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Abstract

Accelerated algorithms have broad applications
in large-scale optimization, due to their generality
and fast convergence. However, their stability in
the practical setting of noise-corrupted gradient
oracles is not well-understood. This paper pro-
vides two main technical contributions: (i) a new
accelerated method AGD+ that generalizes Nes-
terov’s AGD and improves on the recent method
AXGD (Diakonikolas & Orecchia, 2018), and (ii)
a theoretical study of accelerated algorithms un-
der noisy and inexact gradient oracles, which is
supported by numerical experiments. This study
leverages the simplicity of AGD+ and its analy-
sis to clarify the interaction between noise and
acceleration and to suggest modifications to the
algorithm that reduce the mean and variance of
the error incurred due to the gradient noise.

1. Introduction

First-order methods for convex optimization play a funda-
mental role in the solution of modern large-scale compu-
tational problems, encompassing applications in machine
learning (Bubeck, 2014), scientific computing (Spielman
& Teng, 2004; Kelner et al., 2013) and combinatorial opti-
mization (Sherman, 2017; Ene & Nguyen, 2016). A central
object of study in this area is the notion of acceleration — an
algorithmic technique that can be deployed when minimiz-
ing a smooth convex function f(-) via queries to a first-order
oracle (a blackbox that on input x € X, returns the vector
V f(x) in constant time). In this setting, a function f(-) is L-
smooth if it is differentiable and its gradient is L-Lipschitz
continuous w.r.t to a pair of dual norms || - ||, || - ||, i-e.:

Vx,y e, [VF(x) = VIl < L-[lx—y|. .1)
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Acceleration is interesting because it yields faster algorithms
than classical steepest-descent algorithms, often matching or
closely approximating known information-theoretic lower
bounds on the number of necessary queries to the oracle.
In the simplest smooth setting, the optimal accelerated al-
gorithm, Accelerated Gradient Descent (Nesterov, 1983),
achieves an error that scales as O(1/k?), where k is the num-
ber of oracle queries. This should be compared to the conver-
gence of steepest-descent methods, which attempt to locally
minimize the first-order approximation to the function and
only yield O(1/k)-convergence (Ben-Tal & Nemirovski,
2001; Nesterov, 2013). Many of the workhorses of opti-
mization, such as conjugate gradient and FISTA (Beck &
Teboulle, 2009), are instantiations of accelerated algorithms.

Because of its generality, acceleration still proves an ac-
tive topic of research. In particular, two weaknesses in the
classical presentation of accelerated methods have recently
attracted attention of scholars and practitioners alike: 1) the
complexity and lack of underlying intuition in the conver-
gence analysis of accelerated methods, and 2) the apparent
lack of robustness to perturbations of the gradient oracle
displayed by accelerated methods when compared to their
non-accelerated counterparts.

Recently, some of the mystery of acceleration has faded, as
different works have provided natural interpretations and
alternative proofs for accelerated methods (Allen-Zhu &
Orecchia, 2017; Krichene et al., 2015; Wibisono et al., 2016;
Bubeck et al., 2015; Lessard et al., 2016; Hu & Lessard,
2017; Diakonikolas & Orecchia, 2017). Of particular in-
terest to our work is the framework of (Diakonikolas &
Orecchia, 2017), which completely derives accelerated al-
gorithms from the Euler discretization of a continuous dy-
namics that minimizes a natural notion of duality gap.

In terms of robustness, it has long been observed empiri-
cally that a naive application of accelerated algorithms to
inexact oracles often leads to error accumulation, even in
the setting of random perturbations, while standard steepest
descent algorithms do not suffer from this problem (Hardt,
2014). From a theoretical point of view, a number of pa-
pers have introduced oracle models that account for inexact
gradient information. For example, (d’ Aspremont, 2008)
proposed a restricted model of perturbations to the gradi-
ent that preserves the possibility of acceleration. More
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recently, (Devolder et al., 2014) proposed a more general
framework that allows for larger perturbations and seems
to capture the error accumulation and instability observed
in practice for accelerated methods. In these works, the in-
exact oracle outputs an arbitrary deterministic perturbation
of the true gradient oracle. In particular, (Devolder et al.,
2014) shows that such perturbations can be adversarially
chosen to encode non-smooth problems.

