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Abstract. Problem definition: Inspired by new developments in dynamic spectrum access,
we study the dynamic pricing of wireless Internet access when demand and capacity
(bandwidth) are stochastic. Academic/practical relevance: The demand for wireless Internet
access has increased enormously. However, the spectrum available to wireless service
providers is limited. The industry has, thus, altered conventional license-based spectrum
access policies through unlicensed spectrum operations. The additional spectrum obtained
through these operations has stochastic capacity. Thus, the pricing of this service by the
service provider has novel challenges. The problem considered in this paper is, therefore, of
high practical relevance and new to the academic literature. Methodology: We study this
pricing problem using a Markov decision process model in which customers are posted
dynamic prices based on their bandwidth requirement and the available capacity. Results:
We characterize the structure of the optimal pricing policy as a function of the system state
and of the input parameters. Because it is impossible to solve this problem for practically
large state spaces, we propose a heuristic dynamic pricing policy that performs very well,
particularly when the ratio of capacity to demand rate is low. Managerial implications: We
demonstrate the value of using a dynamic heuristic pricing policy compared with the
myopic and optimal static policies. The previous literature has studied similar systems
with fixed capacity and has characterized conditions under whichmyopic policies perform
well. In contrast, our setting has dynamic (stochastic) capacity, andwe find that identifying
good state-dependent heuristic pricing policies is of greater importance. Our heuristic
policy is computationally more tractable and easier to implement than the optimal dy-
namic and static pricing policies. It also provides a significant performance improvement
relative to the myopic and optimal static policies when capacity is scarce, a condition that
holds for the practical setting that motivated this research.
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1. Introduction
Wireless networks have revolutionized public life, es-
pecially following the invention of smartphones in 2007.

It is estimated that by 2020, mobile data traffic will grow

by a factor of 10 with a thousandfold increase in de-

mand in certain urban areas (Beltran et al. 2016), and

the number of connected mobile devices is expected

to reach 11.6 billion (Cisco Visual Networking Index

2016). These increased demands place a significant

burden on mobile service providers (SPs) because of

the scarcity of available wireless spectrum.
Today’s wireless networks are characterized by a fixed

spectrum assignment policy, with which the resource, that

is, the spectrum, is allocated to users, such as gov-

ernment and broadcasters, in a license-based manner

according to national policies, technical characteristics,

and international agreements. Although SPs try to utilize

their share, a large portion of the assigned spectrum is

used sporadically, and geographical variations in the

utilization of assigned spectrum range from 15% to 85%

(Federal Communications Commission (FCC) 2002). This

leads to the spectrum crisis, in which access policies to

spectrum are questioned; see, for example, Chen (2012).
The wireless industry has been altering conventional

license-based spectrum access policies through un-

licensed spectrum operational approaches. The most

prominent solution has been WiFi, which exclusively

operates on unlicensed spectrum (e.g., 2.4 GHz, 5 GHz).

More recently, the spectrum crisis has forced govern-

ment agencies to adopt unlicensed spectrum operational

approaches for other purposes. This leads to dynamic

spectrum access (DSA), in which resources change
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dynamically with respect to the usage of the shared,
unlicensed spectrum by several users. Examples of
unlicensed spectrum operation include the following.

1.1. TV White Space

TV channels have traditionally been allocated to broad-
cast companies throughout the nation. Because of
population density dynamics, not all TV channels are
used in all locations; for example, although broadcast
companies use all TV channels in locations such as
Manhattan, few channels are used in less populated
cities or rural areas. This leaves unused TV channels
in certain areas, referred to as TV white spaces, which
can be repurposed for other wireless communication.
In 2008, the FCC allowed unlicensed devices, that is,
television band devices (TVBDs), to operate in TV
white spaces in the United States (FCC 2010). TVBDs
operate on available TV bands based on information
received from TV spectrumdatabases or local spectrum
sensing operations. Sites such as Google Spectrum and
Microsoft Whitespaces have established nationwide
spectrum databases that dynamically allocate spec-
trum for unlicensed usage.

1.2. TV Black Space

Although suitable for rural areas, the FCC’s current
approach leaves populated urban areas, in which the
spectrum crisis is most significant, with few TVwhite
spaces (Harrison et al. 2010). For example, four out of
the five largest cities by population have less than
four TV white space channels. Thus, recent research
studies have focused on finer-grade DSA schemes.
Accordingly, an unlicensed user can access a TV
channel if none of the TV receivers in its immediate
vicinity is watching that channel. Hence, the spec-
trum can be accessed based on dynamic behaviors of
licensed users, that is, TV viewers (Zhao et al. 2014,
Zhang and Knightly 2015). Zhao et al. (2014) has
shown that spectrum access based on TV viewership
leads to up to a fivefold increase in available capacity
in New York.

1.3. 3.5-GHz Citizens Broadband Radio

Service (CBRS)

In 2015, the FCC adopted a spectrum-sharing policy to
make 150MHz of spectrum available formobile usage in
the 3.5-GHz band previously allocated to the U.S. De-
partment of Defense (FCC 2015), using a three-tiered
sharingmechanism: At the top tier, incumbent users, for
example, federal operations and satellite services, have
exclusive rights to the spectrum in their vicinity. The
priority access tier allows use of part of the spectrum in
a census track for a limited amount of time. The general
authorized access tier may use the remaining spectrum
at no cost.

1.4. Long-Term Evolution Unlicensed (LTE-U)

Initially spearheaded by the LTE-U Forum, SPs have
begun standardizing 4G network operation on the
unlicensed 5-GHz band to provide cellular networks
access to additional unlicensed spectrum by sharing
the spectrum with WiFi networks and other LTE op-
erators. LTE-U would allow 4G networks to utilize the
5-GHz WiFi band when network demand exceeds
available licensed resources (Zhang et al. 2015). LTE-U
tries to utilize unused 5-GHz channels based onWiFi and
LTE measurements. This results in three types of chan-
nels: (i) if a channel is unused byWiFi, the full capacity of
that channel may be available to the SP for a certain
duration; (ii) if a channel is unused by WiFi, the capacity
may be shared by two or more SPs; (iii) if a channel is
used by WiFi, LTE-U shares the channel with the WiFi
network (Bhattarai et al. 2016).
These emerging DSA solutions result in the fol-

lowing challenges to network operators:
• Nonexclusive use: DSA approaches are character-

ized by the operator’s use of unlicensed channels,
which, by definition, are not exclusively reserved. As
a result, unlicensed use of the spectrum provides ca-
pacity to the operator in a nondeterministic fashion.
• Dynamic channel availability: The availability of an

unlicensed channel depends on factors that cannot be
controlled by the network operator. For example, in TV
white space, TV black space, and CBRS, the number of
available channels changes with time depending on the
behaviors of licensed users (i.e., TV viewers or federal
operations).
• Varying channel capacity: In DSA solutions, two

available channels may not provide the same capacity. For
example, in LTE-U, if an unused 5-GHz channel is found,
the operator can utilize the maximum capacity provided
by that channel. However, in some cases, the channel
capacity may need to be shared with a WiFi network,
leading to a lower and dynamically changing available
capacity. As a result, different types of channel classes exist
because of their available capacity as well as the amount
of time they are available to the network operator.
These three factors imply that the capacity of the

wireless network varies dynamically. In addition, it is
highly likely that the capacity will not be sufficient to
provide a good quality Internet service to users at the
peak hours of demand, especially in urban areas. To be
able to manage the peak-hour demand, we propose
to use a dynamic pricing scheme in which the fees
charged for an Internet connection change in real time.
To study this problem, we consider a network in

which an SP monitors the availability of unlicensed
channels and posts prices to the incoming customers
based on the available bandwidth. If an arriving cus-
tomer is willing to accept the posted price, the customer
starts the Internet connection; otherwise, the customer
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departs from the system. We consider a system with
multiple classes of customers, in which classes have
different bandwidth requirements based on the type of
activity to be performed, for example, video streaming
versus web surfing versus checking email. The con-
nection fee paid by an arriving customer depends on
the posted price at the time of arrival and the con-
nection duration. A key feature of this setting is that
the available bandwidth is a stochastic process be-
cause unlicensed channels become available for In-
ternet use if they are not actively used by licensed
users, and they become unavailable when licensed
users start using the channel. This implies that the
available bandwidth may decrease at random, and
thus, customers that are in service may need to be
dropped by the SP. A key challenge in managing the
network is to maximize the revenue earned from
admitted customers while limiting the cost of dropped
customers.

For this setting, we develop an optimal dynamic pric-
ing strategy to maximize the revenue earned by an SP
using DSA policies on unlicensed bands while con-
sidering the limited capacity as well as the potential
losses associated with dropped customers. We model
the system as aMarkov decision process (MDP) in which
customers arrive as a stochastic process with sto-
chastic service times, and unlicensed channels be-
come available (providing bandwidth) as a stochastic
process with stochastic times until the channel be-
comes unavailable. Thus, the state of the system in-
cludes both the number of customers of each class
being served and the number of channels of each
class available for use by the system. Because of the
high-dimension state, the optimal policy is difficult
to compute and impractical to implement. Therefore,
we develop several heuristic policies in which the
customer classes and/or channel classes are aggre-
gated. We use a comprehensive set of numerical ex-
periments to demonstrate that the proposed heuristic
performs well with respect to the optimal policy. We
also compare the performance of the proposed heuristic,
which is dynamic (i.e., state-dependent), with non-state-
dependent (i.e., static) pricing policies. We find that the
proposed heuristic performs best, particularly when
the ratio of capacity to demand rate is low, a condition
that holds for the practical setting that motivated this
research.

