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Abstract

We present first massively parallel (MPC) algo-

rithms and hardness of approximation results for

computing Single-Linkage Clustering of n input

d-dimensional vectors under Hamming, `1, `2
and `∞ distances. All our algorithms run in

O(log n) rounds of MPC for any fixed d and

achieve (1 + ε)-approximation for all distances

(except Hamming for which we show an exact

algorithm). We also show constant-factor in-

approximability results for o(log n)-round algo-

rithms under standard MPC hardness assump-

tions (for sufficiently large dimension depending

on the distance used). Efficiency of implementa-

tion of our algorithms in Apache Spark is demon-

strated through experiments on the largest avail-

able vector datasets from the UCI machine learn-

ing repository exhibiting speedups of several or-

ders of magnitude.

1. Introduction

1.1. Single-linkage clustering

Single-Linkage Clustering is one of the oldest methods for

clustering multi-dimensional vectors based on the nearest-

neighbor rule and has been studied since 1951, see e.g.

(Zahn, 1971). It can be used for hierarchical clustering and

is one of the cornerstone techniques in data mining (see

e.g. Chapter 17 of a classic text on information retrieval by

Manning, Raghavan and Schütze (Manning et al., 2008)).

Applications of Single-Linkage Clustering include recon-

struction of semantic relationships from word embeddings

such as Word2Vec (Malak & East, 2016), phylogenetic tree

reconstruction (Gower & Ross, 1969), etc.
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We consider the problem of constructing a Single-Linkage

Clustering for large-scale data. Given a dataset consisting

of n real-valued d-dimensional vectors v1, . . . , vn ∈ R
d the

goal of Single-Linkage Clustering is to construct a partition

of these vectors into k clusters C1, . . . , Ck such that the

smallest distance between two vectors in different clusters

is maximized. Formally, for i 6= j let the single-linkage

distance between two clusters Ci and Cj under `p dis-

tance be dp(Ci, Cj) = minva∈Ci,vb∈Cj
‖va − vb‖p where

‖x‖p = (
∑

i |xi|p)1/p is the standard p-norm. Then in

the k-Single-Linkage Clustering (k-SLC) problem under `p
distance we aim to find a partition into k clusters that maxi-

mizes mini 6=j dp(Ci, Cj). It is well-known that k-SLC can

be constructed from the Minimum Spanning Tree (MST) of

the underlying metric by taking as clusters connected com-

ponents resulting from removal of k−1 longest MST edges

(see Figure 1 for an example).

C1

C2

C3

a = d2(C1, C2)

b = d2(C1, C3) c = d2(C2, C3)

Figure 1. 3-SLC objective is min(a, b, c), MST shown in solid.

Note that with this approach once the MST is constructed it

can be used to compute k-SLC for any value of k. Further-

more, it induces a hierarchical clustering structure that is

often desirable in practice. According to Manning, Ragha-

van and Schütze (Manning et al., 2008) the main impedi-

ment to this approach in practice that motivates the use of

various heuristics is that for large-scale data no practically

feasible techniques are currently known for constructing an

exact MST. Our work overcomes this challenge by leverag-

ing two observations: 1) inexact but close to optimum solu-

tions can suffice in practice due to the fact that real-valued

data always contains rounding errors, 2) while exact MST

algorithms are very sequential, approximate solutions can

be computed in parallel on a distributed cluster.
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Figure 2. MPC model of computation

1.2. Massively parallel computation

We present analysis of performance of our algorithms in the

Massively Parallel Computation model (MPC) which is the

most commonly used theoretical model of computation on

synchronous large-scale data processing platforms such as

MapReduce and Spark. As we demonstrate through exper-

iments in Spark this model accurately reflects performance

of our algorithms on real data. MPC model has attracted

a lot of interest recently. It has emerged through a se-

quence of papers (Feldman et al., 2008; Karloff et al., 2010;

Goodrich et al., 2011; Beame et al., 2013; Andoni et al.,

2014) and has been analyzed extensively (Fish et al., 2015;

Roughgarden et al., 2016). While several variations of this

basic model exist here we follow the strictest known ver-

sion of the model used in (Andoni et al., 2014) and hence

our algorithmic results hold in other versions as well.

In the MPC model we are given access to m identical

processors with local RAM space s on each. For an in-

put of size n the total space available to all processors is

m · s = Õ(n). The computation is performed in syn-

chronous rounds. In each round each machine: 1) performs

a local computation on its data (under its local space restric-

tion of s), 2) sends and receives messages of total length

at most s to other machines which are received before the

next round begins1 (see Figure 2). Furthermore, we assume

that the most time/space-efficient known algorithm for lo-

cal subproblems (in our case almost linear-time and space)

is used on each machine during the round.