For stochastic perturbations, (Lan, 2012; Ghadimi & Lan,
2012; 2013) considered an additive-noise model, under
which (Lan, 2012; Ghadimi & Lan, 2012) obtained an
optimal convergence bound for the accelerated algorithm
AC-SA in the smooth, non-strongly convex setting, but
sub-optimal for the smooth, strongly-convex case.! Fur-
ther, (Ghadimi & Lan, 2013) improved the convergence
bound in the setting of constrained smooth and strongly
convex minimization to the optimal one, by coupling AC-
SA algorithm from (Ghadimi & Lan, 2012) with a domain-
shrinking procedure. More recently, (Jain et al., 2018) com-
pletely closed this gap for the case of linear regression.
Additionally, (Dvurechensky & Gasnikov, 2016) unified the
deterministic model (Devolder et al., 2014), the stochastic
model (Ghadimi & Lan, 2012), and the associated results.
These references are the most closely related to our work.

Our contributions We study the issue of robustness of
accelerated methods in three steps. First, we propose a
novel, simple, generic accelerated algorithm AGD-+ follow-
ing the framework of (Diakonikolas & Orecchia, 2017).
This algorithm has a simple interpretation and analysis, and
generalizes other known accelerated algorithms.

Second, we leverage the simplicity of the analysis of
AGD+ to characterize its behavior on different models of
inexact oracles. Our analysis recovers the results for the de-
terministic oracle models of (d’ Aspremont, 2008) and (De-
volder et al., 2014). More importantly, we consider the more
general model of noise-corrupted gradient oracle, in which
the true gradient V f(x) is corrupted by additive noise n:
Vf(x) = Vfx)+mn, (1.2)
where the perturbation 7 may be a random variable. Such a
model captures the setting of stochastic methods, in which
the gradient is only estimated from a subset of its compo-
nents (Lan, 2012; Ghadimi & Lan, 2012; 2013; Atchade
et al., 2014; Krichene & Bartlett, 2017; Jain et al., 2018), the
setting of differentially private empirical risk minimization,
in which Gaussian noise is intentionally added to the gradi-
ent to protect the privacy of the data (Bassily et al., 2014),

'In particular, the deterministic term in the convergence bound
in (Ghadimi & Lan, 2012) decreases as O(1/k?) instead of the
optimal O(1 — 1/+/k)" convergence, where & is the objective
function’s condition number.

and the setting of engineering systems in which the gradient
is estimated from noisy measurements (Birand et al., 2013).

Our algorithm AGD+- is closely related to AC-SA from (Lan,
2012) and can in fact be seen as a “lazy” (dual averaging)
counterpart of AC-SA. After this paper had been submitted,
Gasnikov and Nesterov independently proposed a universal
method for stochastic composite optimization (Gasnikov
& Nesterov, 2018). While their algorithm is defined re-
cursively and does not explicitly account for the iterative
construction of a dual solution, a simple unwinding of the
recursion shows that it is identical to AGD-+. However, the
fact that AGD+- is obtained and analyzed through the use
of the approximate duality gap technique (Diakonikolas &
Orecchia, 2017) allows us to streamline the analysis and
obtain various bounds for both deterministic and stochas-
tic models of noise. Further, in the setting of smooth and
strongly convex minimization, our analysis leads to a tighter
convergence bound for a single-stage algorithm (without
domain-shrinking) than previously obtained in (Ghadimi &
Lan, 2012; 2013) (see Appendix B for a precise statement).

There are other models of noise that are not considered here.
For example, we do not consider the model with both multi-
plicative and additive error in the gradient oracle (Hu et al.,
2017). Further, stochastic methods with variance reduction
(see, e.g., (Schmidt et al., 2017; Allen-Zhu, 2017) and refer-
ences therein) lead to a particularly structured gradient noise
variance (e.g., Lemma 3.4 in (Allen-Zhu, 2017)) that is not
explored in this work. Nevertheless, we believe that our
analysis is general enough to be extended to these settings
as well, which is deferred to the future version of this paper.

Our results reveal an interesting discrepancy between noise
tolerance in the settings of constrained and unconstrained
smooth minimization. Namely, in the setting of constrained
optimization, the error due to noise does not accumulate and
is proportional to the diameter of the feasible region and the
expected norm of the noise. In the setting of unconstrained
optimization, the bound on the error incurred due to the
noise accumulates, as observed empirically by (Hardt, 2014).
However, our analysis also suggests a simple restart and
slow down semi-heuristic for stabilizing the noise-incurred
error, which allows taking advantage of both the acceleration
and the noise stability under stochastic noise.

In the case of smooth and strongly convex minimization
(Appendix B), the error due to noise does not accumulate
even if the region is unconstrained, as long as the noise is
zero-mean, independent, and has bounded variance.? Fur-
ther, using smaller step sizes than in the standard accelerated
version of the method, the error due to noise decreases at rate
1/k (compare this to the 1/ V/k rate for smooth non-strongly

2Obtaining similar bounds for a slightly more general model
that relaxes independence (similar to (Lan, 2012; Ghadimi & Lan,
2012)) is also possible; see Appendix C.2.
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convex functions). This means that strong convexity of a
function implies higher robustness to noise.

