DistCache: Provable Load Balancing for Large-Scale Storage Systems
with Distributed Caching

Zaoxing Liu*, Zhihao Bai*, Zhenming Liu®, Xiaozhou Li<,
Changhoon Kim*, Viadimir Braverman*, Xin Jin*, Ion Stoica®
*Johns Hopkins University T College of William and Mary ~“Celer Network *Barefoot Networks °UC Berkeley

Abstract

Load balancing is critical for distributed storage to meet strict
service-level objectives (SLOs). It has been shown that a fast
cache can guarantee load balancing for a clustered storage sys-
tem. However, when the system scales out to multiple clusters,
the fast cache itself would become the bottleneck. Traditional
mechanisms like cache partition and cache replication either
result in load imbalance between cache nodes or have high
overhead for cache coherence.

We present DistCache, a new distributed caching mecha-
nism that provides provable load balancing for large-scale
storage systems. DistCache co-designs cache allocation with
cache topology and query routing. The key idea is to parti-
tion the hot objects with independent hash functions between
cache nodes in different layers, and to adaptively route queries
with the power-of-two-choices. We prove that DistCache en-
ables the cache throughput to increase linearly with the num-
ber of cache nodes, by unifying techniques from expander
graphs, network flows, and queuing theory. DistCache is a
general solution that can be applied to many storage systems.
We demonstrate the benefits of DistCache by providing the
design, implementation, and evaluation of the use case for
emerging switch-based caching.

1 Introduction

Modern planetary-scale Internet services (e.g., search, social
networking and e-commerce) are powered by large-scale stor-
age systems that span hundreds to thousands of servers across
tens to hundreds of racks [1-4]. To ensure satisfactory user
experience, the storage systems are expected to meet strict
service-level objectives (SLOs), regardless of the workload
distribution. A key challenge for scaling out is to achieve load
balancing. Because real-world workloads are usually highly-
skewed [5—8], some nodes receive more queries than others,
causing hot spots and load imbalance. The system is bottle-
necked by the overloaded nodes, resulting in low throughput
and long tail latencies.

Caching is a common mechanism to achieve load balanc-
ing [9-11]. An attractive property of caching is that caching

O(nlogn) hottest objects is enough to balance n storage
nodes, regardless of the query distribution [9]. The cache
size only relates to the number of storage nodes, despite the
number of objects stored in the system. Such property leads to
recent advancements like SwitchKV [10] and NetCache [11]
for balancing clustered key-value stores.

Unfortunately, the small cache solution cannot scale out
to multiple clusters. Using one cache node per cluster only
provides intra-cluster load balancing, but not inter-cluster
load balancing. For a large-scale storage system across many
clusters, the load between clusters (where each cluster can
be treated as one “big server’”’) would be imbalanced. Using
another cache node, however, is not sufficient, because the
caching mechanism requires the cache to process all queries
to the O(nlogn) hottest objects [9]. In other words, the cache
throughput needs to be no smaller than the aggregate through-
put of the storage nodes.

As such, it requires another caching layer with multiple
cache nodes for inter-cluster load balancing. The challenge
is on cache allocation. Naively replicating hot objects to all
cache nodes incurs high overhead for cache coherence. On
the other hand, simply partitioning hot objects between the
cache nodes would cause the load to be imbalanced between
the cache nodes. The system throughput would still be bottle-
necked by one cache node under highly-skewed workloads.
Thus, the key is to carefully partition and replicate hot objects,
in order to avoid load imbalance between the cache nodes,
and to reduce the overhead for cache coherence.

We present DistCache, a new distributed caching mecha-
nism that provides provable load balancing for large-scale
storage systems. DistCache enables a “one big cache” ab-
straction, i.e., an ensemble of fast cache nodes acts as a single
ultra-fast cache. DistCache co-designs cache allocation with
multi-layer cache topology and query routing. The key idea
is to use independent hash functions to partition hot objects
between the cache nodes in different layers, and to apply the
power-of-two-choices [12] to adaptively route queries.

Using independent hash functions for cache partitioning
ensures that if a cache node is overloaded in one layer, then

USENIX Association

17th USENIX Conference on File and Storage Technologies 143

the set of hot objects in this node would be distributed to mul-
tiple cache nodes in another layer with high probability. This
intuition is backed up by a rigorous analysis that leverages
expander graphs and network flows, i.e., we prove that there
exists a solution to split queries between different layers so
that no cache node would be overloaded in any layer. Further,
since a hot object is only replicated in each layer once, it
incurs minimal overhead for cache coherence.

Using the power-of-two-choices for query routing provides
an efficient, distributed, online solution to split the queries
between the layers. The queries are routed to the cache nodes
in a distributed way based on cache loads, without central
coordination and without knowing what is the optimal solu-
tion for query splitting upfront. We leverage queuing theory
to show it is asymptotically optimal. The major difference
between our problem and the balls-and-bins problem in the
original power-of-two-choices algorithm [12] is that our prob-
lem hashes objects into cache nodes, and queries to the same
object reuse the same hash functions to choose hash nodes,
instead of using a new random source to sample two nodes for
each query. We show that the power-of-two-choices makes
a “life-or-death” improvement in our problem, instead of a
“shaving off a log n”” improvement.