2. Literature Review
The research in this paper has some similarity to the
previous literature in two areas: (i) dynamic pricing in
MDPmodels and (ii) admission control in systems with
multiple classes of demand and stochastic service rates.
A key distinguishing feature of our model, compared
with this previous work, is that, in addition to having

stochastic interarrival and service times, our model also
has stochastic capacity availability.
The most closely related previous work is that of

Gans and Savin (2007), henceforth GS, who focus on
dynamic pricing of rental assets (e.g., cars) when there
is stochastic demand from two classes of customers,
that is, contract customers (who may be admitted at
a prenegotiated price or rejected) and walk-in cus-
tomers (who are quoted dynamic prices based on the
number of customers already in the system). GS focus
on characterizing the conditions under which myopic
pricing policies are optimal for certain customer clas-
ses. Although some of our analysis builds on GS, there
are a number of key differences:
• In GS, all customers have the same capacity re-

quirement, which is normalized to one unit (e.g., every
customer wants to rent a single car), and the total
available capacity (e.g., rental car fleet size) is fixed and
known. In contrast, in our model, the capacity re-
quirement varies by customer class but is exogenously
specified, and the total available capacity evolves as
a stochastic process as channels become available or
unavailable.
• In our model, capacity may decrease, potentially

requiring the SP to drop customers from service at
a cost. Thus, we must determine a drop-off policy, which
specifies the set of customers to be dropped in a given
state, in addition to a dynamic pricing policy.
• GS make admission decisions for contract cus-

tomers and pricing decisions for walk-in customers, and
the latter is based on the class of the arriving customer
and the current number of customers of each class in the
system. In our model, there are no contract customers,
and our dynamic pricing decision is based on the class of
the arriving customer, the number of customers of each
class in the system, and the current available capacity.
• GS focus on characterizing conditions under which

preferred customer classes exist and for which myopic
policies perform optimally or close to optimally. In
contrast, we focus on developing heuristic policies that
are not myopic, that is, which are state dependent.
Other research considers dynamic pricing and/or

admission control for network services in which an
SP has available capacity that may be used to satisfy the
demands of customers who arrive stochastically and
have class-dependent capacity requirements. This pre-
vious work takes the SP’s total available capacity as
fixed and known. For example, Paschalidis and Tsitsiklis
(2000) consider dynamic pricing policies in such settings.
They study the case in which the available capacity is
large and there are many users with very small capacity
requirements. They demonstrate that a static pricing
policy is optimal in the limit. Mutlu et al. (2009) consider
a setting with fixed capacity and two customer classes
(primary and secondary users), in which each class has
the same service rate and each customer uses one unit of
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capacity. The SP makes pricing decisions for arriving
secondary users, and the price depends on the number
of customers in the system. Other literature on network
services with stochastic arrivals considers admission
control with exogenously specified prices (Zhao et al.
2010, Turhan et al. 2012, Yahav et al. 2013).

Another class of relevant research considers queuing
models of admission control problems in loss systems
with multiple classes of demand. In much of this work,
the resource or capacity requirement (e.g., number of
servers) is the same (and generally normalized to one)
for all customer classes; see, for example, Ulukus et al.
(2011), Turhan et al. (2012), and Carrizosa et al. (1998).
Because our model may require the dropping of cus-
tomers who have been admitted to the system, themost
relevant papers are those that consider preemption
or termination of a customer, including Turhan et al.
(2012) and Ulukus et al. (2011). However, in contrast to
these papers, our model allows the bandwidth re-
quirement per customer to vary by customer class.
Thus, it is most similar to the literature on stochastic
knapsacks, in which there are a fixed number of servers
with the number of servers required per customer
varying by customer class; see, for example, Altman
et al. (2001) and Ross and Tsang (1989). Our model also
has similarities to the literature on loss systems with
batch arrivals, including Örmeci and Burnetas (2004).
However, all of these referenced works assume that the
total available capacity (number of servers) is fixed and
known. Further, although these papers consider the
admission control problem, we manage admission and
maximize expected discounted profit by setting the
optimal price for each arriving customer.

There is also recent literature that considers service
systems that use self-scheduling servers, for example,
drivers in ride-sharing companies or agents in work-
from-home call centers. These self-scheduling servers
are not employees in the traditional sense, and their
schedules are not dictated by the company, that is, the
servers determine their own work schedules. In such
business environments, as in the problem setting thatwe
consider, both customer demand and service capacity
change stochastically. Hence, to better match supply
and demand, dynamic pricing may be used to manage
demand (i.e., the customers). Alternatively, dynamic
wages can be used to manage supply (i.e., the servers).
In particular, surge pricing is often used as a tool to
motivate servers to show up to work at required times.
Cachon et al. (2017), Gurvich et al. (2017), and Ibrahim
(2017) study the role of dynamic wages in such sys-
tems. Our paper is different from this line of work in
threeways: (i) Theseworks try tomatch capacity, that is,
the number of self-scheduling servers, to demand, and
we try to match demand to capacity using admission
control through pricing. (ii) In these works, each cus-
tomer is served by a single server (i.e., single unit of

capacity), and in our model, the customers’ bandwidth
(i.e., capacity) requirements vary by customer class.
(iii) In these works, a server cannot terminate a cus-
tomer’s service before service is completed. Thus, in
contrast to our setting, customer drop-off is not a con-
cern. There is also recent work on time-dependent
pricing schemes in wireless networks (Zhang et al. 2014,
Chang et al. 2015, Huang et al. 2016, Tsai et al. 2017).
In these schemes, data pricing for the next day is de-
termined based on information from the previous day(s).
Prices are allowed to vary from one time slot to another
(e.g., hourly) to encourage users to shift demand from
peak to off-peak hours. However, prices are not ad-
justed in real time based on the system state, and the
network capacity is assumed to be fixed and known.

3. Problem Formulation
We next introduce our model for the SP’s problem. The
notation and model formulation used in this paper are
similar to GS. However, our model and analysis are
more complex because capacity is a stochastic process
rather than constant.

3.1. Model Assumptions and Notation

In this section, we first outline our assumptions and
notation for the customer and channel classes. We then
describe the overall system state and how it evolves
over time.

3.1.1. Customer Classes. There are M customer clas-
ses, indexed by i = 1, 2, . . . , M. Customers in class i
arrive according to a Poisson process with rate λi. The
service time for class i customers is exponentially
distributed with rate µi. The bandwidth (capacity) re-
quirement for a class i customer is ri, where 0 < ri < 1.
For convenience,wedefineµ = (µ1, . . . ,µM), r= (r1, . . . , rM),
and λ = (λ1, . . . , λM). In general, we use bold to denote
vectors. The customer classes are ordered according
to the following assumption.

Assumption 1. rM ≤ rM−1 ≤
. . . ≤ r2 ≤ r1 < 1.

We standardize the total bandwidth provided by a
single channel (of any class) to one. Thus, because ri< 1,
several customers can be simultaneously served by a
single channel.
The number of class i customers in the system at time t

is denoted byNi(t). We letN(t) = (N1(t), . . . ,NM(t)), and
we define N(t) �

∑M
i�1 Ni(t). We drop the argument t

when it is not required for clarity.
The SP must select the price to post to each arriving

customer. The price set for Internet usage per unit of
time is 8 � {u1, . . . , uL}, where the prices are ordered
such that u1< u2< . . .< uL. Because each customer class
has a different bandwidth requirement, ri, we scale the
price set8 by ri to find the price set for customer class i.
For example, the set of prices that can be posted to an
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arriving class i customer, denoted by8i � {ui1, . . . , uiL},
may be obtained by setting uiℓ = riuℓ, for all ℓ = 1, . . . , L.
These prices are fees to be paid by the customers of
class i per unit of time usage.

A customer from class i accepts the posted price uiℓ
with probability piℓ, for l = 1, 2, . . . , L, where these
probabilities are assumed to follow Assumption 2.

Assumption 2. (i) pi1 ≥ pi2 ≥ . . . ≥ piL is a monotone se-
quence for i = 1, . . . , M; (ii) uiL is defined such that piL = 0 for
i = 1, . . . , M.

Part (i) implies that a customer’s willingness to ac-
cept an offered price decreases as the price increases.
Part (ii) implies that the maximum price, uiL, is suffi-
ciently large so that it is always rejected. The SP can
reject an arriving customer by posting this reject price.

The total connection fee of a customer depends on the
price the customer accepts and the length of the cus-
tomer’s connection time. We let γ denote the continuous-
time discount rate, where γ > 0. The expected discounted
revenue from a class i customer that accepts the offered
price uiℓ is wiℓ = uiℓ/(µi + γ), where wi1 < . . . < wiL. When
a class i customer accepts the posted price uiℓ, the present
value of the customer’s expected total connection fee at the
time of the customer’s connection is wiℓ. In the remainder
of the paper, we refer to wiℓ as the discounted price.

There may be times when it is necessary to drop a
customer who is currently receiving service. In that case,
the realized service time no longer follows an exponential
distribution, which significantly complicates the analysis.
To ensure tractability, we adopt the following conven-
tion: The service times for customer class i follow an
exponential (µi) distribution. When a customer of class i
arrives and the SP posts the price, the actual service time
is unobserved. However, after deciding to accept the
price, and before entering into service, the customer re-
alizes the service time, reports this to the SP, and makes
the appropriate payment. Thus, we assume that the
customer pays upon admission. If the customer is later
dropped because a channel becomes unavailable, the SP
may refund part of this payment or offer a fixed penalty
fee (discussed further as follows) to the customer.

3.1.2. Channel Classes. There are D channel classes,
and the classes differ in their degree of availability to
the SP. The number of channels of class d available
to be used by the SP at time t is denoted by Rd( t),
where Rd( t) ≤ Rmax,d, with R( t) = (R1( t), . . . , RD( t)) and

R(t) �
∑D

d�1 Rd(t). We refer toR( t) or R( t) as the capacity.
We drop the argument t when it is not required for
clarity. We use Rmax,d to denote the maximum number
of channels of class d that can ever be available to the
SP, and we define Rmax �

∑D
d�1 Rmax,d. We refer to Rmax

as themaximum capacity. As described in Section 1,Rd( t)
is a stochastic process that increases (decreases) in

increments of one unit as channels become available
(unavailable). Once a channel from class d becomes
available, it remains available for a period of time that
follows an exponential distribution with rate ωd, and
then it becomes unavailable for a period of time that is
exponentially distributed with rate φd. We define ω =
(ω1, . . . , ωD) and f = (φ1, . . . , φD).
Because the number of available channels can de-

crease at any time, it is possible that the total required
capacity, that is, N( t)′r, where N( t)′ denotes the
transpose of N( t), may at some time exceed the ca-
pacity, R( t). In that case, some customers currently in
service need to be dropped, that is, have their service
immediately terminated. In this case, we assume the SP
incurs a fixed drop-off fee, denoted by K, which sat-
isfies Assumption 3.