Finally, we verify the predictions and insights from our
analysis of AGD+ by performing numerical experiments
comparing AGD+- to other accelerated and non-accelerated
methods on noise-corrupted gradient oracles. A noteworthy
outcome of these experiments is the following: when a nat-
ural generic restart & slow-down semi-heuristic is applied,
the accelerated algorithm AXGD (Diakonikolas & Orecchia,
2017) and the algorithm AGD+ presented in this paper seem
to outperform Nesterov’s AGD both in expectation and in
variance in the presence of large noise. Further, we note that
compared to AXGD, AGD+ reduces the oracle complexity
(the number of queried gradients) by a factor of two.

2. Notation and Preliminaries

We assume that we are given a continuously differentiable
convex function f : X — R, where X C R"™ is a closed
convex set. Hence:

Vy,x e X: f(y) > f(x) +(Vf(x), y —x),

where V f(-) denotes the gradient of f(-).

2.1)

Given oracle access to (possibly noise-corrupted) gradients
of f(-), we are interested in minimizing f(-). We denote by
X, € argmingey f(x) any (fixed) minimizer of f(-).

We assume that there is an arbitrary (but fixed) norm || - ||
associated with the space, and all the statements about
function properties are stated with respect to that norm.
We also define the dual norm || - ||, in the standard way:
llz||« = sup{(z,x) : ||x|| = 1}. The following definitions
will be useful in our analysis.

Definition 2.1. A function f : X — R is L-smooth on X
with respect to a norm || - ||, if for all x,% € X f(%X) <
f(x) + (Vf(x),% — x) + £||& — x||%. This is equivalent
to Equation (1.1).

A gradient step is defined in a standard way as Grad(x) =
arg mingex { f(x) + (Vf(x), % - x) + 5 [% — x[*}.
Definition 2.2. A function f : X — R is u-strongly convex
on X with respect to a norm || - ||, if for all x,% € X:
f&) = f(x) +(Vf(x), % —x) + 5% —x]*.

Definition 2.3. (Convex Conjugate) Function 1/* is the con-
vex conjugate of ¢ : X — R, if ¢*(z) = maxxex{(z,x)—
Y(x)}, Vz € R.

We assume that there is a strongly-convex differentiable
function ¢ : X — R such that maxxey {(z,x) — »(x)} is
easily solvable, possibly in a closed form. Notice that this
problem defines the convex conjugate of ¢(+), i.e., ¥*(z) =
maxxex{(z,x) — ¥(x)}. The following fact is a simple

corollary of Danskin’s Theorem?.

Fact 2.4. Let ¢ : X — R be differentiable and strongly-
convex. Then: Vi*(z) = arg maxxex {(z,x) — ¥(x)}.

Fact 2.5. If () is p-strongly convex w.r.t. a norm || - || for
>0, then *(-) is i—smooth w.r.t. the norm || - ||

def

Definition 2.6. (Bregman Divergence) D,(x,X) =
P(x) —1h(&) — (Vih(%),x — R), forx € X, & € X°, where
X'° denotes the set of all points from X for which ¢ (-) ad-
mits a (sub)gradient.

The Bregman divergence D, (x,y) captures the difference
between 1(x) and its first order approximation at y. No-
tice that, for a differentiable v, we have: Vy D, (x,y) =
Vi (x) — Vi(y). The Bregman divergence Dy, (x,y) as a
function gy (x) is convex. Its Bregman divergence is itself,
ie., Dy, (v,u) = Dy(v,u).

3. Improved Accelerated Method

In this section, we focus on the setting of smooth minimiza-
tion. The case of smooth and strongly convex minimization
is treated in Appendix B. To design AGD+, we define an ap-
proximate duality gap, similar to (Diakonikolas & Orecchia,
2017; 2018), but allowing for an inexact gradient oracle
according to Eq. (1.2). The construction is based on main-
taining three points at each iteration k: xy, is the point at
which the gradient is queried, while (yy, zx) is the current
primal-dual solution pair at the end of iteration k. For this
setup, the dual solution z; is a conic combination of the
negative gradients seen so far, taken at an initial dual point
zo = V(xg),where X is an arbitrary initial primal solu-
tion, i.e.,

k
Zp = — Zaiﬁf(xi) + 2.

=1

3.1

where the sequence a; > 0, Ax = Zle a; will be speci-
fied later. By convention, Ag = 0.

3.1. Approximate Duality Gap

The choice of sequences above immediately implies upper
and lower bounds on the optimum at each iteration k. The
upper bound is simply chosen as Uy, = f(y}). For the lower
bound, by convexity of f(-) (see Eq. (2.1)):

St i (%) + 3y i (VF (i), X = %i).