DistCache is a general caching mechanism that can be
applied to many storage systems, e.g., in-memory caching
for SSD-based storage like SwitchKV [10] and switch-based
caching for in-memory storage like NetCache [11]. We pro-
vide a concrete system design to scale out NetCache to demon-
strate the power of DistCache. We design both the control
and data planes to realize DistCache for the emerging switch-
based caching. The controller is highly scalable as it is off the
critical path. It is only responsible for computing the cache
partitions and is not involved in handling queries. Each cache
switch has a local agent that manages the hot objects of its
own partition.

The data plane design exploits the capability of pro-
grammable switches, and makes innovative use of in-network
telemetry beyond traditional network monitoring to realize
application-level functionalities—disseminating the loads of
cache switches by piggybacking in packet headers, in order to
aid the power-of-two-choices. We apply a two-phase update
protocol to ensure cache coherence.

In summary, we make the following contributions.

e We design and analyze DistCache, a new distributed
caching mechanism that provides provable load balancing
for large-scale storage systems (§3).

e We apply DistCache to a use case of emerging switch-
based caching, and design a concrete system to scale out
an in-memory storage rack to multiple racks (§4).

o We implement a prototype with Barefoot Tofino switches
and commodity servers, and integrate it with Redis (§5).
Experimental results show that DistCache scales out lin-
early with the number of racks, and the cache coherence
protocol incurs minimal overhead (§6).

Cache Example SwitchKV[10] NetCache[11]

Cache In-memory In-switch

Storage SSD In-memory

Storage Nodes

Figure 1: Background on caching. If the cache node can
absorb all queries to the hottest O(nlogn) objects, the load
on the storage nodes is guaranteed to be balanced [9].

2 Background and Motivation
2.1 Small, Fast Cache for Load Balancing

As a building block of Internet applications, it is critical for
storage systems to meet strict SLOs. Ideally, given the per-
node throughput 7', a storage system with n nodes should
guarantee a total throughput of n - 7. However, real-world
workloads are usually high-skewed, making it challenging to
guarantee performance [5-8]. For example, a measurement
study on the Memcached deployment shows that about 60-
90% of queries go to the hottest 10% objects [5].

Caching is a common mechanism to achieve load balanc-
ing for distributed storage, as illustrated in Figure 1. Previous
work has proven that if the cache node can absorb all queries
to the hottest O(nlogn) objects, then the load on n storage
servers is guaranteed to be balanced, despite query distribu-
tion and the total number of objects [9]. However, it also
requires that the cache throughput needs to be at least n- T
to not become the system bottleneck. Based on this theoreti-
cal foundation, SwitchKV [10] uses an in-memory cache to
balance SSD-based storage nodes, and NetCache [11] uses
a switch-based cache to balance in-memory storage nodes.
Empirically, these systems have shown that caching a few
thousand objects is enough for balancing a hundred storage
nodes, even for highly-skewed workloads like Zipfian-0.9 and
Zipfian-0.99 [10, 11].

2.2 Scaling out Distributed Storage

The requirement on the cache performance limits the system
scale. Suppose the throughput of a cache node is T=c-T.
The system can scale to at most a cluster of ¢ storage nodes.
For example, given that the typical throughput of a switch
is 10-100 times of that of a server, NetCache [11] can only
guarantee load balancing for 10-100 storage servers. As such,
existing solutions like SwitchKV [10] and NetCache [11] are
constrained to one storage cluster, which is typically one or
two racks of servers.

For a cloud-scale distributed storage system that spans
many clusters, the load between the clusters can become im-
balanced, as shown in Figure 2(a). Naively, we can put another
cache node in front of all clusters to balance the load between
clusters. At first glance, this seems a nice solution, since we
can first use a cache node in each cluster for intra-cluster load
balancing, and then use an upper-layer cache node for inter-
cluster load balancing. However, now each cluster becomes
a “big server”, of which the throughput is already T. Using

144 17th USENIX Conference on File and Storage Technologies

USENIX Association

Load imbalance One " ™" "@l™ " @l Inter-Cluster
between clusters Big 1 . ‘ . T>Load Balancing

Cache
P P P "@ '@\ " @ ! Intra-Cluster
1 1 1 1
:,::,::’: "?”y:’::’::,T)LoadBalancing
N N e 0 (EN N N
'HN EN,EE, e HE) EE N
4 4 1 1

| Ep—1 |

Figure 2: Motivation. (a) A cache node only guarantees load
balancing for its own cluster, but the load between clusters
can be unbalanced. (b) Use one cache node in each cluster
for intra-cluster load balancing, and another layer of cache
nodes for inter-cluster load balancing. The challenge is on
cache allocation.

only one cache node cannot meet the cache throughput re-
quirement, which is mT for m clusters. While using multiple
upper-layer cache nodes like Figure 2(b) can potentially meet
this requirement, it brings the question of how to allocate
hot objects to the upper-layer cache nodes. We examine two
traditional cache allocation mechanisms.