In this setup the key complexity measure of performance

in such computation is the number of rounds it takes to

complete it as other characteristics such as time and com-

munication depend directly on it. The parameter s is

set to nα for some fixed constant α < 1, see (Karloff

et al., 2010; Andoni et al., 2014) for more details. In

1Note that restriction of s on the total length of received mes-
sages follows from the local space constraint assuming there is no
computation performed on the fly on incoming data.

this setting of parameters sorting can be done in O(1)
rounds (Goodrich et al., 2011) while sparse graph connec-

tivity takes O(log n)(Rastogi et al., 2013; Kiveris et al.,

2014) which is conjectured to be optimal (Karloff et al.,

2010; Beame et al., 2013; Rastogi et al., 2013; Roughgar-

den et al., 2016). It is folklore that an O(log n)-round al-

gorithm for MST in sparse graphs can be obtained via a

simulation of Boruvka’s algorithm in MPC. We use these

facts extensively in this paper.

1.3. Our results and previous work

While scalable algorithms with provable guarantees for

other popular clustering methods such as k-means and k-

median are known (Bahmani et al., 2012; Balcan et al.,

2013) we are not aware of any such algorithms for Single-

Linkage Clustering 2. Also despite the fact that scalable

heuristics exist for k-SLC and MST computation for vec-

tor data, e.g. (Jin et al., 2015), the only MPC algorithm

with provable guarantees in this area that we are aware of

is (Andoni et al., 2014)3. For other recent work on geo-

metric data structures and algorithms in the MPC model

see (Agarwal et al., 2016; Nath et al., 2016) and results on

distributed constructions of coresets (Agarwal et al., 2005;

Indyk et al., 2014; Bateni et al., 2014).

In (Andoni et al., 2014) it is shown that a (1 + ε)-
approximate MST under `2 can be constructed in O(1)
rounds of MPC for constant dimension. However, while

the overall cost of the MST is a good approximation to the

optimum the length of any given edge can be arbitrarily

distorted. This makes it impossible to directly use this al-

gorithm of for the Single-Linkage Clustering problem. For

example, consider an input corresponding to a set of points

on the line shown in Figure 3 and k = 2. In this case a

(1 + ε)-approximate MST would not necessarily lead to

a (1 + ε)-approximate clustering as any such clustering

would have to have clusters {1, . . . , n− 1} and {n} which

are at distance 100 from each other. Moreover, the algo-

rithm of (Andoni et al., 2014) will indeed introduce edges

of length Ω(εn) into its approximate MST between the first

n − 1 points if run on this example. Hence for the MST

constructed this way the basic approach of removing the

longest edge to obtain a 2-SLC will result in two clusters

which are at distance 1 with a very large probability.

2With the exception of recent work of (Derakhshan et al.,
2017) who consider a more general graph metric setting and hence
get results which are inherently different from our work as repre-
sentation of the metric requires Θ(n2) space

3For general graph metrics an MST algorithm in MPC is given
in (Karloff et al., 2010). In our case using this algorithm directly
would imply a quadratic increase in space since our graph is im-
plicitly given by n2 distances between the vectors and hence con-
structing the graph explicitly is infeasible under the overall space
restriction.
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Figure 3. ∀i ≤ n− 1: ‖vi−1 − vi‖2 = 1, ‖vn−1 − vn‖2 = 100.

In this paper we show how to overcome this difficulty and

give a different family of algorithms which allow to com-

pute an approximate Single-Linkage Clustering under vari-

ous distance metrics. While in (Andoni et al., 2014) only `2
metric is considered here we further extend this framework

so that it also applies to `1 and `∞ with similar performance

guarantees. Perhaps most interestingly, while an arbitrarily

good MST approximation can be computed in O(1) rounds

of MPC (for fixed dimension) our algorithms for k-SLC

run in O(log n) rounds. As it turns out, such an increase

is likely to be necessary. We justify it through a number of

hardness results. Our results show that even for k = 2 as-

suming two most popular conjectures in the MPC literature

regarding complexity of sparse connectivity no o(log n)-
round algorithm can compute k-SLC for sufficiently large

dimension of the data with better than some fixed constant-

factor approximation that depends on the distance metric

used. See Table 1 for a summary of these results4.

In order to complete the picture of approximability of k-

SLC under the most frequently used `p distances we also

give algorithms and hardness results under Hamming dis-

tance (commonly referred to as `0). In contrast to other

distances studied in this paper we are able to completely re-

solve approximability of the k-SLC problem for constant-

dimensional data in this case. As we show, there exists an

exact algorithm for d = O(1) that runs in O(log n) rounds

of MPC while under Conjecture 3.1 no algorithm running

in o(log n) rounds can obtain better than 2-approximation

even for d = 2. See Table 1 for details.

