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Abstract

In order to create well-crafted learning progressions, design-
ers guide players as they present game skills and give ample
time for the player to master those skills. However, analyzing
the quality of learning progressions is challenging, especially
during the design phase, as content is ever-changing. This
research presents the application of Stratabots—automated
player simulations based on models of players with vary-
ing sets of skills—to the human computation game Foldit.
Stratabot performance analysis coupled with player data re-
veals a relatively smooth learning progression within tutorial
levels, yet still shows evidence for improvement. Leveraging
existing general gameplaying algorithms such as Monte Carlo
Evaluation can reduce the development time of this approach
to automated playtesting without losing predicitive power of
the player model.

Introduction
Interactive digital games require numerous skills—
implicitly and explicitly—from players (Thompson et al.
2013). Often these skills are seen as direct game mechanics
such as jumping in a 2D platformer or steering in a driving
simulator. However, games can require many additional
skills that do not directly tie to game mechanics yet
are critical to gameplay, such as map navigation in an
MMORPG or multi-tasking and microing units in a real-
time strategy game (Strobach, Frensch, and Schubert 2012;
Gee 2003; Dye, Green, and Bavelier 2009;
Horn, Cooper, and Deterding 2017). To prevent frus-
tration, level designers pay close attention to the skills
they require from players during gameplay to make
sure they do not introduce challenges the player cannot
or should not complete yet, a concept concretely out-
lined in Rational Level Design (RLD) (McMillan 2013;
McEntee 2012). Interestingly, traditional player mod-
els attempt to mirror player behavior without tying
performance back to individual skills. New player mod-
eling techniques have started incorporating expected
skills or goals into their models in an effort to better
reflect their human counterparts (Smith et al. 2011a;
Liapis et al. 2015; Bakkes, Whiteson, and others 2014;
Harpstead and Aleven 2015). While promising, it remains
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difficult for designers to use player models to understand
how players learn and acquire skills as they progress
through a game (Charles et al. 2005).

Learning progressions guide how a player advances
through a game, what they learn along the way, and the rate
of difficulty increase—often dictating the experiential suc-
cess of that game (Butler et al. 2015; Harpstead and Aleven
2015; Andersen et al. 2012). By teaching and allowing the
mastery of individual game skills through successively more
difficult challenges, learning progressions lead a player from
novice to expert (Deterding 2015). Often, explicit guidance
comes in the form of tutorials or help tips while implicit in-
struction stems from the careful design of content by giving
the player increasingly difficult challenges where they must
use particular skills (McMillan 2013; Koster 2004). Quanti-
tative approaches develop metrics for difficulty (e.g. number
of enemies or reaction time required), but this ignores player
experience and focuses solely on the content itself, yet how
the player goes through the level may change their experi-
ence, skills used and—ultimately—perceived difficulty.

Recent research has developed frameworks for the auto-
mated testing of content based on models of players with
specific skills or goals (Horn et al. 2017; Liapis et al. 2015).
These frameworks simulate the different experiences players
have when faced with the same content but different individ-
ual makeups. Specifically developed for educational games,
Stratabots (Horn et al. 2017) were introduced to model play-
ers with varying sets of skills in order to simulate players
at different stages in the learning progression of a game.
Stratabots highlight that players perceive difficulty through
more than level and solution features, it is how players ex-
perience content that really matters.

In this paper, we extend Stratabots to a more complex
game environment known as human computation games
(HCGs) and compare hand-authored implementations to a
Monte Carlo based approach. HCGs leverage people’s prob-
lem solving skills where computational models fail to ade-
quately perform a task on their own. We analyze the perfor-
mance of Stratabots on a series of tutorial levels of the HCG
Foldit to determine the extent to which introductory lev-
els require the designer-intended skills. We compare hand-
designed Stratabots to a Monte Carlo Evaluation approach
using restricted actions to understand if we can decrease de-
sign time of Stratabots by leveraging existing general game-



playing algorithms. We then compare these bots to human
players to identify similarities in performance and efficiency.
Our research contributes to AI research by demonstrating
how skill chains can be integrated during design to create
novice and expert AIs used for the analysis of levels. Addi-
tionally, we highlight the applicability of Stratabots to games
that are not training players toward a specific known algo-
rithm for solving levels, by analyzing the difficulty curve
of a tutorial sequence in Foldit, indicating that even sub-
optimal AIs lend useful information to level designers.