Cache partition. A straightforward solution is to partition
the object space between the upper-layer cache nodes. Each
cache node only caches the hot objects of its own partition.
This works well for uniform workloads, as the cache through-
put can grow linearly with the number of cache nodes. But
remember that under uniform workloads, the load on the stor-
age nodes is already balanced, obviating the need for caching
in the first place. The whole purpose of caching is to guarantee
load balancing for skewed workloads. Unfortunately, cache
partition would cause load imbalance between the upper-layer
cache nodes, because multiple hot objects can be partitioned
to the same upper-layer cache node, making one cache node
become the system bottleneck.

Cache replication. Cache replication replicates the hot ob-
jects to all the upper-layer cache nodes, and the queries can be
uniformly sent to them. As such, cache replication can ensure
that the load between the cache nodes is balanced, and the
cache throughput can grow linearly with the number of cache
nodes. However, cache replication introduces high overhead
for cache coherence. When there is a write query to a cached
object, the system needs to update both the primary copy at
the storage node and the cached copies at the cache nodes,
which often requires an expensive two-phase update protocol
for cache coherence. As compared to cache partition which
only caches a hot object in one upper-layer cache node, cache
replication needs to update all the upper-layer cache nodes
for cache coherence.

Challenge. Cache partition has low overhead for cache co-
herence, but cannot increase the cache throughput linearly
with the number of cache nodes; cache replication achieves
the opposite. Therefore, the main challenge is to carefully
partition and replicate the hot objects, in order to (i) avoid
load imbalance between upper-layer cache nodes, and to (ii)

Query Routing with
E Get(A) Power-of-Two-Choices
One :—_______ _________:
Big X N
Cache ! &) 1 Cache Partition
-_ __ __ __ /- ________ _____________ with Independent
| : | : | : Hash Functions
1 1 1 1 1 1
Many 1C5 1 |C, 1 |C, 1
; 1 [| ! 1 1
Blg 1 1 1 1 1 1
Servers: N : HE : HE :
| ' AN : ' 1N :

[SRp R —— |

Figure 3: Key idea. (i) Use independent hash functions to
partition hot objects in different layers. (ii) Use the power-
of-two-choices to route queries, e.g., route Get(A) to either
cache node Cj or cache node C3 based on cache load.

reduce the overhead for cache coherence.
3 DistCache Caching Mechanism Design
3.1 Key Idea

We design DistCache, a new distributed caching mechanism
to address the challenge described in §2.2. As illustrated by
Figure 3, our key idea is to use independent hash functions
for cache allocation and the power-of-two-choices for query
routing, in order to balance the load between cache nodes.
Our mechanism only caches an object at most once in a layer,
incurring minimal overhead for cache coherence. We first
describe the mechanism and the intuitions, and then show
why it works in §3.2.

Cache allocation with independent hash functions. Our
mechanism partitions the object space with independent hash
functions in different layers. The lower-layer cache nodes pri-
marily guarantee intra-cluster load balancing, each of which
only caches hot objects for its own cluster, and thus each
cluster appears as one “big server”. The upper-layer cache
nodes are primarily for inter-cluster load balancing, and use a
different hash function for partitioning. The intuition is that if
one cache node in a layer is overloaded by receiving too many
queries to its cached objects, because the hash functions of
the two layers are independent, the set of hot objects would
be distributed to multiple cache nodes in another layer with
high probability. Figure 3 shows an example. While cache
node Cj3 in the lower layer is overloaded with three hot objects
(A, B and C), the three objects are distributed to three cache
nodes (Cp, C; and () in the upper layer. The upper-layer
cache nodes only need to absorb queries for objects (e.g., A
and B) that cause the imbalance between the clusters, and do
not need to process queries for objects (e.g., D and F) that
already spread out in the lower-layer cache nodes.

Query routing with the power-of-two-choices. The cache
allocation strategy only tells that there exists a way to han-
dle queries without overloading any cache nodes, but it does
not tell how the queries should be split between the layers.

USENIX Association

17th USENIX Conference on File and Storage Technologies 145

Conceivably, we could use a controller to collect global mea-
surement statistics to infer the query distribution. Then the
controller can compute an optimal solution and enforce it at
the senders. Such an approach has high system complexity,
and the responsiveness to dynamic workloads depends on the
agility of the control loop.

