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Abstract

Accelerated algorithms have broad applications

in large-scale optimization, due to their generality

and fast convergence. However, their stability in

the practical setting of noise-corrupted gradient

oracles is not well-understood. This paper pro-

vides two main technical contributions: (i) a new

accelerated method AGD+ that generalizes Nes-

terov’s AGD and improves on the recent method

AXGD (Diakonikolas & Orecchia, 2018), and (ii)

a theoretical study of accelerated algorithms un-

der noisy and inexact gradient oracles, which is

supported by numerical experiments. This study

leverages the simplicity of AGD+ and its analy-

sis to clarify the interaction between noise and

acceleration and to suggest modifications to the

algorithm that reduce the mean and variance of

the error incurred due to the gradient noise.

1. Introduction

First-order methods for convex optimization play a funda-

mental role in the solution of modern large-scale compu-

tational problems, encompassing applications in machine

learning (Bubeck, 2014), scientific computing (Spielman

& Teng, 2004; Kelner et al., 2013) and combinatorial opti-

mization (Sherman, 2017; Ene & Nguyen, 2016). A central

object of study in this area is the notion of acceleration – an

algorithmic technique that can be deployed when minimiz-

ing a smooth convex function f(·) via queries to a first-order

oracle (a blackbox that on input x 2 X , returns the vector

rf(x) in constant time). In this setting, a function f(·) is L-

smooth if it is differentiable and its gradient is L-Lipschitz

continuous w.r.t to a pair of dual norms k · k, k · k⇤, i.e.:

8 x,y 2 X , krf(x)�rf(y)k⇤  L · kx� yk. (1.1)
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Acceleration is interesting because it yields faster algorithms

than classical steepest-descent algorithms, often matching or

closely approximating known information-theoretic lower

bounds on the number of necessary queries to the oracle.

In the simplest smooth setting, the optimal accelerated al-

gorithm, Accelerated Gradient Descent (Nesterov, 1983),

achieves an error that scales as O(1/k2), where k is the num-

ber of oracle queries. This should be compared to the conver-

gence of steepest-descent methods, which attempt to locally

minimize the first-order approximation to the function and

only yield O(1/k)-convergence (Ben-Tal & Nemirovski,

2001; Nesterov, 2013). Many of the workhorses of opti-

mization, such as conjugate gradient and FISTA (Beck &

Teboulle, 2009), are instantiations of accelerated algorithms.

Because of its generality, acceleration still proves an ac-

tive topic of research. In particular, two weaknesses in the

classical presentation of accelerated methods have recently

attracted attention of scholars and practitioners alike: 1) the

complexity and lack of underlying intuition in the conver-

gence analysis of accelerated methods, and 2) the apparent

lack of robustness to perturbations of the gradient oracle

displayed by accelerated methods when compared to their

non-accelerated counterparts.

Recently, some of the mystery of acceleration has faded, as

different works have provided natural interpretations and

alternative proofs for accelerated methods (Allen-Zhu &

Orecchia, 2017; Krichene et al., 2015; Wibisono et al., 2016;

Bubeck et al., 2015; Lessard et al., 2016; Hu & Lessard,

2017; Diakonikolas & Orecchia, 2017). Of particular in-

terest to our work is the framework of (Diakonikolas &

Orecchia, 2017), which completely derives accelerated al-

gorithms from the Euler discretization of a continuous dy-

namics that minimizes a natural notion of duality gap.

In terms of robustness, it has long been observed empiri-

cally that a naı̈ve application of accelerated algorithms to

inexact oracles often leads to error accumulation, even in

the setting of random perturbations, while standard steepest

descent algorithms do not suffer from this problem (Hardt,

2014). From a theoretical point of view, a number of pa-

pers have introduced oracle models that account for inexact

gradient information. For example, (d’Aspremont, 2008)

proposed a restricted model of perturbations to the gradi-

ent that preserves the possibility of acceleration. More
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recently, (Devolder et al., 2014) proposed a more general

framework that allows for larger perturbations and seems

to capture the error accumulation and instability observed

in practice for accelerated methods. In these works, the in-

exact oracle outputs an arbitrary deterministic perturbation

of the true gradient oracle. In particular, (Devolder et al.,

2014) shows that such perturbations can be adversarially

chosen to encode non-smooth problems.