1.4. Our techniques

`1, `2, `∞ Our algorithms under `1, `2 and `∞ all share

the same high-level structure: we tackle the problem of the

input having O(n2) edges by first constructing a sparsifier

that only has O(n log n) edges and then run an MST al-

gorithm on this sparsifier. In order to construct a sparsifier

we execute a (1+ε)-approximate MST algorithm O(log n)
times and collect all edges of the MSTs constructed in these

executions. We then run an exact O(log n)-round exact

MST algorithm on this set of O(n log n) edges and out-

put clusters resulting from removing k−1 longest edges of

4While our algorithms work in the most restricted known ver-
sion of MPC model, our hardness results also hold in more relaxed
versions for which hardness of sparse connectivity is conjectured,
see (Roughgarden et al., 2016) for further details. Furthermore,
in hardness results for `0 and `1 that require dimension d = Ω(n)
the result holds for O(1)-sparse vectors, i.e. the overall input size
is still O(n) words.

the resulting MST. Note that the executions of the (1 + ε)-
approximate MST algorithm can be done in parallel and

hence it is the second step that introduces O(log n) rounds

into the overall complexity of the algorithm. Our algo-

rithms under `1, `2 and `∞ are given in Section 2. Assum-

ing the same high-level structure this approach is unlikely

to be improved as there are no known algorithms for solv-

ing MST in sparse graphs in o(log n) rounds.

Hardness In fact, we make the above observation for-

mal by giving reductions from two most popular problems

conjectured to require Ω(log n) rounds in the MPC model:

sparse connectivity (Conjecture 3.1) and a stronger “one

cycle vs. two cycles” problem (Conjecture 3.2). Our re-

ductions follow the same general strategy – we introduce

a vector vi ∈ R
n for each vertex in the input graph. This

vector is initially set to be ei, the i-th standard unit vec-

tor. Then for each edge (i, j) adjacent to the vertex i we

update the coordinate j of the vector by adding a carefully

chosen value ξ. This ensures that the for pairs of points

which are connected by an edge the distance between their

correponding vectors is different from the distance between

points which are not connected by an edge. The parameter

ξ is then chosen to maximize the ratio of distances in these

two cases. Details are given in Section 3.

`0 Under `0 (Hamming distance) we can’t construct a

(1 + ε)-approximate MST using (Andoni et al., 2014) and

hence our algorithms and hardness results are quite differ-

ent. Using sorting as a primitive we construct an auxiliary

graph and then run an O(log n)-round connectivity algo-

rithm on it d times. This way we obtain an exact MST

and hence an exact k-SLC for any value of k. Details are

given in Section A. Our hardness reduction in this case is

also quite different as we construct a hard instance by creat-

ing a set of points in 2D instead of using high-dimensional

vectors. Hence our result rules out an o(log n)-round 2-

approximation even for d = 2. See Section 3.2 for details.

1.5. Experimental results

We implemented our algorithm (for `2 distances) in Java

on Apache Spark and empirically evaluated the perfor-

mance. The largest datasets we used were the SIFT10M

and HIGGS datasets from the UCI ML repository which

has been used widely in literature (≈ 11 × 107). Note

that storage of the n2 adjacency would take nearly 960TB

of memory and hence building a complete graph locally

is infeasible. We observed speedups of several orders of

magnitude compared to our benchmark sequential Prim’s

algorithm when using 200 reducers. We remark that the

speedup is not just due to the parallelism in our algorithm

but also due to the use of approximation which is helpful

even if the algorithm is executed locally. See Section 4.
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Table 1. Approximation and hardness of k-Single Linkage Clustering in MPC under `p distances.

Approximation in O(log n) rounds Hardness of approximation in o(log n) rounds

`0 Exact for d = O(1), Thm. A.1 2 for d = 2 under Conj. 3.1, Thm. 3.5

3 for d = Ω(n) under Conj. 3.2, Thm. 3.3

`1 (1 + ε) for d = O(1), Thm. 2.1 3 for d = Ω(n) under Conj. 3.2, Thm. 3.3

2 for d = Ω(n) under Conj. 3.1, Thm. 3.3

`2 (1 + ε) for d = O(1), Thm. 2.1 1.84− ε for d = Ω( logn
ε2 ) under Conj. 3.2, Thm. 3.3

1.41− ε for d = Ω( logn
ε2 ) under Conj. 3.1, Thm. 3.3

`∞ (1 + ε) for d = O(1), Thm. 2.1 2 for d = Ω(log n) under Conj. 3.1, Thm. 7.1 (Andoni et al., 2014)

2. Algorithms

At a high level our k-SLC algorithm for `2 is very simple

and can be described as follows:

Algorithm 1 Simplified k-SLC Algorithm for `2

Input: vectors v1, . . . , vn ∈ R
d

E′ = ∅
Repeat O(log n) times sequentially:

E = set of edges of a (1 + ε)-approximate MST

E′ = E ∪ E′

Run Boruvka’s MST algorithm on E′ and remove k − 1
longest edges to obtain the clustering.