Our mechanism uses an efficient, distributed, online solu-
tion based on the power-of-two-choices [12] to route queries.
Specifically, the sender of a query only needs to look at the
loads of the cache nodes that cache the queried object, and
sends the query to the less-loaded node. For example, the
query Ger(A) in Figure 3 is routed to either C; or C3 based on
their loads. The key advantage of our solution is that: it is dis-
tributed, so that it does not require a centralized controller or
any coordination between senders; it is online, so that it does
not require a controller to measure the query distribution and
compute the solution, and the senders do not need to know
the solution upfront; it is efficient, so that its performance is
close to the optimal solution computed by a controller with
perfect global information (as shown in §3.2). Queries to
hit a lower-layer cache node can either pass through an arbi-
trary upper-layer node, or totally bypass the upper-layer cache
nodes, depending on the actual use case, which we describe
in §3.4.

Cache size and multi-layer hierarchical caching. Suppose
there are m clusters and each cluster has [/ servers. First, we
let each lower-layer cache node cache O(llog!) objects for
its own cluster for intra-cluster load balancing, so that a to-
tal of O(mllogl) objects are cached in the lower layer and
each cluster appears like one “big server”. Then for inter-
cluster load balancing, the upper-layer cache nodes only need
to cache a total of O(mlogm) objects. This is different from
a single ultra-fast cache at a front-end that handles all m!
servers directly. In that case, O(mllog(ml)) objects need to
be cached based on the result in [9]. However, in DistCache,
we have an extra upper-layer (with the same total throughput
as ml servers) to “refine” the query distribution that goes to
the lower-layer, which reduces the effective cache size in the
lower layer to O(mllogl). Thus, this is not a contradiction
with the result in [9]. While these O(mlogm) inter-cluster
hot objects also need to be cached in the lower layer to en-
able the power-of-two-choices, most of them are also hot
inside the clusters and thus have already been contained in
the O(mllog!) intra-cluster hot objects.

Our mechanism can be applied recursively for multi-layer
hierarchical caching. Specifically, applying the mechanism
to layer i can balance the load for a set of “big servers” in
layer i-1. Query routing uses the power-of-k-choices for k
layers. Note that using more layers actually increases the total
number of cache nodes, since each layer needs to provide a
total throughput at least equal to that of all storage nodes. The
benefit of doing so is on reducing the cache size. When the
number of clusters is no more than a few hundred, a cache
node has enough memory with two layers.

3.2 Analysis

Prior work [9] has shown that caching O(nlogn) hottest ob-
jects in a single cache node can balance the load for n storage
nodes for any query distribution. In our work, we replace the
single cache node with multiple cache nodes in two layers to
support a larger scale. Therefore, based on our argument on
the cache size in §3.1, we need to prove that the two-layer
cache can absorb all queries to the hottest O(mlogm) objects
under any query distribution for all m clusters. We first define
a mathematical model to formalize this problem.

System model. There are & hot objects {0g,01,...,0¢—1}
with query distribution P = {py, p1,...,Pk—1}, where p; de-
notes the fraction of queries for object o;, and Zf;ol pi=1.
The total query rate is R, and the query rate for object o; is r; =
pi - R. There are in total 2m cache nodes that are organized to
two groups A = {ag,ay,...,an—1} and B={bg,b1,...,by_1},
which represent the upper and lower layers, respectively. The
throughput of each cache node is 7.

The objects are mapped to the cache nodes with two inde-
pendent hash functions /g (x) and % (x). Object o; is cached
in aj, in group A and b, in group B, where jo = ho(i) and
Jj1 = h1(i). A query to o; can be served by either a;, or b;, .

Goal. Our goal is to evaluate the total query rate R the cache
nodes can support, in terms of m and T, regardless of query
distribution P, as well as the relzltionship between k and m.
Ideally, we would like R ~ oumT where o is a small con-
stant (e.g., 1), so that the operator can easily provision the
cache nodes to meet the cache throughput requirement (i.e.,
no smaller than the total throughput of storage nodes).

If we can set k to be O(mlogm), it means that the cache
nodes can absorb all queries to the hottest O(mlogm) objects,
despite query distribution. Combining this result with the
cache size argument in §3.1, we can prove that the distributed
caching mechanism can provide performance guarantees for
large-scale storage systems across multiple clusters.

A perfect matching problem in a bipartite graph. The key
observation of our analysis is that the problem can be con-
verted to finding a perfect matching in a bipartite graph. In-
tuitively, if a perfect matching exists, the requests to k hot
objects can be completely absorbed from the two layers
of cache nodes. Specifically, we construct a bipartite graph
G = (U,V,E), where U is the set of vertices on the left, V
is the set of vertices on the right, and E is the set of edges.
Let U represent the set of objects, i.e., U = {09, 01,...,0¢—1 }.
Let V represent the set of cache nodes, i.e., V=AUB =
{ao,ai1,...,am—1,b0,b1,...,b;_1}. Let E represent the hash
functions mapping from the objects to the cache nodes, i.e.,
E = {eq,.a;,|ho(i) = jo} U{eo,p;, [h1(i) = j1}. Given a query
distribution P and a total query rate R, we define a perfect
matching in G to represent that the workload can be supported
by the cache nodes.

