
DistCache: Provable Load Balancing for Large-Scale Storage Systems

with Distributed Caching

Zaoxing Liu?, Zhihao Bai?, Zhenming Liu†, Xiaozhou Li/,

Changhoon Kim‡, Vladimir Braverman?, Xin Jin?, Ion Stoica⇧

?Johns Hopkins University †College of William and Mary /Celer Network ‡Barefoot Networks ⇧UC Berkeley

Abstract

Load balancing is critical for distributed storage to meet strict

service-level objectives (SLOs). It has been shown that a fast

cache can guarantee load balancing for a clustered storage sys-

tem. However, when the system scales out to multiple clusters,

the fast cache itself would become the bottleneck. Traditional

mechanisms like cache partition and cache replication either

result in load imbalance between cache nodes or have high

overhead for cache coherence.

We present DistCache, a new distributed caching mecha-

nism that provides provable load balancing for large-scale

storage systems. DistCache co-designs cache allocation with

cache topology and query routing. The key idea is to parti-

tion the hot objects with independent hash functions between

cache nodes in different layers, and to adaptively route queries

with the power-of-two-choices. We prove that DistCache en-

ables the cache throughput to increase linearly with the num-

ber of cache nodes, by unifying techniques from expander

graphs, network flows, and queuing theory. DistCache is a

general solution that can be applied to many storage systems.

We demonstrate the benefits of DistCache by providing the

design, implementation, and evaluation of the use case for

emerging switch-based caching.

1 Introduction

Modern planetary-scale Internet services (e.g., search, social

networking and e-commerce) are powered by large-scale stor-

age systems that span hundreds to thousands of servers across

tens to hundreds of racks [1–4]. To ensure satisfactory user

experience, the storage systems are expected to meet strict

service-level objectives (SLOs), regardless of the workload

distribution. A key challenge for scaling out is to achieve load

balancing. Because real-world workloads are usually highly-

skewed [5–8], some nodes receive more queries than others,

causing hot spots and load imbalance. The system is bottle-

necked by the overloaded nodes, resulting in low throughput

and long tail latencies.

Caching is a common mechanism to achieve load balanc-

ing [9–11]. An attractive property of caching is that caching

O(n logn) hottest objects is enough to balance n storage

nodes, regardless of the query distribution [9]. The cache

size only relates to the number of storage nodes, despite the

number of objects stored in the system. Such property leads to

recent advancements like SwitchKV [10] and NetCache [11]

for balancing clustered key-value stores.

Unfortunately, the small cache solution cannot scale out

to multiple clusters. Using one cache node per cluster only

provides intra-cluster load balancing, but not inter-cluster

load balancing. For a large-scale storage system across many

clusters, the load between clusters (where each cluster can

be treated as one “big server”) would be imbalanced. Using

another cache node, however, is not sufficient, because the

caching mechanism requires the cache to process all queries

to the O(n logn) hottest objects [9]. In other words, the cache

throughput needs to be no smaller than the aggregate through-

put of the storage nodes.

As such, it requires another caching layer with multiple

cache nodes for inter-cluster load balancing. The challenge

is on cache allocation. Naively replicating hot objects to all

cache nodes incurs high overhead for cache coherence. On

the other hand, simply partitioning hot objects between the

cache nodes would cause the load to be imbalanced between

the cache nodes. The system throughput would still be bottle-

necked by one cache node under highly-skewed workloads.

Thus, the key is to carefully partition and replicate hot objects,

in order to avoid load imbalance between the cache nodes,

and to reduce the overhead for cache coherence.

We present DistCache, a new distributed caching mecha-

nism that provides provable load balancing for large-scale

storage systems. DistCache enables a “one big cache” ab-

straction, i.e., an ensemble of fast cache nodes acts as a single

ultra-fast cache. DistCache co-designs cache allocation with

multi-layer cache topology and query routing. The key idea

is to use independent hash functions to partition hot objects

between the cache nodes in different layers, and to apply the

power-of-two-choices [12] to adaptively route queries.

Using independent hash functions for cache partitioning

ensures that if a cache node is overloaded in one layer, then

USENIX Association 17th USENIX Conference on File and Storage Technologies    143



the set of hot objects in this node would be distributed to mul-

tiple cache nodes in another layer with high probability. This

intuition is backed up by a rigorous analysis that leverages

expander graphs and network flows, i.e., we prove that there

exists a solution to split queries between different layers so

that no cache node would be overloaded in any layer. Further,

since a hot object is only replicated in each layer once, it

incurs minimal overhead for cache coherence.

Using the power-of-two-choices for query routing provides

an efficient, distributed, online solution to split the queries

between the layers. The queries are routed to the cache nodes

in a distributed way based on cache loads, without central

coordination and without knowing what is the optimal solu-

tion for query splitting upfront. We leverage queuing theory

to show it is asymptotically optimal. The major difference

between our problem and the balls-and-bins problem in the

original power-of-two-choices algorithm [12] is that our prob-

lem hashes objects into cache nodes, and queries to the same

object reuse the same hash functions to choose hash nodes,

instead of using a new random source to sample two nodes for

each query. We show that the power-of-two-choices makes

a “life-or-death” improvement in our problem, instead of a

“shaving off a log n” improvement.

DistCache is a general caching mechanism that can be

applied to many storage systems, e.g., in-memory caching

for SSD-based storage like SwitchKV [10] and switch-based

caching for in-memory storage like NetCache [11]. We pro-

vide a concrete system design to scale out NetCache to demon-

strate the power of DistCache. We design both the control

and data planes to realize DistCache for the emerging switch-

based caching. The controller is highly scalable as it is off the

critical path. It is only responsible for computing the cache

partitions and is not involved in handling queries. Each cache

switch has a local agent that manages the hot objects of its

own partition.

The data plane design exploits the capability of pro-

grammable switches, and makes innovative use of in-network

telemetry beyond traditional network monitoring to realize

application-level functionalities—disseminating the loads of

cache switches by piggybacking in packet headers, in order to

aid the power-of-two-choices. We apply a two-phase update

protocol to ensure cache coherence.

In summary, we make the following contributions.

• We design and analyze DistCache, a new distributed

caching mechanism that provides provable load balancing

for large-scale storage systems (§3).

• We apply DistCache to a use case of emerging switch-

based caching, and design a concrete system to scale out

an in-memory storage rack to multiple racks (§4).

• We implement a prototype with Barefoot Tofino switches

and commodity servers, and integrate it with Redis (§5).

Experimental results show that DistCache scales out lin-

early with the number of racks, and the cache coherence

protocol incurs minimal overhead (§6).

Cache

Storage Nodes

Example

Cache

Storage

SwitchKV[10] NetCache[11]

SSD

In-memory

In-memory

In-switch

Figure 1: Background on caching. If the cache node can

absorb all queries to the hottest O(n logn) objects, the load

on the storage nodes is guaranteed to be balanced [9].

2 Background and Motivation

2.1 Small, Fast Cache for Load Balancing

As a building block of Internet applications, it is critical for

storage systems to meet strict SLOs. Ideally, given the per-

node throughput T , a storage system with n nodes should

guarantee a total throughput of n · T . However, real-world

workloads are usually high-skewed, making it challenging to

guarantee performance [5–8]. For example, a measurement

study on the Memcached deployment shows that about 60-

90% of queries go to the hottest 10% objects [5].

Caching is a common mechanism to achieve load balanc-

ing for distributed storage, as illustrated in Figure 1. Previous

work has proven that if the cache node can absorb all queries

to the hottest O(n logn) objects, then the load on n storage

servers is guaranteed to be balanced, despite query distribu-

tion and the total number of objects [9]. However, it also

requires that the cache throughput needs to be at least n ·T
to not become the system bottleneck. Based on this theoreti-

cal foundation, SwitchKV [10] uses an in-memory cache to

balance SSD-based storage nodes, and NetCache [11] uses

a switch-based cache to balance in-memory storage nodes.

Empirically, these systems have shown that caching a few

thousand objects is enough for balancing a hundred storage

nodes, even for highly-skewed workloads like Zipfian-0.9 and

Zipfian-0.99 [10, 11].

2.2 Scaling out Distributed Storage

The requirement on the cache performance limits the system

scale. Suppose the throughput of a cache node is eT = c ·T .

The system can scale to at most a cluster of c storage nodes.