For stochastic perturbations, (Lan, 2012; Ghadimi & Lan,

2012; 2013) considered an additive-noise model, under

which (Lan, 2012; Ghadimi & Lan, 2012) obtained an

optimal convergence bound for the accelerated algorithm

AC-SA in the smooth, non-strongly convex setting, but

sub-optimal for the smooth, strongly-convex case.1 Fur-

ther, (Ghadimi & Lan, 2013) improved the convergence

bound in the setting of constrained smooth and strongly

convex minimization to the optimal one, by coupling AC-

SA algorithm from (Ghadimi & Lan, 2012) with a domain-

shrinking procedure. More recently, (Jain et al., 2018) com-

pletely closed this gap for the case of linear regression.

Additionally, (Dvurechensky & Gasnikov, 2016) unified the

deterministic model (Devolder et al., 2014), the stochastic

model (Ghadimi & Lan, 2012), and the associated results.

These references are the most closely related to our work.

Our contributions We study the issue of robustness of

accelerated methods in three steps. First, we propose a

novel, simple, generic accelerated algorithm AGD+ follow-

ing the framework of (Diakonikolas & Orecchia, 2017).

This algorithm has a simple interpretation and analysis, and

generalizes other known accelerated algorithms.

Second, we leverage the simplicity of the analysis of

AGD+ to characterize its behavior on different models of

inexact oracles. Our analysis recovers the results for the de-

terministic oracle models of (d’Aspremont, 2008) and (De-

volder et al., 2014). More importantly, we consider the more

general model of noise-corrupted gradient oracle, in which

the true gradient rf(x) is corrupted by additive noise η:

erf(x) = rf(x) + η, (1.2)

where the perturbation η may be a random variable. Such a

model captures the setting of stochastic methods, in which

the gradient is only estimated from a subset of its compo-

nents (Lan, 2012; Ghadimi & Lan, 2012; 2013; Atchade

et al., 2014; Krichene & Bartlett, 2017; Jain et al., 2018), the

setting of differentially private empirical risk minimization,

in which Gaussian noise is intentionally added to the gradi-

ent to protect the privacy of the data (Bassily et al., 2014),

1In particular, the deterministic term in the convergence bound
in (Ghadimi & Lan, 2012) decreases as O(1/k2) instead of the

optimal O(1 − 1/
√

κ)k convergence, where κ is the objective
function’s condition number.

and the setting of engineering systems in which the gradient

is estimated from noisy measurements (Birand et al., 2013).

Our algorithm AGD+ is closely related to AC-SA from (Lan,

2012) and can in fact be seen as a “lazy” (dual averaging)

counterpart of AC-SA. After this paper had been submitted,

Gasnikov and Nesterov independently proposed a universal

method for stochastic composite optimization (Gasnikov

& Nesterov, 2018). While their algorithm is defined re-

cursively and does not explicitly account for the iterative

construction of a dual solution, a simple unwinding of the

recursion shows that it is identical to AGD+. However, the

fact that AGD+ is obtained and analyzed through the use

of the approximate duality gap technique (Diakonikolas &

Orecchia, 2017) allows us to streamline the analysis and

obtain various bounds for both deterministic and stochas-

tic models of noise. Further, in the setting of smooth and

strongly convex minimization, our analysis leads to a tighter

convergence bound for a single-stage algorithm (without

domain-shrinking) than previously obtained in (Ghadimi &

Lan, 2012; 2013) (see Appendix B for a precise statement).

There are other models of noise that are not considered here.

For example, we do not consider the model with both multi-

plicative and additive error in the gradient oracle (Hu et al.,

2017). Further, stochastic methods with variance reduction

(see, e.g., (Schmidt et al., 2017; Allen-Zhu, 2017) and refer-

ences therein) lead to a particularly structured gradient noise

variance (e.g., Lemma 3.4 in (Allen-Zhu, 2017)) that is not

explored in this work. Nevertheless, we believe that our

analysis is general enough to be extended to these settings

as well, which is deferred to the future version of this paper.

Our results reveal an interesting discrepancy between noise

tolerance in the settings of constrained and unconstrained

smooth minimization. Namely, in the setting of constrained

optimization, the error due to noise does not accumulate and

is proportional to the diameter of the feasible region and the

expected norm of the noise. In the setting of unconstrained

optimization, the bound on the error incurred due to the

noise accumulates, as observed empirically by (Hardt, 2014).

However, our analysis also suggests a simple restart and

slow down semi-heuristic for stabilizing the noise-incurred

error, which allows taking advantage of both the acceleration

and the noise stability under stochastic noise.