Background
Each player is unique and reacts to various gameplay situa-
tions in different ways. Player modeling attempts to under-
stand, describe or predict player behavior when faced with
diverse game states (Yannakakis et al. 2013; Smith et al.
2011a). Bakkes, Spronck, and van Lankveld (2012) provide
an overview of player modeling techniques primarily used
for modeling opponents in multiplayer games. While player
modeling is often analogous to opponent modeling, it can
be used in single player games to adapt to players as well by
smoothing learning curves for improved game experience
(Charles et al. 2005). Harpstead and Aleven (2015) use ma-
chine learning techniques to develop player models based
on the skill chain concept (Cook 2007) in order to inform
designers what skills are exercised by players in an educa-
tional game. They create models ranging from only one skill
synonymous to “playing the game well”, to individual mod-
els for single levels assuming that each level teaches new
independent skills, and finally to granular models more rep-
resentative of composite knowledge we would expect from
traditional educational games (Linehan et al. 2014). This re-
search critically identifies how players with different skills
experience the same educational content but requires exten-
sive user data to develop each model.

Commonly used during content design or generation,
player models can predict player behavior on levels with-
out subjecting the player to countless playthroughs (To-
gelius, De Nardi, and Lucas 2007; Smith et al. 2011b;
Horn et al. 2017; Liapis et al. 2015; Shaker, Yannakakis,
and Togelius 2010), yet AI-based solutions are difficult to
design because modern games can be complex with many
strategies (Jaffe et al. 2012). Togelius, De Nardi, and Lu-
cas (2007) create player models of individual players in or-
der to procedurally generate racetracks using certain aspects
of player style such as average driving speed or deviation
from a racing path with fitness functions for a player-centric
model of gameplay experience. Liapis et al. (2015) extend
this method by modifying the fitness functions to represent
player goals rather than playstyle. They develop procedu-
ral personas that play levels from classic-style 2D dungeon
crawlers and predict how players experience levels based on
the goals they have while playing (e.g. collecting coins, fin-
ishing the level quickly, killing monsters, etc.). In regards
to skill-based player modeling, Horn et al. (2017) build on
the procedural persona framework by developing a series of
hierarchically organized AIs that model players at various
points along a learning progression. They manually deduce
major points in an educational game’s learning progression

and hand-craft a specific player model for that point in time.
Chaslot et al. (2008) state that game AI requires domain

knowledge and a long development timeframe, but imple-
menting a Monte Carlo based solution can reduce both of
these. Monte Carlo solutions rely on simulated playouts to
evaluate game moves rather than domain specific heuris-
tics creating a flexible yet powerful technique. Successfully
implemented for a range of single-player and adversarial
games, including Go, Scrabble, Solitaire, and Settlers of
Catan (Kocsis and Szepesvári 2006; Browne et al. 2012;
Chaslot et al. 2008), Monte Carlo implementations gener-
ally focus on creating optimal AIs. Varying the performance
of a Monte Carlo based AI through decreasing the simula-
tion depth or overall runtime allows players the opportunity
to play against sub-optimal opponents (Zook, Harrison, and
Riedl 2015; Browne et al. 2012; Baba Satomi, Iwasaki, and
Yokoo 2011). However, players vary in skill by more than
the time they think about a problem, players also differ in
how well they grasp the mechanics of a game.

Restricted Play analysis (Keehl and Smith 2018) lets de-
signers see general trends in gameplay, alter game mechan-
ics, and evaluate the effect those changes have on players.
Keehl and Smith (2018) created a Unity tool to streamline
this process along with a proof-of-concept and let designers
analyze the effect of design changes on players with three
distinct playstyles. This is the first MCTS solution we found
varying playstyle through more than computational depth or
runtime, though the playstyles are game specific and focus
on when the simulated player performs a specific action (col-
lecting a game piece) rather than what actions they perform.

Across domains including computer science (Sarkar et
al. 2017; Dukes 2013), biology (Barone et al. 2015; Lee
et al. 2014), medicine (University of Oxford 2014; Coburn
2014), astronomy (Lintott et al. 2008) and psychology (Vi-
sual Computing 2015) to name a few, HCGs give play-
ers tools and mechanisms to perform gamified, real-world,
domain-specific tasks that computers cannot computation-
ally solve due to complexity or lack of data. Prevalent tasks
in HCGs include data classification (e.g. image labeling or
sentence transcription) and common sense activities such as
identifying color differences (Visual Computing 2015) or
image labeling (von Ahn and Dabbish 2004).