To relate the lower bound to the output of the inexact oracle,
it is useful to express the gradients V f(x;) as V f(x;) =
V f(x;) —ni. Adding and subtracting 4 Dy, (X., Xo) in the

3See, e.g., Proposition 4.15 in (Bertsekas et al., 2003).
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last equation, we have:

S aif () + 0 a (V) x
Ay,

X;) + Dy (X4, X0) —
Ay

=

f(x*) >

+ - Zi‘c:l a; <7h'»X* -

Finally, we can replace x, by a minimization over X to
obtain our final lower bound:

Yo aif (%) = Y2y @ (M, X — Xi) — Dy (%4, %)
Ay

. umélg {Zle a; <§f(xl), u xi> + Dy (u, Xo)}
Ay

= Ly

Applying Fact 2.4 and the definition of z; from (3.1), we
have the following characterization of the last term of L.

Proposition 3.1. Let z;, be defined as in (AGD+). Then:
Vit (zg) =
k
arg mln{ >ay <Vf(xl)

ming 2 xZ> + Dy (u, XO)}.

The approximate duality gap is simply defined as G, =
Ui — Lg. Observe that, by construction of Uy and Ly,
flyr) — f(x«) < Gj. Hence, to prove the convergence
of the algorithm, it suffices to bound G. To do so, we
will track the evolution of the quantity A;Gy, i.e., we will

bound* Ej, = A,Gj, — Ax_1Gr_1, so that
Y, Ei
G —G =27
k= A, 1+ A,
3.2. The AGD+ Algorithm

The steps of AGD+ are defined as follows:

A
Xp = /kl Lyia +*V¢ (Zr—1),
k
Zy = Zjp—1 — aka(Xk), (AGD+)
 Ag ak o
i =Yk + Akw (z1),
To seed AGD+, we let x1 = Xg, y1 = v1 = V¢*(21).

Related Algorithms Compared to Nesterov’s AGD,
AGD+ differs in the sequence yi: AGD sets yr =
Grad(xy). The two algorithms are equivalent when ¢ (x) =

“From (Diakonikolas & Orecchia, 2017) it can be derived that
A Gy, is a Lyapunov function for the continuous dynamic under-
lying AGD+, i.e., F);; is the discretization error at iteration k.

Dy (x4,%0)

Ellx — xol?, % a® £, and X = R", but in general they
produce dlfferent sequences of points. Thus, AGD+ can
be seen as a generalization of AGD. Compared to a
more recent accelerated method AXGD of (Diakonikolas
& Orecchia, 2018), AGD+ differs in sequences yj, and
z,. In particular in AXGD, zr = zp—1 — aprV[f(yk),
while y;, = Ak Lye-1 + VYT (2 — aVf(xk)). As
AXGD uses the gradients of f (+) at both sequences x;, and
Yy to define x; and yy, it is more wasteful: its oracle com-
plexity is twice as high as that of AGD and AGD+. Most
closely related to AGD+ is the AC-SA algorithm (Lan, 2012);
namely, for some step sizes, AGD+ can be seen as a “lazy”
(dual averaging) version of AC-SA. The relationship be-
tween tAGD+ (see Appendix B) and AC-SA for smooth and
strongly convex minimization (Ghadimi & Lan, 2012) is not
immediately clear, due to the different parameter choices.

3.3. Convergence Analysis for AGD+

To simplify the notation, from now on we denote:

Vi déf Vip* (Zk).

We can now bound the change Fy, = ApGr — Ax_1Gr—1
by decomposing it into two terms: Ej, < Ef + E}!, where
the latter term is due to the inexact nature of the gradient
oracle. The following lemma allows us to bound these terms.
Its proof can be found in Appendix A.

Lemma 3.2. Letr E! = (qgx.—vg) and

Ep = Ap(f(yr) — f(xx)) — A (Vf(Xk), y6 — Xk) —
Dy (Vk,Vi—1). Then Ey, < E]! + Ef.

The last piece that is needed for the analysis is the bound on
the initial gap G1, obtained in the following proposition.

Proposition 3.3. A;G; < Dy (x.,X¢) + EY + E, where
E7 is defined as in Lemma 3.2 and E¢ = A;(f(y1) —
fx1) = (Vf(x1),vi = x1)) = Dy (v1,%o).

The proof is a straightforward application of the previously
introduced definitions.

3.4. Convergence of AGD+ with Exact Oracle

To prove the convergence of the method in the noiseless case,
in this section we assume that 1, = 0, and, consequently,
EZ = 0. Hence, to obtain a convergence bound for AGD—+,
we only need to bound E7.