In order for the above algorithm to produce an approximate

k-SLC it is important however that the MST constructed

during sequential repetitions obeys certain properties. As

we show below, for `2 these properties hold for the algo-

rithm of (Andoni et al., 2014). Furthermore, in order to

extend this approach to `1, `∞ a more detailed analysis is

required.

2.1. Partition-based algorithm for `1, `2, `∞

Theorem 2.1. For each of the three metrics `1, `2 and `∞
for any constants 0 < η ≤ 3, 0 < α < 1/2 such that

η = Ω(s
2α−1

2d ) there exists an O(log n)-round MPC algo-

rithm that computes (1+η)-approximate k-Single-Linkage

Clustering for any constant dimension d given as an input

set of vectors v1, . . . , vn ∈ R
d. The algorithm works simul-

taneously for all values of k under these metrics. The algo-

rithm is randomized and produces correct result with high

probability. Given access to machines with RAM space s it

uses Õ(n/s) machines and time at most Õ(s) per round on

each machine.

In this section we describe a generic partition-based algo-

rithm, Algorithm 2.1, that is used to prove the above theo-

rem. We also give analysis of its approximation guarantee.

Algorithm 2.1 relies on (a, b, c)-distance-preserving parti-

tions and uses Algorithm 3 which we describe in Section B.

We start by recalling standard definitions of distance pre-

serving hierarchical partitions. Let M(S, ρ) be a metric

space with distance function ρ. For S′ ⊆ S we denote

its diameter as ∆(S′) = supx,y∈S′ ρ(x, y). A determin-

istic hierarchical partition P with L levels is defined as a

sequence P = (P0, . . . , PL) where PL = {S} and each

level P` is a subdivision of P`+1. For a partition Pi we

call its parts cells. The diameter at level i is defined as

∆(Pi) = maxC∈Pi
∆(C). The degree of a cell C ∈ P`

is deg(C) = |{C ′ ∈ P`−1 : C ′ ⊆ C}|. The degree of a

hierarchical partition is the maximum degree of any of its

cells. The unique cell at level ` containing a point x is de-

noted as C`(x). We say that a partition is indexable if this

cell can be computed based on x and `. A randomized hi-

erarchical partition is a distribution over deterministic hi-

erarchical partitions.

Definition 2.1 (Distance-preserving partition). For param-

eters a ∈ (0, 1), b, c ∈ R
+ and γ > 1 a randomized

hierarchical partition P of a metric space with L lev-

els is (a, b, c)-distance-preserving with approximation γ
if the degree of all deterministic partitions in its support

is at most c and the following properties are satisfied for

∆` = γaL−`∆(S):

1. (Bounded diameter) For every deterministic partition

P = (P0, . . . , PL) in the support of P and for all

` ∈ {0, . . . , L} it holds that ∆(P`) ≤ ∆`.
2. (Probability of cutting an edge) For every x, y ∈ S

and for all ` ∈ {0, . . . , L}:

Pr
P∼P

[C`(x) 6= C`(y)] ≤ b
ρ(x, y)

∆`
.

Let M(S, ρ) be a metric space and w : S × S → R
+ be

a weight function w(x, y) = ρ(x, y). We think of w as

representing weights of edges in a complete graph. Let

MSTi(w) denote the weight of the i-th Minimum Span-

ning Tree edge of this graph sorted in non-decreasing order.
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Algorithm 2 Partition-based Distributed k-SLC Algorithm

Input: vectors v1, . . . , vn ∈ R
d, parameters η, α, p

E = ∅
Set a = s−α/d, b = poly(d), c = sα, L = O(log1/a n)

Set ε = min
(

η
6c1Lb ,

η
3c2

)

Repeat O(log n) times sequentially:

Sample partition P with L levels from

(a, b, c)-distance-preserving family wP

Execute unit step Algorithm 3 for

each cell in P with parameter ε
E′ = set of edges output in the previous step

E = E ∪ E′

Run Boruvka’s MST algorithm on E and remove k − 1
longest edges to obtain the clustering.

Let w+ : S×S → R
+ be a random family of functions that

satisfies that for each x, y it holds that w(x, y) ≤ w+(x, y)
and E[w+(x, y)] ≤ (1 + γ)w(x, y) for some fixed γ > 0.

Note that the weights given by this random family to dif-

ferent pairs might be correlated with each other.

Definition 2.2 (Crossing edge). For a partition

(C1, . . . , Ct) of S we say that a pair of points (x, y)
crosses this partition if x ∈ Ci and y ∈ Cj for i 6= j.

Definition 2.3 (Cut-preserving spanning tree). We say that

T is an α-cut-preserving spanning tree for w : S × S →
R

+ if for every partition (C1, C2) of S there exists an edge

in T that crosses this partition and is at most α times longer

than the shortest such edge with respect to w.