For example, given that the typical throughput of a switch

is 10-100 times of that of a server, NetCache [11] can only

guarantee load balancing for 10-100 storage servers. As such,

existing solutions like SwitchKV [10] and NetCache [11] are

constrained to one storage cluster, which is typically one or

two racks of servers.

For a cloud-scale distributed storage system that spans

many clusters, the load between the clusters can become im-

balanced, as shown in Figure 2(a). Naively, we can put another

cache node in front of all clusters to balance the load between

clusters. At first glance, this seems a nice solution, since we

can first use a cache node in each cluster for intra-cluster load

balancing, and then use an upper-layer cache node for inter-

cluster load balancing. However, now each cluster becomes

a “big server”, of which the throughput is already eT . Using

144    17th USENIX Conference on File and Storage Technologies USENIX Association



Load imbalance
between clusters

(a)

One
Big

Cache

Many
Big

Servers

(b)

Inter-Cluster
Load Balancing

Intra-Cluster
Load Balancing

Figure 2: Motivation. (a) A cache node only guarantees load

balancing for its own cluster, but the load between clusters

can be unbalanced. (b) Use one cache node in each cluster

for intra-cluster load balancing, and another layer of cache

nodes for inter-cluster load balancing. The challenge is on

cache allocation.

only one cache node cannot meet the cache throughput re-

quirement, which is meT for m clusters. While using multiple

upper-layer cache nodes like Figure 2(b) can potentially meet

this requirement, it brings the question of how to allocate

hot objects to the upper-layer cache nodes. We examine two

traditional cache allocation mechanisms.

Cache partition. A straightforward solution is to partition

the object space between the upper-layer cache nodes. Each

cache node only caches the hot objects of its own partition.

This works well for uniform workloads, as the cache through-

put can grow linearly with the number of cache nodes. But

remember that under uniform workloads, the load on the stor-

age nodes is already balanced, obviating the need for caching

in the first place. The whole purpose of caching is to guarantee

load balancing for skewed workloads. Unfortunately, cache

partition would cause load imbalance between the upper-layer

cache nodes, because multiple hot objects can be partitioned

to the same upper-layer cache node, making one cache node

become the system bottleneck.

Cache replication. Cache replication replicates the hot ob-

jects to all the upper-layer cache nodes, and the queries can be

uniformly sent to them. As such, cache replication can ensure

that the load between the cache nodes is balanced, and the

cache throughput can grow linearly with the number of cache

nodes. However, cache replication introduces high overhead

for cache coherence. When there is a write query to a cached

object, the system needs to update both the primary copy at

the storage node and the cached copies at the cache nodes,

which often requires an expensive two-phase update protocol

for cache coherence. As compared to cache partition which

only caches a hot object in one upper-layer cache node, cache

replication needs to update all the upper-layer cache nodes

for cache coherence.

Challenge. Cache partition has low overhead for cache co-

herence, but cannot increase the cache throughput linearly

with the number of cache nodes; cache replication achieves

the opposite. Therefore, the main challenge is to carefully

partition and replicate the hot objects, in order to (i) avoid

load imbalance between upper-layer cache nodes, and to (ii)

ABC DE F

BE A CDF
C0 C1 C2

C3 C4 C5

Get(A)

One
Big

Cache

Many
Big

Servers

Cache Partition

with Independent

Hash Functions

Query Routing with

Power-of-Two-Choices

Figure 3: Key idea. (i) Use independent hash functions to

partition hot objects in different layers. (ii) Use the power-

of-two-choices to route queries, e.g., route Get(A) to either

cache node C1 or cache node C3 based on cache load.

reduce the overhead for cache coherence.

3 DistCache Caching Mechanism Design

3.1 Key Idea

We design DistCache, a new distributed caching mechanism

to address the challenge described in §2.2. As illustrated by

Figure 3, our key idea is to use independent hash functions

for cache allocation and the power-of-two-choices for query

routing, in order to balance the load between cache nodes.

Our mechanism only caches an object at most once in a layer,

incurring minimal overhead for cache coherence. We first

describe the mechanism and the intuitions, and then show

why it works in §3.2.

Cache allocation with independent hash functions. Our

mechanism partitions the object space with independent hash

functions in different layers. The lower-layer cache nodes pri-

marily guarantee intra-cluster load balancing, each of which

only caches hot objects for its own cluster, and thus each

cluster appears as one “big server”. The upper-layer cache

nodes are primarily for inter-cluster load balancing, and use a

different hash function for partitioning. The intuition is that if

one cache node in a layer is overloaded by receiving too many

queries to its cached objects, because the hash functions of

the two layers are independent, the set of hot objects would

be distributed to multiple cache nodes in another layer with

high probability. Figure 3 shows an example. While cache

node C3 in the lower layer is overloaded with three hot objects

(A, B and C), the three objects are distributed to three cache

nodes (C0, C1 and C2) in the upper layer. The upper-layer

cache nodes only need to absorb queries for objects (e.g., A

and B) that cause the imbalance between the clusters, and do

not need to process queries for objects (e.g., D and F) that

already spread out in the lower-layer cache nodes.

Query routing with the power-of-two-choices. The cache

allocation strategy only tells that there exists a way to han-

dle queries without overloading any cache nodes, but it does

not tell how the queries should be split between the layers.

USENIX Association 17th USENIX Conference on File and Storage Technologies    145



Conceivably, we could use a controller to collect global mea-

surement statistics to infer the query distribution. Then the

controller can compute an optimal solution and enforce it at

the senders. Such an approach has high system complexity,

and the responsiveness to dynamic workloads depends on the

agility of the control loop.

Our mechanism uses an efficient, distributed, online solu-

tion based on the power-of-two-choices [12] to route queries.

Specifically, the sender of a query only needs to look at the

loads of the cache nodes that cache the queried object, and

sends the query to the less-loaded node. For example, the

query Get(A) in Figure 3 is routed to either C1 or C3 based on

their loads. The key advantage of our solution is that: it is dis-

tributed, so that it does not require a centralized controller or

any coordination between senders; it is online, so that it does

not require a controller to measure the query distribution and

compute the solution, and the senders do not need to know

the solution upfront; it is efficient, so that its performance is

close to the optimal solution computed by a controller with

perfect global information (as shown in §3.2). Queries to

hit a lower-layer cache node can either pass through an arbi-

trary upper-layer node, or totally bypass the upper-layer cache

nodes, depending on the actual use case, which we describe

in §3.4.

Cache size and multi-layer hierarchical caching. Suppose

there are m clusters and each cluster has l servers. First, we

let each lower-layer cache node cache O(l log l) objects for

its own cluster for intra-cluster load balancing, so that a to-

tal of O(ml log l) objects are cached in the lower layer and

each cluster appears like one “big server”. Then for inter-

cluster load balancing, the upper-layer cache nodes only need

to cache a total of O(m logm) objects. This is different from

a single ultra-fast cache at a front-end that handles all ml

servers directly. In that case, O(ml log(ml)) objects need to

be cached based on the result in [9]. However, in DistCache,

we have an extra upper-layer (with the same total throughput

as ml servers) to “refine” the query distribution that goes to

the lower-layer, which reduces the effective cache size in the

lower layer to O(ml log l). Thus, this is not a contradiction

with the result in [9]. While these O(m logm) inter-cluster

hot objects also need to be cached in the lower layer to en-

able the power-of-two-choices, most of them are also hot

inside the clusters and thus have already been contained in

the O(ml log l) intra-cluster hot objects.

Our mechanism can be applied recursively for multi-layer

hierarchical caching. Specifically, applying the mechanism

to layer i can balance the load for a set of “big servers” in

layer i-1. Query routing uses the power-of-k-choices for k

layers. Note that using more layers actually increases the total

number of cache nodes, since each layer needs to provide a

total throughput at least equal to that of all storage nodes. The

benefit of doing so is on reducing the cache size. When the

number of clusters is no more than a few hundred, a cache

node has enough memory with two layers.

3.2 Analysis

Prior work [9] has shown that caching O(n logn) hottest ob-

jects in a single cache node can balance the load for n storage

nodes for any query distribution. In our work, we replace the

single cache node with multiple cache nodes in two layers to

support a larger scale. Therefore, based on our argument on

the cache size in §3.1, we need to prove that the two-layer

cache can absorb all queries to the hottest O(m logm) objects

under any query distribution for all m clusters. We first define

a mathematical model to formalize this problem.