Theorem 3.4. Let f : X — R be an L-smooth function

and let xy € X be an arbitrary initial point. If sequences

Xk, Yk, Zk evolve according to (AGD+) for some p-strongly
2

convex function ¥ (-), ni, = 0, and ‘%@ < &, thenVk > 1:

Dw (X*’ XO)

f(ye) — A,

flx) <
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Proof. By smoothness of f(-), f(yx) — f(xx) —
(Vf(xk), ¥k — %k) < %llyr — x| Hence:

L
Ey = Ej < AkEHYk — Xp||* = Dy (Vie, Vie—1).

From (AGD+), yr — Xp = %(vk — Vi_1). As

Dy(Vi, Vi—1) > &|vi, — vi_1]?, it follows that:

1 ak2L
E <7< _ ) —vi|? <o,
1 p) v = vi—a||” <
as % < % by the theorem assumptions. Thus: Gj <

%Gl and it remains to bound A;G1, which is just:

A1Gy =A1(f(y1) — f(x1) = (Vf(x1),v1 —x1))
— Dy (vi,%0) + Dy(%4,%0) < Dy (x4, %0),

asy; = vy and x1 = Xg. O

B k+1

Observe that for ay = & - 1= we recover the standard 1/ k>

convergence rate of accelerated methods.

3.5. Convergence of AGD-+ with Inexact Oracle

In this subsection, we focus on bounding the error E,Z that is
accrued due to the additive noise 7. Additional results (in-
cluding other models of noise) can be found in Appendix C.
As E}' = aj, (N, %, — Vi) by Lemma 3.2, we have:

Proposition 3.5. Let f : X — R be an L-smooth function
and let xg € X be an arbitrary initial point. If sequences
Xk, Yk, Zk evolve according to (AGD+-) for some p-strongly
convex function 1 (-), where ny’s are independent, Ry, =

2
, and % < &, thenVk > 1:

maXxex ||X — X«

k
> i1 GE[[|nil]]
Ap ’
k
9 im1 aﬁE[”mHE]
A2

Dw(X*vxo)

E[f(ye) - fle)] € =20

+ Ry,

Var [f(yx) — f(x:)] < R,

Proof. From Theorem 3.4 and Lemma 3.2:

k
G < Dy (e, %0) + Y ai (1, X — Vi)

i=1

3.2)

The bound on the expectation follows by applying (x,y) <
[|x]/||y|l+ (by the duality of norms), linearity of expectation,
and A = Zle a;. The bound on the variance follows by,
in addition, using the standard facts that Var[aX + bY] =
a*Var[X]+b*Var[Y] and Var[X] < E[X?], where a, b are
constants and X, Y are independent random variables. [

Remark 3.6. Observe that if E[||n;||.] < M, E[||n:]|?] <
0%, Vi, then E [f(yx) — f(x.)] < 220X 4 g M

and Var [f(yx) — f(x:)] < (Rx*o)z%. The same
bound on E [f(yr) — f(x«)] as in Prop. 3.5 (and the special

case stated here) holds even if n;’s are not independent.

The bound from Proposition 3.5 is mainly useful when Ry,
is bounded, which is the case when, e.g., the diameter of
X is bounded. For the case of unconstrained optimization
(i.e., when X = R"™), the bound from Proposition 3.5 is
uninformative. Hence, we derive another bound that is
independent of R, but it requires that the noise samples
1y, are both zero-mean and independent.’

Lemma 3.7. Let f : X — R be an L-smooth function
and let xy € X be an arbitrary initial point. If sequences
Xk, Yk, Zk evolve according to (AGD+) for some p-strongly
convex function 1) (), where my,’s are zero-mean independent

2
random variables and % < % thenVk > 1:

k
L T o Bl w2
AL,

Dw(x*vxo)

E[f(ya) = fx.)] € =45

Proof. Let Vi, = VY*(z2p—1 — ax V(X)) = Vi* (2 +
arni). Recall that E) = ay (i, x. — vi). Adding and
subtracting Vy:

E} = ap (Mg, X — Vi) 4+ a (M, Vi — Vi) -

As Vj is independent of m; and E[ny] = 0,
E [(nk, %« — V)] = 0. On the other hand, as v =
Vi*(zy) and ¢*(-) is %L—smooth by Fact 2.5, by the du-
ality of norms: (1, Vi — vi) < & |m5||%. The rest of the
proof is by Theorem 3.4 and Lemma 3.2. O

Remark 3.8. It is possible to relax the assumption that
ny’s are independent. In fact, for Lemma 3.7 to apply,
it suffices that, conditioned on the natural filtration Fj_1
(all the information about the noise up to the beginning
of iteration k), 1, is independent of V. More details are
provided in Appendix C.2.

