
Towards Fast and Scalable Graph Pattern Mining

Anand Padmanabha Iyer?∗ Zaoxing Liu†∗ Xin Jin†

Shivaram Venkataraman• Vladimir Braverman† Ion Stoica?

?University of California, Berkeley †Johns Hopkins University •Microsoft Research

Abstract

While there has been a tremendous interest in pro-

cessing graph-structured data, existing distributed graph

processing systems take several minutes or even hours to

mine simple patterns on graphs. In this paper, we try to

answer the question of whether it is possible to build a

graph pattern mining engine that is both fast and scalable.

Leveraging the observation that in several pattern mining

tasks, providing an approximate answer is good enough,

we propose the use of approximation for graph pattern

mining. However, we find that existing approximation

techniques do not work for this purpose. Based on this,

we present a new approach for approximate graph pattern

mining that leverages recent advancements in graph ap-

proximation theory. Our preliminary evaluations show

encouraging results: compared to state-of-the-art, finding

3-motifs in Twitter graph is 165× faster while incurring

only 5% error. We conclude by discussing several systems

challenges to make our proposal practical.

1 Introduction

The past few years has seen a resurgence in enterprises stor-

ing and processing massive amounts of graph-structured

data [1, 2]. Algorithms for graph processing can broadly

be classified into two categories. The first, graph analysis

algorithms, consists of those which compute properties of

a graph, typically using neighborhood information. Ex-

amples of such algorithms include page rank [41], com-

munity detection [26] and label propagation [57]. The

second, graph pattern mining algorithms, focuses on dis-

covering structural patterns in a graph. Examples of this

include motif finding [38], frequent sub-graph mining

(FSM) [55] and clique mining [16]. Both categories have

been thoroughly explored in academic literature, with

researchers proposing several algorithms.

Today, a deluge of graph processing frameworks exist,

developed both in academia and open-source [17, 20, 21,

29–31, 35–37, 39, 45–47, 53]. These frameworks typi-

cally provide high-level abstractions that make it easy for

developers to implement many graph algorithms. While

both categories of graph algorithms are equally important,

a vast majority of the existing graph processing frame-

∗Equal contribution.

works have focused on graph analysis algorithms. These

frameworks are fast and can scale out to accommodate

really large graphs: for instance, GraM [54] can run one

iteration of page rank on a trillion-edge graph in 140

seconds in a cluster. In contrast, graph pattern mining sys-

tems fail to scale to even moderately sized graphs, and are

slow, taking several hours to mine simple patterns [25, 50].

The main culprit that hinders the scalability of pattern

mining is the complexity of these algorithms—mining

patterns requires complex computations and storing expo-

nentially large intermediate candidate sets. For example,

a graph with a million vertices may possibly contain 1017

triangles. While distributed graph-processing solutions

are good candidates for processing such massive inter-

mediate data, the need to do expensive joins to create

candidates severely degrades performance. As a result,

state-of-the-art systems like Arabesque [50] propose new

abstractions for storing candidates in a distributed setting.

However, even with optimized methods to store candi-

dates, Arabesque takes over 10 hours to count motifs in a

graph with less than 1 billion edges.

In this paper, we ask the question “Is it possible to

build a graph mining system that is both fast and scal-

able?” A key observation that we leverage in answering

this question is: in many pattern mining tasks, it is often

not necessary to output the exact answer. For instance, in

FSM the task is to find the frequency of subgraphs with

an end-goal of ordering them by occurrences. Similarly,

motif counting determines the number of occurrences of

a given motif. In these scenarios, it is sufficient to provide

an approximately correct answer. Indeed, our conversa-

tions with a social networking firm revealed that one of

their most time-consuming production jobs is counting

graphlets [44] to determine social graph similarity. An-

other company’s core business depends on classifying

fraudulent patterns in graphs and this is done by counting

the frequency of pattern occurrences. In both cases, an

approximate count is good enough. Further more, it is

not necessary to materialize all possible occurrences of a

pattern1. Thus, we propose using approximate methods

to build a fast and scalable graph mining system.