In the case of smooth and strongly convex minimization

(Appendix B), the error due to noise does not accumulate

even if the region is unconstrained, as long as the noise is

zero-mean, independent, and has bounded variance.2 Fur-

ther, using smaller step sizes than in the standard accelerated

version of the method, the error due to noise decreases at rate

1/k (compare this to the 1/
p
k rate for smooth non-strongly

2Obtaining similar bounds for a slightly more general model
that relaxes independence (similar to (Lan, 2012; Ghadimi & Lan,
2012)) is also possible; see Appendix C.2.
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convex functions). This means that strong convexity of a

function implies higher robustness to noise.

Finally, we verify the predictions and insights from our

analysis of AGD+ by performing numerical experiments

comparing AGD+ to other accelerated and non-accelerated

methods on noise-corrupted gradient oracles. A noteworthy

outcome of these experiments is the following: when a nat-

ural generic restart & slow-down semi-heuristic is applied,

the accelerated algorithm AXGD (Diakonikolas & Orecchia,

2017) and the algorithm AGD+ presented in this paper seem

to outperform Nesterov’s AGD both in expectation and in

variance in the presence of large noise. Further, we note that

compared to AXGD, AGD+ reduces the oracle complexity

(the number of queried gradients) by a factor of two.

2. Notation and Preliminaries

We assume that we are given a continuously differentiable

convex function f : X ! R, where X ✓ R
n is a closed

convex set. Hence:

8y,x 2 X : f(y) � f(x) + hrf(x), y � xi , (2.1)

where rf(·) denotes the gradient of f(·).

Given oracle access to (possibly noise-corrupted) gradients

of f(·), we are interested in minimizing f(·). We denote by

x⇤ 2 argminx2X f(x) any (fixed) minimizer of f(·).

We assume that there is an arbitrary (but fixed) norm k · k
associated with the space, and all the statements about

function properties are stated with respect to that norm.

We also define the dual norm k · k⇤ in the standard way:

kzk⇤ = sup{hz,xi : kxk = 1}. The following definitions

will be useful in our analysis.

Definition 2.1. A function f : X ! R is L-smooth on X
with respect to a norm k · k, if for all x, x̂ 2 X : f(x̂) 
f(x) + hrf(x), x̂� xi + L

2 kx̂ � xk2. This is equivalent

to Equation (1.1).

A gradient step is defined in a standard way as Grad(x) =
argminx̂2X {f(x) + hrf(x), x̂� xi+ L

2 kx̂� xk2}.

Definition 2.2. A function f : X ! R is µ-strongly convex

on X with respect to a norm k · k, if for all x, x̂ 2 X :

f(x̂) � f(x) + hrf(x), x̂� xi+ µ
2 kx̂� xk2.

Definition 2.3. (Convex Conjugate) Function  ⇤ is the con-

vex conjugate of  : X ! R, if  ⇤(z) = maxx2X {hz,xi�
 (x)}, 8z 2 R.

We assume that there is a strongly-convex differentiable

function  : X ! R such that maxx2X {hz,xi �  (x)} is

easily solvable, possibly in a closed form. Notice that this

problem defines the convex conjugate of  (·), i.e.,  ⇤(z) =
maxx2X {hz,xi �  (x)}. The following fact is a simple

corollary of Danskin’s Theorem3.

Fact 2.4. Let  : X ! R be differentiable and strongly-

convex. Then: r ⇤(z) = argmaxx2X {hz,xi �  (x)} .

Fact 2.5. If  (·) is µ-strongly convex w.r.t. a norm k · k for

µ > 0, then  ⇤(·) is 1
µ

-smooth w.r.t. the norm k · k⇤.

Definition 2.6. (Bregman Divergence) Dψ(x, x̂)
def

=
 (x)� (x̂)�hr (x̂),x� x̂i, for x 2 X , x̂ 2 X o, where

X o denotes the set of all points from X for which  (·) ad-

mits a (sub)gradient.

The Bregman divergence Dψ(x,y) captures the difference

between  (x) and its first order approximation at y. No-

tice that, for a differentiable  , we have: rxDψ(x,y) =
r (x)�r (y). The Bregman divergence Dψ(x,y) as a

function gy(x) is convex. Its Bregman divergence is itself,

i.e., Dgy(v,u) = Dψ(v,u).

3. Improved Accelerated Method

In this section, we focus on the setting of smooth minimiza-

tion. The case of smooth and strongly convex minimization

is treated in Appendix B. To design AGD+, we define an ap-

proximate duality gap, similar to (Diakonikolas & Orecchia,

2017; 2018), but allowing for an inexact gradient oracle

according to Eq. (1.2). The construction is based on main-

taining three points at each iteration k: xk is the point at

which the gradient is queried, while (yk, zk) is the current

primal-dual solution pair at the end of iteration k. For this

setup, the dual solution zk is a conic combination of the

negative gradients seen so far, taken at an initial dual point

z0 = r (x0),where x0 is an arbitrary initial primal solu-

tion, i.e.,

zk = �
kX

i=1

ai erf(xi) + z0. (3.1)

where the sequence ak > 0, Ak =
Pk

i=1 ai will be speci-

fied later. By convention, A0 = 0.