System model. There are k hot objects {o0,o1, . . . ,ok−1}
with query distribution P = {p0, p1, . . . , pk−1}, where pi de-

notes the fraction of queries for object oi, and ∑
k−1
i=0 pi = 1.

The total query rate is R, and the query rate for object oi is ri =
pi ·R. There are in total 2m cache nodes that are organized to

two groups A = {a0,a1, ...,am−1} and B = {b0,b1, ...,bm−1},

which represent the upper and lower layers, respectively. The

throughput of each cache node is eT .

The objects are mapped to the cache nodes with two inde-

pendent hash functions h0(x) and h1(x). Object oi is cached

in a j0 in group A and b j1 in group B, where j0 = h0(i) and

j1 = h1(i). A query to oi can be served by either a j0 or b j1 .

Goal. Our goal is to evaluate the total query rate R the cache

nodes can support, in terms of m and eT , regardless of query

distribution P, as well as the relationship between k and m.

Ideally, we would like R ⇡ αmeT where α is a small con-

stant (e.g., 1), so that the operator can easily provision the

cache nodes to meet the cache throughput requirement (i.e.,

no smaller than the total throughput of storage nodes).

If we can set k to be O(m logm), it means that the cache

nodes can absorb all queries to the hottest O(m logm) objects,

despite query distribution. Combining this result with the

cache size argument in §3.1, we can prove that the distributed

caching mechanism can provide performance guarantees for

large-scale storage systems across multiple clusters.

A perfect matching problem in a bipartite graph. The key

observation of our analysis is that the problem can be con-

verted to finding a perfect matching in a bipartite graph. In-

tuitively, if a perfect matching exists, the requests to k hot

objects can be completely absorbed from the two layers

of cache nodes. Specifically, we construct a bipartite graph

G = (U,V,E), where U is the set of vertices on the left, V

is the set of vertices on the right, and E is the set of edges.

Let U represent the set of objects, i.e., U = {o0,o1, ...,ok−1}.

Let V represent the set of cache nodes, i.e., V = A [ B =
{a0,a1, ...,am−1,b0,b1, ...,bm−1}. Let E represent the hash

functions mapping from the objects to the cache nodes, i.e.,

E = {eoi,a j0
|h0(i) = j0}[{eoi,b j1

|h1(i) = j1}. Given a query

distribution P and a total query rate R, we define a perfect

matching in G to represent that the workload can be supported

by the cache nodes.

Definition 1. Let Γ(v) be the set of neighbors of vertex v in G.

146    17th USENIX Conference on File and Storage Technologies USENIX Association



B

A

C

D

E

C0

C1

C2

C3

C4

C5F

Objects Cache Nodes

Group A

Hash h0(x)

Group B

Hash h1(x)

B

A

C

D

E

C0

C1

C2

C3

C4

C5F

Objects Cache Nodes

(a) Bipartite graph. (b) Perfect matching.

Weight

1
0
0

0

0

0

0

1

1

1

1

1

Figure 4: Example for analysis. (a) A bipartite graph con-

structed for the scenario in Figure 3. (b) A perfect matching

for query routing when all objects have a query rate of 1, and

all cache nodes have a throughput of 1.

A weight assignment W = {wi, j 2 [0, eT ]|ei, j 2 E} is a perfect

matching of G if

1. 8oi 2U : ∑v2Γ(oi) woi,v = pi ·R, and

2. 8v 2V : ∑u2Γ(v) wu,v  eT .

In this definition, wi, j denotes the portion of the queries to

object i served by cache node j. Condition 1 ensures that for

any object oi, its query rate pi ·R is fully served. Condition 2

ensures that for any cache node v, its load is no more than eT ,

i.e., no single cache node is overloaded.

When a perfect matching exists, it is feasible to serve all

the queries by the cache nodes. We use the example in Fig-

ure 4 to illustrate this. Figure 4(a) shows the bipartite graph

constructed for the scenario in Figure 3, which contains six

hot objects (A-F) and six cache nodes in two layers (C0-C5).

The edges are built based on two hash functions h0(x) and

h1(x). Figure 4(b) shows a perfect matching for the case that

all objects have the same query rate ri = 1 and all cache nodes

have the same throughput eT = 1. The number besides an edge

denotes the weight of an edge, i.e., the rate of the object served

by the cache node. For instance, all queries to A are served

by C1. This is a simple example to illustrate the problem. In

general, the query rates of the objects do not have to be the

same, and the queries to one object may be served by multiple

cache nodes.

Step 1: existence of a perfect matching. We first show the

existence of a perfect matching for any given total rate R and

any query distribution P. We have the following lemma to

demonstrate how big the total rate R can be in terms of eT , for

any P. For the full proof of Lemma 1, we refer the readers to

§A.2 in the technical report.

Lemma 1. Let α be a suitably small constant. If k  mβ

for some constant β (i.e., k and m are polynomial-related)

and maxi(pi) ·R  eT/2, then for any ε > 0, there exists a

perfect matching for R = (1− ε)α ·meT and any P, with high

probability for sufficiently large m.

Proof sketch of Lemma 1: We utilize the results and tech-

niques developed from expander graphs and network flows.

(i) We first show that G has the so-called expansion property

with high probability. Intuitively, the property states that the

neighborhood of any subset of nodes in U expands, i.e., for

any S ✓U , |Γ(S)| ≥ |S|. It has been observed that such prop-

erties exist in a wide range of random graphs [13]. While

our G behaves similar to random bipartite graphs, we need

the expansion property to hold for S in any size, which is

stricter than the standard definition (which assumes S is not

too large) and thus requires more delicate probabilistic tech-

niques. (ii) We then show that if a graph has the expansion

property, then it has a perfect matching. This step can be

viewed as a generalization of Hall’s theorem [14] in our set-

ting. Hall’s theorem states that a balanced bipartite graph has a

perfect (non-fractional) matching if and only if for any subset

S of the left nodes, |Γ(S)| ≥ |S|. and perfect matching can be

fractional. This step can be proved by the max-flow-min-cut

theorem, i.e., expansion implies large cut, and then implies

large matching.

Step 2: finding a perfect matching. Demonstrating the exis-

tence of a perfect matching is insufficient since it just ensures

the queries can be absorbed but does not give the actual weight

assignment W , i.e., how the cache nodes should serve queries

for each P to achieve R. This means that the system would

require an algorithm to compute W and an mechanism to

enforce W . As discussed in §3.1, instead of doing so, we use

the power-of-two-choices to “emulate” the perfect matching,

without the need to know what the perfect matching is. The

quality of the mechanism is backed by Lemma 2, which we

prove using queuing theory. The detailed proof can be found

in §A.3 of the technical report [15].

Lemma 2. If a perfect matching exists for G, then the power-

of-two-choices process is stationary.

Stationary means that the load on the cache nodes would

converge, and the system is “sustainable” in the sense that the

system will never “blow up” (i.e., build up queues in a cache

node and eventually drop queries) with query rate R.

Proof sketch of Lemma 2: Showing this lemma requires us

to use a powerful building block in query theory presented in

[16, 17]. Consider 2m exponential random variables with rate
eTi > 0. Each non-empty set of cache nodes S ✓ [2m], has an

associated Poisson arrival process with rate λS ≥ 0 that joins

the shortest queue in S with ties broken randomly. For each

non-empty subset Q ✓ [2m], define the traffic intensity on Q

as
ρQ =

∑S✓Q λS

µQ

,

where µQ =∑i2Q
eTi. Note that the total rate at which objects

served by Q can be greater than the numerator of (3.2) since

other requests may be allowed to be served by some or all of

USENIX Association 17th USENIX Conference on File and Storage Technologies    147



the cache nodes in Q. Let ρmax = maxQ✓[2m]{ρQ}. Given the

result in [16, 17], if we can show ρmax < 1, then the Markov

process is positive recurrent and has a stationary distribution.

In fact, our cache querying can be described as an arrival

process (§A.3 of [15]). Finally, we show that ρmax is less than

1 and thus the process is stationary.

Step 3: main theorem. Based on Lemma 1 and Lemma 2, we

can prove that our distributed caching mechanism is able to

provide a performance guarantee, despite query distribution.

Theorem 1. Let α be a suitable constant. If k  mβ for

some constant β (i.e., k and m are polynomial-related) and

maxi(pi) ·R  eT/2, then for any ε > 0, the system is station-

ary for R = (1− ε)α ·meT and any P, with high probability

for sufficiently large m.