Definition 1. Let T'(v) be the set of neighbors of vertex v in G.

146 17th USENIX Conference on File and Storage Technologies

USENIX Association

Group B

Cache Nodes
(a) Bipartite graph.

Objects Objects Cache Nodes

(b) Perfect matching.

Figure 4: Example for analysis. (a) A bipartite graph con-
structed for the scenario in Figure 3. (b) A perfect matching
for query routing when all objects have a query rate of 1, and
all cache nodes have a throughput of 1.

A weight assignment W = {w, ; € [0,T)|e; ; € E} is a perfect
matching of G if

1. Yo; €U: Yier(o)Woiv = Pi-R and

2.WeV: Yuerp Wiy <T.

In this definition, w; ; denotes the portion of the queries to
object i served by cache node j. Condition 1 ensures that for
any object o;, its query rate p; - R is fully served. Condition 2
ensures that for any cache node v, its load is no more than f
i.e., no single cache node is overloaded.

When a perfect matching exists, it is feasible to serve all
the queries by the cache nodes. We use the example in Fig-
ure 4 to illustrate this. Figure 4(a) shows the bipartite graph
constructed for the scenario in Figure 3, which contains six
hot objects (A-F) and six cache nodes in two layers (Co-Cs).
The edges are built based on two hash functions /p(x) and
hi(x). Figure 4(b) shows a perfect matching for the case that
all objects have the same query rate r; = 1 and all cache nodes
have the same throughput 7 = 1. The number besides an edge
denotes the weight of an edge, i.e., the rate of the object served
by the cache node. For instance, all queries to A are served
by C;. This is a simple example to illustrate the problem. In
general, the query rates of the objects do not have to be the
same, and the queries to one object may be served by multiple
cache nodes.

Step 1: existence of a perfect matching. We first show the
existence of a perfect matching for any given total rate R and
any query distribution P. We have the following lemma to
demonstrate how big the total rate R can be in terms of 7', for
any P. For the full proof of Lemma 1, we refer the readers to
§A.2 in the technical report.

Lemma 1. Let o be a suitably small constant. If k < mP
for some constant B~(i.e., k and m are polynomial-related)
and max;(p;) - R < T /2, then for any € > 0, there exists a

perfect matching for R = (1 —¢)at- mT and any P, with high
probability for sufficiently large m.

Proof sketch of Lemma 1: We utilize the results and tech-
niques developed from expander graphs and network flows.
(i) We first show that G has the so-called expansion property
with high probability. Intuitively, the property states that the
neighborhood of any subset of nodes in U expands, i.e., for
any S C U, [I'(S)| > |S]. It has been observed that such prop-
erties exist in a wide range of random graphs [13]. While
our G behaves similar to random bipartite graphs, we need
the expansion property to hold for S in any size, which is
stricter than the standard definition (which assumes S is not
too large) and thus requires more delicate probabilistic tech-
niques. (if) We then show that if a graph has the expansion
property, then it has a perfect matching. This step can be
viewed as a generalization of Hall’s theorem [14] in our set-
ting. Hall’s theorem states that a balanced bipartite graph has a
perfect (non-fractional) matching if and only if for any subset
S of the left nodes, |T°(S)| > |S|. and perfect matching can be
fractional. This step can be proved by the max-flow-min-cut
theorem, i.e., expansion implies large cut, and then implies
large matching.

Step 2: finding a perfect matching. Demonstrating the exis-
tence of a perfect matching is insufficient since it just ensures
the queries can be absorbed but does not give the actual weight
assignment W, i.e., how the cache nodes should serve queries
for each P to achieve R. This means that the system would
require an algorithm to compute W and an mechanism to
enforce W. As discussed in §3.1, instead of doing so, we use
the power-of-two-choices to “emulate” the perfect matching,
without the need to know what the perfect matching is. The
quality of the mechanism is backed by Lemma 2, which we
prove using queuing theory. The detailed proof can be found
in §A.3 of the technical report [15].

Lemma 2. If a perfect matching exists for G, then the power-
of-two-choices process is stationary.

Stationary means that the load on the cache nodes would
converge, and the system is “sustainable” in the sense that the
system will never “blow up” (i.e., build up queues in a cache
node and eventually drop queries) with query rate R.

Proof sketch of Lemma 2: Showing this lemma requires us
to use a powerful building block in query theory presented in
[16,17]. Consider 2m exponential random variables with rate
T; > 0. Each non-empty set of cache nodes S C [2m], has an
associated Poisson arrival process with rate Ag > 0 that joins
the shortest queue in § with ties broken randomly. For each
non-empty subset Q C [2m], define the traffic intensity on Q

as _ZSQQ}\'S
0=,

Ho
where ugp =Yico T;. Note that the total rate at which objects

served by Q can be greater than the numerator of (3.2) since
other requests may be allowed to be served by some or all of

USENIX Association

17th USENIX Conference on File and Storage Technologies 147

the cache nodes in Q. Let pmax = Maxgcpm {Po}- Given the
result in [16, 17], if we can show ppmax < 1, then the Markov
process is positive recurrent and has a stationary distribution.
In fact, our cache querying can be described as an arrival
process (§A.3 of [15]). Finally, we show that py,x is less than
1 and thus the process is stationary.