3.1. Approximate Duality Gap

The choice of sequences above immediately implies upper

and lower bounds on the optimum at each iteration k. The

upper bound is simply chosen as Uk = f(yk). For the lower

bound, by convexity of f(·) (see Eq. (2.1)):

f(x⇤) �
Pk

i=1 aif(xi) +
Pk

i=1 ai hrf(xi),x⇤ � xii
Ak

.

To relate the lower bound to the output of the inexact oracle,

it is useful to express the gradients rf(xi) as rf(xi) =
erf(xi)�ηi. Adding and subtracting 1

Ak

Dψ(x⇤,x0) in the

3See, e.g., Proposition 4.15 in (Bertsekas et al., 2003).
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last equation, we have:

f(x⇤) �
Pk

i=1 aif(xi) +
Pk

i=1 ai

D
erf(xi),x⇤ � xi

E

Ak

+
�Pk

i=1 ai hηi,x⇤ � xii+Dψ(x⇤,x0)�Dψ(x⇤,x0)

Ak

.

Finally, we can replace x⇤ by a minimization over X to

obtain our final lower bound:

Pk
i=1 aif(xi)�

Pk
i=1 ai hηi,x⇤ � xii �Dψ(x⇤,x0)

Ak

+
min
u2X

nPk
i=1 ai

D
erf(xi),u� xi

E
+Dψ(u,x0)

o

Ak

def

= Lk.

Applying Fact 2.4 and the definition of zk from (3.1), we

have the following characterization of the last term of Lk.

Proposition 3.1. Let zk be defined as in (AGD+). Then:

r ⇤(zk) =

arg min
u2X

n kP
i=1

ai

D
erf(xi),u� xi

E
+Dψ(u,x0)

o
.

The approximate duality gap is simply defined as Gk =
Uk � Lk. Observe that, by construction of Uk and Lk,

f(yk) � f(x⇤)  Gk. Hence, to prove the convergence

of the algorithm, it suffices to bound Gk. To do so, we

will track the evolution of the quantity AkGk, i.e., we will

bound4 Ek = AkGk �Ak�1Gk�1, so that

Gk =
A1

Ak

G1 +

Pk
i=2 Ei

Ak

.

3.2. The AGD+ Algorithm

The steps of AGD+ are defined as follows:

xk =
Ak�1

Ak

yk�1 +
ak
Ak

r ⇤(zk�1),

zk = zk�1 � ak erf(xk),

yk =
Ak�1

Ak

yk�1 +
ak
Ak

r ⇤(zk),

(AGD+)

To seed AGD+, we let x1 = x0, y1 = v1 = r ⇤(z1).

Related Algorithms Compared to Nesterov’s AGD,

AGD+ differs in the sequence yk: AGD sets yk =
Grad(xk). The two algorithms are equivalent when  (x) =

4From (Diakonikolas & Orecchia, 2017) it can be derived that
AkGk is a Lyapunov function for the continuous dynamic under-
lying AGD+, i.e., Ek is the discretization error at iteration k.

µ
2 kx � x0k2, ak

2

Ak

= µ
L

, and X = R
n, but in general they

produce different sequences of points. Thus, AGD+ can

be seen as a generalization of AGD. Compared to a

more recent accelerated method AXGD of (Diakonikolas

& Orecchia, 2018), AGD+ differs in sequences yk and

zk. In particular, in AXGD, zk = zk�1 � ak erf(yk),

while yk = Ak−1

Ak

yk�1 + ak

Ak

r ⇤(zk � ak erf(xk)). As

AXGD uses the gradients of f(·) at both sequences xk and

yk to define xk and yk, it is more wasteful: its oracle com-

plexity is twice as high as that of AGD and AGD+. Most

closely related to AGD+ is the AC-SA algorithm (Lan, 2012);

namely, for some step sizes, AGD+ can be seen as a “lazy”

(dual averaging) version of AC-SA. The relationship be-

tween µAGD+ (see Appendix B) and AC-SA for smooth and

strongly convex minimization (Ghadimi & Lan, 2012) is not

immediately clear, due to the different parameter choices.

3.3. Convergence Analysis for AGD+

To simplify the notation, from now on we denote:

vk
def

= r ⇤(zk).