Due to the complexity of tasks and inability to com-
putationally model solutions, HCG designers often don’t
know the skills their game must teach or the appropri-
ate order in which to teach them, resulting in poor player
retention—perhaps due to poor learning progressions or
insufficient tutorials (Andersen et al. 2012; Sarkar et al.
2017)—suggesting most players do not acquire the full suite
of skills game designers intended (Sauermann and Franzoni
2015). Without these skills, players are unable to meaning-
fully contribute to the scientific research contained within an
HCG, limiting the power of that game.

Foldit
Foldit is an HCG where players compete and collabo-
rate to fold and pack protein structures efficiently. Numer-
ous biochemistry-specific mechanics exist within Foldit and
gameplay is very different from traditional games, meaning



Concept/Skill Level Concept/Skill Level
Clashes 1-1 Rubber Bands 3-2
Pulling Sidechains 1-1 Camera Translation 3-3
Camera Rotation 1-2 Rubber Bands (+) 3-3
Score 1-2 Freeze 3-4
Shake 1-3 Backbone Color 3-5
Pull Backbone 2-1 Remix 3-5
Undo 2-1 Hydrophobics 4-1
Voids 2-2 Exposeds 4-1
Reset 2-2 Tweak Rotate 4-2
Wiggle 2-3 Tweak Shift 4-3
Hydrogen Bonds 3-1 Tweak Rotate (+) 4-4
Wiggle (+) 3-1 Secondary Structure 4-5

Table 1: List of concepts taught in each of the first 16 tu-
torial levels of Foldit as outlined in Andersen et al. (2012).
Some skills are not applicable to Stratabots since they are
specific to human players such as translating and rotating the
camera or color perception. Others require proxies since the
mechanics provided by the Foldit scripting language do not
match one-to-one with the concept (e.g. pulling sidechains).
Repeated concepts are marked with a (+). We create each
Stratabot from Foldit’s skill chain by combining one or more
designer-specified skills along with all prerequisite skills.

players cannot rely on previous game experience to under-
stand how to play (Andersen et al. 2012). Conversely, de-
signers cannot assume extensive knowledge from players
when designing the levels and user interface. This means
designers must be careful when introducing content to new
players. Players begin with a series of tutorial levels de-
signed to teach the main game mechanics. Each tutorial level
displays a protein on the screen that is not yet folded well.
Players must then decide which action(s) to perform on the
protein, as well as where and how to perform them. As play-
ers alter the protein structure, their score gets higher if they
improve the structure by lowering its energy. If players in-
crease the energy of the protein structure, then their score
drops. Once a score threshold has been met in a tutorial level,
the player can continue playing the same level and attempt
to improve their score or move on to the next level.

Foldit allows many interactions with proteins including
moving, freezing, replacing and auto-organizing individual
segments of a protein. Some operations can be done globally
such as “Wiggle” which attempts to optimally situate the
protein’s core and peripheral components in relation to one
another. Others are done on specific segments and may not
move the protein at all. For example, adding a band between
two segments sets the attraction between them but does not
have a visible effect until a corresponding move action is
performed (e.g. Wiggle). Actions that auto-organize attempt
to automatically (that is, Foldit does the computation rather
than the player) position parts of the protein to find an opti-
mal state. Players could perform the same actions manually
by clicking and dragging each protein component but this
would be tedious and time-consuming.

While multiplayer components exist in features such as
leaderboards, online contests, and user-created puzzles, each
playthrough of a tutorial level is completed independently.

We use only the tutorial levels in this study, since their or-
ganization and design are meant to increase in difficulty
and target specific skills. The Foldit tutorials are an initial
linear sequence of 16 tutorial levels, after which the tuto-
rial branches and introduces more advanced and specialized
concepts. Table 1 shows a list of concepts taught in each of
the first 16 levels. Recent iterations of Foldit add more tuto-
rial levels, however these are not the focus of our research
since they generally teach specific one-off concepts.