1In large graphs, it may even be infeasible to output all embeddings.

Approximate analytics is an area that has garnered

attention for big data analytics [5, 12, 27], where the goal

is to let the user trade-off accuracy for much faster results.

The basic idea in approximation systems is to execute the

exact algorithm on small portions of the data, referred

to as samples, and then rely on the statistical properties

of these samples to compose partial results and/or error

characteristics. The fundamental assumption underlying

these systems is that there exists a relationship between

the input size and the accuracy of the results. However,

this assumption falls apart when applied to graph pattern

mining. In particular, running the exact algorithm on a

sampled graph may not result in reducing the runtime or

provide a good estimation of the result (§2.2).

In this paper, we propose leveraging graph approxima-

tion theory to build approximate pattern mining systems.

The key idea we exploit is that approximate pattern mining

can be viewed as equivalent to probabilistically sampling

random instances of the pattern. This observation lets

us run sampling methods with very high parallelism and

provides drastic reduction in run-time while sacrificing

a small amount of accuracy. For example, our prelimi-

nary evaluation shows that our approach is 165× faster

compared to the state-of-the-art for mining 3-motifs while

incurring only 5% error.

There are a number of systems challenges in realizing

a practical approximate pattern mining system. While

we use the theory as a foundation, we need to extend

the state-of-the-art approximation techniques not only to

general patterns, but also to distributed settings. Further,

an important problem in any approximation system is

in allowing users to navigate the tradeoff between the

result accuracy and latency. While existing approximate

processing systems have proposed a number of approaches

for this task, we find that they do not fit our needs. In the

rest of this paper, we discuss our approach, and our initial

directions in tackling each of these challenges.

2 Background & Motivation

We begin by motivating the need for a new approach to

approximate pattern mining.

2.1 Graph Pattern Mining

Mining patterns in a graph represents an important class of

graph processing problems. The objective here is to find

instances of a given pattern in a graph where a pattern is

any arbitrary subgraph. Thus, pattern mining algorithms

aim to output all subgraphs, commonly referred to as

embeddings, that match the input pattern. Matching is

done via sub-graph isomorphism, which is well known to

be NP-complete. Several varieties of graph pattern mining

problems exist, ranging from finding cliques to mining

frequent subgraphs. We refer the reader to [6, 50] for an

excellent, in-depth overview of graph mining algorithms.

A common approach to implement pattern mining al-

gorithms is to iterate over all possible embeddings in the

graph starting with the simplest pattern (e.g., a vertex or

an edge). The system checks all such candidate embed-

dings, and prunes those which cannot be part of the final

answer. The resulting candidates are then expanded by

adding one vertex or edge, and the process repeated until

it is not possible to expand the exploration further. The

obvious challenge in graph pattern mining, as opposed

to graph analysis, is the exponentially large candidate set

that need to be checked.

Distributed graph processing frameworks are built to

support massive amounts of data, and thus may seem like

an ideal candidate for this situation. Unfortunately when

applied to graph mining problems, they face several chal-

lenges. Arabesque [50], a recently proposed distributed

graph mining system, discusses these challenges in detail,

and proposes solutions to tackle several of them. How-

ever, even Arabesque is unable to scale to large graphs

due to the need to materialize candidates and exchange

them between machines. As an example, Arabesque takes

over 10 hours to count motifs of size 3 in a graph with

less than a billion edges in a cluster of 20 machines, each

having 32 cores and 256GB of memory.

2.2 Approximate Processing on Graphs

Approximate processing is an approach that has been used

with tremendous success in solving similar problems in

both big data analytics [5, 27] and databases [19, 22,

23]. Thus it is natural to explore similar techniques for

pattern mining in graphs given our earlier description of

enterprise use cases. However, simply extending existing

approaches to graphs is insufficient.