Assumption 3. The drop-off fee K satisfies wi1< . . .<wi,L−1<

K for i = 1, . . . , M.

The fixed fee, K, incurred by the SP may include
a penalty fee or partial refund paid to the customer
and/or a goodwill cost incurred by the SP because of
customer dissatisfaction.

3.1.3. System State. The state of the system at time t,
denoted by S( t), is given by the number of customers
of each class currently in the system as well as the
number of available channels from each class, that
is, S( t) = (N( t), R( t)). An incoming class i customer
can be accepted only if N( t)′r + ri ≤ R( t). Otherwise,
that customer must be rejected by the SP by post-
ing the reject price, uiL. Hence, the state space is
6 � {(N,R) :N′

r≤R,Rd ≤Rmax,d, d � 1, . . . ,D}.

3.2. Model Formulation

We study a continuous-time model with exponential
intertransition times. Thus, the embedded stochastic
process is a continuous-timeMarkov chain. The state of
the system changes at each arrival and departure (of
customers and channels). The SP must choose the price
to postwhenever an arrival occurs andwhich customer(s)
to drop when capacity decreases, that is, a channel
becomes unavailable and the remaining capacity is
insufficient to handle the customers currently in the
system. At these decision epochs, the decisions are
based on the state of the system, S( t). This decision
process is an infinite horizon, continuous-time MDP.
See Puterman (1994) for details.
By using uniformization, we build the discrete-time

equivalent of the system (Lippman 1975). The maxi-
mum possible rate out of any state is Γ �

∑M
i�1 λi +

∑M
i�1 µi�Rmax/ri� +

∑D
d�1(ωd + φd)Rmax,d + γ.Without loss

of generality, we assume that Γ is one.
The value function, v(N, R), is the total expected

discounted stream of future rewards and penalties
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given the system is in state (N,R) and is operated
optimally. The optimality equation is as follows.

v(N,R) �
∑M

i�1

λiHi(v(N,R)) +
∑M

i�1

µiNiv(N − e
M
i ,R) (1)

+
∑D

d�1

φd(Rmax,d − Rd)v(N,R + e
D
d )

+
∑D

d�1

ωdRdGd(v(N,R)) (2)

+
∑M

i�1

µi

( ⌊
Rmax

ri

⌋
−Ni

[ )

+
∑D

d�1

(φdRd + ωd(Rmax,d − Rd))

]
v(N,R), (3)

where e
M
i (eDd ) is an M-dimensional (D-dimensional)

unit vector with a one in the ith spot (dth spot) and zero
in the remaining spots.

The function Hi(v(N,R)) represents the SP’s pricing
decision when a class i customer arrives while the sys-
tem is in state (N,R). We write Hi as follows.

Hi(v(N,R))

�
max

ℓ

[piℓ(v(N + e
M
i ,R) + wiℓ) + (1 − piℓ)v(N,R)]

if N′
r + ri ≤R,

v(N,R) if N′
r + ri >R.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(4)

The pricing decisions are made only at arrival events
with rate λi. Hence, rather than tracking revenues in
continuous time, we track expected discounted reve-
nues upon arrival.

The second term in the definition of v(N, R) repre-
sents transitions resulting from customer departures,
and class i customers depart at rate µiNi when there are
Ni customers of class i currently being served. The third
term in the definition of v(N,R) represents transitions
resulting from channels becoming available, and class
d channels become available at rateφd(Rmax,d −Rd) when
there are Rd class d channels currently in use.

In the fourth term in the definition of v(N, R), class
d channels become unavailable at rateωdRd. The function
Gd(v(N,R)) represents the SP’s drop-off decision when
a class d channel becomes unavailable while the system
is in state (N,R). We write Gd as follows.

Gd(v(N,R))

�
max
N̂

[
v(N̂,R − e

D
d ) − K

∑M

i�1

(Ni − N̂i)

]

if N′
r>R − 1,

v(N,R − e
D
d ) if N′

r≤R − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where N̂ � (N̂1, . . . , N̂M), N̂
′

r≤R − 1, and N̂i ≤Ni,
i � 1, 2, . . . ,M.

Because the drop-off fee, K, used in the Gd function is
fixed per customer, we might intuitively expect that
customers requiring the highest bandwidth would be
dropped first. Hence, in this paper, we also study
a bandwidth-based drop-off function, denoted by GB

d ,
which drops customers according to their bandwidth
requirements; that is, class 1 customers are dropped first,
followed by class 2 customers, etc., until the capacity is
sufficient to satisfy the bandwidth requirements of the
remaining customers. In the following section, we com-
pare the optimal and bandwidth-based drop-off policies
in detail. We find that, in most cases, it is optimal to drop
the customers with the highest bandwidth requirements
first. However, in some cases, it is optimal to drop
a customer requiring a lower bandwidth if that customer’s
expected service time is relatively long (see Theorem 3).
The final term in v(N,R) represents fictitious tran-

sitions to the current state (N,R). The value iteration
operator, T, is defined as follows, where f is any ar-
bitrary function:

Tf (N,R) �
∑M

i�1

λiHi( f (N,R)) +
∑M

i�1

µiNi f (N − e
M
i ,R)

+
∑D

d�1

φd(Rmax,d − Rd) f (N,R + e
D
d )

+
∑D

d�1

ωdRdGd( f (N,R))

+
∑M

i�1

µi

(⌊
Rmax

ri

⌋
−Ni

)[

+
∑D

d�1

(φdRd + ωd(Rmax,d − Rd))

]
f (N,R). (6)

Because T is a contraction mapping, it can be repeatedly
applied to find the value function through successive
approximation. If v0 represents an initial estimate of v,
then one pass of the value iteration algorithm (VIA)
produces v1=Tv0, and q applications of T produce vq =
Tvq−1=Tqv0. Because the state space, 6, and the one-
period payments are finite, there exists a unique v
such that Tv= v and limq→∞vq=v. See theorem 6.2.5 in
Puterman (1994). Hence, VIA can be used to find the
v values. See section 6.3 in Puterman (1994). The rewards
and transition probabilities are stationary. Because the
state space,6; the action space,8i for i= 1, . . . ,M; and the
one-period payments are finite, there exists an optimal
deterministic stationary policy. See theorem 6.2.10 in
Puterman (1994).

3.3. Dynamic Pricing Policy

The optimal dynamic pricing policy for the SP is found
by solving the optimization in the Hi(v(N, R)) function,
which determines the optimal price to offer a class i
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customer given the state of the system. To characterize
this pricing policy, define Ai(N, R) to be the opportunity
cost associated with the acceptance of an arriving class i
customer when the system is in state (N, R), where

Ai(N,R) � v(N,R) − v(N + e
M
i ,R)≥ 0. As in Gans and

Savin (2007), we let gi (wiℓ|Ai(N,R)) = piℓ(−Ai(N,R) + wiℓ)
denote the expected net gain from offering the dis-
countedpricewiℓ to a class i customer given the state (N,R)
and let g∗i (N,R) ≡ g∗i (Ai(N,R)) denote the expected net
gain from offering the optimal discounted price to a
class i customer. In other words, g∗i (Ai(N,R)) �maxwiℓ

gi (wiℓ |Ai(N,R))�maxℓ[piℓ (−Ai (N,R) + wiℓ)]. Note that
finding g∗i (Ai(N,R)) is equivalent to the optimization
in Hi(v(N, R)). Finally, let w∗

i (N,R) ≡ wiℓ ∗i (Ai(N,R)), where
ℓ
∗
i (Ai(N,R))� argmaxℓ[piℓ(−Ai(N,R) + wiℓ)], denote the
optimal discounted price to offer a class i customer
who arrives while the system is in state (N, R). The
optimal discounted prices are dependent on the state,
(N,R), only through the opportunity cost, Ai. Therefore,
for notational simplicity, we suppress the (N, R) no-
tation when it is not required for clarity; that is, we
write g∗i (Ai) and ℓ

∗
i (Ai). We can now state the following

result.

Theorem 1. The expected net gain from offering the optimal
price to an arriving class i customer, g∗i (Ai), is nonincreasing
in Ai, and the optimal discounted price, wiℓ ∗i (Ai), is non-
decreasing in Ai.

Thus, to prove structural properties for the optimal
dynamic pricing policy, it is sufficient to understand
the behavior of Ai, the opportunity cost associated with
the acceptance of an arriving class i customer. The
proof of Theorem 1 is given in Online Appendix A.

WhenAi = 0, letmi = argmaxℓ(piℓwiℓ). The pricewimi
is

the myopic price, that is, the price that maximizes the
immediate expected revenue from a class i customer.
Because the optimal discounted price, wiℓ ∗i (Ai), is non-
decreasing in Ai, the myopic price is a lower bound on
the optimal price in any state.

Corollary 1. The optimal discounted prices satisfy
w∗

i (N,R)≥wimi for all (N,R).

Theorem 1 and Corollary 1 together imply that if the
condition

pimi
(−Ai + wimi

)≥ piℓ(−Ai + wiℓ) for all ℓ � mi + 1, . . . , L

(7)

is satisfied, then wimi
is the optimal discounted price to

offer to a class i customer. Equation (7) implies that if

Ai ≤ (pimi
wimi

− pilwiℓ)/(pimi
− piℓ) (8)

for all ℓ =mi +1, . . . , L, thenwimi
is the optimal discounted

price to offer to a class i customer. Hence, when the
opportunity cost associated with the acceptance of an

arriving customer is sufficiently small, themyopic price is
the optimal price. However, if the opportunity cost is
larger than a threshold, the optimal price is greater than
the myopic price. Similar results are proven in the lit-
erature for various revenue management problems. See,
for example, Bitran and Caldentey (2003).