Step 3: main theorem. Based on Lemma 1 and Lemma 2, we
can prove that our distributed caching mechanism is able to
provide a performance guarantee, despite query distribution.

Theorem 1. Let o be a suitable constant. If k < mbP for
some constant B (i.e., k and m are polynomial-related) and
max;(p;) R < T/Z, then for any € > 0, the system is station-
ary for R = (1 —g)o.-mT and any P, with high probability
for sufficiently large m.

Interpretation of the main theorem: As long as the query
rate of a single hot object o; is no larger than T /2 (e.g., half
of the entire throughput in a cluster rack), DistCache can
support a query rate of ~ mT for any query distributions to
the k hot objects (where k can be fairly large in terms of m) by
using the power-of-two-choices protocol to route the queries
to the cached objects. The key takeaways are presented in the
following section.

3.3 Remarks

Our problem isn’t a balls-in-bins problem using the original
power-of-two-choices. The major difference is that our prob-
lem hashes objects into cache nodes, and queries to the same
object by reusing the same hash functions, instead of using a
new random source to sample two nodes for each query. In
fact, without using the power-of-two-choices, the system is
in non-stationary. This means that the power-of-two-choices
makes a “life-or-death” improvement in our problem, instead
of a “shaving off a log n”” improvement. While we refer to the
technical report [15] for detailed discussions, we have a few
important remarks.

e Nonuniform number of cache nodes in two layers. For
simplicity we use the same number of m cache nodes per
layer in the system. However, we can generalize the anal-
ysis to accommodate the cases of different numbers of
caches nodes in two layers, as long as min(mg,m) is suf-
ficiently large, where my and m; are the number of upper-
layer and lower-layer cache nodes respectively. While it
requires m to be sufficiently large, it is not a strict require-
ment, because the load imbalance issue is only significant
when m is large.

e Nonuniform throughput of cache nodes in two groups.
Although our analysis assumes the throughput of a cache
node is T, we can generalize it to accommodate the cases
of nonuniform throughput by treating a cache node with
a large throughput as multiple smaller cache nodes with a
small throughput.

e Cache size. As long as the number of objects and the num-
ber of cache nodes are polynomially-related (k < mP), the

system is able to provide the performance guarantee. It
is more relaxed than O(mlogm). Therefore, by setting
k = O(mlogm), the cache nodes are able to absorb all
queries to the hottest O(mlogm) objects, making the load
on the m clusters balanced.

e Maximum query rate for one object. The theorem re-
quires that the maximum query rate for one object is no
bigger than half the throughput of one cache node. This
is not a severe restriction for the system, because a cache
node is orders of magnitude faster than a storage node.

o Performance guarantee. The system can guarantee a total
throughput of R = (1 —€)o.-mT, which scales linearly with
m and T. In practice, o is close to 1.

3.4 Use Cases

DistCache is a general solution that can be applied to scale
out various storage systems (e.g., key-value stores and file
systems) using different storage mediums (e.g., HDD, SDD
and DRAM). We describe two use cases.

Distributed in-memory caching. Based on the performance
gap between DRAMs and SSDs, a fast in-memory cache node
can be used balance an SSD-based storage cluster, such as
SwitchKV [10]. DistCache can scale out SwitchKV by using
another layer of in-memory cache nodes to balance multiple
SwitchKYV clusters. While it is true that multiple in-memory
cache nodes can be balanced using a faster switch-based cache
node, applying DistCache obviates the need to introduce a
new component (i.e., a switch-based cache) to the system.
Since the queries are routed to the cache and storage nodes
by the network, queries to the lower-layer cache nodes can
totally bypass the upper-layer cache nodes.

Distributed switch-based caching. Many low-latency stor-
age systems for interactive web services use more expensive
in-memory designs. An in-memory storage rack can be bal-
anced by a switch-based cache like NetCache [11], which
directly caches the hot objects in the data plane of the ToR
switch. DistCache can scale out NetCache to multiple racks
by caching hot objects in a higher layer of the network topol-
ogy, e.g., the spine layer in a two-layer leaf-spine network. As
discussed in the remarks (§3.3), DistCache accommodates the
cases that the number of spine switches is smaller and each
spine switch is faster. As for query routing, while queries to
hit the leaf cache switches need to inevitably go through the
spine switches, these queries can be arbitrarily routed through
any spine switches, so that the load on the spine switches can
be balanced.

Note that while existing solutions (e.g., NetCache [11])
directly embeds caching in the switches which may raise
concerns on deployment, another option for easier deploy-
ment is to use the cache switches as stand-alone specialized
appliances that are separated from the switches in the data-
center network. DistCache can be applied to scale out these
specialized switch-based caching appliances as well.