Interpretation of the main theorem: As long as the query

rate of a single hot object oi is no larger than eT/2 (e.g., half

of the entire throughput in a cluster rack), DistCache can

support a query rate of ⇡ meT for any query distributions to

the k hot objects (where k can be fairly large in terms of m) by

using the power-of-two-choices protocol to route the queries

to the cached objects. The key takeaways are presented in the

following section.

3.3 Remarks

Our problem isn’t a balls-in-bins problem using the original

power-of-two-choices. The major difference is that our prob-

lem hashes objects into cache nodes, and queries to the same

object by reusing the same hash functions, instead of using a

new random source to sample two nodes for each query. In

fact, without using the power-of-two-choices, the system is

in non-stationary. This means that the power-of-two-choices

makes a “life-or-death” improvement in our problem, instead

of a “shaving off a log n” improvement. While we refer to the

technical report [15] for detailed discussions, we have a few

important remarks.

• Nonuniform number of cache nodes in two layers. For

simplicity we use the same number of m cache nodes per

layer in the system. However, we can generalize the anal-

ysis to accommodate the cases of different numbers of

caches nodes in two layers, as long as min(m0,m1) is suf-

ficiently large, where m0 and m1 are the number of upper-

layer and lower-layer cache nodes respectively. While it

requires m to be sufficiently large, it is not a strict require-

ment, because the load imbalance issue is only significant

when m is large.

• Nonuniform throughput of cache nodes in two groups.

Although our analysis assumes the throughput of a cache

node is eT , we can generalize it to accommodate the cases

of nonuniform throughput by treating a cache node with

a large throughput as multiple smaller cache nodes with a

small throughput.

• Cache size. As long as the number of objects and the num-

ber of cache nodes are polynomially-related (k  mβ), the

system is able to provide the performance guarantee. It

is more relaxed than O(m logm). Therefore, by setting

k = O(m logm), the cache nodes are able to absorb all

queries to the hottest O(m logm) objects, making the load

on the m clusters balanced.

• Maximum query rate for one object. The theorem re-

quires that the maximum query rate for one object is no

bigger than half the throughput of one cache node. This

is not a severe restriction for the system, because a cache

node is orders of magnitude faster than a storage node.

• Performance guarantee. The system can guarantee a total

throughput of R = (1−ε)α ·mT , which scales linearly with

m and T . In practice, α is close to 1.

3.4 Use Cases

DistCache is a general solution that can be applied to scale

out various storage systems (e.g., key-value stores and file

systems) using different storage mediums (e.g., HDD, SDD

and DRAM). We describe two use cases.

Distributed in-memory caching. Based on the performance

gap between DRAMs and SSDs, a fast in-memory cache node

can be used balance an SSD-based storage cluster, such as

SwitchKV [10]. DistCache can scale out SwitchKV by using

another layer of in-memory cache nodes to balance multiple

SwitchKV clusters. While it is true that multiple in-memory

cache nodes can be balanced using a faster switch-based cache

node, applying DistCache obviates the need to introduce a

new component (i.e., a switch-based cache) to the system.

Since the queries are routed to the cache and storage nodes

by the network, queries to the lower-layer cache nodes can

totally bypass the upper-layer cache nodes.

Distributed switch-based caching. Many low-latency stor-

age systems for interactive web services use more expensive

in-memory designs. An in-memory storage rack can be bal-

anced by a switch-based cache like NetCache [11], which

directly caches the hot objects in the data plane of the ToR

switch. DistCache can scale out NetCache to multiple racks

by caching hot objects in a higher layer of the network topol-

ogy, e.g., the spine layer in a two-layer leaf-spine network. As

discussed in the remarks (§3.3), DistCache accommodates the

cases that the number of spine switches is smaller and each

spine switch is faster. As for query routing, while queries to

hit the leaf cache switches need to inevitably go through the

spine switches, these queries can be arbitrarily routed through

any spine switches, so that the load on the spine switches can

be balanced.

Note that while existing solutions (e.g., NetCache [11])

directly embeds caching in the switches which may raise

concerns on deployment, another option for easier deploy-

ment is to use the cache switches as stand-alone specialized

appliances that are separated from the switches in the data-

center network. DistCache can be applied to scale out these

specialized switch-based caching appliances as well.

148    17th USENIX Conference on File and Storage Technologies USENIX Association



Storage Racks Client Racks

Controller

One Big Cache

Spine

Leaf

Rack

Figure 5: Architecture for distributed switch-based caching.

4 DistCache for Switch-Based Caching

To demonstrate the benefits of DistCache, we provide a con-

crete system design for the emerging switch-based caching.

A similar design can be applied to other use cases as well.

4.1 System Architecture

Emerging switch-based caching, such as NetCache [11] is lim-

ited to one storage rack. We apply DistCache to switch-based

caching to provide load balancing for cloud-scale key-value

stores that span many racks. Figure 5 shows the architecture

for a two-layer leaf-spine datacenter network.

Cache Controller. The controller computes the cache parti-

tions, and notifies the cache switches. It updates the cache

allocation under system reconfigurations, e.g., adding new

racks and cache switches, and system failures; and thus up-

dating the allocation is an infrequent task. We assume the

controller is reliable by replicating on multiple servers with a

consensus protocol such as Paxos [18]. The controller is not

involved in handling storage queries in the data plane.

Cache switches. The cache switches provide two critical

functionalities for DistCache: (1) caching hot key-value ob-

jects; (2) distributing switch load information for query rout-

ing. First, a local agent in the switch OS receives its cache

partition from the controller, and manages the hot objects for

its partition in the data plane. Second, the cache switches

implement a lightweight in-network telemetry mechanism to

distribute their load information by piggybacking in packet

headers. The functionalities for DistCache are invoked by

a reserved L4 port, so that DistCache does not affect other

network functionalities. We use existing L2/L3 network pro-

tocols to route packets, and do not modify other network

functionalities already in the switch.

ToR switches at client racks. The ToR switches at client

racks provide query routing. It uses the power-of-two-choices

to decide which cache switch to send a query to, and uses

existing L2/L3 network protocols to route the query.

Storage servers. The storage servers host the key-value store.

DistCache runs a shim layer in each storage server to integrate

the in-network cache with existing key-value store software

like Redis [19] and Memcached [20]. The shim layer also

implements a cache coherence protocol to guarantee the con-

sistency between the servers and cache switches.

Clients. DistCache provides a client library for applications to

access the key-value store. The library provides an interface

similar to existing key-value stores. It maps function calls

from applications to DistCache query packets, and gathers

DistCache reply packets to generate function returns.

4.2 Query Handling

A key advantage of DistCache is that it provides a distributed

on-path cache to serve queries at line rate. Read queries on

cached objects (i.e., cache hit) are directly replied by the

cache switches, without the need to visit storage servers;

read queries on uncached objects (i.e., cache miss) and write

queries are forwarded to storage servers, without any routing

detour. Further, while the cache is distributed, our query rout-

ing mechanism based on the power-of-two-choices ensures

that the load between the cache switches is balanced.

Query routing at client ToR switches. Clients send queries

via the client library, which simply translates function calls

to query packets. The complexity of query routing is done at

the ToR switches of the client racks. The ToR switches use

the switch on-chip memory to store the loads of the cache

switches. For each read query, they compare the loads of the

switches that contain the queried object in their partitions,

and pick the less-loaded cache switch for the query. After the

cache switch is chosen, they use the existing routing mech-

anism to send the query to the cache switch. The routing

mechanism can pick a routing path that balances the traffic in

the network, which is orthogonal to this paper. Our prototype

uses a mechanism similar to CONGA [21] and HULA [22]

to choose the least loaded path to the cache switch.

For a cache hit, the cache switch copies the value from its

on-chip memory to the packet, and returns the packet to the

client. For a cache miss, the cache switch forwards the packet

to the corresponding storage server that stores the queried

object. Then the server processes the query and replies to the

client. Figure 6 shows an example. A client in rack R3 sends a

query to read object A. Suppose A is cached in switch S1 and

S3, and is stored in a server in rack R0. The ToR switch S6

uses the power-of-two-choices to decide whether to choose

S1 or S3. Upon a cache hit, the cache switch (either S1 or S3)

directly replies to the client (Figure 6(a)). Upon a cache miss,

the query is sent to the server. But no matter whether the leaf

cache (Figure 6(b)) or the spine cache (Figure 6(c)) is chosen,

there is no routing detour for the query to reach R0 after a

cache miss.