4. Structural Properties of the MDP
Next, for several different problem settings, we analyze
the MDP formulation to derive insights into the struc-
ture of the SP’s optimal dynamic pricing policy.

4.1. M Customer Classes and D Channel Classes

For the general setting, the total expected discounted
stream of future rewards and penalties decreases as we
have more customers in service and increases as we
have more channel availability. In other words, more
congestion leads to lower expected profit. Also, for
a given set of parameter values, if we only increase the
arrival rate to the system, this larger demand leads to
higher expected profit. Specifically, we have the fol-
lowing theorem:

Theorem 2. The optimal value function v(N,R) has the
following properties:

1. v(N,R) is nonincreasing in Nj; that is,

v(N + e
M
j ,R)≤ v(N,R), for j = 1, . . . , M.

2. v(N,R) is nondecreasing in Rd; that is,

v(N,R + e
D
d )≥ v(N,R), for d = 1, . . . , D.

3. v(N,R) is a nondecreasing function of the arrival rates,
λj, j = 1, . . . , M.

The proof of Theorem 2 is given in Online Appendix
B. We next show how the different service rates and
remaining capacity in a given state impact the value
function.

Theorem 3. Assume that µj ≤ µk for all j, k = 1, . . . , M, and
j < k; then

v(N + e
M
j ,R)≤ v(N + e

M
k ,R). (9)

The proof of Theorem 3 is given in Online Appendix C.
When j < k, Assumption 1 implies rj ≥ rk. Hence, the
remaining (i.e., unused) capacity is smaller in state

(N + e
M
j ,R) than in state (N + e

M
k ,R). According to

Theorem 3, when µj ≤ µk, admitting a class k customer
rather than a class j customer takes the system to a state
with relatively larger value because of the larger
remaining capacity in state (N + e

M
k ,R). However,

when µj > µk, the opposite might hold; that is, it might
be preferable to admit a class j customer with higher
bandwidth requirement rather than a class k customer
with smaller bandwidth requirement. This is because,
when µj > µk, the expected service time of a class
j customer is smaller than that of a class k customer; that
is, 1/µj < 1/µk.
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This theorem has implications for the optimal drop-
off policy, represented by the Gd function in Equation (5).
In most cases, when there is a shortage of resources, that
is, when R > N

′

r, it is optimal to drop the customer(s)
with the highest bandwidth requirement, which we refer
to as the bandwidth-based drop-off policy. However,
when customers requiring lower bandwidth have longer
expected service times than customers requiring higher
bandwidth, the bandwidth-based drop-off policy may
not be optimal. Thus, when the turnover rate of low
bandwidth customers is small, that is, they stay in the
system for a long time, it may be optimal to drop those
low-bandwidth customers first.

In the light of this theorem, we also considered an
alternative heuristic drop-off policy, which drops
customers based on the magnitude of ri/µi ; that is,
customers with the largest value of ri/µi are dropped
first. Our experimental results indicate that this alter-
native drop-off policy does not perform considerably
better than the proposed bandwidth-based drop-off
policy.

The following theorem, whose proof is in Online
Appendix D, demonstrates that the bandwidth-based
drop-off policy and the optimal drop-off policy always
drop the same number of customers. However, the
classes of the dropped customers may not be the same.

Theorem 4. The total number of customers that will be
dropped according to the optimal drop-off function Gd in
Equation (5) and the bandwidth-based drop-off function GB

d

are exactly the same.

In the general case of M customer classes and D
channel classes, structural properties for the value
function, such as concavity and submodularity, are not
provable. Even in the special case of M = 2 customer
classes and D channel classes, the concavity of the
optimal value function in N1 and N2 is not provable.
A similar observation can be made about Gans and
Savin (2007) and Ulukus et al. (2011); that is, these
authors are also not able to prove the concavity of the
value function when there are two customer classes
with different service rates. Because we are unable to
prove concavity, we cannot prove that the optimal
price, w∗

i (N1,N2,R), is nondecreasing in Ni, i = 1, 2. In
fact, experimental results presented in Section 6 in-
dicate that, in some states, the optimal prices for class i,
w∗

i (N1,N2,R), are decreasing in Ni, a result that may
seem counterintuitive.

Similarly, whenM = 2, submodularity of the optimal
value function in N1 and N2 is not provable, and thus,
we cannot prove that the optimal discounted price for
an arriving class i customer, w∗

i (N1,N2,R), is non-
decreasing in Nj, i, j = 1, 2, i ≠ j. However, if we use the
bandwidth-based drop-off function, GB

d , we can show

that the optimal value function is submodular inN1 and
N2, and thus, w∗

i (N1,N2,R) is nondecreasing in Nj, i, j =
1, 2, i≠ j. In other words, the price offered to an arriving
class i customer will generally be increasing in the
number of class j customers already in the system. The
fact that submodularity of the value function is de-
pendent on the use of the bandwidth-based drop-off
policy can be explained by Theorem 3. Under the
optimal drop-off policy, it is sometimes optimal to drop
the low-bandwidth customer(s) of class 2 first even
when there are high-bandwidth class 1 customers
in the system. However, under the bandwidth-based
drop-off policy, class 1 customers are always drop-
ped first.

4.2. Similar Customer Classes

Wenext consider the case inwhich the customer classes
are similar, that is, have a common service rate and
bandwidth requirement, µ1 = . . . = µM = µ and r1 = . . . =
rM = r, but their arrival rates and price sensitivities
may differ. In this case, we do not need to distin-
guish between the customer classes once they are
admitted, which reduces the size of the state space.
Because the bandwidth requirements are the same
for all classes, the price sets will be the same;
that is, 81 � . . . � 8M � {ru1, . . . , ruL}. Because the
service rates are identical, we have w1ℓ = . . . = wMℓ =
wℓ, ℓ = 1, . . . , L.

4.2.1. M Similar Customer Classes and D Channel

Classes. In the setting with a general number of
customer classes and channel classes, the state is (N,R),
where N is the total number of customers that are
currently in the system. From Theorems 3 and 4,
we can conclude that the bandwidth-based drop-off
policy is optimal in this case. The formulation of the
bandwidth-based drop-off function in this case is as
follows.

GB
d (v(N,R)) �

v

⌊
R − 1

r

⌋
,R − e

D
d

( )
− K N −

⌊
R − 1

r

⌋( )

ifNr>R − 1,

v(N,R − e
D
d ) ifNr≤R − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

for d = 1, . . . ,D. Because it is easier to prove results
using the bandwidth-based drop-off function for-
mulation, GB

d is used in all of the proofs in this
section.
Given this problem formulation, we can derive some

important properties for the value function, and they
are useful for characterizing the optimal dynamic
pricing policy. The properties proven in Theorem 2
apply to the value function v(N, R) as well.
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Theorem 5. The optimal value function v(N,R) has the fol-
lowing properties:

1. v(N,R) is concave in N; that is, v(N + 2,R) − v(N + 1,
R) ≤ v(N + 1, R) − v(N, R).

2. v(N, R) is supermodular on 6; that is, v(N + 1,

R + e
D
d ) − v(N + 1,R)≥ v(N,R + e

D
d ) − v(N,R).

The proof of Theorem 5 is analogous to the proof of
Theorem 2. Notice that, when the customer classes are
similar, we are able to prove the concavity of the value
function. In the literature, it is not uncommon for the
value function to be concave in the number of cus-
tomers in the system when the service characteristics
of all customer classes are the same (in our case, the
service rates and bandwidth requirements are the
same). See, for example, Miller (1969) and Gans and
Savin (2007).

The supermodularity result in Theorem 5 implies
that the value of having an additional channel of any

class is increasing in the number of customers in the

system. This property is different from monotonicity

of the value function with respect to the number of

servers, a result that is typically proven in previous

literature, for example, Aktaran-Kalayci and Ayhan

(2009). Although monotonicity implies that the

value increases as the number of servers increases,

supermodularity considers how that rate of increase

in the value function depends on the number of

customers in the system. Further, when the previous

literature considers how a change in the number of

servers affects the value function, the change in the

number of servers is permanent (i.e., the literature

compares a setting in which the system has s servers

to a setting in which the system has s + 1 servers). In

contrast, in our setting, we are considering how the

value function changes with a change in the sys-

tem state (i.e., the available channels R), which is

a temporary change (i.e., the number of channels

fluctuates over time as channels become available

and unavailable).
We next discuss the optimal dynamic pricing

policy. We use A(N, R) to represent the opportunity

cost associated with the acceptance of an arriving

customer when the system is in state (N, R), where

A(N, R) = v(N, R) − v(N + 1, R) ≥ 0. We drop the

subscript on Ai because we do not need to differen-

tiate by customer class. From Theorem 5, we know

that v is concave in N and supermodular in N and R.

Hence, A(N, R) is nondecreasing in N and non-

increasing in Rd. Therefore, using Theorem 1, we can

state the following result:

Corollary 2. The expected net gain from offering the optimal
price to an arriving class i customer, g∗i (N,R), is non-

increasing in N and nondecreasing in Rd, and the optimal

discounted prices are nondecreasing in N and nonincreasing
in Rd; that is,

w∗
i (N,R)≤w∗

i (N + 1,R) and w∗
i (N,R)≥w∗

i (N,R + e
D
d ).

Similar relationships hold for u∗i (N,R).