We can now bound the change Ek = AkGk � Ak�1Gk�1

by decomposing it into two terms: Ek  Ee
k +Eη

k , where

the latter term is due to the inexact nature of the gradient

oracle. The following lemma allows us to bound these terms.

Its proof can be found in Appendix A.

Lemma 3.2. Let Eη
k = hηk,x⇤ � vki and

Ee
k = Ak(f(yk) � f(xk)) � Ak hrf(xk),yk � xki �

Dψ(vk,vk�1). Then Ek  Eη
k + Ee

k.

The last piece that is needed for the analysis is the bound on

the initial gap G1, obtained in the following proposition.

Proposition 3.3. A1G1  Dψ(x⇤,x0) +Eη
1 +Ee

1 , where

Eη
1 is defined as in Lemma 3.2 and Ee

1 = A1(f(y1) �
f(x1)� hrf(x1),v1 � x1i)�Dψ(v1,x0).

The proof is a straightforward application of the previously

introduced definitions.

3.4. Convergence of AGD+ with Exact Oracle

To prove the convergence of the method in the noiseless case,

in this section we assume that ηk = 0, and, consequently,

Eη
k = 0. Hence, to obtain a convergence bound for AGD+,

we only need to bound Ee
k.

Theorem 3.4. Let f : X ! R be an L-smooth function

and let x0 2 X be an arbitrary initial point. If sequences

xk,yk, zk evolve according to (AGD+) for some µ-strongly

convex function  (·), ηk = 0, and ak
2

Ak

 µ
L

, then 8k � 1:

f(yk)� f(x⇤) 
Dψ(x⇤,x0)

Ak

.
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Proof. By smoothness of f(·), f(yk) � f(xk) �
hrf(xk),yk � xki  L

2 kyk � xkk2. Hence:

Ek = Ee
k  Ak

L

2
kyk � xkk2 �Dψ(vk,vk�1).

From (AGD+), yk � xk = ak

Ak

(vk � vk�1). As

Dψ(vk,vk�1) � µ
2 kvk � vk�1k2, it follows that:

Ek  1

2

⇣ak2L
Ak

� µ
⌘
kvk � vk�1k2  0,

as ak
2

Ak

 µ
L

by the theorem assumptions. Thus: Gk 
A1

Ak

G1 and it remains to bound A1G1, which is just:

A1G1 =A1(f(y1)� f(x1)� hrf(x1),v1 � x1i)
�Dψ(v1,x0) +Dψ(x⇤,x0)  Dψ(x⇤,x0),

as y1 = v1 and x1 = x0.

Observe that for ak = µ
L
· k+1

2 we recover the standard 1/k2

convergence rate of accelerated methods.

3.5. Convergence of AGD+ with Inexact Oracle

In this subsection, we focus on bounding the error Eη
k that is

accrued due to the additive noise ηk. Additional results (in-

cluding other models of noise) can be found in Appendix C.

As Eη
k = ak hηk,x⇤ � vki by Lemma 3.2, we have:

Proposition 3.5. Let f : X ! R be an L-smooth function

and let x0 2 X be an arbitrary initial point. If sequences

xk,yk, zk evolve according to (AGD+) for some µ-strongly

convex function  (·), where ηk’s are independent, Rx∗
=

maxx2X kx� x⇤k, and ak
2

Ak

 µ
L

, then 8k � 1:

E [f(yk)� f(x⇤)] 
Dψ(x⇤,x0)

Ak

+Rx∗

Pk
i=1 aiE[kηik⇤]

Ak

,

Var [f(yk)� f(x⇤)]  Rx∗

2

Pk
i=1 ai

2
E[kηik2⇤]

Ak
2 .

Proof. From Theorem 3.4 and Lemma 3.2:

AkGk  Dψ(x⇤,x0) +

kX

i=1

ai hηi,x⇤ � vii . (3.2)

The bound on the expectation follows by applying hx,yi 
kxkkyk⇤ (by the duality of norms), linearity of expectation,

and Ak =
Pk

i=1 ai. The bound on the variance follows by,

in addition, using the standard facts that Var[aX + bY ] =
a2Var[X]+b2Var[Y ] and Var[X]  E[X2], where a, b are

constants and X , Y are independent random variables.

Remark 3.6. Observe that if E[kηik⇤]  M , E[kηik2⇤] 
�2, 8i, then E [f(yk)� f(x⇤)]  Dψ(x∗,x0)

Ak

+ Rx∗
M

and Var [f(yk)� f(x⇤)]  (Rx∗
�)2

P
k

i=1
ai

2

Ak
2 . The same

bound on E [f(yk)� f(x⇤)] as in Prop. 3.5 (and the special

case stated here) holds even if ηk’s are not independent.