Lemma 3.7 suggests that for unconstrained smooth mini-
mization the sequence ay, that leads to accelerated methods
aggregates noise, as for accelerated methods ay ~ k, Ay ~
k2. However, if we were to resort to a slower, uniform se-
quence (and slower 1/k convergence rate), then the noise
would average out, as we would have constant a;’s and
Ay, ~ k. Even more, if aj, ~ 1/v/k, then the error due to
noise would decrease at rate log(k)/v/k. This is confirmed
by our numerical experiments and matches the experience
of practitioners, as discussed by (Hardt, 2014).

The lemma also shows that error accumulation can be
avoided if we postulate that the magnitude of the noise van-
ishes with the number of iterations. This can be achieved

SThe assumption that 77’s are independent can be relaxed —
see Remark 3.8 below and Appendix C.2.
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if the estimates of the gradient improve over iterations
(Atchade et al., 2014). For example, if we have E[||n;||?] =

o (i) =0 <%) , the noise-error term averages out, making

g
the total error due to noise bounded. If E[||n;||?] = O (%2) ,
the noise-error term vanishes at rate k/Ay, = 1/k. Finally,
if E[||n;]|2] = O (Z%), the noise-error term vanishes at rate

log(k)/k?, essentially recovering accelerated convergence.

Observe that we could not get a bound on variance that is
independent of R, as the variance (unlike the expectation)
of (N, X« — Vi) is not zero. Instead, since we upper-bound
the expectation of f(y)— f(x.) by a non-negative quantity
(and f(ykr) — f(x«) is always non-negative as x, is the
minimizer of f(-)), we can apply Markov’s Inequality to
obtain a concentration bound on f(yy)— f(x.). Finally, the
step sizes ay, can be chosen so as to balance the deterministic
error and the error due to noise in the convergence bound.
This leads to the following corollary.

Corollary 3.9. Let f : X — R be an L-smooth func-
tion and let xg € X be an arbitrary initial point. If se-
quences X, Vi, Z, evolve according to (AGD+) for some
u-strongly convex function (-), where ny’s are zero-
mean independent random variables, K > 1 is an ar-
bitrary (but fixed) number of iterations of AGD+, v =

2
1) max{ L, /S 0 Elmil 2]}, a; = b, and % <,
V1, then:

E[f(yx) - fx)] € =50 i

In particular, if b; = % and, in addition, E[||n;|?] < o2,
Vi, then:

E[f(yr) — f(x:)]
4L D,y (%, X0)
uK (K +3)

o (2tDutexo)
uVK
IfE[||n:||?] < 02, Vi, but the value of o is unknown, then
setting b; = L and v = 1/ max{L, Zf{zl b;®} gives:

o2
E - X S T =
) - S < 0 (=)
4LD (X4, X0) O(D¢(x*, Xq) ) }
k(K +3) O\ wE )

—|—max{

Proof. By the choice of parameters,

K 2 LS 2
p=ymax {1\ & Elmil]} > 7/ X 6Bl

@B 2]

|
I

=1

K
< D¢<x*,xo>+JzizlaﬁEnmin]

which bounds the stochastic term. The rest of the proof
follows by plugging in particular choices of parameters and

using that vL < pp < ~vL + \/Zf; a;2E[||m:]12]. O

Remark 3.10. Observe that the optimal choice of ~
to balance the terms from Lemma 3.7 would be v =

K ai2E[||n;]|2
1/ max {L, v/ —21_5(»()(*7[)!;7) (H }
strained, it is not always possible to estimate (an upper
bound on) Dy(x,,Xo), which is why we made the par-

ticular choice of p in Corollary 3.9. However, when
the diameter 2y of X" is bounded, we can choose v =

R o )
u/ max {L7 . W }, leading to the same (op-

timal) asymptotic bound as in (Lan, 2012). Finally, for
bounded-diameter region, (Ghadimi & Lan, 2012) provides
a step-size policy that can relax the assumption that K is
fixed in advance. We expect that a similar policy should
also apply in the case of AGD-+. The details are omitted.

When X is uncon-

4. Noise-Error Reduction

We now discuss how the results of Section 3 can be used
to control the error of AGD+ that is incurred due to the
gradient oracle noise. First, we discuss how to prevent error
accumulation from Lemma 3.7, which is incurred when
running a vanilla version of AGD+. The main idea is to
take advantage of acceleration until the noise accumulation
starts dominating the convergence, and then switch to a
slower sequence {ay} for which the error averages out and
the algorithm further reduces the mean. Finally, we show
how, through another algorithm restart and slow down, the
sequence of updates can be made convergent (i.e., the mean
error is further reduced at a rate ~ 1/v/k).