Write queries are directly forwarded to the storage servers

that contain the objects. The servers implement a cache co-

herence protocol for data consistency as described in §4.3.

Query processing at cache switches. Cache switches use the

on-chip memory to cache objects in their own partitions. In

programmable switches such as Barefoot Tofino [23], the on-

USENIX Association 17th USENIX Conference on File and Storage Technologies    149



Storage Racks Client Racks

ABC DE F

BE A CDF

14/6

2

3

2
3

4
5

S0 S1 S2

S3 S4 S5

R0 R1 R2 R3

Power-of-

Two-Choices

Storage Racks Client Racks

ABC DE F

BE A CDF

18

2
3

6
7

S0 S1 S2

S3 S4 S5

R0 R1 R2 R3

54

Storage Racks Client Racks

ABC DE F

BE A CDF

18

2

7

A A A

S0 S1 S2

S3 S4 S5

R0 R1 R2 R3

54

3

(a) Cache hit. (b) Cache miss (leaf cache S3). (c) Cache miss (spine cache S1).

6

S6 S6

S6

Get(A)

Figure 6: Query handling for Get(A). S6 uses the power-of-two-choices to decide whether to send Get(A) to S1 or S3. (a) Upon

a cache hit, the switch directly replies the query, without visiting the storage server. (b, c) Upon a cache miss, the query is

forwarded to the storage server without routing detour.

chip memory is organized as register arrays spanning multiple

stages in the packet processing pipeline. The packets can read

and update the register arrays at line rate. We uses the same

mechanism as NetCache [11] to implement a key-value cache

that can support variable-length values, and a heavy-hitter

(HH) detector that the switch local agent uses to decide what

top k hottest objects in its partition to cache.

In-network telemetry for cache load distribution. We use

a light-weight in-network telemetry mechanism to distribute

the cache load information for query routing. The mechanism

piggybacks the switch load (i.e., the total number of packets

in the last second) in the packet headers of reply packets,

and thus incurs minimal overhead. Specifically, when a reply

packet of a query passes a cache switch, the cache switch

adds its load to the packet header. Then when the reply packet

reaches the ToR switch of the client rack, the ToR switch

retrieves the load in the packet header to update the load stored

in its on-chip memory. To handle the case that the cache load

may become stale without enough traffic for piggybacking,

we can add a simple aging mechanism that would gradually

decrease a load to zero if the load is not updated for a long

time. Note that aging is commonly supported by modern

switch ASICs, but it is not supported by P4 yet, and thus is

not implemented in our prototype.

4.3 Cache Coherence and Cache Update

Cache coherence. Cache coherence ensures data consis-

tency between storage servers and cache switches when write

queries update the values of the objects. The challenge is

that an object may be cached in multiple cache switches, and

need to be updated atomically. Directly updating the copies

of an object in the cache switches may result in data inconsis-

tency. This is because the cache switches are updated asyn-

chronously, and during the update process, there would be a

mix of old and new values at different switches, causing read

queries to get different values from different switches.

We leverage the classic two-phase update protocol [24] to

ensure strong consistency, where the first phase invalidates

all copies and the second phase updates all copies. To apply

the protocol to our scenario, after receiving a write query, the

storage server generates a packet to invalidate the copies in

the cache switches. The packet traverses a path that includes

all the switches that cache the object. The return of the in-

validation packet indicates that all the copies are invalidated.

Otherwise, the server resends the invalidation packet after

a timeout. Figure 7(a) shows an example that the copies of

object A are invalidated by an invalidation packet via path

R0-S3-S1-S3-R0. After the first phase, the server can update

its primary copy, and send an acknowledgment to the client,

instead of waiting for the second phase, as illustrated by Fig-

ure 7(b). This optimization is safe, since all copies are invalid.

Finally, in the second phase, the server sends an update packet

to update the values in the cache switches, as illustrated by

Figure 7(c).

Cache update. The cache update is performed in a decentral-

ized way without the involvement of the controller. We use a

similar mechanism as NetCache [11]. Specifically, the local

agent in each switch uses the HH detector in the data plane

to detect hot objects in its own partition, and decides cache

insertions and evictions. Cache evictions can be directly done

by the agent; cache insertions require the agent to contact the

storage servers. Slightly different from NetCache, DistCache

uses a cleaner, more efficient mechanism to unify cache inser-

tions and cache coherence. Specifically, the agent first inserts

the new object into the cache, but marks it as invalid. Then

the agent notifies the server; the server updates the cached

object in the data plane using phase 2 of cache coherence,

and serializes this operation with other write queries. As for

comparison, in NetCache, the agent copies the value from the

server to the switch via the switch control plane (which is

slower than the data plane), and during the copying, the write

queries to the object are blocked on the server.

4.4 Failure Handling

Controller failure. The controller is replicated on multiple

servers for reliability (§4.1). Since the controller is only re-

150    17th USENIX Conference on File and Storage Technologies USENIX Association



Storage Racks Client Racks

ABC DE F

BE A CDF

A

S0 S1 S2

S3 S4 S5

R0 R1 R2 R3

Storage Racks Client Racks

ABC DE F

BE A CDF

3

4

A

S0 S1 S2

S3 S4 S5

R0 R1 R2 R3

2

Storage Racks Client Racks

ABC DE F

BE A CDF

A

S0 S1 S2

S3 S4 S5

R0 R1 R2 R3

14

3

(a) Phase 1: invalidate all caches. (b) Update primary copy, and acknowledge client. (c) Phase 2: update all caches. 

3

14

2

1
5

2

S6
S6

S6

Figure 7: Cache coherence is achieved by a two-phase update protocol in DistCache. The example shows the process to handle

an update to object A stored in rack R0 with the two-phase update protocol.

sponsible for cache allocation, even if all servers of the con-

troller fail, the data plane is still operational and hence pro-

cesses queries. The servers can be simply rebooted.

Link failure. A link failure is handled by existing network

protocols, and does not affect the system, as long as the net-

work is connected and the routing is updated. If the network

is partitioned after a link failure, the operator would choose

between consistency and availability, as stated by the CAP

theorem. If consistency were chosen, all writes should be

blocked; if availability were chosen, queries can still be pro-

cessed, but cache coherence cannot be guaranteed.

ToR switch failure. The servers in the rack would lose access

to the network. The switch needs to be rebooted or replaced.

If the switch is in a storage rack, the new switch starts with an

empty cache and uses the cache update process to populate

its cache. If the switch is in a client rack, the new switch

initializes the loads of all cache switches to be zero, and uses

the in-network telemetry mechanism to update them with

reply packets.

Other Switch failure. If the switch is not a cache switch,

the failure is directly handled by existing network protocols.

If the switch is a cache switch, the system loses throughput

provided by this switch. If it can be quickly restored (e.g., by

rebooting), the system simply waits for the switch to come

back online. Otherwise, the system remaps the cache partition

of the failed switch to other switches, so that the hot objects

in the failed switch can still be cached, alleviating the impact

on the system throughput. The remapping leverages consis-

tent hashing [25] and virtual nodes [26] to spread the load.

Finally, if the network is partitioned due to a switch failure,

the operator would choose consistency or availability, similar

to that of a link failure.

5 Implementation

We have implemented a prototype of DistCache to realize

distributed switch-based caching, including cache switches,

client ToR switches, a controller, storage servers and clients.

Cache switch. The data plane of the cache switches is written

in the P4 language [27], which is a domain-specific language

to program the packet forwarding pipelines of data plane de-

vices. P4 can be used to program the switches that are based

on Protocol Independent Switch Architecture (PISA). In this

architecture, we can define the packet formats and packet pro-

cessing behaviors by a series of match-action tables. These

tables are allocated to different processing stages in a forward-

ing pipeline, based on hardware resources. Our implementa-

tion is compiled to Barefoot Tofino ASIC [23] with Barefoot

P4 Studio software suite [28]. In the Barefoot Tofino switch,

we implement a key-value cache module uses 16-byte keys,

and contains 64K 16-byte slots per stage for 8 stages, provid-

ing values at the granularity of 16 bytes and up to 128 bytes

without packet recirculation or mirroring. The Heavy Hitter

detector module contains a Count-Min sketch [29], which has

4 register arrays and 64K 16-bit slots per array, and a Bloom

filter, which has 3 register arrays and 256K 1-bit slots per

array. The telemetry module uses one 32-bit register slot to

store the switch load. We reset the counters in the HH detector

and telemetry modules in every second. The local agent in the

switch OS is written in Python. It receives cache partitions

from the controller, and manages the switch ASIC via the

switch driver using a Thrift API generated by the P4 compiler.