The common underlying idea in approximate process-

ing systems is to sample the input that a query or an

algorithm works on. Several techniques for sampling the

input exists, for instance, BlinkDB [5] leverages stratified

sampling. To estimate the error, approximation systems

rely on the assumption that the sample size relates to the

error in the output (e.g., if we sample K items from the

original input, then the error in aggregate queries, such

as SUM, is inversely proportional to
√

K). It is straightfor-

ward to envision extending this approach to graph pattern

mining—given a graph and a pattern to mine in the graph,

we first sample the graph, and run the pattern mining

algorithm on the sampled graph.

Figure 1a depicts the idea as applied to triangle count-

ing. In this example, the input graph contains 10 triangles.

Using uniform sampling on the edges we obtain a graph

with 50% of the edges. Applying triangle counting on this

sample yieldings an answer of 1. There are a number of

approaches to scale this number to the actual graph. One

naive approach is to double it, since we reduced the input

by half. To verify the feasibility of the approach, we eval-

3-Motif Count System |V| |E| Runtime

Ours (5% error) 16 x 8 4.8M 68.9M 11.5s

Arabesque [50] 16 x 8 4.8M 68.9M 299.2s

Ours (5% error) 16 x 8 41.7M 1.47B 4m

Arabesque [50] 20x32 180M 0.9B 10h45m

Table 1: Using approximation, we are able to not only reduce

run time, but also process larger graphs on smaller clusters.

is 1/(mc) = 1/40, and thus E0 estimates the number of

triangles to be 40, which is a biased result. With more

independent estimators E1, E2, and E3, the estimated

count becomes more accurate as the final result takes the

average of the four estimators.

3.2 Evaluation of Potential

One of the first questions that we need to answer before

exploring the practicality and challenges in our proposal

is to understand how much benefit we can obtain by lever-

aging approximation. To do so, we implemented a simple

pattern mining task, counting 3-motifs, using the approxi-

mation technique described earlier in Apache Spark [56].

We chose two datasets: LiveJournal (68.9M edges) [3]

and Twitter (1.47B edges) [34], and use 16 machines on

Amazon EC2 (8 cores each) to run an experiment which

tries to find the count of 3-motifs, and compare against

Arabesque [50]. We set the number of estimators to

achieve an error rate of 5%. Table 1 shows the results.

We were unable to get Arabesque to handle the Twitter

graph in our cluster, so we use the numbers in [50] for

the larger graph. We see that our approach significantly

outperforms Arabesque, and that the performance gap

increases in the larger graph. Our approach is able to

achieve more than 2 orders of magnitude (165×) reduc-

tion in computation time while using less resources and

incurring only a small (5%) loss in accuracy.

4 Challenges

Several challenges lie ahead of us before we can achieve

our goal of a general purpose approximate graph mining

system. We describe some of them in this section.

4.1 Challenge 1: General Patterns

Neighborhood sampling was proposed in the context of

triangle counting, so we need to extend it to handle gen-

eral patterns. We plan to explore this using one simple

observation: the sampling process in each estimator can

be seen as comprising of two phases. In the first, sampling

phase, edges are sampled either randomly, or using adja-

cency information of already sampled edges. The phase

ends when the sampled edges have fixed the vertices for

a given pattern. Then we wait for the edges that complete

the pattern, hence the process enters closing phase.

The amount of time an estimator process spends in

each of these phases, and the number of edges sampled

in them depend on the pattern. In triangle counting, there

is only one way to form the triangle: the sampling phase

finds two adjacent edges, and the closing phase awaits the

third edge to form a triangle with the two sampled edges.

For a general graph pattern with multiple nodes, there can

be multiple ways to form the pattern. One approach to

generalize the sampling is to restrict the implementation

of mining tasks using the two phases (e.g., using a simple

API). Then, the challenge is to compute the probability

of finding the pattern automatically given a mining task

written using this restricted model.