148 17th USENIX Conference on File and Storage Technologies

USENIX Association

One Big Cache

Storage Racks Client Racks

Figure 5: Architecture for distributed switch-based caching.

4 DistCache for Switch-Based Caching

To demonstrate the benefits of DistCache, we provide a con-
crete system design for the emerging switch-based caching.
A similar design can be applied to other use cases as well.

4.1 System Architecture

Emerging switch-based caching, such as NetCache [11] is lim-
ited to one storage rack. We apply DistCache to switch-based
caching to provide load balancing for cloud-scale key-value
stores that span many racks. Figure 5 shows the architecture
for a two-layer leaf-spine datacenter network.

Cache Controller. The controller computes the cache parti-
tions, and notifies the cache switches. It updates the cache
allocation under system reconfigurations, e.g., adding new
racks and cache switches, and system failures; and thus up-
dating the allocation is an infrequent task. We assume the
controller is reliable by replicating on multiple servers with a
consensus protocol such as Paxos [18]. The controller is not
involved in handling storage queries in the data plane.

Cache switches. The cache switches provide two critical
functionalities for DistCache: (1) caching hot key-value ob-
jects; (2) distributing switch load information for query rout-
ing. First, a local agent in the switch OS receives its cache
partition from the controller, and manages the hot objects for
its partition in the data plane. Second, the cache switches
implement a lightweight in-network telemetry mechanism to
distribute their load information by piggybacking in packet
headers. The functionalities for DistCache are invoked by
a reserved L4 port, so that DistCache does not affect other
network functionalities. We use existing L.2/L.3 network pro-
tocols to route packets, and do not modify other network
functionalities already in the switch.

ToR switches at client racks. The ToR switches at client
racks provide query routing. It uses the power-of-two-choices
to decide which cache switch to send a query to, and uses
existing L.2/L.3 network protocols to route the query.

Storage servers. The storage servers host the key-value store.
DistCache runs a shim layer in each storage server to integrate
the in-network cache with existing key-value store software
like Redis [19] and Memcached [20]. The shim layer also

implements a cache coherence protocol to guarantee the con-
sistency between the servers and cache switches.

Clients. DistCache provides a client library for applications to
access the key-value store. The library provides an interface
similar to existing key-value stores. It maps function calls
from applications to DistCache query packets, and gathers
DistCache reply packets to generate function returns.

4.2 Query Handling

A key advantage of DistCache is that it provides a distributed
on-path cache to serve queries at line rate. Read queries on
cached objects (i.e., cache hit) are directly replied by the
cache switches, without the need to visit storage servers,
read queries on uncached objects (i.e., cache miss) and write
queries are forwarded to storage servers, without any routing
detour. Further, while the cache is distributed, our query rout-
ing mechanism based on the power-of-two-choices ensures
that the load between the cache switches is balanced.

Query routing at client ToR switches. Clients send queries
via the client library, which simply translates function calls
to query packets. The complexity of query routing is done at
the ToR switches of the client racks. The ToR switches use
the switch on-chip memory to store the loads of the cache
switches. For each read query, they compare the loads of the
switches that contain the queried object in their partitions,
and pick the less-loaded cache switch for the query. After the
cache switch is chosen, they use the existing routing mech-
anism to send the query to the cache switch. The routing
mechanism can pick a routing path that balances the traffic in
the network, which is orthogonal to this paper. Our prototype
uses a mechanism similar to CONGA [21] and HULA [22]
to choose the least loaded path to the cache switch.

For a cache hit, the cache switch copies the value from its
on-chip memory to the packet, and returns the packet to the
client. For a cache miss, the cache switch forwards the packet
to the corresponding storage server that stores the queried
object. Then the server processes the query and replies to the
client. Figure 6 shows an example. A client in rack R3 sends a
query to read object A. Suppose A is cached in switch S; and
S3, and is stored in a server in rack Ry. The ToR switch Sg
uses the power-of-two-choices to decide whether to choose
S1 or S3. Upon a cache hit, the cache switch (either S| or S3)
directly replies to the client (Figure 6(a)). Upon a cache miss,
the query is sent to the server. But no matter whether the leaf
cache (Figure 6(b)) or the spine cache (Figure 6(c)) is chosen,
there is no routing detour for the query to reach Ry after a
cache miss.

Write queries are directly forwarded to the storage servers
that contain the objects. The servers implement a cache co-
herence protocol for data consistency as described in §4.3.

Query processing at cache switches. Cache switches use the
on-chip memory to cache objects in their own partitions. In
programmable switches such as Barefoot Tofino [23], the on-

USENIX Association

17th USENIX Conference on File and Storage Technologies 149

2. Power-of-

3 Two-Choices
4
®e0 e @
S S
4/6 |, 4 1Get(A) 4 841
HEE EE HE EE EE ER
EE EE BEER EE EE EBER
Ro R, R, R Ry R, Ry R
Storage Racks Client Racks Storage Racks Client Racks Storage Racks Client Racks

(a) Cache hit.