Study Methodology
The release of Foldit1 used in this work contains 36 tutorial
levels—of which the initial 16 were used by previous stud-
ies with concepts logged by designers—followed by com-
petitive online science puzzles where players vie for leader-
board positions specific to each puzzle. We focus our analy-
sis on the first 16 tutorial levels, since these arguably teach
the most important or commonly used mechanics. The early
tutorial is divided into four sections each containing three
to five levels. Also, we expect levels to increase in diffi-
culty and have lower human success rates as players advance
through the tutorial while gaining and mastering new skills.

In order to create Stratabots that play the tutorial levels,
we first produce a game-specific skill chain for Foldit. Foldit
designers and other game design researchers developed this
skill chain through their experience with Foldit as well as
ad hoc discussions and viewings with other players. Based
on these experiences, we choose skills that either repeated
throughout many tutorial levels, were designer specified by
Andersen et al. (2012), or seemed crucial one-offs. Addi-
tionally, we create some Stratabots with a combination of
skills that are not dependent upon each other to determine
how the mastery of separate independent skills affects suc-
cess. A list of all Stratabots as well as their included skills
can be seen in Table 2; the hierarchical nature of the bots is
represented in Figure 1. Every Stratabot includes the ability
to understand their current score and goal score for a level,
undo actions they have taken (in order for a bot to explore
the search space), and the ability to select part or all of a pro-
tein, though some can only select all and others can only se-
lect parts. In general, our Stratabots take greedy approaches
to score improvement. When faced with a series of actions
and parameters (e.g. degrees of rotation or number of itera-
tions), they choose the action and set of parameters that will
increase their score the most.

After selecting crucial combinations of skills from the
skill chain and previous designer-stated intentions, we craft
11 Stratabots with the built-in Lua scripting language pro-
vided by Foldit (Khatib et al. 2011) and run them on all 16
of the introductory puzzles, logging whether the bot can suc-
cessfully complete a given puzzle or not.

As stated previously, crafting each Stratabot can be a time
consuming process. To identify if modern general game-
playing algorithms can alleviate some of this demand, we
implement Monte Carlo evaluation (Chaslot et al. 2008)
using Foldit’s Lua scripting API and compare its results
with the hand-authored Stratabots. Similar to restricted play

1https://fold.it/
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Figure 1: Hierarchy of Stratabot skills for Foldit. Each
Stratabot has the skills it is connected to on the left. Shake
is duplicated for layout purposes.

Monte Carlo Tree Search (Keehl and Smith 2018), we re-
strict the available game actions to those only a particular
Stratabot can use for the entirety of one Foldit playthrough.
We repeat this process for each Stratabot to get a set of
Monte Carlo simulations that mirror each Stratabot. Due to
restrictions in Foldit’s Lua interface (e.g. memory and lim-
ited save game slots), we cap simulations at 500,000 nodes
and must re-generate the nodes after each action is taken
with the new game state as the root node.

We complete this research by analyzing which bots could
complete each level to determine if the existing learning pro-
gression roughly follows the success rates of Stratabots. Ad-
ditionally, we analyze if the skills present in the successful
Stratabots mirrors those expected by the designers as out-
lined in Table 1. To corroborate results, we include success
rates from human players.

Results
Throughout the following section, we refer to Stratabots by
the title entry in Table 3. For specific skills of each bot,
see Table 2. Results in Table 3 show the breakdown of the
16 introductory Foldit levels and the success or failure of
each Stratabot on that puzzle. Additionally, levels are broken
down into four sections corresponding to the menu layout
in Foldit. During gameplay, only certain actions are avail-
able to players based on the level they are playing whereas
the Foldit scripting API allows all operations on every level.
This potentially means Stratabots are more powerful than
their human counterparts and we will indicate this through-
out the remainder of the section where applicable. Finally,
player performance is shown in Table 4.

Levels Perhaps unsurprisingly, every level could be
solved by one or more Stratabot. This shows the range of
bots we created sufficiently cover the introductory puzzles
indicating that one bot is at least as complex as the designers
expect for each level. Additionally, we found no differences
in levels completed between manually-created Stratabots
and their Monte Carlo equivalent indicating a possible re-
duction in Stratabot design time without loss of power.