Observe that the result from Corollary 3.9 already gives a
convergent sequence of updates. However, the choice of
parameters in Corollary 3.9 is fixed and tailored to the global
problem properties and worst-case effect of the additive
noise. Instead, the strategy of incrementally slowing down
the algorithm can take advantage of the more local, fine-
grained properties of the objective function, as confirmed
by the experiments in Section 5 and in Appendix D.

4.1. Mean-Error Stabilization

To take advantage of acceleration at the initial stage and
then stabilize the mean error due to noise, we propose the
following RESTART+SLOWDOWN semi-heuristics:

RESTART+SLOWDOWN: If ||zl <
Zle a;’E [||n;||3], restart the algorithm taking
¥ as the initial point and slow down the sequence {a;}
toa; = %,VZ > 1.
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The only “heuristic” part of RESTART+SLOWDOWN is de-
ciding when to switch to the slower sequence, as, due to
Lemma 3.7, slower sequence is guaranteed to lead to a better
bound on the approximation error due to noise in the case of
unconstrained minimization. Further, switching to a slower,
linearly growing sequence Ay is guaranteed to further re-
duce the error mean, as discussed in the next subsection.

The intuition behind RESTART+SLOWDOWN criterion is
restarting when “the signal is drowning in noise”. In partic-
ular, z; (the weighted sum of the noisy negative gradients)
is the only gradient information used in defining all steps
of AGD-+ and we can interpret it as the “signal” that is used
to guide the algorithm updates. When the gradients are cor-
rupted by noise, zp = *Zi‘;l a;V f(x;) — Zle a;in;. As
the noise is assumed to be independent, the expected energy
of the signal-plus-noise is equal to the sum of the energy of
the signal and the expected energy of the noise:

2

k k 2
lzlls =E ||| > a;i V)| | +E ||| X ams ]
i=1 2 =1 2
& Lk 2 2
= Zlaivf(xi) + Zlaz' E [lIn:ll3].
i= 2 i=

Hence, when the criterion of RESTART+SLOWDOWN is
satisfied, the energy component due to noise dominates the
energy component of the signal in zy,.

For constrained minimization with a small diameter,
RESTART+SLOWDOWN cannot reduce the theoretical mean
of the error due to noise (unless the bound from Lemma 3.7
dominates the bound from Proposition 3.5), as the noise
term averages out regardless of the sequence {a;} (Propo-
sition 3.5). Nevertheless, a slower, uniform sequence {a;}
has lower variance than the accelerated sequence, and can
be beneficial in the settings where the accelerated sequence
produces high error variance.

4.2. Further Mean-Error Reduction

Quadratically-growing sequence {A;} (or linearly grow-
ing sequence {a;}) is the fastest-growing sequence
which guarantees that ApGj is non-increasing in the
case of smooth minimization with exact gradients.
When we switch to a slower sequence {A;} by in-
voking RESTART+SLOWDOWN, this creates more slack
in making AyG) non-increasing in the presence of
gradient noise. Hence, RESTART+SLOWDOWN re-
duces the mean error and keeps it bounded. How-
ever, with RESTART+SLOWDOWN alone, the mean er-
ror cannot converge to zero. To ensure that the er-
ror is converging to zero, we can perform an addi-
tional RESTART+SLOWDOWN (RESTART+SLOWDOWN-
2), which uses the same criterion for restart, but slows down
the sequence ay, to ay ~ 1/\/%, as follows.

RESTART+SLOWDOWN-2: It ||zxl3 <
SF L a?E[|n;]|3], restart the algorithm taking
¥ as the initial point and slow down the sequence {a;}

to a; = pu/(LVi), Vi > 1.

Thus, we have the following Corollary (of Lemma 3.7):

Corollary 4.1. Let f : X — R be an L-smooth function
and let xg € X be an arbitrary initial point. If sequences
Xk, Yk, Zk evolve according to (AGD+-) for some p-strongly
convex function i (-), where ny’s are zero-mean i.i.d. ran-

dom variables and a;, = L’—\‘/E, thenVk > 1:

E(f(yx) — f(x.)]
_ LDy (xex0) | log(k + E[||m: ]
< M\/E L\/E :

Finally, observe that the factor of log(k + 1) in the bound
from Corollary 4.1 can be removed if the number of steps
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K is fixed in advance and a’s are set to ay, = i

5. Numerical Experiments

To illustrate the results, we consider two main problems: a
hard instance for smooth minimization (see, e.g., (Nesterov,
2013)) and regression problems on Epileptic Seizure Recog-
nition Dataset (Andrzejak et al., 2001) obtained from the
UCI Machine Learning Repository (Lichman, 2013). Most
results can be found in Appendix D. In all the experiments,
we used standard Python libraries to solve the considered
problems to high accuracy. The resulting function value
is denoted by f * in the figures. In all the problems, we
used 1(x) = Z||x|3 as the regularizer. For constrained
problems, we implemented projected gradient descent as
the “GD” algorithm.