The routing module uses standard L3 routing which forwards

packets based on destination IP address.

Client ToR switch. The data plane of client ToR switches is

also written in P4 [27] and is compiled to Barefoot Tofino

ASIC [23]. Its query routing module contains a register array

with 256 32-bit slots to store the load of cache switches. The

routing module uses standard L3 routing, and picks the least

loaded path similar to CONGA [21] and HULA [22].

Controller, storage server, and client. The controller is

written in Python. It computes cache partitions and notifies

the result to switch agents through Thrift API. The shim

layer at each storage server implements the cache coherence

protocol, and uses the hiredis library [30] to hook up with

Redis [19]. The client library provides a simple key-value

interface. We use the client library to generate queries with

different distributions and different write ratios.

USENIX Association 17th USENIX Conference on File and Storage Technologies    151



6 Evaluation

6.1 Methodology

Testbed. Our testbed consists of two 6.5Tbps Barefoot Tofino

switches and two server machines. Each server machine is

equipped with a 16 core-CPU (Intel Xeon E5-2630), 128 GB

total memory (four Samsung 32GB DDR4-2133 memory),

and an Intel XL710 40G NIC.

The goal is to apply DistCache to switch-based caching to

provide load balancing for cloud-scale in-memory key-value

stores. Because of the limited hardware resources we have,

we are unable to evaluate DistCache at full scale with tens

of switches and hundreds of servers. Nevertheless, we make

the most of our testbed to evaluate DistCache by dividing

switches and servers into multiple logical partitions and run-

ning real switch data plane and server software, as shown

in Figure 8. Specifically, a physical switch emulates several

virtual switches by using multiple queues and uses counters

to rate limit each queue. We use one Barefoot Tofino switch

to emulate the spine switches, and the other to emulate the

leaf switches. Similarly, a physical server emulates several

virtual servers by using multiple queues. We use one server

to emulate the storage servers, and the other to emulate the

clients. We would like to emphasize that the testbed runs the

real switch data plane and runs the Redis key-value store [19]

to process real key-value queries.

Performance metric. By using multiple processes and using

the pipelining feature of Redis, our Redis server can achieve

a throughput of 1 MQPS. We use Redis to demonstrate that

DistCache can integrate with production-quality open-source

software that is widely deployed in real-world systems. We al-

locate the 1 MQPS throughput to the emulated storage servers

equally with rate limiting. Since a switch is able to process

a few BQPS, the bottleneck of the testbed is on the Redis

servers. Therefore, we use rate limiting to match the through-

put of each emulated switch to the aggregated throughput of

the emulated storage servers in a rack. We normalize the sys-

tem throughput to the throughput of one emulated key-value

server as the performance metric.

Workloads. We use both uniform and skewed workloads in

the evaluation. The uniform workload generates queries to

each object with the same probability. The skewed workload

follows Zipf distribution with a skewness parameter (e.g.,

0.9, 0.95, 0.99). Such skewed workload is commonly used

to benchmark key-value stores [10, 31], and is backed by

measurements from production systems [5, 6]. The clients

use approximation techniques [10, 32] to quickly generate

queries according to a Zipf distribution. We store a total of

100 million objects in the key-value store. We use Zipf-0.99 as

the default query distribution to show that DistCache performs

well even under extreme scenarios. We vary the skewness and

the write ratio (i.e., the percentage of write queries) in the

experiments to evaluate the performance of DistCache under

different scenarios.

Emulated Storage Servers

Emulated Leaf Switches 

for Storage Racks

Emulated Leaf Switches 

for Client Racks

One Physical

Barefoot Switch

Emulated Spine Switches

One Physical

Barefoot Switch

Two Physical

Servers Emulated Client Servers

Figure 8: Evaluation setup. The testbed emulates a datacenter

with a two-layer leaf-spine network by dividing switches and

servers into multiple logical partitions.

Comparison. To demonstrate the benefits of DistCache, we

compare the following mechanisms in the experiments: Dist-

Cache, CacheReplication, CachePartition, and NoCache. As

described in §2.2, CacheReplication is to replicate the hot

objects to all the upper layer cache nodes, and CachePartition

partitions the hot objects between nodes. In NoCache, we do

not cache any objects in both layers. Note that CachePartition

performs the same as only using NetCache for each rack (i.e.,

only caching in the ToR switches).

6.2 Performance for Read-Only Workloads

We first evaluate the system performance of DistCache. By

default, we use 32 spine switches and 32 storage racks. Each

rack contains 32 servers. We populate each cache switch with

100 hot objects, so that 64 cache switches provide a cache size

of 6400 objects. We use read-only workloads in this experi-

ment, and show the impact of write queries in §6.3. We vary

workload skew, cache size and system scale, and compare the

throughputs of the four mechanisms under different scenarios.

Impact of workload skew. Figure 9(a) shows the through-

put of the four mechanisms under different workload skews.

Under the uniform workload, the four mechanisms have the

same throughput, since the load between the servers is bal-

anced and all the servers achieve their maximum through-

puts. However, when the workload is skewed, the throughput

of NoCache significantly decreases, because of load imbal-

ance. The more skewed the workload is, the lower throughput

NoCache achieves. CachePartition performs better than No-

Cache, by caching hot objects in the switches. But its through-

put is still limited because of load imbalance between cache

switches. CacheReplication provides the optimal throughput

under read-only workloads as it replicates hot objects in all

spine switches. DistCache provides comparable throughput

to CacheReplication by using the distributed caching mech-

anism. And we will show in §6.3 that DistCache performs

better than CacheReplication under writes because of low

overhead for cache coherence.

152    17th USENIX Conference on File and Storage Technologies USENIX Association



unifRrP zipf-0.9 zipf-0.95 zipf-0.99
WRrNlRDd DisWribuWiRn

0

512

1024

1
Rr

P
Dl

iz
ed

 T
hr

Ru
gh

pu
W DisWCDche

CDche5eplicDWiRn
CDchePDrWiWiRn
1RCDche

(a) Throughput vs. skewness.

64 96 160 320 640 6400
CDche 6ize (lRg scDle)

0

512

1024

1
Rr

P
Dl

iz
ed

 T
hr

Ru
gh

Su
t

DistCDche
CDche5eSlicDtiRn
CDche3DrtitiRn

(b) Impact of cache size.

0 1024 2048 3072 4096
1uPber Rf 6tRrDge 1Rdes

0

2048

4096

1
Rr

P
Dl

iz
ed

 7
hr

Ru
gh

Su
t

DistCDche
CDcheReSlicDtiRn
CDche3DrtitiRn
1RCDche

(c) Scalability.

Figure 9: System performance for read-only workloads.

Impact of cache size. Figure 9(b) shows the throughput of

the three mechanisms under different cache sizes. CacheP-

artition achieves higher throughput with more objects in the

cache. Because the skewed workload still causes load im-

balance between cache switches, the benefits of caching is

limited for CachePartition. Some spine switches quickly be-

come overloaded after caching some objects. As such, the

throughput improvement is small for CachePartition. On the

other hand, CacheReplication and DistCache gain big im-

provements by caching more objects, as they do not have the

load imbalance problem between cache switches. The curves

of CacheReplication and DistCache become flat after they

achieve the saturated throughput.

Scalability. Figure 9(c) shows how the four mechanisms scale

with the number of servers. NoCache does not scale because

of the load imbalance between servers. Its throughput stops to

improve after a few hundred servers, because the overloaded

servers become the system bottleneck under the skewed work-

load. CachePartition performs better than NoCache as it uses

the switches to absorb queries to hot objects. However, since

the load imbalance still exists between the cache switches,

the throughput of CachePartition stops to grow when there

are a significant number of racks. CacheReplication provides

the optimal solution, since replicating hot objects in all spine

switches eliminates the load imbalance problem. DistCache

provides the same performance as CacheReplication and

scales out linearly.

6.3 Cache Coherence

While read-only workloads provide a good benchmark to

show the caching benefit, real-world workloads are usually

read-intensive [5]. Write queries require the two-phase up-

date protocol to ensure cache coherence, which (i) consumes

the processing power at storage servers, and (ii) reduces the

caching benefit as the cache cannot serve queries to hot ob-

jects that are frequently being updated. CacheReplication,

while providing the optimal throughput under read-only work-

loads, suffers from write queries, since a write query to a

cached object requires the system to update all spine switches.