Overall, 3 of 16 levels require the one specific skill that
the level is intended to teach. Levels 3-3, 3-4, 3-5 and 4-
4 were completed by only one Stratabot. Bot7 which cor-
responds to the Band skill completed levels 3-3 and 3-4,
though 3-4 is targeting Freeze. Bot9 completed level 3-
5 which includes the Remix skill that no other bots pos-
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Score & Undo • • • • • • • • • • •
Select All • • • • • • • • •

Select Segment • • • • • • • • •
Shake • • • • • • • •

Global Wiggle • • • • • • •
Mutate • • • • • • •

Local Wiggle •
Replace A. Acid •

Bands •
Freeze •
Remix •
Tweak •

Table 2: Table indicating the set of skills modeled by each
Stratabot. Skills present in a Stratabot are represented by a •.
Some Stratabots incorporate all the skills of other bots plus
additional skills making them categorically superior when
playing Foldit.

sess, and only Bot11 completed level 4-4 which includes
the unique Tweak skill. These roughly reflect the skills that
designers want players to learn for those individual levels.
Although Tweak is introduced prior to Level 4-4, this is the
level where players must really understand the Tweak tool
in order to complete the puzzle.

Only Bot4 could not complete every level in the first
tutorial section. Foldit designers allow players to perform
only certain actions in the first section by disabling oth-
ers in the game interface. In Level 1-1, players must man-
ually click and drag parts of the protein rather than using the
corresponding button introduced in subsequent levels. The
Stratabots have no such restrictions in the Lua interface, but
the ability for Stratabots with very few skills to complete
this level indicates that it is still a good starting point in the
game’s progression.

With some exceptions, results are consistent with previ-
ous research into learning progressions in educational and
instructional games (Linehan et al. 2014). Each tutorial sec-
tion generally begins with an easier puzzle followed by more
challenging puzzles where the player has a chance to hone
their mastery of the newly presented skills. The Stratabots
show Foldit roughly follows this model even though the bots
are potentially more powerful than their human counterparts
on many levels. The final tutorial section (levels 4-1 through
4-5), shows a somewhat smooth progression until the final
level which looks significantly easier than its predecessor.
Upon closer inspection, we find that this is a byproduct of
Stratabots being able to Wiggle specific parts of the protein
while players can only wiggle the whole thing at once.

Stratabots We can view the power of various Stratabots
by analyzing which were more successful throughout the tu-
torial levels. As seen in Table 3, Bot7 was the most success-
ful completing 14 of 16 puzzles. The next most successful
bots, completing 13 of 16 puzzles, are Bot9 and Bot11 with
the difference in completed puzzles being those that target
specific skills present in one bot but not others. From our
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1-1 • • • • • • • • • •
1-2 • • • • • • • • • •
1-3 • • • • • • • • • •
2-1 • • • • • • •
2-2 • • • • • • •
2-3 • • • • • • •
3-1 • • • • • • • • •
3-2 • • • • • • •
3-3 •
3-4 •
3-5 •
4-1 • • • • • • • • •
4-2 • • • • • • •
4-3 • • • • • • •
4-4 •
4-5 • • • • • • •

Table 3: Results of each Stratabot playing the introductory
levels of Foldit. If a bot can solve a level, it is indicated by
a •. Levels solvable only by more complex bots indicate that
the levels may require additional skills present in some com-
plex Stratabots but not others. For the skill makeup of each
bot, see Table 2. Horizontal lines separate the four sections
of tutorial levels. In general, each section begins with an
easier level as indicated by more successful Stratabots, and
gradually gets more difficult until the next section where it
starts easy again. We found no differences between the hand-
authored Stratabots and their Monte Carlo counterparts.

results, it appears that Bot3 and Bot4 are the least powerful.
Bot3 only completing levels in the first section, and Bot4
unable to complete any. The unique skills found in these
Stratabots (Mutate and Local Wiggle) are never specifically
targeted by Foldit in any of the tutorial levels indicating little
benefit for the player to take the time to master these skills.

Surprisingly, Bot2 is able to complete most levels (12 of
16) even though it is one of the more simple bots. This is
probably due to the power available through the scripting
tool but not to players during tutorial gameplay (players have
this power later in the game). For example, Bot2 can be very
selective in what parts of the protein it wiggles while play-
ers are only given the option to wiggle everything at once.
However, this still illustrates the importance of the Wiggle
tool to the manipulation of proteins in Foldit. Mastering this
one skill has tremendous benefit for players throughout the
rest of their gameplay experience.

Player Data To add context to the results presented so
far, we also present player success data for the same levels.
Since the release version of Foldit is still under continuous
development, we only include player data where the score
threshold for each puzzle is the same as thresholds given to
the Stratabots and the initial protein structure is the same.
Puzzle success rates for players obtained from Foldit’s data
repository can be seen in Table 4.

