗||xn)− 1

ηn
DRn(x∗||xn+1)− wnσDRn(x∗||xn) +

w2
nηn
2
‖gn‖2∗ (Lemma 3)

≤ DRM (x∗||xM )

ηM−1
+

N∑
n=M

(
1

ηn
− 1

ηn−1
− wnσ

)
DRn(x∗||xn) +

w2
nηn
2
‖gn‖2∗ (We define

1

η0
= 0)



= σ̂DRM (x∗||xM )
M−1∑
n=1

wn +
N∑
n=1

(wnσ̂ − wnσ)DRn(x∗||xn) +
1

2σ̂

N∑
n=1

w2
n‖gn‖2∗∑n
m=1 wm

≤ σ̂DRM (x∗||xM )
M−1∑
n=1

wn +
1

2σ̂

N∑
n=1

w2
n‖gn‖2∗∑n
m=1 wm

�

Proof of Proposition 2 Now we use Lemma 4 to prove the final result. It’s easy to see that if gn is an unbiased
stochastic estimate of∇fn(xn) in Lemma 4, then the performance bound would hold in expectation since xn does not
depend on gn. Finally, by definition of εclass, this concludes the proof.

C Proof of Section 5

C.1 Proof of Theorem 1

Let wn = nd. The proof is similar to the proof of Proposition 2 but with weighted cost. First we use Lemma 1 and
bound the series of weighted accumulated loss

E

[
NM∑
n=Nm

wnJ(πn)

]
−
(

NM∑
n=Nm

wn

)
J(π∗) ≤ Cπ∗

1− γ

NM∑
n=Nm

wnln(πn)

Then we bound the right-hand side by using Lemma 4,

NM∑
n=Nm

wnln(πn)−min
π∈Π

NM∑
n=Nm

wnln(π) ≤ σ̂DR
Nm−1∑
n=1

wn +
1

2σ̂

NM∑
n=Nm

w2
n‖gn‖2∗∑n
m=1 wm

≤ σ̂DRN
d+1
m

d+ 1
+
d+ 1

2σ̂

NM∑
n=Nm

‖gn‖2∗nd−1

where we use the fact that d ≥ 0,

nd+1 − (m− 1)d+1

d+ 1
≤

n∑
k=m

kd ≤ (n+ 1)d+1 −md+1

d+ 1

which implies w2
n∑n

m=1 wm
≤ (d+1)n2d

nd+1 ≤ (d + 1)nd−1. Combining these two steps, we see that the weighted accumu-
lated loss on average can be bounded by

E

[∑NM
n=Nm

wnJ(πn)∑NM
n=Nm

wn

]
≤ J(π∗) +

Cπ∗

1− γ

(
εwclass +

σ̂DRN
d+1
m

(d+ 1)
∑NM
n=Nm

wn
+

d+ 1

2σ̂
∑NM
n=Nm

wn

NM∑
n=Nm

‖gn‖2∗nd−1

)

Because NM ≥ 2Nm and x
1−x ≤ 2x for x ≤ 1

2 , we have

Nd+1
m

(d+ 1)
∑NM
n=Nm

wn
≤ Nd+1

m

Nd+1
M − (Nm − 1)d+1

≤ Nd+1
m

Nd+1
M −Nd+1

m

=
1(

NM
Nm

)d+1

− 1

≤ 2

(
Nm
NM

)d+1

≤ 2−d



and, for d ≥ 1,

d+ 1∑NM
n=Nm

wn

NM∑
n=Nm

nd−1 ≤ d+ 1

Nd+1
M − (Nm − 1)d+1

d+ 1

d

(
(NM + 1)d −Nd

m

)
≤ (d+ 1)2

d

(NM + 1)d

Nd+1
M −Nd+1

m

≤ (d+ 1)2

d

1
NM

(1 + 1
NM

)d

1−
(
Nm
NM

)d+1

≤ 16d

3NM

(
1 +

1

NM

)d
(NM ≥ 2Nm and d ≥ 1)

≤ 16d

3NM
exp

(
d

NM

)
and for d = 0,

d+ 1∑NM
n=Nm

wn

NM∑
n=Nm

nd−1 =
1∑NM

n=Nm
1

NM∑
n=Nm

1

n
≤ log(NM ) + 1

NM −Nm
≤ 2 (log(NM ) + 1)

NM

Thus, by the assumption that ‖gn‖∗ ≤ G almost surely, the weighted accumulated loss on average has an upper bound

E

[∑NM
n=Nm

wnJ(πn)∑NM
n=Nm

wn

]
≤ J(π∗) +

Cπ∗

1− γ

(
εwclass + 2−dσ̂DR +

G2CNM /σ̂

NM

)

By sampling K according to ws, this bound directly translates into the the bound on J(πK).

C.2 Proof of Theorem 3

For simplicity, we prove the result of deterministic problems. For stochastic problems, the result can be extended to
expected performance, similar to the proof of Proposition 2. We first define the online learning problem of applying
gn = ∇θlλn(π)|π=πn to update the policy. In the nth iteration, we define the per-round cost as

lλn(π) = EdπnEπ[(1− λ)Aπn + λAπ∗ ] (17)

With the strongly convexity assumption and large enough step size, similar to the proof for Proposition 2, we can show
that

N∑
n=1

lλn(πn) ≤ min
π∈Π

N∑
n=1

(lλn(π) + ελregret)

= min
π∈Π

N∑
n=1

EdπnEπ[(1− λ)Aπn + λAπ∗ ] +Nελregret

where ελregret = Õ
(

1
T

)
. Note by definition of Aπn , the left-hand-side in the above bound can be written as

1

N

N∑
n=1

lλn(πn) =
N∑
n=1

EdπnEπn [(1− λ)Aπn + λAπ∗ ] =
N∑
n=1

λEdπnEπn [Aπ∗ ] (18)



To relate this to the performance bound, we invoke Lemma 1 and write

N∑
n=1

J(πn)− ((1− λ)J∗n + λJ(π∗))

=
N∑
n=1

(1− λ) (J(πn)− J∗n) +
1

1− γ
N∑
n=1

λEdπnEπn [Aπ∗ ]

≤
N∑
n=1

(1− λ) (J(πn)− J∗n)) + min
π∈Π

1

1− γ
N∑
n=1

EdπnEπ[(1− λ)Aπn + λAπ∗ ] +
N

1− γ ε
λ
regret

= min
π∈Π

1

1− γ
N∑
n=1

EdπnEπ[(1− λ)Qπn + λAπ∗ ] +
N

1− γ ε
λ
regret +

N∑
n=1

λ

(
−EdπnEπn [Qπn ]

1− γ + J(πn)− J∗n
)

= min
π∈Π

1

1− γ
N∑
n=1

EdπnEπ[(1− λ)(Qπn − V ∗πn) + λ(Qπ∗ − Vπ∗)] +
N

1− γ ε
λ
regret (Since EdπnEπn [Qπn ] = (1− γ)J(πn))

= min
π∈Π

1

1− γ
N∑
n=1

EdπnEπ[(1− λ)Qπn + λQπ∗ ]−
1

1− γ
N∑
n=1

Edπn
[
(1− λ)V ∗πn + λVπ∗

]
+

N

1− γ ε
λ
regret

≤ N

1− γ ε
λ
class +

N

1− γ ε
λ
regret

This concludes the proof.
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