The bound from Proposition 3.5 is mainly useful when Rx∗

is bounded, which is the case when, e.g., the diameter of

X is bounded. For the case of unconstrained optimization

(i.e., when X = R
n), the bound from Proposition 3.5 is

uninformative. Hence, we derive another bound that is

independent of Rx∗
, but it requires that the noise samples

ηk are both zero-mean and independent.5

Lemma 3.7. Let f : X ! R be an L-smooth function

and let x0 2 X be an arbitrary initial point. If sequences

xk,yk, zk evolve according to (AGD+) for some µ-strongly

convex function (·), where ηk’s are zero-mean independent

random variables and ak
2

Ak

 µ
L

, then 8k � 1:

E [f(yk)� f(x⇤)] 
Dψ(x⇤,x0)

Ak

+

Pk
i=1 ai

2
E[kηik2⇤]

µAk

.

Proof. Let v̂k = r ⇤(zk�1 � akrf(xk)) = r ⇤(zk +
akηk). Recall that Eη

k = ak hηk,x⇤ � vki. Adding and

subtracting v̂k:

Eη
k = ak hηk,x⇤ � v̂ki+ ak hηk, v̂k � vki .

As v̂k is independent of ηk and E[ηk] = 0,

E [hηk,x⇤ � v̂ki] = 0. On the other hand, as vk =
r ⇤(zk) and  ⇤(·) is 1

µ
-smooth by Fact 2.5, by the du-

ality of norms: hηk, v̂k � vki  ak

µ
kηkk2⇤. The rest of the

proof is by Theorem 3.4 and Lemma 3.2.

Remark 3.8. It is possible to relax the assumption that

ηk’s are independent. In fact, for Lemma 3.7 to apply,

it suffices that, conditioned on the natural filtration Fk�1

(all the information about the noise up to the beginning

of iteration k), ηk is independent of v̂k. More details are

provided in Appendix C.2.

Lemma 3.7 suggests that for unconstrained smooth mini-

mization the sequence ak that leads to accelerated methods

aggregates noise, as for accelerated methods ak ⇠ k,Ak ⇠
k2. However, if we were to resort to a slower, uniform se-

quence (and slower 1/k convergence rate), then the noise

would average out, as we would have constant ak’s and

Ak ⇠ k. Even more, if ak ⇠ 1/
p
k, then the error due to

noise would decrease at rate log(k)/
p
k. This is confirmed

by our numerical experiments and matches the experience

of practitioners, as discussed by (Hardt, 2014).

The lemma also shows that error accumulation can be

avoided if we postulate that the magnitude of the noise van-

ishes with the number of iterations. This can be achieved

5The assumption that ηk’s are independent can be relaxed –
see Remark 3.8 below and Appendix C.2.
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if the estimates of the gradient improve over iterations

(Atchade et al., 2014). For example, if we have E[kηik2⇤] =
O
⇣

1
ai

⌘
= O

⇣
1
i

⌘
, the noise-error term averages out, making

the total error due to noise bounded. If E[kηik2⇤] = O
⇣

1
i2

⌘
,

the noise-error term vanishes at rate k/Ak = 1/k. Finally,

if E[kηik2⇤] = O
⇣

1
i3

⌘
, the noise-error term vanishes at rate

log(k)/k2, essentially recovering accelerated convergence.

Observe that we could not get a bound on variance that is

independent of Rx∗
, as the variance (unlike the expectation)

of hηk,x⇤ � v̂ki is not zero. Instead, since we upper-bound

the expectation of f(yk)�f(x⇤) by a non-negative quantity

(and f(yk) � f(x⇤) is always non-negative as x⇤ is the

minimizer of f(·)), we can apply Markov’s Inequality to

obtain a concentration bound on f(yk)�f(x⇤). Finally, the

step sizes ak can be chosen so as to balance the deterministic

error and the error due to noise in the convergence bound.

This leads to the following corollary.

Corollary 3.9. Let f : X ! R be an L-smooth func-

tion and let x0 2 X be an arbitrary initial point. If se-

quences xk,yk, zk evolve according to (AGD+) for some

µ-strongly convex function  (·), where ηk’s are zero-

mean independent random variables, K � 1 is an ar-

bitrary (but fixed) number of iterations of AGD+, � =

µ/max{L,
qPK

i=1 bi
2
E[kηik2⇤]}, ai = �bi, and ai

2

Ai

 �,

8i, then:

E [f(yK)� f(x⇤)] 
Dψ(x⇤,x0)

AK

+

qPK
i=1 ai

2E[kηik2⇤]
AK

.