As we show below Algorithm 2.1 can be seen as perform-

ing the following experiment: draw k functions w1, . . . , wk

i.i.d at random from the family w+. Compute a (1 + δ)-
cut-preserving spanning tree Ti for each wi. Then for each

(x, y) ∈ S×S define w′
i(x, y) = w(x, y) if (x, y) is in this

spanning tree and w′
i(x, y) = +∞ otherwise. Then for all

(x, y) ∈ S × S define w̄k(x, y) = minki=1 w
′
i(x, y). The

final run of Boruvka’s MST algorithm is then executed on

w̄k.

Indeed, random family of functions w+ satisfying the prop-

erties described above is constructed by Algoirthm 2.1 as

follows from a result (Andoni et al., 2014) given. It is im-

portant to note that cut-preserving spanning tree compu-

tations for random function samples from this family re-

quired above can be also performed as guaranteed by the

following lemma:

Lemma 2.2 ((Andoni et al., 2014), Lemmas 3.4 and 3.13).

Given access to an (a, b, c)-distance-preserving partition

with L levels and approximation γ for M(S, ρ) there exists

an MPC algorithm that runs in O(1) rounds and constructs

a random family of weight functions wP which satisfies:

ρ(i, j) ≤ wP (i, j) and E[wP (i, j)] ≤ (1 + c1εLb) ρ(i, j).

Furthermore, execution of unit step Algorithm 3 for all cells

in this partition for a random function w∗ sampled from

wP produces a (1 + c2ε)-cut-preserving spanning tree T
for w∗.

Let w(i, j) = ‖vi − vj‖2, w+ = wP and let γ = c1εd and

δ = c2ε.

Lemma 2.3. Let n = |S|. There is a large enough constant

c > 0 such that if k = c log n then for all i it holds that:

Pr
w1,...,wk

[MSTi(w̄k) ≥ (1+2γ)(1+δ)MSTi(w)] ≤ n−Ω(1).

Proof. Fix (x, y) ∈ S × S and let ∆(x, y) = w+(x, y) −
w(x, y). Because ∆(x, y) ≥ 0 and E[∆(x, y)] ≤ γw(x, y)
with probability at least 1/2 it holds that ∆(x, y) ≤
2γw(x, y) by Markov inequality. If k = c log n then with

probability 1 − 1/nc there exists i such that wi(x, y) −
w(x, y) ≤ 2γw(x, y). By a union bound over all n2 pairs

(x, y) with probability 1−1/nc−2 for each such pair a cor-

responding index exists. Below we refer to this event as E
and condition on it.

Proposition 2.4. Let (C1, . . . , Ct) be an arbitrary parti-

tion of S. Let (x∗, y∗) ∈ S × S be the closest w.r.t w
pair of points that belong to different parts of this parti-

tion. Then conditioned on the event E there exists a pair of

points (x′, y′) that crosses this partition and:

w(x∗, y∗) ≤ w̄k(x′, y′) ≤ (1 + 2γ)(1 + δ)w(x∗, y∗).

Proof. First, consider the case when t = 2 and con-

sider any partition (C1, C2) of S. Let (x∗, y∗) be the

shortest edge that crosses this partition, i.e. (x∗, y∗) :=
argminx∈C1,y∈C2

w(x, y). Conditioned on E there ex-

ists i such that wi(x
∗, y∗) ≤ (1 + 2γ)w(x∗, y∗). Fur-

thermore, there exists an edge (x′, y′) in the (1 + δ)-cut-

preserving spanning tree Ti constructed for wi that has

length w′
i(x

′, y′) = wi(x
′, y′) ≤ (1 + δ)wi(x

∗, y∗) ≤
(1 + 2γ)(1 + δ)w(x∗, y∗). On the other hand, because

wi ≥ w for every pair (x, y) that crosses the partition

(C1, C2) it holds that wi(x, y) ≥ w(x∗, y∗). Combining

these two facts we conclude that in Ti there exists some

edge (x′, y′) that crosses the cut and satisfies w(x∗, y∗) ≤
w′

i(x
′, y′) ≤ (1+2γ)(1+δ)w(x∗, y∗). By definition of w̄k

the same holds for it as well, i.e. w(x∗, y∗) ≤ w̄k(x′, y′) ≤
(1 + 2γ)(1 + δ)w(x∗, y∗).

Now suppose t > 2. For i = 1, . . . , t define a fam-

ily of cuts (Si, Ti) where Si = Ci and Ti = ∪j 6=iCj .

Let (x∗
i , y

∗
i ) be the shortest pair crossing the cut (Si, Ti).