4.2 Challenge 2: Distributed Settings

Neighborhood sampling viewed as comprising of two

phases is massively parallel, since the sampling and clos-

ing phases remains the same for each estimator and can be

captured using a simple data-parallel map phase, and the

results can be aggregated using a reduce phase. Unfortu-

nately, we cannot simply scale up this process horizontally

by locally running the process in each machine and ag-

gregating results, since the probability analysis assumes

that each estimator sees the entire graph. Partitioning the

graph into multiple machines results in missing patterns

that span partitions, and significantly underestimates re-

sults, the magnitude of which depends on the partitioning

strategy. One possible solution for this problem is to ac-

count for the error due to this underestimation by scaling

the result by a factor f (w), which is related to the num-

ber of partitions w. For this to work, we must not only

precisely compute f (w), but also do it for any pattern.

4.3 Challenge 3: Error-Latency Profile

A key feature in any approximate processing system is the

ability for users to trade-off accuracy for result latency.

To allow users to navigate this trade-off, our solution

needs to understand the relation between latency and error.

In our approach, the only configurable parameter is the

number of estimators used for mining. Setting a specific

number of estimators, Ne, results in a fixed runtime and

an error within a bound. Thus, by varying the number

of estimators, we can vary the accuracy achieved and

the computation time accordingly. To enable picking the

right number of estimators, we would need two profiles,

estimators vs. latency and estimators vs. error.

4.3.1 Estimators vs. Latency

The time complexity of our approximation algorithm is

linear in terms of the number of edges in the graph and the

number of estimators. Given a graph and a particular pat-

tern, the computation time is dominated by the number of

estimators when the number of estimators is large enough.

As an example, Figure 3 shows the relationship between

the computation time and the number of estimators for

triangle counting in the Twitter graph [34]. We can see

1

2

3

0.5M 1M 1.5M 2M

R
u
n
ti
m

e
 (

m
in

)

No. of Estimators

Twitter Graph

 0
 5

 10
 15
 20
 25
 30
 35
 40

50k 1m 1.5m 2.1m

E
rr

o
r

R
a

te
 (

%
)

No. of Estimators

Twitter Graph

Figure 3: Relations between estimators and run-time/error rate.

that the curve is close to linear when the number of estima-

tors is larger than 0.5M. When the number of estimators

is small, the computation time is also affected by other

items and thus the curve is not strictly linear. However,

for these regions, it is not computationally expensive to

profile more data points, and as these regions have high

error, they are less likely to be of interest to users. Thus,

we plan to study classical regression-based techniques to

build this profile and using the profile can aid in picking

the number of estimators to use within a profiling cost.

4.3.2 Estimators vs. Error

As seen from Figure 3, the estimator vs. error profile

is non-linear. Building this profile is challenging due to

several reasons. Exhaustive profiling is out of the question

due to its prohibitive time requirements. Further, the

actual errors vary within some range for the same number

of estimators due to the randomness in our approach.

This makes theoretical closed-bound solutions difficult.

Finally, to estimate the error, we need to know the ground-

truth. However, computing the ground-truth undermines

the usefulness of approximate processing.

We plan to investigate a number of ways to build this

curve in an efficient manner. This includes using a piece-

wise modeling of the curve and leveraging experiment

design [52] or bayesian optimization [11] to fit the model.

Further, we plan to explore well known statistical tech-

niques like bootstrap [33]. Finally, we are also planning

to look at probabilistic techniques that can use a small

portion of the graph to build this profile without the need

to know the ground-truth.

4.4 Challenge 4: Handling Updates

While existing graph processing systems assume graphs to

be static, real-world graphs are dynamic. Some previous

works have looked at supporting incremental computa-

tions on evolving graphs [31, 39, 40], but they do not

extend to pattern mining. The challenge here is to incor-

porate incremental profile building techniques to support

graph evolution, i.e., can we avoid rebuilding the profiles?

For instance, it may be possible to use stale profile without

much degradation if we can predict when the profile is

not good enough to constitute a rebuilding. Further, it

may be possible to cache estimator states and reuse them

later during rebuilding. Finally, an interesting direction

to look at is the possibility of precomputing some base

patterns that could be building blocks for other patterns.