Thus, the optimal prices are increasing in the number
of customers in the system, N, and decreasing in the
number of available channels, R �

∑D
d�1 Rd. Previous lit-

erature, for example, Aktaran-Kalayci and Ayhan (2009),
has also found that the optimal prices are decreasing in the
number of servers and in the capacity of the system.
However, in that literature, the number of servers and
capacity are exogenously specifiedparameters. In contrast,
in our setting, the number of available channels is part of
the system state and varies stochastically.
Overall, we have that the prices are decreasing in the

remaining capacity, which can be measured by R − N.
Using Corollary 1 and Equation (8), we can also ob-
serve that myopic pricing is optimal when the
remaining capacity is sufficiently large.
We next present some sensitivity analysis results for

the optimal pricing policy.

Theorem 6. The optimal pricing policy has the following
properties:

1. w∗
i (N,R) and u∗i (N,R) are nondecreasing functions of

the arrival rates, λj, j = 1, . . . , M.
2. w∗

i (N,R) is a nonincreasing function of the service
rate, µ.

3. w∗
i (N,R) and u∗i (N,R) are nondecreasing functions of

the drop-off fee, K.

The proof of Theorem 6 is given in Online
Appendix E. Theorem 6.1 indicates that an increase
in the arrival rate for any given customer class causes
an increase in optimal prices of all classes. Intuitively,
an increase in the arrival rate for any class increases
the congestion in the system, requiring higher prices.
Theorem 6.2 indicates that when customers can be
cleared from the system more quickly, optimal prices
can be reduced. Notice that the relationship presented
in Theorem 6.2 holds only for w∗

i (N,R) and is not
valid for u∗i (N,R). Recall that u∗i � w∗

i (µ + γ). When µ

increases and w∗
i decreases, the behavior of u∗i is

unclear. Theorem 6.3 indicates that an increase in
the drop-off fee, K, increases the optimal prices for
all customer classes when the customer classes are
similar.
Similar results are common in the literature on

pricing of queueing systems. For example, Aktaran-
Kalayci and Ayhan (2009) provide similar mono-
tonicity results for the optimal prices with respect to the
arrival and service rates for an M/M/s/K system with
a single customer class. In addition, for a large class of
single-dimension queueing systems, Cil et al. (2009)
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discuss structural properties of the value function (and,
specifically, for the opportunity cost, which is analogous
to Ai as defined previously) that are sufficient to en-
sure that the optimal prices have similar mono-
tonicity properties with respect to the arrival and
service rates. However, it is important to note that none
of the systems studied in these previous works con-
siders capacity that evolves as a stochastic process with
the potential for customer drop-offs. Thus, these pre-
vious works also do not present analogous results
regarding themonotonicity of the priceswith respect to
the drop-off fee.

We next consider the impact of customer’s price
sensitivity on the optimal prices.

Theorem 7. For classes j and k, if pjℓ/pkℓ is an increasing
function of ℓ for ℓ = 1, . . . , L − 1, then w∗

j (N,R)≥w∗
k(N,R)

for all (N,R). A similar result holds for u∗j (N,R) and
u∗k(N,R).

The proof of Theorem 7 is given in Online
Appendix F. The theorem implies that customers who
are more price sensitive will be offered lower prices.
Gans and Savin (2007) prove a similar result for walk-
in customers. The condition in Theorem 7, that is, pjl/pkl
is an increasing function of l, implies that class k cus-
tomers are more price sensitive than class j customers.
Recall that pil denotes the probability that a class i
customer will accept the posted price rul, where the
prices are ordered such that u1 < u2 < . . . < uL. Assump-
tion 2 implies that pi1 ≥ pi2 ≥ . . . ≥ piL for all i.
Thus, for all customer classes, the probability of ac-
cepting a posted price decreases as the price increases.
Hence, in the ratio pjl/pkl, both pjl and pkl are decreasing
in l. The condition that pjl/pkl is an increasing function
of l implies that pkl decreases more rapidly in l than
does pjl, which implies that class k customers are more
price sensitive than class j customers.

4.2.2. M Similar Customer Classes and Two Channel

Classes. In this section, we consider a setting with M
similar customer classes and just D = 2 channel classes
to consider how the relative magnitudes of the channel
availability (ωd) and unavailability (φd) rates affect the
optimal prices. We present two theorems to demon-
strate the results.

Theorem 8. Suppose the two channel classes have the same
availability rate and maximum capacity; that is,ω1 =ω2 =ω
and Rmax,1 = Rmax,2 = 0.5Rmax. However, the unavailability
rates may differ; that is, φ1 ≥ φ2. Then the optimal pric-
ing policy satisfies w∗

i (N,R1 + 1,R2)≥w∗
i (N,R1,R2 + 1).

A similar relationship holds for u∗i (N,R1,R2).

The proof of Theorem 8 uses Theorem 1 and is
analogous to the proof Theorem 5. Under the condi-
tions of Theorem 8, the probability of a channel
becoming unavailable in states (N, R1 + 1, R2) and (N, R1,

R2 + 1) are the same and equal to (R1 + R2 + 1)ω.
However, the probability of a channel becoming
available in state (N, R1 + 1, R2) is (0.5Rmax – R1 – 1)φ1 +
(0.5Rmax – R2)φ2. This is less than or equal to the prob-
ability of a channel becoming available in state (N, R1,
R2 + 1), which is (0.5Rmax – R1)φ1 + (0.5Rmax – R2 – 1)φ2.
Hence, there is relatively less capacity in state (N, R1 +
1, R2) than in state (N, R1, R2 + 1), which leads to higher
optimal discounted prices in state (N, R1 + 1, R2).

Theorem 9. Suppose the two channel classes have the same
unavailability rate and maximum capacity; that is,φ1 = φ2 =
φ and Rmax,1 = Rmax,2 = 0.5Rmax. However, the availability
rates may differ; that is, ω1 ≥ ω2. Then the optimal pricing
policy satisfies w∗

i (N,R1 + 1,R2)≥w∗
i (N,R1,R2 + 1). A

similar relationship holds for u∗i (N,R1,R2).

The proof of Theorem 9 uses Theorem 1 and is
analogous to the proof Theorem 5. Under the condi-
tions given in Theorem 9, the probability of a channel
becoming available in states (N, R1 + 1, R2) and (N, R1,
R2 + 1) are the same and equal to (0.5Rmax−R1 −R2 − 1)φ.
However, the probability of a channel becoming un-
available in state (N, R1 + 1,R2) is (R1 + 1)ω1 +R2ω2. This is
larger than or equal to the probability of a channel
becoming unavailable in state (N, R1, R2 + 1), which is
R1ω1 + (R2 + 1)ω2. Hence, there is relatively less capacity
in state (N,R1 + 1, R2) than in state (N,R1,R2 + 1), which
leads to higher optimal discounted prices in state
(N, R1+1, R2).

5. Heuristic Policies
The optimal dynamic pricing policy can be determined
through the VIA when the state space is reasonably
small. However, for realistic problem sizes, solving the
VIA is infeasible. Therefore, we propose three heuris-
tics that approximate the optimal dynamic pricing
policy by aggregating either the customer classes, the
channel classes, or both. In these heuristics, we utilize
the VIA in the aggregate state space. Thus, the pricing
policy obtained from the heuristic is suboptimal for the
original (nonaggregate) state space. In Section 6, we
numerically evaluate the performance of these pro-
posed dynamic pricing heuristics and compare their
performance with both the myopic and optimal static
pricing policies.

5.1. N-Heuristic

In the N-heuristic, which is motivated by the optimal
policy for the model in Section 4.2.1 with M similar
customer classes and D channel classes, we aggregate
the customer classes into a single average class. LetN( t)
be the number of customers in the system at time t,
where N(t) �

∑M
i�1 Ni(t). The aggregate state is S( t) =

(N( t), R1( t), . . . , RD( t)). Thus, once a customer is ad-
mitted to the system, the heuristic does not keep track of
the customer’s class. Therefore, we model the system
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using the average bandwidth requirement, r̄, and average
service rate, µ̄, across the customer classes. However,
the heuristic does consider the customer class at the time
of a customer arrival to the system; that is, the price
posted to an arriving customer depends on that cus-
tomer’s price sensitivity (through the piℓ probabilities).
Further, the customer’s bandwidth requirement, ri,
is considered when determining whether the cus-
tomer can be admitted to the system. Thus, an in-
coming class i customer can be accepted if N(t)r̄ + ri ≤

R(t), where R(t) �
∑D

d�1Rd(t), and the state space is
6 � {(N, R) :N r̄≤R,Rd ≤Rmax,d, d � 1, . . . ,D}.

The VIA for the N-heuristic can be used to de-
termine a pricing policy. However, because the
heuristic aggregates customers once they are ad-
mitted to the system, it cannot be used to determine
a drop-off policy that considers the classes of the
customers that are currently in the system. When the
heuristic is implemented, however, it is necessary to
have a drop-off policy to determine how to drop
customers when the bandwidth requirement ex-
ceeds the available capacity. Thus, for the imple-
mentation of the N-heuristic, we propose to use the
bandwidth-based drop-off policy presented in Sec-
tion 3.2. As discussed previously, because of Theorems 3
and 4, this policy is known to be optimal under certain
conditions.

5.2. R-Heuristic

In the R-heuristic, in contrast to the N-heuristic, we
aggregate the channel classes into a single average class.
We model the system using the average unavailability
rate, φ̄, and average availability rate, ω̄, across the
classes. The aggregate state is S(t) = (N1(t), . . . , NM(t),
R(t)). An incoming class i customer can be accepted
if N(t)′r + ri ≤ R( t). Thus, the state space is 6 �
{(N,R) : N′

r≤R,R≤Rmax}. Unlike the N-heuristic, the
R-heuristic provides both a pricing policy and a
drop-off policy because the customers’ classes can be
distinguished while they are in the system. An in-
teresting question, which is considered in Section 6,
is whether we lose more, relative to the optimal
policy, by aggregating customer classes (the N-heuristic)
or channel classes (the R-heuristic).