In particular, if bi =
i+1
2 and, in addition, E[kηik2⇤]  �2,

8i, then:

E [f(yK)� f(x⇤)]

 4LDψ(x⇤,x0)

µK(K + 3)
+O

✓
�(µ+Dψ(x⇤,x0))

µ
p
K

◆
.

If E[kηik2⇤]  �2, 8i, but the value of � is unknown, then

setting bi =
i+1
2 and � = µ/max{L,

qPK
i=1 bi

2} gives:

E [f(yK)� f(x⇤)]  O

✓
�2

p
K

◆

+max

⇢
4LDψ(x⇤,x0)

µK(K + 3)
, O

⇣Dψ(x⇤,x0)

µ
p
K

⌘�
.

Proof. By the choice of parameters,

µ = �max
n
L,

s
KP
i=1

bi
2
E[kηik2⇤]

o
� �

s
KP
i=1

bi
2
E[kηik2⇤]

=

s
KP
i=1

ai2E[kηik2⇤],

which bounds the stochastic term. The rest of the proof

follows by plugging in particular choices of parameters and

using that �L  µ  �L+
qPK

i=1 ai
2E[kηik2⇤].

Remark 3.10. Observe that the optimal choice of �

to balance the terms from Lemma 3.7 would be � =

µ/max

⇢
L,

qP
K

i=1
ai

2E[kηik2
∗
]

Dφ(x∗,x0)

�
. When X is uncon-

strained, it is not always possible to estimate (an upper

bound on) Dφ(x⇤,x0), which is why we made the par-

ticular choice of µ in Corollary 3.9. However, when

the diameter ΩX of X is bounded, we can choose � =

µ/max

⇢
L,

qP
K

i=1
ai

2E[kηik2
∗
]

ΩX

�
, leading to the same (op-

timal) asymptotic bound as in (Lan, 2012). Finally, for

bounded-diameter region, (Ghadimi & Lan, 2012) provides

a step-size policy that can relax the assumption that K is

fixed in advance. We expect that a similar policy should

also apply in the case of AGD+. The details are omitted.

4. Noise-Error Reduction

We now discuss how the results of Section 3 can be used

to control the error of AGD+ that is incurred due to the

gradient oracle noise. First, we discuss how to prevent error

accumulation from Lemma 3.7, which is incurred when

running a vanilla version of AGD+. The main idea is to

take advantage of acceleration until the noise accumulation

starts dominating the convergence, and then switch to a

slower sequence {ak} for which the error averages out and

the algorithm further reduces the mean. Finally, we show

how, through another algorithm restart and slow down, the

sequence of updates can be made convergent (i.e., the mean

error is further reduced at a rate ⇠ 1/
p
k).

Observe that the result from Corollary 3.9 already gives a

convergent sequence of updates. However, the choice of

parameters in Corollary 3.9 is fixed and tailored to the global

problem properties and worst-case effect of the additive

noise. Instead, the strategy of incrementally slowing down

the algorithm can take advantage of the more local, fine-

grained properties of the objective function, as confirmed

by the experiments in Section 5 and in Appendix D.

4.1. Mean-Error Stabilization

To take advantage of acceleration at the initial stage and

then stabilize the mean error due to noise, we propose the

following RESTART+SLOWDOWN semi-heuristics:

RESTART+SLOWDOWN: If kzkk22 Pk
i=1 ai

2
E
⇥
k⌘ik22

⇤
, restart the algorithm taking

yk as the initial point and slow down the sequence {ai}
to ai =

µ
L

, 8i � 1.
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The only “heuristic” part of RESTART+SLOWDOWN is de-

ciding when to switch to the slower sequence, as, due to

Lemma 3.7, slower sequence is guaranteed to lead to a better

bound on the approximation error due to noise in the case of

unconstrained minimization. Further, switching to a slower,

linearly growing sequence Ak is guaranteed to further re-

duce the error mean, as discussed in the next subsection.

The intuition behind RESTART+SLOWDOWN criterion is

restarting when “the signal is drowning in noise”. In partic-

ular, zk (the weighted sum of the noisy negative gradients)

is the only gradient information used in defining all steps

of AGD+ and we can interpret it as the “signal” that is used

to guide the algorithm updates. When the gradients are cor-

rupted by noise, zk = �Pk
i=1 airf(xi)�

Pk
i=1 aiηi. As

the noise is assumed to be independent, the expected energy

of the signal-plus-noise is equal to the sum of the energy of

the signal and the expected energy of the noise:

kzkk22 = E

"����
kP

i=1

airf(xi)

����
2

2

#
+ E

"����
kP

i=1

aiηi

����
2

2

#

=

����
kP

i=1

airf(xi)

����
2

2

+
kP

i=1

ai
2
E
⇥
k⌘ik22

⇤
.