If (x∗, y∗) is the shortest edge that crosses (C1, . . . , Ct)
then we have w(x∗, y∗) = mini w(x

∗
i , y

∗
i ). Let i∗ =

argmini w(x
∗
i , y

∗
i ). Then using the argument above for

t = 2 there exists (x′, y′) such that x′ ∈ Si∗ , y ∈ Ti∗ and:
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w(x∗, y∗) = w(x∗
i∗ , y

∗
i∗)

≤ w̄k(x′, y′)

≤ (1 + 2γ)(1 + δ)w(x∗
i∗ , y

∗
i∗)

= (1 + 2γ)(1 + δ)w(x∗, y∗).

Given Proposition 2.4 the rest of the proof is the same

as analysis of approximate Kruskal’s algorithm in (Indyk,

2000), we give the proof here for completeness. Since

edges output by Kruskal’s algorithm are produced in the

order of non-decreasing weight MSTi is the i-th edge that

is output. Consider executions of Kruskal’s algorithm on

weights w and w̄k. Let the edges output by the former ex-

ecution be e1, . . . , en−1 in order. Let the edges output by

the latter execution be e′1, . . . , e
′
n−1.

To prove Lemma 2.3 it suffices to show that conditioned

on E it holds that w(ei) ≤ w(e′i) ≤ (1 + 2γ)w(ei) for

all i. The first inequality here essentially follows from the

fact that the weight of the i-th MST edge is a monotone

function of the weights and w ≤ w̄k.

The i-th edge in Kruskal’s algorithm is constructed by join-

ing two closest clusters among n − i + 1 clusters con-

structed so far. Let these clusters in the execution of

Kruskal’s algorithm on w̄k be denoted as C1, . . . , Cn−i+1.

The key observation is that there exists an index i∗ ≤ i
such that endpoints of the edge ei∗ belong to different parts

of the partition C1, . . . , Cn−i+1. Indeed, edges e1, . . . , ei
form a forest and thus having all such edges be inside

C1, . . . , Cn−i+1 would be a contradiction.

Let (x∗, y∗) be the closest w.r.t to w pair of points in dif-

ferent parts of the partition C1, . . . , Cn−i+1. By applying

Proposition 2.4 to ei∗ there exists a pair of points (x′, y′)
whose endpoints belong to different parts of the partition

C1, . . . , Cn−i+1 and w̄k(x′, y′) ≤ (1 + 2γ)w(x∗, y∗).
Putting everything together we have:

w(e′i) ≤ w̄k(e′i) w ≤ w̄k

≤ w̄k(x′, y′)

≤ (1 + 2γ)(1 + δ)w(x∗, y∗) Proposition 2.4

≤ (1 + 2γ)(1 + δ)w(ei∗)

≤ (1 + 2γ)(1 + δ)w(ei)

The second inequality follows because e′i is shortest edge

w.r.t w̄k that crosses (C1, . . . , Cn−i+1). The last inequality

follows because i∗ ≤ i, edge weights are non-decreasing.

Putting everything together we obtain analysis of approxi-

mation guaranteed by Algorithm 2.1.

Theorem 2.5. For η ≤ 3 and p = 1, 2,∞ Algorithm 2.1

constructs a spanning tree for w(i, j) = ‖vi−vj‖p for each

t its t-th longest edge (x, y) has weight w(x, y) ≤ (1 +
η)MSTk(w). This guarantee holds with high probability

over the randomness used in Algorithm 2.1.

Proof. Note that taking w+ = wP for w(i, j) = ‖vi−vj‖p
where p = 1, 2,∞ satisfies conditions of Lemma 2.3 by

Lemma 2.2. Hence our algorithm constructs a function w̄k

with properties required for Lemma 2.3. Since c1εLb ≤
η/6 and c2ε ≤ η/3 we can set δ = η/6 and γ = η/3 in

Lemma 2.3 and hence for η ≤ 3:

Pr [E1] ≥ Pr [E2] ≥ 1− 1

poly(n)
.

where E1 is the event that MSTi(w̄k) ≤ (1+ η)MSTi(w)
and E2 is the event that MSTi(w̄k) ≤ (1 + 2γ)(1 +
δ)MSTi(w).

After w̄k is constructed by running Boruvka’s algorithm on

it we find an MST exactly and hence the approximation

guarantee for each of the MST edges follows.

2.2. Solve-and-Sketch framework and unit step

We use Solve-and-Sketch (SAS) framework of (Andoni

et al., 2014) for computing an approximate minimum span-

ning tree. SAS framework works with a partition P =
(P0, . . . , PL) of the input M(S, ρ), sampled from a ran-

domized (a, b, c)-partition P . Then SAS algorithm pro-

ceeds through L levels, and in level ` a unit step algorithm

Au is executed in each cell C of the partition P`, with input

the union of the outputs of the unit steps applied to the chil-

dren of C. The unit step also outputs a subset of the edges

of a spanning tree in addition to the input for the next level.