A Spearman’s rank-order correlation was run to determine
the correlation between player and Stratabot success rates on

Total Successful Success
Level Attempts Attempts Rate
1-1 8784 8534 97.2%
1-2 8363 8196 98.0%
1-3 8111 7818 96.4%
2-1 7725 7523 97.4%
2-2 7481 6575 87.9%
2-3 6513 6296 96.7%
3-1 6316 5960 94.4%
3-2 5950 5542 93.1%
3-3 5435 4571 84.1%
3-4 4631 3982 86.0%
3-5 3930 3410 86.8%
4-1 3371 3296 97.8%
4-2 3342 3127 93.6%
4-3 3218 2660 82.7%
4-4 2708 2484 91.7%
4-5 2454 2281 93.0%

Table 4: A listing of player success rates on the first 16 tu-
torial levels of Foldit separated by tutorial section. Player
data gathered during this specific timeframe included play-
ers with sessions already in progress. This allows the suc-
cessful attempts for one level to be lower than the total at-
tempts for the next.

each level. There was a strong positive correlation between
these success rates, which was found to be statistically sig-
nificant (ρ = .754, p < .001). While players are generally
successful, five levels have sub-90% success rates. Of these
five, three were completable by only one Stratabot, indicat-
ing the usefulness of Stratabots to identify levels that may
be unusually difficult for players.

Discussion
As indicated in our results, Stratabots possessing the Wiggle
skill can complete a large majority of levels indicating the
power of this tool throughout Foldit. This tool is first intro-
duced to players in Level 1-3 yet it is available to Stratabots
through the exposed scripting language of Foldit on every
level. Additionally, the scripting language provides more
power over this tool to bots compared to human players dur-
ing tutorial levels. Due to the importance of this tool and
the extensive capabilities it possesses, it may be beneficial
to focus more time on teaching this skill to players. We re-
alize designers removed specific functionality to force play-
ers to use the to-be-taught skill rather than allowing them to
solve puzzles however they please, and we acknowledge this
is a common practice in tutorial design; however, we believe
more research could go into the effect this has on players and
whether or not it is beneficial to limit player capabilities—
especially limiting the most powerful and useful tools at the
player’s disposal in future levels.

Some level transitions in the tutorials of Foldit don’t seem
to require any additional skills and the difficulty of the levels
themselves does not increase; however, some of these levels
are meant to introduce concepts and terminology not directly
reflected in the actions that players take. For example, Level
1-1 introduces the concept of clashes yet this is not required



to computationally manipulate proteins and improve one’s
score in Foldit. It is merely a graphical indicator of where it
might be most beneficial to focus attention. The Stratabots
appear to have the most trouble near the end of the third sec-
tion of the tutorial levels. This is mirrored by the player data,
and may indicate that section of the game needs attention.

In our research, we find Stratabots still present useful in-
formation to the analysis of level progressions even when
no known optimal player exists as has been the case in pre-
vious work (Horn et al. 2017). This shows that even when
player models or profiles don’t exist for every player type,
Stratabots allow designers to understand the effect of a level
progression based on subsets of skills. As human compu-
tation games increase in number, this may be a promising
direction for designers to understand how players will view
their level progression and which skills designers may want
to focus on during tutorial design. To understand the exten-
sibility of this method, additional research is needed into
gameplay requiring more strategic skills (such as chess),
rather than gameplay that is reliant on mechanics-based
skills.

Finally, we found that a Monte Carlo based approach gave
us the same performance for each bot without the need to
individually create each one. This drastically reduced design
time while allowing us to perform the same analysis. With
the tremendous research going into Monte Carlo approaches
to game AI, we foresee this method becoming increasingly
viable for skill-based analysis of games and players.

Future Work
So far, Stratabots have shown promise in progression analy-
sis for puzzle-based games, but we believe there are still con-
texts and situations that could pose significant challenges.
We would like to apply Stratabots to more games to under-
stand if and where this framework breaks down. In those
cases, we expect Stratbots to provide less useful information
on level progressions.

Additionally, there is ample opportunity to improve the
runtime performance of Stratabots. Some levels required al-
most 48 hours of simulated play to complete. Though this
is less than the time it takes to do human playtesting, it is
still a bottleneck many designers could be discouraged by.
Giving the Lua scripting interface more available memory
and save slots as well as applying MCTS performance en-
hancements (Keehl and Smith 2018) should drastically re-
duce overall runtime.