In the graphs, TO-AGD+ denotes the “theoretically optimal”
version of AGD+; namely, it corresponds to AGD+ with step
sizes chosen according to Corollary 3.9 and Remark 3.10.
In all the experiments, we compare the different accelerated
algorithms (AGD+, AGD, AXGD) and the non-accelerated
GD under i.i.d. additive gradient noise 1; ~ N (0,0,I).

“Hard” Instance for Smooth Minimization To under-
stand the worst-case performance of AGD+-, we first com-
pare it to Nesterov’s AGD and (Diakonikolas & Orecchia,
2018)’s AXGD. The instance is an unconstrained minimiza-
tion problem, where f(x) = 1 (Ax,x) — (b, x), A is the
graph Laplacian of a cycle®, b; = —b,, = 1 and vector b is
zero elsewhere. The initial point x; is an all-zeros vector.
The dimension of the problem is n = 100.

Namely, the difference of a tridiagonal square matrix C with
1’s on the main diagonal and -1’s on the remaining diagonals, and
matrix B, which is zero everywhere except for Bi, = Bp1 = 1.
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Figure 1: Performance of gradient descent (GD) and accelerated algorithms (AGD, AXGD, AGD+) on a hard instance
for unconstrained smooth minimization for 7 ~ A(0, o,l) over R™: (a)-(d) sample run; (e)-(h) sample run with both
RESTART+SLOWDOWN and RESTART+SLOWDOWN-2 implemented on all accelerated algorithms, except TO-AGD+;
(1)-(D) 50 runs and the median with same algorithms as previous row.

The performance of AGD+, AGD, and AXGD together with
the performance of the slower, unaccelerated GD on the
described worst-case instance is shown in Fig. 1(a)-1(d),
for the exact gradient oracle (Fig. 1(a)) and noise-corrupted
gradient oracle with i.i.d. n; ~ N(0,0,I) (Fig. 1(b)-1(d)).
We repeated the same experiments when the parameters
for AGD+ are chosen according to Corollary 3.9 (denoted
as TO-AGD-+) and when both RESTART+SLOWDOWN and
RESTART+SLOWDOWN-2 are employed on all other accel-
erated algorithms. (Fig. 1(e)-1(1)).

Without restart and slow-down, all accelerated algorithms
perform similarly. In particular, as the noise standard devi-
ation o, is increased, the mean and the variance of the ap-
proximation error of all accelerated algorithms increases and
the noise appears to be accumulating (see, e.g., Fig. 1(d)).
On the other hand, GD generally converges to an approxi-
mation error with lower mean and variance, at the expense
of converging at a slower 1/k rate.

When restart and slow-down are used, in the noiseless case
(Fig. 1(e) and 1(i)), there is no difference compared to the
vanilla case (Fig. 1(a)), which is what we want — there is no
need to slow down the accelerated algorithms unless their
performance is compromised by noise. In the low-noise
scenario (Fig. 1(f), 1(j)), RESTART+SLOWDOWN does not
change the performance of the algorithms in a noticeable

way, although, in that case, the performance degradation
due to noise is low. As the noise becomes higher (Fig. 1(g),
1(k), 1(f), 1(1)), restart and slow-down noticeably stabilizes
all accelerated algorithms, reducing both their mean and
their variance. Further, restart and slow-down generally
outperforms the “theoretically optimal” AGD+ (TO-AGD+),
which, as stated before, is a “lazy” version of AC-SA (Lan,
2012; Ghadimi & Lan, 2012) and is thus equivalent to it in
the setting of unconstrained smooth minimization. Addi-
tional results are provided in Appendix D.

6. Conclusion

This paper presents a new accelerated algorithm together
with the analysis of its associated error bounds in the cases
when the gradient oracle is corrupted by additive noise.
Moreover, motivated by the analytical results, we also pro-
vide simple semi-heuristics that restart and slow down the
accelerated algorithms to reduce their error mean and vari-
ance. Our numerical experiments corroborate the analytical
results. There are several interesting directions for future
work that merit further investigation. For example, restart
& slow-down approaches that do not require the explicit
knowledge of the noise variance would be interesting for
applications in engineered systems where gradients are esti-
mated from noise-corrupted measurements.
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