5.3. (N, R)-Heuristic

In the (N, R)-heuristic, we aggregate both the cus-
tomer classes and the channel classes. We model the
system using the average bandwidth requirement, r̄;
average service rate, µ̄; and the average channel rates,

φ̄ and ω̄. The aggregate state is S(t) = (N(t), R(t)). As
in the N-heuristic, the (N, R)-heuristic does consider
the customer class at the time of a customer arrival to
the system. However, once admitted, the customer’s
class is no longer tracked. An incoming class i

customer can be accepted if N(t)r̄ + ri ≤R(t). Thus,
the state space is 6 � {(N,R) :Nr̄≤R,R≤Rmax}. Similar
to the N-heuristic, the (N,R)-heuristic provides a pricing
policy but not a drop-off policy. Hence, in implementa-
tion of the (N,R)-heuristic, we assume that the bandwidth-
based drop-off policy will be used.
The algorithm for the (N, R)-heuristic is
1. Set v0(N, R) = 0. Specify ε > 0, and set q = 0.

Compute the class i price set8i � {ui1,ui2, . . . ,uiL} from
8 � {u1, u2, . . . , uL} by uiℓ = riuℓ for ℓ = 1, . . . , L.

2. For each (N,R) ∈6 (Nr̄≤R and R ≤ Rmax), com-
pute vq+1(N, R) by

vq+1(N,R) �

{
∑M

i�1

λiHi(vq(N,R)) + µ̄Nvq(N − 1,R)

+ φ̄ (Rmax − R)vq(N,R + 1)

+ ω̄RGB(vq(N,R)) + µ̄

⌊
Rmax

r̄

⌋
−N

( )
+ φ̄R

[

+ ω̄(Rmax − R) vq(N,R)

}/
Γ,

]

where Γ �
∑M

i�1λi + µ̄�Rmax/r̄� + (φ̄ + ω̄)Rmax;

Hi (vq(N,R))

�

max
ℓ

[piℓ(vq(N + 1,R) + wiℓ) + (1 − piℓ)vq(N,R)]

if Nr̄ + ri ≤R,
vq(N,R) if Nr̄ + ri >R,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

where wiℓ � uiℓ/µi for all i� 1, . . . ,M and ℓ � 1, . . . ,L; and

GB(vq(N,R)) �

vq

⌊
R − 1

r̄

⌋
,R − 1

( )
− K N −

⌊
R − 1

r̄

⌋( )

ifNr̄>R − 1,

vq(N,R − 1) ifNr̄≤R − 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3. Set

Mq � max
(N,R)∈6

(vq+1(N,R) − vq(N,R)) and

mq � min
(N,R)∈6

(vq+1(N,R) − vq(N,R)).

If 0≤ (Mq −mq)/mq ≤ ε, go to step 4. Otherwise incre-
ment q by 1 and return to step 2.

4. For each (N,R)∈6 and i, i = 1, . . . , M:
if Nr̄ + ri ≤R, choose

uεi (N,R)∈ argmax
ℓ

[piℓ(vq+1(N + 1,R) + wiℓ)

+ (1 − piℓ)vq+1(N,R)];

else write “capacity not available” Stop.
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5.4. Myopic and Optimal Static Pricing Policies

These heuristics consider state-dependent (or dynamic)
pricing policies. We also consider the performance of
two static pricing policies, myopic and optimal static
pricing, in which the same price is offered to all cus-
tomers of a given class; that is, the price is not de-
pendent on the system state. Under the myopic policy,
the SP determines whether there is sufficient capacity
to admit the arriving class i customer. If not, the reject
price (uiL) is posted. If so, the SP posts the myopic price,
which is the price that maximizes the immediate ex-
pected discounted revenue earned from admitting the
customer. The myopic policy is a useful benchmark for
evaluating the proposed dynamic pricing heuristics
because it is easy to compute and to implement and has
been studied in the previous literature.

In addition, we evaluate the performance of the
optimal static pricing policy, in which we find the
optimal constant price to charge to each customer class.
Unfortunately, finding the optimal static pricing policy
is computationally challenging. The previous literature
on optimal static pricing policies (e.g., Gayon et al.
(2009)) generally considers just a single customer class,
which requires optimization over a single dimension.
In our setting, however, the static pricing policy must
specify a price for each customer class. To find the
optimal static pricing policy, we perform an exhaustive
search, in which the long-run average value of a given
pricing policy is evaluated using simulation as de-
scribed in Section 6. When searching for the optimal
price for customer class i, to ensure fair comparison
with the dynamic pricing policies, we start with the
price set8i, and then we exclude from this set all prices
that are less than the myopic price for class i. If we
let 8S

i denote the set of remaining prices for class i,
then the optimal static pricing policy has search space
with size |8S

1 | × |8S
2 | × . . . × |8S

M| , which can be quite
large.

As for theN- and (N, R)-heuristic policies, the static
policies specify only a pricing policy. Hence, for
implementation, we assume the bandwidth-based
drop-off policy is used.

6. Experiments
In this section, we present the results of a numerical
study, which we conducted to (i) obtain additional
insights, beyond the analytical results provided herein,
on the behavior of the optimal prices (Section 6.2); (ii)
test the performance of the static myopic pricing policy
relative to the optimal policy (Section 6.3); (iii) test the
performance of the proposed dynamic pricing heu-
ristics relative to the optimal dynamic pricing policy
(Section 6.4) and the optimal static pricing policy
(Section 6.5); and (iv) evaluate the value of using the
optimal drop-off policy comparedwith the bandwidth-
based drop-off policy (Section 6.6).

The analytical results presented in this paper were
derived in the context of a discounted MDP. However,
because ourMDP is unichain, all of the results also hold
for the analogous long-run average-value problems.
Unichain implies that, given the use of any stationary
policy, there exists a state (N,R) = (0, . . . , 0) to which
there is a positive probability of returning within a
finite number of transitions starting from any initial
state.When γ = 0 in ourMDP formulations, the VIA can
be used to determine the optimal long-run average
value (see section 8.5 in Puterman 1994). In the literature,
the average-value criterion is generally preferred when
conducting numerical experiments because average
value does not depend on the initial state, and thus, the
numerical results are easier to interpret. Therefore, in this
section, we present numerical results using the average-
value criterion.
To evaluate the value function under the heuristics,

we relied on simulation. Although the proposed heu-
ristics can be used to find the dynamic pricing policy
for the aggregate state space (which we use as our
heuristic policy), the resulting value function does not
represent the long-run average profit from imple-
menting the heuristic in the complete state-space set-
ting. Thus, we simulate the implementation of the
heuristic dynamic pricing policies in the full state-space
setting to evaluate the value function. We ran each
simulation for a run length of 30 years with 40 repli-
cations. We report the simulated average value, which is
the average of the long-run average value estimates
across the 40 replications.

6.1. Experiment Configurations

We first describe the three sets of experiments we
conducted. In the first, we set the number of the chan-
nel and customer classes such that the state space of
the MDP is relatively small, and thus, VIA can suc-
cessfully find the optimal policy. We use this experi-
ment to study the behavior of the optimal prices and
to compare the performance of the optimal policy and
the heuristic policies. In the second, we set the channel
and customer classes to larger values, which results in
a larger state space, making it impossible to solve the
VIA to find the optimal policy. We use this experiment
to compare the performance of the proposed dynamic
pricing heuristic policy with that of the (static) myopic
policy and to determine when the proposed heuristic

Table 1. Channel Characteristics in Experiment 1

Cases

Channel class 1 Channel class 2

Rmax,1 1/φ1 1/ω1 Rmax,2 1/φ2 1/ω2

I 1 1 3 5 8 3
II 1 4 3 5 4 3
III 1 8 3 5 1 3
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offers the most value. In the third, we consider
a realistically sized problem in which there are 32 dis-
tinct customer classes. We use this experiment to further
investigate the performance of the proposed dynamic
pricing heuristic.

In all three sets of experiments, the price set is
8 � {1.0, 1.1, . . . , 5.9, 6.0}. To model the price sensitiv-
ities, we use the same approach as GS; that is, we cal-
culate the price acceptance probabilities as piℓ(wiℓ)�

((wi,max−wiℓ)/(wi,max−wi,min))
βi , where wi,max = maxℓ wiℓ

and wi,min = minℓ wiℓ. Here, larger βi implies that cus-
tomer class i is more price sensitive.

6.1.1. Experiment 1. This set of experiments uses
configurations with D = 2 channel classes and M = 2
customer classes. We define three cases for the channel
classes, which we label as I, II, and III. As shown in
Table 1, the expected availability times of the channels,
1/ω1 and 1/ω2, are identical for all three cases.
However, the expected unavailability time in channel
class 1, 1/φ1, increases from case I to case III, and the
opposite holds for 1/φ2. Also, in all three cases, Rmax,2

is larger than Rmax,1. As a result, the expected capacity
increases from case I to III. This allows us to un-
derstand how the performance of the optimal and
heuristic policies changes as the expected capacity
increases.

To enable sensitivity analysis, we defined a set of
sensitivity parameters, denoted by ∆j, for j = 1, . . . , 5. In
Experiment 1, we considered the ∆j values given in the
first column of Table 2. The parameters for customer
class 1 were fixed to the configuration presented in the
second column of the table. The parameters for cus-
tomer class 2 were varied according to the formulas
given in the third column of the table. Thus, we created
a set of configurations by changing the properties of
customer class 2 while the properties of customer
class 1 remain fixed. The configuration in which the
(∆1, ∆2, ∆3, ∆4, ∆5) = (0.5, 0.5, 1.5, 1, 0.5) is referred to
as the customer base-case configuration.

A full-factorial design based on the parameter values
presented in Tables 1 and 2 gives 729 distinct config-
urations for Experiment 1. Because the state spaces of
these configurations are reasonably small, the VIA can
be used to find the optimal policy.