5 Related Work

A number of systems have been proposed in the literature

for graph processing [17, 29, 30, 35, 36, 45–47, 53] and

graph mining [4, 48, 50]. Processing systems typically

only focus on graph analysis, and do not support efficient

pattern mining. Mining systems on the other hand require

significant time to process even moderately sized graphs.

[49] discusses an approximate motif counting algorithms

in HPC clusters. However, its focus is on optimizing MPI

communication techniques for one specific algorithm, and

hence does not extend to general graph patterns.

Approximate analytics systems [5, 12, 27] have re-

cently gained popularity due to the time required to pro-

cess large datasets. These systems reduce the amount of

data that is used in the analysis in the hope that this re-

duces processing time. However, as we show in this work,

this technique does not extend to graph pattern mining.

Theory community has invested significant effort in ap-

proximate graph algorithms for several graph analysis

tasks [8, 9, 13, 15, 24, 28]. None of these are aimed at

distributed processing, nor do they propose ways to un-

derstand the performance profile of the algorithms when

deployed in the real-world. We leverage this rich theoreti-

cal foundation by proposing the use of these techniques

to mine general patterns in distributed settings.

6 Conclusion

In this paper, we proposed our approach towards building

a distributed graph pattern mining system that is both

fast and scalable to large graphs. Our proposal leverages

approximation to achieve this goal, by building on ad-

vancements in graph approximation theory. We discussed

several challenges in realizing our proposal, which we

are actively pursuing. Our preliminary evaluations show

promise in our proposed techniques.

Acknowledgments We thank the reviewers for their

valuable feedback. In addition to NSF CISE Expeditions

Award CCF-1730628, this research is supported in part

by DHS Award HSHQDC-16-3-00083, and gifts from Al-

ibaba, Amazon Web Services, Ant Financial, CapitalOne,

Ericsson, Facebook, Google, Huawei, Intel, Microsoft,

Scotiabank, Splunk and VMware. Liu, Braverman, and

Jin are supported in part by NSF grants No. 1447639,

1650041, 1652257, and CRII-NeTS-1755646, Cisco fac-

ulty award, ONR Award N00014-18-1-2364, and a Face-

book Communications & Networking Research Award.

References

[1] Enterprise DBMS, Q1 2014. https://www.forrester.

com/report/TechRadar+Enterprise+DBMS+Q1+2014/-/

E-RES106801.

[2] Graph DBMS increased their popularity by 500% within the last

2 years. http://db-engines.com/en/blog_post//43.

[3] Stanford Large Network Dataset Collection. https://snap.

stanford.edu/.

[4] Aboulnaga, A., Xiang, J., and Guo, C. Scalable maximum

clique computation using mapreduce. In Proceedings of the 2013

IEEE International Conference on Data Engineering (ICDE 2013)

(Washington, DC, USA, 2013), ICDE ’13, IEEE Computer Society,

pp. 74–85.

[5] Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden,

S., and Stoica, I. Blinkdb: Queries with bounded errors and

bounded response times on very large data. In Proceedings of the

8th ACM European Conference on Computer Systems (New York,

NY, USA, 2013), EuroSys ’13, ACM, pp. 29–42.

[6] Aggarwal, C. C., and Wang, H., Eds. Managing and Mining

Graph Data, vol. 40 of Advances in Database Systems. Springer,

2010.

[7] Ahmed, N. K., Duffield, N., Neville, J., and Kompella, R.

Graph sample and hold: A framework for big-graph analytics. In

Proceedings of the 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (New York, NY, USA,

2014), KDD ’14, ACM, pp. 1446–1455.

[8] Ahn, K. J., Guha, S., and McGregor, A. Analyzing graph struc-

ture via linear measurements. In Proceedings of the Twenty-third

Annual ACM-SIAM Symposium on Discrete Algorithms (Philadel-

phia, PA, USA, 2012), SODA ’12, Society for Industrial and

Applied Mathematics, pp. 459–467.

[9] Ahn, K. J., Guha, S., and McGregor, A. Graph sketches:

Sparsification, spanners, and subgraphs. In Proceedings of the

31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems (New York, NY, USA, 2012), PODS ’12, ACM,

pp. 5–14.