Conclusion
In this paper, we demonstrated the applicability of skill
chains to the design and production of hierarchical skill-
based AIs to model players of varying skill levels. A se-
ries of bots created for Foldit, a human computation game
in the field of biology, shows that introductory levels require
the skills that designers expect with a few exceptions. These
findings have the potential to improve tutorial level design
by ensuring the skills needed to complete a level are those
desired by the designer—no more and no less. Bot perfor-
mance was also compared to human players showing that

levels perceived as more difficult by players (i.e. lower suc-
cess rate) were those that fewer bots could solve. Similarly,
bots that could solve more difficult levels generally had more
skills at their disposal implying that advanced players could
solve those levels while novice players could not. Future
work will center on expanding the application of Stratabots
to other games and improving runtime performance.
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Liapis, A.; Holmgård, C.; Yannakakis, G. N.; and Togelius,
J. 2015. Procedural personas as critics for dungeon genera-
tion. In European Conference on the Applications of Evolu-
tionary Computation, 331–343. Springer.
Linehan, C.; Bellord, G.; Kirman, B.; Morford, Z. H.; and
Roche, B. 2014. Learning curves: analysing pace and chal-
lenge in four successful puzzle games. In Proceedings of the
first ACM SIGCHI annual symposium on Computer-human
interaction in play, 181–190. ACM.

Lintott, C. J.; Schawinski, K.; Slosar, A.; Land, K.; Bam-
ford, S.; Thomas, D.; Raddick, M. J.; Nichol, R. C.; Szalay,
A.; Andreescu, D.; et al. 2008. Galaxy zoo: morphologies
derived from visual inspection of galaxies from the sloan
digital sky survey. Monthly Notices of the Royal Astronomi-
cal Society 389(3):1179–1189.
McEntee, C. 2012. Rational design: The core of Ray-
man Origins. Gamasutra. http://www.gamasutra.com/view/
feature/167214/rational design the core of .php.
McMillan, L. 2013. The rational design hand-
book: An intro to RLD. Gamasutra. http://www.
gamasutra.com/blogs/LukeMcMillan/20130806/197147/
The Rational Design Handbook An Intro to RLD.php.
Sarkar, A.; Williams, M.; Deterding, S.; and Cooper, S.
2017. Engagement effects of player rating system-based
matchmaking for level ordering in human computation
games. In Proceedings of the 12th International Conference
on the Foundations of Digital Games.
Sauermann, H., and Franzoni, C. 2015. Crowd science user
contribution patterns and their implications. Proceedings of
the National Academy of Sciences 112(3):679–684.
Shaker, N.; Yannakakis, G. N.; and Togelius, J. 2010. To-
wards automatic personalized content generation for plat-
form games. In AIIDE.
Smith, A. M.; Lewis, C.; Hullet, K.; Smith, G.; and Sullivan,
A. 2011a. An inclusive view of player modeling. In Pro-
ceedings of the 6th International Conference on Foundations
of Digital Games, 301–303. ACM.
Smith, G.; Whitehead, J.; Mateas, M.; Treanor, M.; March,
J.; and Cha, M. 2011b. Launchpad: A rhythm-based level
generator for 2-D platformers. IEEE Transactions on com-
putational intelligence and AI in games 3(1):1–16.
Strobach, T.; Frensch, P. A.; and Schubert, T. 2012. Video
game practice optimizes executive control skills in dual-task
and task switching situations. Acta psychologica 140(1):13–
24.
Thompson, J. J.; Blair, M. R.; Chen, L.; and Henrey, A. J.
2013. Video Game Telemetry as a Critical Tool in the Study
of Complex Skill Learning. PLoS ONE 8(9):e75129.
Togelius, J.; De Nardi, R.; and Lucas, S. M. 2007. Towards
automatic personalised content creation for racing games.
In Computational Intelligence and Games, 2007. CIG 2007.
IEEE Symposium on, 252–259. IEEE.
University of Oxford. 2014. Reverse the Odds.
Visual Computing. 2015. Apetopia.
von Ahn, L., and Dabbish, L. 2004. Labeling images with a
computer game. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 319–326. Vienna,
Austria: ACM.
Yannakakis, G. N.; Spronck, P.; Loiacono, D.; and André, E.
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