6.1.2. Experiment 2. These experiments use configu-
rations with D = 3 channel classes and M = 5 customer
classes. The channel class characteristics are shown in
Table 3.
The parameters for the five customer classes are

shown in Table 4. We do not vary r in the experiments.
However, the arrival rates, λ, service rates, µ, and price
sensitivities, β, are assigned in either ascending or
descending order as specified in Table 4. For example,
in the ascending setting for λ, class 1 is assigned an
arrival rate equal to 16 and class 5 is assigned an
arrival rate equal to 20. In contrast, in the descending
setting for λ, class 1 is assigned an arrival rate equal
to 20 and class 5 is assigned an arrival rate equal
to 16. The overall service rates are also controlled by∆3 ∈

{4, 2, 1, 0.5}, where smaller values of ∆3 represent
a smaller ratio of capacity to demand rate. The drop-off
fee is generated in a similar way as for Experiment 1
except that there are five customer classes, i = 1, . . . , 5,
and we fix ∆4 = 1. We consider a full factorial design
for the customer class characteristics. Thus, in total,
Experiment 2 consists of a set of 32 (= 2 × 4 × 2 × 2)
configurations.

6.1.3. Experiment 3. In practice, it is likely that the
number of customer classes will be significantly
larger than the five classes considered in Experiment 2.
Therefore, we constructed a single configuration with a
more realistic number of distinct customer classes. Cus-
tomer classes are defined according to the customers’
bandwidth requirement, arrival rate, service rate,
and price sensitivity. We considered ri ∈ {0.0625, 0.125,
0.25, 0.5}, λi ∈ {10, 50}, µi ∈ {12.5, 37.5}, and βi ∈ {0.9, 9}.
Our experiment used the M = 32 (= 4 × 2 × 2 × 2)
customer classes that result from considering all pos-
sible combinations of these parameter values. In this
experiment, we used theD = 3 channel classes given in
Table 3.

Table 2. Customer Characteristics in Experiment 1

Sensitivity parameters Customer class 1 Customer class 2

∆1 ∈ {0.25, 0.5, 1} r1 = 0.5 r2 = ∆1r1 ∈ {0.125, 0.25, 0.5}
∆2 ∈ {0.1, 0.25, 0.5} λ1 = 10 λ2 = ∆2λ1 ∈ {1, 2.5, 5}
∆3 ∈ {0.5, 1, 1.5} µ1 = 5 µ2 = ∆3µ1 ∈ {2.5, 5, 7.5}
∆4 ∈ {1, 2, 10} K = max{2nd largest w1j, 2

nd largest w2j} + ∆4

∆5 ∈ {0.1, 0.5, 1} β1 = 3 β2 = ∆5β1 ∈ {0.3, 1.5, 3}

Table 3. Channel Characteristics in Experiments 2 and 3

Parameters Channel class 1 Channel class 2 Channel class 3

Rmax 1 5 4
1/ω 3 8 4
1/φ 8 3 4
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6.2. Properties of the Optimal Dynamic

Pricing Policies

In Figure 1, we show how the optimal discounted
price for customer class 1, w∗

1, changes as the state
changes for the customer base-case configuration and
channel case I configuration in Experiment 1. For
example, in Figure 1(a), we see how w∗

1 changes as N1

and N2 change when R1 = 1 and R2 = 4. When N1 and
N2 are large relative to R1 and R2, the reject price is

posted. This is because either (i) the remaining capacity
is not sufficient to admit the arriving class 1 customer or
(ii) the remaining capacity is sufficient, but the optimal
policy reserves that remaining capacity for a potentially
more profitable future customer. The lowest price posted
is the myopic price, consistent with Corollary 1.
Although Figure 1(a) and (c) suggest that the optimal

prices are nondecreasing in N1 and N2, the results of
other configurations indicate that this does not al-
ways hold:

Observation 1. The optimal discounted prices are
usually, but not always, nondecreasing in the number
of customers that have been admitted to the system.

If we look at all 729 configurations that we tested, we
find 486 configurations for which w∗

i , in some states,
decreases when Ni increases. These violations occur for

Figure 1. (Color online) Optimal Discounted Prices w∗
1 (Customer Base-Case and Channel Case I Configuration in

Experiment 1)

Table 4. Customer Characteristics in Experiment 2

Parameters Ascending Descending

r [0.9, 0.7, 0.5, 0.3, 0.1]
λ [16, 17, 18, 19, 20] [20, 19, 18, 17, 16]
µ ∆3 × [1, 2, 3, 4, 5] ∆3 × [5, 4, 3, 2, 1]
B [1, 1.5, 2, 2.5, 3] [3, 2.5, 2, 1.5, 1]
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configurations in which r1 > r2, and they always occur
for customer class 2. When we look at the specific vi-
olations, we observe that w∗

2 in states where, for ex-

ample, N2 = 0 is sometimes larger than that in a state
with N2 = 1. We believe this is mainly a result of the
difference in the bandwidth requirements of the two
customer classes although the different service rates

may also play a role as explained in Theorem 3. For
example, suppose r1 = 2r2. In this case, when N2 is an
even number, such as N2 = 0, accepting a customer
from class 2 may in the future take the model to a state

in which the remaining capacity is enough only to
admit a class 2 customer but not enough to admit a
class 1 customer. A similar issue does not apply when
N2 is odd, such as N2 = 1. Örmeci and Burnetas (2004)

find similar violations of monotonicity for loss systems

in which jobs arrive in batches of random size when

partial batch acceptance is not allowed and the number

of servers is fixed. Specifically, they find examples in

which the system may reject arriving jobs to wait for

a job with a batch size that will just make use of all of

the available resources (servers).
Corollary 2 indicates that the optimal discounted

prices are nonincreasing in Rd; that is, w∗
i (N,R)≥

w∗
i (N,R + e

D
d ) for the case of similar customer classes.

Our numerical experiments indicate that this result
holds in general as shown in Figure 1(b) and (d):

Observation 2. The optimal discounted prices are non-
increasing in the number of available channels.

Finally, the figures in Online Appendix G show how
the optimal average values change as each sensitivity
parameter, ∆j, changes in Experiment 1. The results
are consistent with the structural results proven in
Section 4.

6.3. Performance of the Myopic Pricing Policy

We next consider the performance of the myopic policy
relative to the optimal policy. Figure 2 presents the
simulated average values of the optimal and myopic
policies for the customer base-case configuration in
Experiment 1 as the arrival rate of customer class 1, λ1,
decreases and the channel–class case changes. As ex-
pected, the average value of the optimal policy is always
larger than the average value of the myopic policy. In
addition, Observation 3 provides insights that are critical
for the dynamic spectrum access application setting, in
which scarcity of capacity (bandwidth) is likely to be a
significant issue.

Figure 2. (Color online) Simulated Average Values Across
40 Replications (Customer Base-Case Configuration in
Experiment 1)

Figure 3. (Color online) Rejection Ratios Averaged Across 40 Replications (Customer Base-Case Configuration in
Experiment 1)
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Observation 3. The myopic policy offers performance
similar to that of the optimal policy when the customer
arrival rate is small and capacity is high (recall that the
expected capacity increases from case I to III). Perfor-
mance degradation from the myopic policy is largest
when the ratio of capacity to demand rate is low.

Figure 2 shows the customer base-case configura-
tion. When all configurations are considered, the per-
centage value loss of the myopic policy with respect to
the optimal policy ranges from 1.1% to 385.3% with
an average of 36.2%.

To explain the performance gap between the optimal
and myopic policies, we analyzed the customer re-
jection ratios for the optimal and myopic policies as
shown in Figure 3. The customer rejection ratio is the
percentage of customers that reject the posted price
when there is sufficient capacity in the system.We have
the following observation:

Observation 4. The customer rejection ratios for the
myopic policy are always smaller than those for the
optimal policy. The rejection ratios for themyopic policy
decrease and deviate more from those of the optimal
policy as the customer arrival rate increases and as ca-
pacity decreases (recall that the expected capacity in-
creases from case I to III).

The intuition behind these results is that the myopic
policy always posts the myopic price if capacity exists
to admit the arriving customer. This leads to lower
rejection ratios, which ultimately leads to a high rate of
customer drop-off as well as a high rate of no-capacity
rejection, that is, rejections that occur when there is no
capacity available in the system to accept the arriving
customer. In contrast, the optimal policy posts prices
that are higher than the myopic prices when doing so is
necessary to prevent congestion and future customer

drop-offs. This leads to higher rejection ratios and also
higher profits.

6.4. Performance of the Proposed Dynamic

Pricing Heuristics

Wenext compare the performance of the three dynamic
pricing heuristics, the N-, R-, and (N, R)-heuristics for
Experiment 1. The average value estimated from the
simulation of the heuristic policies is compared with
the optimal average value, v̄, obtained from the VIA.
We report two kinds of percentage value losses. When
the optimal policy is simulated, the percentage value
loss, X, is defined as X � (v̄ − V̄opt)/v̄, where V̄opt is the
average value obtained from simulation of the optimal
policy. This percentage value loss shows the accuracy
of the simulation model. In contrast, when one of the
heuristic policies is simulated, the percentage value
loss,X, is defined as X � (v̄ − V̄heu)/v̄, where V̄heu is the
average value obtained from simulation of the heuristic
policy. This percentage value loss shows the performance
of the evaluated heuristic compared with optimal policy.
We compute the percentage value loss for each of the 729
configurations and use these 729 observed values to
draw an empirical cumulative distribution function
(CDF), that is, Pr(X ≤ x).
The empirical CDFs for the optimal policy and the

heuristics are shown in Figure 4. For the optimal policy,
the percentage error induced by random simulations is
close to zero, which validates the simulation model.
The CDFs of the heuristics are always to the right of
that for the optimal policy. The differences between the
CDFs of the heuristics and the optimal policy show the
value loss resulting from aggregating customer and/or
channel classes.

Observation 5. The performance of the R-heuristic is
close to that of the optimal policy; that is, aggregation
of channel classes results in only a slight performance
degradation. TheN- and (N, R)-heuristics result in more
significant performance degradation. Although they
provide similar performance in most configurations,
in 10% of the configurations, the (N, R)-heuristic re-
sults in larger loss than the N-heuristic because it
aggregates channel classes, and the N-heuristic does
not. Overall, the results indicate that aggregating
customer classes results in a greater loss in value than
aggregating channel classes.