[10] Al Hasan, M., and Zaki, M. J. Output space sampling for graph

patterns. Proc. VLDB Endow. 2, 1 (Aug. 2009), 730–741.

[11] Alipourfard, O., Liu, H. H., Chen, J., Venkataraman, S.,

Yu, M., and Zhang, M. Cherrypick: Adaptively unearthing the

best cloud configurations for big data analytics. In 14th USENIX

Symposium on Networked Systems Design and Implementation

(NSDI 17) (Boston, MA, 2017), USENIX Association, pp. 469–

482.

[12] Ananthanarayanan, G., Hung, M. C.-C., Ren, X., Stoica,

I., Wierman, A., and Yu, M. Grass: Trimming stragglers in

approximation analytics. In NSDI (2014), pp. 289–302.

[13] Assadi, S., Khanna, S., and Li, Y. On estimating maximum

matching size in graph streams. In Proceedings of the Twenty-

Eighth Annual ACM-SIAM Symposium on Discrete Algorithms

(Philadelphia, PA, USA, 2017), SODA ’17, Society for Industrial

and Applied Mathematics, pp. 1723–1742.

[14] Boldi, P., and Vigna, S. The WebGraph framework I: Compres-

sion techniques. In Proc. of the Thirteenth International World

Wide Web Conference (WWW 2004) (Manhattan, USA, 2004),

ACM Press, pp. 595–601.

[15] Braverman, V., Ostrovsky, R., and Vilenchik, D. How Hard

Is Counting Triangles in the Streaming Model? Springer Berlin

Heidelberg, Berlin, Heidelberg, 2013, pp. 244–254.

[16] Bron, C., and Kerbosch, J. Algorithm 457: finding all cliques

of an undirected graph. Communications of the ACM 16, 9 (1973),

575–577.

[17] Buluç, A., and Gilbert, J. R. The combinatorial BLAS: design,

implementation, and applications. IJHPCA 25, 4 (2011), 496–509.

[18] Buriol, L. S., Frahling, G., Leonardi, S., Marchetti-

Spaccamela, A., and Sohler, C. Counting triangles in data

streams. In Proceedings of the Twenty-fifth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems

(New York, NY, USA, 2006), PODS ’06, ACM, pp. 253–262.

[19] Chaudhuri, S., Das, G., and Narasayya, V. Optimized stratified

sampling for approximate query processing. ACM Trans. Database

Syst. 32, 2 (June 2007).

[20] Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M.,

Yang, F., Zhou, L., Zhao, F., and Chen, E. Kineograph: Taking

the pulse of a fast-changing and connected world. In Proceedings

of the 7th ACM European Conference on Computer Systems (New

York, NY, USA, 2012), EuroSys ’12, ACM, pp. 85–98.

[21] Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., and

Muthukrishnan, S. One trillion edges: Graph processing at

facebook-scale. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1804–

1815.

[22] Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M., Gerth,

J., Talbot, J., Elmeleegy, K., and Sears, R. Online aggregation

and continuous query support in mapreduce. In Proceedings of the

2010 ACM SIGMOD International Conference on Management of

Data (New York, NY, USA, 2010), SIGMOD ’10, ACM, pp. 1115–

1118.

[23] Cormode, G., Garofalakis, M. N., Haas, P. J., and Jermaine,

C. Synopses for massive data: Samples, histograms, wavelets,

sketches. Foundations and Trends in Databases 4, 1-3 (2012),

1–294.

[24] Das Sarma, A., Gollapudi, S., and Panigrahy, R. Estimating

pagerank on graph streams. In Proceedings of the Twenty-seventh

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems (New York, NY, USA, 2008), PODS ’08, ACM,

pp. 69–78.

[25] Elseidy, M., Abdelhamid, E., Skiadopoulos, S., and Kalnis,

P. Grami: Frequent subgraph and pattern mining in a single large

graph. Proc. VLDB Endow. 7, 7 (Mar. 2014), 517–528.