Hence, when the criterion of RESTART+SLOWDOWN is

satisfied, the energy component due to noise dominates the

energy component of the signal in zk.

For constrained minimization with a small diameter,

RESTART+SLOWDOWN cannot reduce the theoretical mean

of the error due to noise (unless the bound from Lemma 3.7

dominates the bound from Proposition 3.5), as the noise

term averages out regardless of the sequence {ai} (Propo-

sition 3.5). Nevertheless, a slower, uniform sequence {ai}
has lower variance than the accelerated sequence, and can

be beneficial in the settings where the accelerated sequence

produces high error variance.

4.2. Further Mean-Error Reduction

Quadratically-growing sequence {Ai} (or linearly grow-

ing sequence {ai}) is the fastest-growing sequence

which guarantees that AkGk is non-increasing in the

case of smooth minimization with exact gradients.

When we switch to a slower sequence {Ai} by in-

voking RESTART+SLOWDOWN, this creates more slack

in making AkGk non-increasing in the presence of

gradient noise. Hence, RESTART+SLOWDOWN re-

duces the mean error and keeps it bounded. How-

ever, with RESTART+SLOWDOWN alone, the mean er-

ror cannot converge to zero. To ensure that the er-

ror is converging to zero, we can perform an addi-

tional RESTART+SLOWDOWN (RESTART+SLOWDOWN-

2), which uses the same criterion for restart, but slows down

the sequence ak to ak ⇠ 1/
p
k, as follows.

RESTART+SLOWDOWN-2: If kzkk22 Pk
i=1 ai

2
E
⇥
k⌘ik22

⇤
, restart the algorithm taking

yk as the initial point and slow down the sequence {ai}
to ai = µ/(L

p
i), 8i � 1.

Thus, we have the following Corollary (of Lemma 3.7):

Corollary 4.1. Let f : X ! R be an L-smooth function

and let x0 2 X be an arbitrary initial point. If sequences

xk,yk, zk evolve according to (AGD+) for some µ-strongly

convex function  (·), where ηk’s are zero-mean i.i.d. ran-

dom variables and ak = µ

L
p
k

, then 8k � 1:

E [f(yk)� f(x⇤)]

 LDψ(x⇤,x0)

µ
p
k

+
log(k + 1)E[kη1k2⇤]

L
p
k

.

Finally, observe that the factor of log(k + 1) in the bound

from Corollary 4.1 can be removed if the number of steps

K is fixed in advance and ak’s are set to ak = µ

L
p
K

.

5. Numerical Experiments

To illustrate the results, we consider two main problems: a

hard instance for smooth minimization (see, e.g., (Nesterov,

2013)) and regression problems on Epileptic Seizure Recog-

nition Dataset (Andrzejak et al., 2001) obtained from the

UCI Machine Learning Repository (Lichman, 2013). Most

results can be found in Appendix D. In all the experiments,

we used standard Python libraries to solve the considered

problems to high accuracy. The resulting function value

is denoted by f̂⇤ in the figures. In all the problems, we

used  (x) = L
2 kxk22 as the regularizer. For constrained

problems, we implemented projected gradient descent as

the “GD” algorithm.

In the graphs, TO-AGD+ denotes the “theoretically optimal”

version of AGD+; namely, it corresponds to AGD+ with step

sizes chosen according to Corollary 3.9 and Remark 3.10.

In all the experiments, we compare the different accelerated

algorithms (AGD+, AGD, AXGD) and the non-accelerated

GD under i.i.d. additive gradient noise ηi ⇠ N (0,�ηI).

“Hard” Instance for Smooth Minimization To under-

stand the worst-case performance of AGD+, we first com-

pare it to Nesterov’s AGD and (Diakonikolas & Orecchia,

2018)’s AXGD. The instance is an unconstrained minimiza-

tion problem, where f(x) = 1
2 hAx,xi � hb,xi, A is the

graph Laplacian of a cycle6, b1 = �bn = 1 and vector b is

zero elsewhere. The initial point x0 is an all-zeros vector.

The dimension of the problem is n = 100.

6Namely, the difference of a tridiagonal square matrix C with
1’s on the main diagonal and -1’s on the remaining diagonals, and
matrix B, which is zero everywhere except for B1n = Bn1 = 1.
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