In Online Appendix H, the CDFs for each of the
heuristics are analyzed for six key problem param-
eters to demonstrate which problem parameters have
the greatest impact on the performance of the heu-
ristics. The following observation summarizes the
results:

Observation 6. The performance of the R-heuristic
is robust to the changes in the key parameters. The

Figure 4. (Color online) Empirical CDF of Percentage Value
Loss in Experiment 1 (Across 40 Replications)
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performance of the N- and (N, R)-heuristics is not
affected by the service rate, arrival rate, and price
sensitivity. However, the heuristic performance de-
grades when the bandwidth requirement for class 2
customers is small (which implies that there is a sig-
nificant difference in bandwidth requirements for
the classes), when the drop-off fee is large, and in
channel–class case I (which represents low expected
capacity).

Although Observation 5 states that the R-heuristic
outperforms the N- and (N, R)-heuristics, it is also
important to consider computational complexity. In
practice, it is likely that there will be many customer
classes, which will lead to a high-dimension state
space. In that case, channel-class aggregation may not
be sufficient to enable implementation of VIA; that is,
customer-class aggregation may also be needed to
reduce the size of the state space to a feasible level.
Thus, in the remainder of the paper, we focus on the

performance of the (N, R)-heuristic, which combines
both customer- and channel-class aggregation.
Wenext evaluate the performance of the (N,R)-heuristic

for Experiment 2, which has a larger state space. For
these configurations, it is computationally infeasible to
solveVIA tofind the optimal policy. Therefore, to evaluate
the performance of the (N, R)-heuristic in Experiment 2,
we compare it with the non-state-dependent myopic
policy. We report the percentage value gain of the
heuristic policy over the myopic policy, which is de-
fined as (V̄heu − V̄myo)/V̄myo, where V̄heu and V̄myo are
the simulated average values of the (N,R)-heuristic and
myopic policies, respectively. Table 5 shows the average
of this percentage value gain for each of the four levels of
capacity (∆3) in Experiment 2. The table also reports the
corresponding standard errors. Our main results are as
follows:

Observation 7. Using the (N, R)-heuristic pricing policy
adds the most value relative to the myopic policy

Table 5. Percentage Value Gain of (N, R)-Heuristic over Myopic Policy in Experiment 2 (Across 40 Replications)

∆3 = 4 ∆3 = 2 ∆3 = 1 ∆3 = 0.5

Average Standard error Average Standard error Average Standard error Average Standard error

0.3% 0.7% 5.2% 2.2% 31.3% 5.5% 998.7% 723.3%

Figure 5. (Color online) Customer Rejection Ratio, No-Capacity Rejection Ratio, and Drop-off Ratio Averaged Across 40
Replications in Experiment 2

Note. The configuration of all parameters are in descending order in Table 4.
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when capacity is scarce (∆3 small), and the value
of using the (N,R)-heuristic is minimal when capacity

is abundant (∆3 large).

The dynamic (N, R)-heuristic and the static myopic
policy differ significantly in terms of how they manage

capacity. This can be seen by considering the customer

rejection ratio, no-capacity rejection ratio, and drop-

off ratio in Experiment 2 as shown in Figure 5. The

figure shows results for customer classes 1 and 5;

a similar pattern holds for the other classes. Figure 5(b),

(c), (e), and (f) use a logarithmic scale to clearly show

the results.

Observation 8. As the ratio of capacity to demand rate
decreases (as ∆3 decreases),

• Under the myopic policy, the reject prices are
offered more often because of a lack of capacity. This
leads to an increase in no-capacity rejection ratios,
a decrease in customer rejection ratios, and an increase
in the drop-off ratios.

• Under the (N, R)-heuristic, higher prices are pos-
ted, leading to higher customer rejection ratios. Because
more customers are rejecting these higher prices at
admission, the no-capacity rejection ratio and the drop-
off ratio are less than those for the myopic policy.
Overall, a higher value is achieved.

Observations 7 and 8 demonstrate the importance of
dynamically managing pricing and admission by using
the dynamic (state-dependent) (N, R)-heuristic policy
rather than the static myopic policy, particularly in
settings with scarce capacity.

Finally, we also compared the performance of the
(N,R)- and myopic heuristics for Experiment 3, which

has a realistically sized state space. We found that the

simulated average value of the (N, R)-heuristic was

22.3% higher than that of myopic policy.

6.5. Performance of the Optimal Static

Pricing Policy

Finally, we evaluate the performance of the optimal
static pricing policy. As described in Section 5.4,

finding the optimal static prices is computationally

challenging. Therefore, we determined the optimal

static pricing policy for 27 of the 729 experimental

configurations defined in Experiment 1. For these

problems, we found that the percentage value loss for

each heuristic, relative to the optimal average value,

was as follows: 1.69% for N-heuristic, 0.51% for the

R-heuristic, 2.42% for the (N, R)-heuristic, 30.84% for

the myopic policy, and 10.23% for the optimal static

pricing policy. In all 27 configurations, all of the

dynamic pricing heuristics outperformed the optimal

static pricing policy. From these experiments, we have

the following observation:

Observation 9. When capacity is scarce, using dynamic
pricing to manage admission of customers becomes
essential.

Dynamic pricing adds value relative to static pricing
when customers are highly price sensitive because
dynamic pricing enables the SP to offer lower prices when
the remaining capacity is sufficiently large. Overall, we
conclude that, in practical settings for which capacity is
expected to be tight, the dynamic pricing heuristics
provide both better performance and reduced com-
putational time comparedwith the optimal static pricing
policy.

6.6. Comparison of Optimal and Bandwidth-Based

Drop-Off Functions

As discussed in Section 4, the optimal drop-off policy is
not identical to the bandwidth-based drop-off policy.
However, the latter is easier to compute and to im-
plement than the former. In addition, the proposed (N,R)-
heuristic uses the bandwidth-based drop-off policy
for implementation. Therefore, we used Experiment 1
to study how much the SP could lose from imple-
menting the bandwidth-based drop-off policy rather
than the optimal drop-off policy. To do so, we com-
pared the average value when the MDP in Section 3.2 is
solved using the optimal drop-off policy compared
with when the MDP is solved using the bandwidth-
based drop-off policy. The results are summarized in
the following observation:

Observation 10. The percentage value loss from using
the bandwidth-based drop-off policy rather than the
optimal drop-off policy is less than 0.4% for each of the
729 configurations in Experiment 1.

7. Conclusion
Inspired by new developments in dynamic spectrum
access solutions for improved management of wireless
networks, we study the optimal dynamic pricing policy
for a service provider who operates in a setting in which
both demand (customers wanting to access the Internet)
and capacity (available bandwidth) are stochastic. We
characterize the behavior of the optimal pricing policy as
a function of the system state (number of customers in the
system and number of available channels) and of the
input parameters. Further, for the setting in which both
customer arrivals and capacity are stochastic, we have
demonstrated the value of using a dynamic, that is,
state-dependent, pricing policy compared with static,
that is, non-state-dependent, policies. The previous lit-
erature, that is, GS, has studied systems with stochastic
customer arrivals and fixed capacity. This previous work
has focused on analytically and numerically character-
izing the conditions under which static myopic policies
perform optimally or close to optimally. As in this pre-
vious work, we find that using the optimal dynamic
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pricing policy rather than the myopic policy becomes
more critical when capacity is scarce. In addition,
when capacity is scarce, the optimal pricing policy
outperforms the myopic policy in terms of the no-
capacity rejection ratios and customer drop-off ratios,
which can be viewed as measures of quality of service
and access.

Compared with the setting studied in GS, our problem
setting is more dynamic; that is, our setting has dynamic
capacity as channels become available andunavailable for
use. Therefore, identifying good state-dependent heu-
ristic pricing policies, that is, policies that adjust the price
based on the actual capacity as well as the number of
customers currently being served, is of greater value for
our problem setting than for the GS setting with constant
capacity. Thus, we develop and propose the (N, R)-
heuristic in which the pricing policy is dependent on the
aggregate capacity as well as the aggregate number of
customers being served. Although still state-dependent,
this policy is computationally much more tractable and
easier to implement in practical settings than both the
optimal dynamic pricing policy and the optimal static
pricing policy. We find that the (N, R)-heuristic can
provide a significant performance improvement relative
to the myopic and optimal static pricing policies, par-
ticularly when capacity is scarce. In the dynamic spec-
trum access application, scarcity of capacity (bandwidth)
is likely to be a significant issue. Thus, in practice, the
dynamic heuristic pricing policy is likely to provide sig-
nificantly improved profits for the service provider as
well as improved quality of service (lower drop-off ratios)
and access (lower no-capacity rejection ratios), compared
with the static pricing policies.
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timal pricing and production policies of a make-to-stock system
with fluctuating demand. Probability Engrg. Inform. Sci. 23(2):
205–230.

Gurvich I, LariviereM,Moreno-Garcia A (2017) Operations in the on-
demand economy: Staffing services with self-scheduling capacity.
Working paper, Northwestern University, Evanston, IL.

Harrison K, Mishra SM, Sahai A (2010) How much white-space
capacity is there? Proc. IEEE Sympos. New Frontiers Dynamic
Spectrum 2010 (IEEE, New York), 1–10.

Huang H-S, Hu S-C, Lee P-H, Tseng Y-C (2016) An adaptive Paris
metro pricing scheme for mobile data networks. Internat. J. Network
Management 26(6):422–434.

Ibrahim R (2017) Managing queueing systems where capacity is
random and customers are impatient. Production Oper. Man-
agement 27(2):234–250.

Lippman S (1975) Applying a new device in the optimization of
exponential queueing systems. Oper. Res. 23(4):687–710.

Miller BL (1969) A queueing reward system with several customer
classes. Management Sci. 16(3):234–245.

Mutlu H, Alanyali M, Starobinski D (2009) Spot pricing of secondary
spectrum access in wireless cellular networks. IEEE/ACM Trans.
Networking 17(6):1794–1804.
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