[26] Fortunato, S. Community detection in graphs. Physics reports

486, 3 (2010), 75–174.

[27] Goiri, I., Bianchini, R., Nagarakatte, S., and Nguyen, T. D.

Approxhadoop: Bringing approximations to mapreduce frame-

works. In Proceedings of the Twentieth International Conference

on Architectural Support for Programming Languages and Oper-

ating Systems (New York, NY, USA, 2015), ASPLOS ’15, ACM,

pp. 383–397.

[28] Gong, N. Z., Xu, W., Huang, L., Mittal, P., Stefanov, E.,

Sekar, V., and Song, D. Evolution of social-attribute networks:

Measurements, modeling, and implications using google+. In

Proceedings of the 2012 Internet Measurement Conference (New

York, NY, USA, 2012), IMC ’12, ACM, pp. 131–144.

[29] Gonzalez, J., Xin, R., Dave, A., Crankshaw, D., and Franklin,

Stoica, I. Graphx: Graph processing in a distributed dataflow

framework. In 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 14) (Broomfield, CO, Oct.

2014), USENIX Association.

[30] Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin, C.

Powergraph: Distributed graph-parallel computation on natural

graphs. In Proceedings of the 10th USENIX Conference on Op-

erating Systems Design and Implementation (Berkeley, CA, USA,

2012), OSDI’12, USENIX Association, pp. 17–30.

[31] Han, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prab-

hakaran, V., Chen, W., and Chen, E. Chronos: A graph engine

for temporal graph analysis. In Proceedings of the Ninth European

Conference on Computer Systems (New York, NY, USA, 2014),

EuroSys ’14, ACM, pp. 1:1–1:14.

[32] Jha, M., Seshadhri, C., and Pinar, A. A space-efficient stream-

ing algorithm for estimating transitivity and triangle counts using

the birthday paradox. ACM Trans. Knowl. Discov. Data 9, 3 (Feb.

2015), 15:1–15:21.

[33] Kleiner, A., Talwalkar, A., Sarkar, P., and Jordan, M. I. A

scalable bootstrap for massive data. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 76, 4 (2014), 795–816.

[34] Kwak, H., Lee, C., Park, H., and Moon, S. What is Twitter, a

social network or a news media? In WWW ’10: Proceedings of

the 19th international conference on World wide web (New York,

NY, USA, 2010), ACM, pp. 591–600.

[35] Kyrola, A., Blelloch, G., and Guestrin, C. Graphchi: Large-

scale graph computation on just a pc. In Presented as part of

the 10th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 12) (Hollywood, CA, 2012), USENIX,

pp. 31–46.

[36] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C.,

and Hellerstein, J. M. Graphlab: A new framework for parallel

machine learning. In UAI (2010), P. Grünwald and P. Spirtes, Eds.,

AUAI Press, pp. 340–349.

[37] Macko, P., Marathe, V. J., Margo, D. W., and Seltzer, M. I.

Llama: Efficient graph analytics using large multiversioned arrays.

In 2015 IEEE 31st International Conference on Data Engineering

(April 2015), pp. 363–374.

[38] Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii,

D., and Alon, U. Network motifs: simple building blocks of

complex networks. Science 298, 5594 (2002), 824–827.

[39] Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P.,

and Abadi, M. Naiad: A timely dataflow system. In Proceedings

of the Twenty-Fourth ACM Symposium on Operating Systems

Principles (New York, NY, USA, 2013), SOSP ’13, ACM, pp. 439–

455.

[40] Padmanabha Iyer, A., Li, L. E., Das, T., and Stoica, I. Time-

evolving graph processing at scale. In Proceedings of the Fourth

International Workshop on Graph Data Management Experiences

and Systems (2016), ACM, p. 5.

[41] Page, L., Brin, S., Motwani, R., and Winograd, T. The pagerank

citation ranking: Bringing order to the web. Technical Report

1999-66, Stanford InfoLab, November 1999. Previous number =

SIDL-WP-1999-0120.