Once the unit step has been executed for the root cell of

partition at level PL (and hence also for all other cells) the

computation is complete. We give the description of the

unit step algorithm below (Algorithm 3).

Definition 2.4 (δ-covering). Let M = (S, ρ) be a metric

space and let δ > 0 . A set S′ ⊆ S is a δ-covering if for any

point x ∈ S, there is a point y ∈ S′ such that ρ(x, y) ≤ δ.

3. Hardness of k-SLC

3.1. Hardness under `1 and `2

The following two conjectures are widely used in the MPC

literature (Karloff et al., 2010; Beame et al., 2013; Ras-

togi et al., 2013; Roughgarden et al., 2016). Note that the

second conjecture is stronger and hence can potentially be

used to get stronger hardness results.

Conjecture 3.1 (Sparse connectivity hardness). If s = nα

for a constant α < 1 then solving connectivity on an input
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Algorithm 3 Unit Step at Level `,

Input: Cell C ∈ P`, a collection V (C) of points in C,

and a partition Q = {Q1, . . . Qk} of V (C) into previ-

ously computed connected components.

Output: V ′ ⊆ V , an ε2∆`-covering for C, the partition

Q(V ′) induced by Q on V ′.
θ := 0
while k > 1 and θ ≤ ε∆` do

Let τ = min i,j
i 6=j

minu∈Qi,v∈Qj
ρ(u, v)

Find u ∈ Qi and v ∈ Qj for some i and j such that

i 6= j and ρ(u, v) ≤ (1 + ε)τ .

θ := ρ(u, v)
if θ ≤ ε∆` then

Output tree edge (u, v).
Merge Qi and Qj and update Q and k.

end if

end while

graph with n vertices and O(n) edges requires Ω(log n)
rounds of MPC.

Conjecture 3.2 (One cycle vs. two cycles hardness). If s =
nα for a constant α < 1 then distinguishing the following

two instances requires Ω(log n) rounds of MPC: 1) a cycle

on n vertices, 2) two cycles on n/2 vertices each.

Theorem 3.3. No o(log n)-round MPC algorithm can

achieve approximation for 2-SLC:

1. Better than (
√

2 +
√
2 − ε) under `2 for d =

Ω(log n/ε2) under Conjecture 3.2.

2. Better than 3 under `1 for O(1)-sparse vectors and

d = Ω(n) under Conjecture 3.2.

3. Better than (
√
2 − ε) under `2 for d = Ω(log n/ε2)

under Conjecture 3.1.

4. Better than 2 under `1 for O(1)-sparse vectors and

d = Ω(n) under Conjecture 3.1.

Proof. We give proof of Part 1 here, other proofs are sim-

ilar and are deferred to Appendix E. Given an instance of

the “one cycle vs. two cycles problem” we reduce it to the

2-SLC problem as follows:

1. Create a vector v′i ∈ R
n for each vertex where v′i = ei

and ei is the i-th standard unit vector.

2. For each edge (a, b) in the input graph update the cor-

responding vectors as v′a = v′a+ξeb and v′b = v′b+ξea
where ξ = 1√

2
.

3. Apply Johnson-Lindenstrauss transform to v′1, . . . , v
′
n

to construct v1, . . . , vn ∈ R
d where d = O(log n/ε2).

Note that the above reduction can be performed in only a

constant number of MPC rounds. Indeed, Step 1 can be

done locally by partitioning vectors between machines and

to perform Step 2 we can send each edge (a, b) to the ma-

chines holding vectors va and vb. For Step 3 note that

for each i we have vi = Mv′i where M is the Johnson-

Lindenstrauss matrix and each v′i has at most 3 non-zero

entries. Hence, all vi can be computed in one round of

MPC with O(log n/ε2) communication per vector.

Proposition 3.4. If (i, j) is an edge in the input graph then

‖v′i − v′j‖2 =
√
2(
√

2−
√
2), otherwise ‖v′i − v′j‖2 = 2.

Proof. Indeed, if there is an edge (i, j) in the input then

there exist two other edges (i, i′) and (j, j′) and hence, the

non-zero entries of v′i and v′j are as follows: v′ii = 1, v′ii′ =
ξ, v′ij = ξ, v′jj = 1, v′jj′ = ξ, v′ji = ξ. Hence ‖v′i − v′j‖2 =
√

2(1− ξ)2 + 2ξ2. On the other hand, if there is no edge

(i, j) then there exist four edges (i, i′), (i, i′′), (j, j′) and

(j, j′′) and non-zero entries of v′i and v′j are: v′ii = 1, v′ii′ =
ξ, v′ii′′ = ξ, v′jj = 1, v′jj′ = ξ, v′jj′′ = ξ. Hence ‖v′i −
v′j‖2 =

√

2 + 4ξ2. Maximum of the ratio

√
2+4ξ2√

2(1−ξ)2+2ξ2
is

achieved when ξ = 1/
√
2 and equals

√

2 +
√
2.