We use the basic setup as the previous experiment, and vary

the write ratio.

Since both the workload skew and the cache size would

0.0 0.2 0.4 0.6 0.8 1.0
WriWe 5DWiR

0

512

1024

1
Rr

P
Dl

iz
ed

Th
rR

ug
hp

uW DisWCDche
CDche5eplicDWiRn
CDchePDrWiWiRn
1RCDche

(a) Throughput vs. write ratio under Zipf-0.9 and cache size 640.

0.0 0.2 0.4 0.6 0.8 1.0
WriWe 5DWiR

0

512

1024
1

Rr
P

Dl
iz

ed
Th

rR
ug

hp
uW DisWCDche

CDche5eplicDWiRn
CDchePDrWiWiRn
1RCDche

(b) Throughput vs. write ratio under Zipf-0.99 and cache size 6400.

Figure 10: Cache coherence result.

affect the result, we show two representative scenarios. Fig-

ure 10(a) shows the scenario for Zipf-0.9 and cache size 640

(i.e., 10 objects in each cache switch). Figure 10(b) shows the

scenario for Zipf-0.99 and cache size 6400 (i.e., 100 objects

in each cache switch), which is more skewed and caches more

objects than the scenario in Figure 10(a). NoCache is not

affected by the write ratio, as it does not cache anything (and

our rate limiter for the emulated storage servers assumes same

overhead for read and write queries, which is usually the case

for small values in in-memory key-value stores [33]). The

performance of CacheReplication drops very quickly, and it

is highly affected by the workload skew and the cache size,

as higher skewness and bigger cache size mean more write

queries would invoke the two-phase update protocol. Since

DistCache only caches an object once in each layer, it has

minimal overhead for cache coherence, and its throughput re-

duces slowly with the write ratio. The throughputs of the three

caching mechanisms eventually become smaller than that of

NoCache, since the servers spend extra resources on the cache

coherence. Thus, in-network caching should be disabled for

write-intensive workloads, which is a general guideline for

many caching systems.

USENIX Association 17th USENIX Conference on File and Storage Technologies    153



0 50 100 150 200
Time (s)

0

256

512
1

or
m

al
iz

ed
Th

ro
ug

hp
ut

switch failure
failure recovery

switch restoration

Figure 11: Time series for failure handling.

Switches Match Entries Hash Bits SRAMs Action Slots

Switch.p4 804 1678 293 503

Spine 149 751 250 98

Leaf (Client) 76 209 91 32

Leaf (Server) 120 721 252 108

Table 1: Hardware resource usage of DistCache.

6.4 Failure Handling

We now evaluate how DistCache handles failures. Figure 11

shows the time serious of this experiment, where x-axis de-

notes the time and y-axis denotes the system throughput.

The system starts with 32 spine switches. We manually fail

four spine switches one by one. Since each spine switch pro-

vides 1/32 of the total throughput, after we fail four spine

switches, the system throughput drops to about 87.5% of its

original throughput. Then the controller begins a failure re-

covery process, by redistributing the partitions of the failed

spine switches to other alive spine switches. Since the maxi-

mum throughput the system can provide drops to 87.5% due

to the four failed switches, the failure recovery would have no

impact if all alive spine switches were already saturated. To

show the benefit of the failure recovery, we limit the sending

rate to half of the maximum throughput. Therefore, after the

failure recovery, the throughput can increase to the original

one. Finally, we bring the four failed switches back online.

6.5 Hardware Resources

Finally, we measure the resource usage of the switches. The

programmable switches we use allow developers to define

their own packet formats and design the packet actions by

a series of match-action tables. These tables are mapped

into different stages in a sequential order, along with ded-

icated resources (e.g., match entries, hash bits, SRAMs, and

action slots) for each stage. DistCache leverages stateful mem-

ory to maintain the cached key-value items, and minimizes

the resource usage. Table 1 shows the resource usage of the

switches with the caching functionality. We show all the three

roles, including a spine switch, a leaf switch in a client rack,

and a leaf switch in a storage rack. Compared to the baseline

Switch.p4, which is a fully functional switch, adding caching

only requires a small amount of resources, leaving plenty

room for other network functions.

7 Related Work

Distributed storage. Distributed storage systems are widely

deployed to power Internet services [1–4]. One trend is to

move storage from HDDs and SDDs to DRAMs for high

performance [19, 20, 34, 35]. Recent work has explored both

hardware solutions [36–47] and software optimizations [33,

48–52]. Most of these techniques focus on the single-node

performance and are orthogonal to DistCache, as DistCache

focuses on the entire system spanning many clusters.

Load balancing. Achieving load balancing is critical to

scale out distributed storage. Basic data replication tech-

niques [25, 53] unnecessarily waste storage capacity under

skewed workloads. Selective replication and data migration

techniques [54–56], while reducing storage overhead, increase

system complexity and performance overhead for query rout-

ing and data consistency. EC-Cache [31] leverages erasure

coding, but since it requires to split an object into multiple

chunks, it is more suitable for large objects in data-intensive

applications. Caching is an effective alternative for load bal-

ancing [9–11]. DistCache pushes the caching idea further by

introducing a distributed caching mechanism to provide load

balance for large-scale storage systems.

In-network computing. Emerging programmable network

devices enable many new in-network applications. In-

cBricks [57] uses NPUs as a key-value cache. It does not

focus on load balancing. NetPaxos [58, 59] presents a solu-

tion to implement Paxos on switches. SpecPaxos [60] and

NOPaxos [61] use switches to order messages to improve

consensus protocols. Eris [62] moves concurrency control to

switches to improve distributed transactions.

8 Conclusion

We present DistCache, a new distributed caching mechanism

for large-scale storage systems. DistCache leverages indepen-

dent hash functions for cache allocation and the power-of-

two-choices for query routing, to enable a “one big cache”

abstraction. We show that combining these two techniques

provides provable load balancing that can be applied to vari-

ous scenarios. We demonstrate the benefits of DistCache by

the design, implementation and evaluation of the use case for

emerging switch-based caching.

Acknowledgments We thank our shepherd Ken Salem

and the reviewers for their valuable feedback. Liu, Braver-

man, and Jin are supported in part by NSF grants CNS-

1813487, CRII-1755646 and CAREER 1652257, Facebook

Communications & Networking Research Award, Cisco Fac-

ulty Award, ONR Award N00014-18-1-2364, DARPA/ARO

Award W911NF1820267, and Amazon AWS Cloud Cred-

its for Research Program. Ion Stoica is supported in part by

NSF CISE Expeditions Award CCF-1730628, and gifts from

Alibaba, Amazon Web Services, Ant Financial, Arm, Capi-

talOne, Ericsson, Facebook, Google, Huawei, Intel, Microsoft,

Scotiabank, Splunk and VMware.

154    17th USENIX Conference on File and Storage Technologies USENIX Association



References

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google

file system,” in ACM SOSP, October 2003.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-

pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly

available key-value store,” in ACM SOSP, October 2007.

[3] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, et al.,

“Finding a needle in Haystack: Facebook’s photo stor-

age.,” in USENIX OSDI, October 2010.

[4] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,

H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,

P. Saab, D. Stafford, T. Tung, and V. Venkataramani,

“Scaling Memcache at Facebook,” in USENIX NSDI,

April 2013.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny, “Workload analysis of a large-scale key-

value store,” in ACM SIGMETRICS, June 2012.

[6] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,

and R. Sears, “Benchmarking cloud serving systems

with YCSB,” in ACM Symposium on Cloud Computing,

June 2010.

[7] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A.

Freedman, K. Birman, and R. van Renesse, “Charac-

terizing load imbalance in real-world networked caches,”

in ACM SIGCOMM HotNets Workshop, October 2014.

[8] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash

crowds and denial of service attacks: Characterization

and implications for CDNs and web sites,” in WWW,

May 2002.

[9] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky,

“Small cache, big effect: Provable load balancing for ran-

domly partitioned cluster services,” in ACM Symposium

on Cloud Computing, October 2011.

[10] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and

M. J. Freedman, “Be fast, cheap and in control with

SwitchKV,” in USENIX NSDI, March 2016.

[11] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,

C. Kim, and I. Stoica, “NetCache: Balancing key-value

stores with fast in-network caching,” in ACM SOSP,

October 2017.