[42] Pagh, R., and Tsourakakis, C. E. Colorful triangle counting

and a mapreduce implementation. CoRR abs/1103.6073 (2011).

[43] Pavan, A., Tangwongsan, K., Tirthapura, S., and Wu, K.-L.

Counting and sampling triangles from a graph stream. Proc. VLDB

Endow. 6, 14 (Sept. 2013), 1870–1881.

[44] Pržulj, N., Corneil, D. G., and Jurisica, I. Modeling inter-

actome: Scale-free or geometric? Bioinformatics 20, 18 (Dec.

2004), 3508–3515.

[45] Quamar, A., Deshpande, A., and Lin, J. Nscale: Neighborhood-

centric large-scale graph analytics in the cloud. The VLDB Journal

25, 2 (Apr. 2016), 125–150.

[46] Roy, A., Bindschaedler, L., Malicevic, J., and Zwaenepoel,

W. Chaos: Scale-out graph processing from secondary storage.

In Proceedings of the 25th Symposium on Operating Systems

Principles (New York, NY, USA, 2015), SOSP ’15, ACM, pp. 410–

424.

[47] Roy, A., Mihailovic, I., and Zwaenepoel, W. X-stream: Edge-

centric graph processing using streaming partitions. In Proceed-

ings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles (New York, NY, USA, 2013), SOSP ’13, ACM, pp. 472–

488.

[48] Shao, Y., Cui, B., Chen, L., Ma, L., Yao, J., and Xu, N. Parallel

subgraph listing in a large-scale graph. In Proceedings of the 2014

ACM SIGMOD International Conference on Management of Data

(New York, NY, USA, 2014), SIGMOD ’14, ACM, pp. 625–636.

[49] Slota, G. M., and Madduri, K. Complex network analysis

using parallel approximate motif counting. In 2014 IEEE 28th

International Parallel and Distributed Processing Symposium

(May 2014), pp. 405–414.

[50] Teixeira, C. H. C., Fonseca, A. J., Serafini, M., Siganos, G.,

Zaki, M. J., and Aboulnaga, A. Arabesque: A system for

distributed graph mining. In Proceedings of the 25th Symposium

on Operating Systems Principles (New York, NY, USA, 2015),

SOSP ’15, ACM, pp. 425–440.

[51] Tsourakakis, C. E., Kang, U., Miller, G. L., and Faloutsos,

C. Doulion: Counting triangles in massive graphs with a coin. In

Proceedings of the 15th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (New York, NY, USA,

2009), KDD ’09, ACM, pp. 837–846.

[52] Venkataraman, S., Yang, Z., Franklin, M., Recht, B., and

Stoica, I. Ernest: Efficient performance prediction for large-scale

advanced analytics. In 13th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 16) (Santa Clara, CA,

2016), USENIX Association, pp. 363–378.

[53] Wang, G., Xie, W., Demers, A. J., and Gehrke, J. Asynchronous

large-scale graph processing made easy. In CIDR (2013).

[54] Wu, M., Yang, F., Xue, J., Xiao, W., Miao, Y., Wei, L., Lin,

H., Dai, Y., and Zhou, L. Gram: Scaling graph computation

to the trillions. In Proceedings of the Sixth ACM Symposium on

Cloud Computing (New York, NY, USA, 2015), SoCC ’15, ACM,

pp. 408–421.

[55] Yan, X., and Han, J. gspan: Graph-based substructure pattern

mining. In Data Mining, 2002. ICDM 2003. Proceedings. 2002

IEEE International Conference on (2002), IEEE, pp. 721–724.

[56] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mc-

Cauley, M., Franklin, M. J., Shenker, S., and Stoica, I.

Resilient distributed datasets: a fault-tolerant abstraction for in-

memory cluster computing. In Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation

(Berkeley, CA, USA, 2012), NSDI’12, USENIX Association,

pp. 2–2.

[57] Zhu, X., and Ghahramani, Z. Learning from labeled and unla-

beled data with label propagation.