By Proposition 3.4, if the input graph is one cycle then the

cost of 2-SLC of v′1, . . . , v
′
n equals

√
2
√

2−
√
2, other-

wise it is 2. As Johnson-Lindenstrauss transform preserves

all pairwise distances up to a multiplicative (1 ± ε) factor

with high probability the same is true for the cost of 2-SLC

of v1, . . . , vn up to ±ε error. This completes the proof.

3.2. Hardness of Hamming k-SLC

Theorem 3.5. No algorithm for computing Hamming k-

SLC cost for d = 2 in o(log n) rounds of MPC can achieve

better than 2-approximation under Conjecture 3.1.

Proof. Let G(V,E) be an instance of sparse connectivity.

Our reduction to Hamming 2-SLC constructs an input set of

2-dimensional vectors as follows: 1) for each vertex i ∈ V
create a vector (i, i), 2) or each edge (i, j) ∈ E create a

vector (i, j). Clearly this reduction can be performed in a

constant number of rounds of MPC and the resulting in-

stance has |V |+ |E| = O(n) many vectors. We will show

that if the input graph is connected the cost of Hamming

2-SLC of the input equals 1 and the cost is 2 otherwise. In-

deed, note that the distances between resulting vectors are

always either 1 or 2. If G is connected then it is easy to

construct a connected spanning subgraph in the resulting

Hamming graph where each edge has cost 1. Indeed, con-

sider a subgraph that for each edge (i, j) in the input graph

contains two edges: one between vectors (i, i) and (i, j)
and another between vectors (j, j) and (i, j). Clearly, if

the input graph is connected then this is a connected span-

ning subgraph. Hence the Hamming MST cost of the con-
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Table 2. Scalability experiments.

DATA SET n POINTS n2
EDGES d TIME (S) ε

SIFT10M 1.1× 107 1.2× 1014 3 1.2× 105 3
HIGGS 1.1× 107 1.2× 1014 3 8.4× 104 10

structed point set equals |V |+ |E|−1 and the Hamming 2-

SLC cost equals 1. On the other hand, if G is disconnected

then consider any partitioning (S, T ) of G into connected

components. Clearly, any two vectors representing vertices

belonging to different parts of this partition in our reduc-

tion are at distance 2 from each other. This implies that the

Hamming MST cost is at least |V |+ |E| and the Hamming

2-SLC cost is 2.

4. Experiments

Small datasets Four standard clustering datasets used

in the literature were taken for experimental evaluation:

1) Image dataset, d = 3, n = 34112 (house images,

https://cs.joensuu.fi/sipu/datasets/), 2)

KDDCUP04Bio dataset , d = 10, n = 145751 (prepro-

cessed to select 10 numerical dimensions out of 74, ac-

cessed via the link above), 3) Shuttle data set from the UCI

ML repository, d = 9, n = 43500. 4) US Census dataset

from the UCI ML repository, d = 8, n = 2548285.

Due to page limitations here, we only show plots for the

largest Census dataset. Other plots are deferred to Ap-

pendix D. Figure 4 shows dependence of speedup as a

function of approximation. We observe a dramatic increase

in the speedup at around approximation 1.26 due to the fact

the local inputs start to fit in L2-cache. Figure 5 shows de-

pendence of approximation on k for the census data.

Large datasets In order to test scalability, we took the

largest real-valued vector datasets from the UCI ML repos-

itory: SIFT10M and HIGGS. Both the datasets have ap-

proximately 11 million entries. Thus, constructing the full

matrix of distances in memory is clearly infeasible as the

size of this matrix would be roughly 960TB in both cases5.

Dimension reduction for this data was done using PCA for

d = 3. Results are given in Table 2.

4.1. Experimental setup

We implemented Algorithm 2.1 in Java on Apache Spark

2.0.2 for Hadoop 2.7.3. Experiments were performed on

two different setups:

Google Cloud Dataproc (GCD) platform on two cluster

5Assuming 8-byte double-precision arithmetic.
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configurations: 1) single-core 1 master / 7 worker (1m/7w)

cluster, 2) dual-core 1 master / 3 worker (1m/3w) cluster.

Each core had an Intel Xeon E5 processor at 2.2–2.6 GHz

and 3.75GB RAM + 10GB HDD space. Due to the limi-

tations of the free tier access on GCD the total number of

cores in a cluster is limited to 8, which is still sufficient to

demonstrate at least an order of magnitude speedup over

the benchmark sequential algorithm. This setup was used

for the small datasets.

Local Simulation with 200 reducers on a Dell XPS13 Lap-

top with an Intel core I5 processor and 8GB RAM. This

setup was used for the large datasets.
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