[12] M. Mitzenmacher, “The power of two choices in ran-

domized load balancing,” IEEE Transactions on Parallel

and Distributed Systems, October 2001.

[13] S. P. Vadhan et al., “Pseudorandomness,” Foundations

and Trends R© in Theoretical Computer Science, vol. 7,

no. 1–3, pp. 1–336, 2012.

[14] J. Nešetril, “Graph theory and combinatorics,” Lecture

Notes, Fields Institute, pp. 11–12, 2011.

[15] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,

X. Jin, and I. Stoica, “Distcache: Provable load bal-

ancing for large-scale storage systems with distributed

caching,” CoRR, vol. abs/1901.08200, 2017.

[16] S. Foss and N. Chernova, “On the stability of a partially

accessible multi-station queue with state-dependent rout-

ing,” Queueing Systems, 1998.

[17] R. D. Foley and D. R. McDonald, “Join the shortest

queue: stability and exact asymptotics,” Annals of Ap-

plied Probability, pp. 569–607, 2001.

[18] L. Lamport, “The part-time parliament,” ACM Transac-

tions on Computer Systems, May 1998.

[19] “Redis data structure store.” https://redis.io/.

[20] “Memcached key-value store.” https://memcached.

org/.

[21] M. Alizadeh, T. Edsall, S. Dharmapurikar,

R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam,

F. Matus, R. Pan, N. Yadav, and G. Varghese, “CONGA:

Distributed congestion-aware load balancing for

datacenters,” in ACM SIGCOMM, August 2014.

[22] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford,

“Hula: Scalable load balancing using programmable data

planes,” in ACM SOSR, March 2016.

[23] “Barefoot Tofino.” https://www.barefootnetworks.

com/technology/#tofino.

[24] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Con-

currency Control and Recovery in Database Systems.

Addison-Wesley Longman Publishing Co., Inc., 1986.

[25] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,

M. Levine, and D. Lewin, “Consistent hashing and ran-

dom trees: Distributed caching protocols for relieving

hot spots on the world wide web,” in ACM Symposium

on Theory of Computing, May 1997.

[26] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and

I. Stoica, “Wide-area cooperative storage with CFS,” in

ACM SOSP, October 2001.

[27] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-

own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-

dat, G. Varghese, and D. Walker, “P4: Programming

protocol-independent packet processors,” SIGCOMM

CCR, July 2014.

[28] “Barefoot P4 Studio.” https://www.

barefootnetworks.com/products/

brief-p4-studio/.

USENIX Association 17th USENIX Conference on File and Storage Technologies    155



[29] G. Cormode and S. Muthukrishnan, “An Improved Data

Stream Summary: The Count-min Sketch and Its Appli-

cations,” J. Algorithms, 2005.

[30] “Hiredis: Redis library.” https://redis.io/.

[31] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica,

and K. Ramchandran, “EC-Cache: Load-balanced, low-

latency cluster caching with online erasure coding,” in

USENIX OSDI, November 2016.

[32] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and

P. J. Weinberger, “Quickly generating billion-record syn-

thetic databases,” in ACM SIGMOD, May 1994.

[33] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky,

“MICA: A holistic approach to fast in-memory key-value

storage,” in USENIX NSDI, April 2014.

[34] “Amazon DynamoDB accelerator (DAX).” https://

aws.amazon.com/dynamodb/dax/.

[35] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,

C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,

M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang,

“The RAMCloud storage system,” ACM Transactions on

Computer Systems, August 2015.

[36] M. Blott, K. Karras, L. Liu, K. A. Vissers, J. Bär, and

Z. István, “Achieving 10Gbps line-rate key-value stores

with FPGAs,” in USENIX HotCloud Workshop, June

2013.

[37] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung,

P. Ranganathan, and M. Margala, “An FPGA Mem-

cached appliance,” in ACM/SIGDA FPGA, February

2013.

[38] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and

T. F. Wenisch, “Thin servers with smart pipes: Designing

SoC accelerators for Memcached,” in ACM/IEEE ISCA,

June 2013.

[39] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,

E. Chen, and L. Zhang, “KV-Direct: High-performance

in-memory key-value store with programmable NIC,” in

ACM SOSP, October 2017.

[40] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using

RDMA efficiently for key-value services,” in ACM SIG-

COMM, August 2014.

[41] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design

guidelines for high performance RDMA systems,” in

USENIX ATC, June 2016.

[42] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson,

“FaRM: Fast remote memory,” in USENIX NSDI, April

2014.

[43] S. Li, K. Lim, P. Faraboschi, J. Chang, P. Ranganathan,

and N. P. Jouppi, “System-level integrated server archi-

tectures for scale-out datacenters,” in IEEE/ACM MI-

CRO, December 2011.

[44] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos,

O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S. Id-

gunji, E. Ozer, et al., “Scale-out processors,” in

ACM/IEEE ISCA, June 2012.

[45] A. Gutierrez, M. Cieslak, B. Giridhar, R. G. Dreslinski,

L. Ceze, and T. Mudge, “Integrated 3D-stacked server

designs for increasing physical density of key-value

stores,” in ACM ASPLOS, March 2014.

[46] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and

B. Grot, “Scale-out NUMA,” in ACM ASPLOS, March

2014.

[47] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kamin-

sky, D. G. Andersen, O. Seongil, S. Lee, and P. Dubey,

“Architecting to achieve a billion requests per second

throughput on a single key-value store server platform,”

in ACM/IEEE ISCA, June 2015.

[48] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-

ishayee, L. Tan, and V. Vasudevan, “FAWN: A fast array

of wimpy nodes,” in ACM SOSP, October 2009.

[49] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freed-

man, “Algorithmic improvements for fast concurrent

cuckoo hashing,” in EuroSys, April 2014.

[50] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3:

Compact and concurrent memcache with dumber

caching and smarter hashing,” in USENIX NSDI, April

2013.

[51] V. Vasudevan, M. Kaminsky, and D. G. Andersen, “Us-

ing vector interfaces to deliver millions of IOPS from

a networked key-value storage server,” in ACM Sympo-

sium on Cloud Computing, October 2012.

[52] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky,

“SILT: A memory-efficient, high-performance key-value

store,” in ACM SOSP, October 2011.

[53] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and

I. Stoica, “Wide-area cooperative storage with CFS,” in

ACM SOSP, October 2001.

[54] Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory

object caching framework with adaptive load balancing,”

in EuroSys, April 2015.

[55] M. Klems, A. Silberstein, J. Chen, M. Mortazavi, S. A.

Albert, P. Narayan, A. Tumbde, and B. Cooper, “The

Yahoo!: Cloud datastore load balancer,” in CloudDB,

October 2012.

156    17th USENIX Conference on File and Storage Technologies USENIX Association



[56] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. El-

more, A. Aboulnaga, A. Pavlo, and M. Stonebraker, “E-

Store: Fine-grained elastic partitioning for distributed

transaction processing systems,” in VLDB, November

2014.

[57] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,

and K. Atreya, “IncBricks: Toward in-network computa-

tion with an in-network cache,” in ACM ASPLOS, April

2017.

[58] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and

R. Soulé, “NetPaxos: Consensus at network speed,” in

ACM SOSR, June 2015.

[59] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos

made switch-y,” SIGCOMM CCR, April 2016.

[60] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krish-

namurthy, “Designing distributed systems using approx-

imate synchrony in data center networks,” in USENIX

NSDI, May 2015.

[61] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and

D. R. Ports, “Just say NO to Paxos overhead: Replacing

consensus with network ordering,” in USENIX OSDI,

November 2016.

[62] J. Li, E. Michael, and D. R. Ports, “Eris: Coordination-

free consistent transactions using in-network concur-

rency control,” in ACM SOSP, October 2017.

USENIX Association 17th USENIX Conference on File and Storage Technologies    157


	Introduction
	Background and Motivation
	Small, Fast Cache for Load Balancing
	Scaling out Distributed Storage

	DistCache Caching Mechanism Design
	Key Idea
	Analysis
	Remarks
	Use Cases

	DistCache for Switch-Based Caching
	System Architecture
	Query Handling
	Cache Coherence and Cache Update
	Failure Handling

	Implementation
	Evaluation
	Methodology
	Performance for Read-Only Workloads
	Cache Coherence
	Failure Handling
	Hardware Resources

	Related Work
	Conclusion