(b) Cache miss (leaf cache S;).

(c) Cache miss (spine cache S)).

Figure 6: Query handling for Get(A). Se uses the power-of-two-choices to decide whether to send Get(A) to S; or S3. (a) Upon
a cache hit, the switch directly replies the query, without visiting the storage server. (b, c) Upon a cache miss, the query is

forwarded to the storage server without routing detour.

chip memory is organized as register arrays spanning multiple
stages in the packet processing pipeline. The packets can read
and update the register arrays at line rate. We uses the same
mechanism as NetCache [11] to implement a key-value cache
that can support variable-length values, and a heavy-hitter
(HH) detector that the switch local agent uses to decide what
top k hottest objects in its partition to cache.

In-network telemetry for cache load distribution. We use
a light-weight in-network telemetry mechanism to distribute
the cache load information for query routing. The mechanism
piggybacks the switch load (i.e., the total number of packets
in the last second) in the packet headers of reply packets,
and thus incurs minimal overhead. Specifically, when a reply
packet of a query passes a cache switch, the cache switch
adds its load to the packet header. Then when the reply packet
reaches the ToR switch of the client rack, the ToR switch
retrieves the load in the packet header to update the load stored
in its on-chip memory. To handle the case that the cache load
may become stale without enough traffic for piggybacking,
we can add a simple aging mechanism that would gradually
decrease a load to zero if the load is not updated for a long
time. Note that aging is commonly supported by modern
switch ASICs, but it is not supported by P4 yet, and thus is
not implemented in our prototype.

4.3 Cache Coherence and Cache Update

Cache coherence. Cache coherence ensures data consis-
tency between storage servers and cache switches when write
queries update the values of the objects. The challenge is
that an object may be cached in multiple cache switches, and
need to be updated atomically. Directly updating the copies
of an object in the cache switches may result in data inconsis-
tency. This is because the cache switches are updated asyn-
chronously, and during the update process, there would be a
mix of old and new values at different switches, causing read
queries to get different values from different switches.

We leverage the classic two-phase update protocol [24] to
ensure strong consistency, where the first phase invalidates

all copies and the second phase updates all copies. To apply
the protocol to our scenario, after receiving a write query, the
storage server generates a packet to invalidate the copies in
the cache switches. The packet traverses a path that includes
all the switches that cache the object. The return of the in-
validation packet indicates that all the copies are invalidated.
Otherwise, the server resends the invalidation packet after
a timeout. Figure 7(a) shows an example that the copies of
object A are invalidated by an invalidation packet via path
Ry-53-S1-S3-Ry. After the first phase, the server can update
its primary copy, and send an acknowledgment to the client,
instead of waiting for the second phase, as illustrated by Fig-
ure 7(b). This optimization is safe, since all copies are invalid.
Finally, in the second phase, the server sends an update packet
to update the values in the cache switches, as illustrated by
Figure 7(c).

Cache update. The cache update is performed in a decentral-
ized way without the involvement of the controller. We use a
similar mechanism as NetCache [11]. Specifically, the local
agent in each switch uses the HH detector in the data plane
to detect hot objects in its own partition, and decides cache
insertions and evictions. Cache evictions can be directly done
by the agent; cache insertions require the agent to contact the
storage servers. Slightly different from NetCache, DistCache
uses a cleaner, more efficient mechanism to unify cache inser-
tions and cache coherence. Specifically, the agent first inserts
the new object into the cache, but marks it as invalid. Then
the agent notifies the server; the server updates the cached
object in the data plane using phase 2 of cache coherence,
and serializes this operation with other write queries. As for
comparison, in NetCache, the agent copies the value from the
server to the switch via the switch control plane (which is
slower than the data plane), and during the copying, the write
queries to the object are blocked on the server.

4.4 Failure Handling

Controller failure. The controller is replicated on multiple
servers for reliability (§4.1). Since the controller is only re-

150 17th USENIX Conference on File and Storage Technologies

USENIX Association

3 4
2
e e @
4 1
{1 Q0
EE EE ER HEE HBE
EE EHE EE EE HE
Ry Ry R, R; Ro R

Storage Racks Client Racks
(a) Phase 1: invalidate all caches.

Storage Racks
(b) Update primary copy, and acknowledge client.

R, R; Ry R, R, R;
Client Racks Storage Racks Client Racks
(c) Phase 2: update all caches.

Figure 7: Cache coherence is achieved by a two-phase update protocol in DistCache. The example shows the process to handle
an update to object A stored in rack Ry with the two-phase update protocol.

sponsible for cache allocation, even if all servers of the con-
troller fail, the data plane is still operational and hence pro-
cesses queries. The servers can be simply rebooted.

Link failure. A link failure is handled by existing network
protocols, and does not affect the system, as long as the net-
work is connected and the routing is updated. If the network
is partitioned after a link failure, the operator would choose
between consistency and availability, as stated by the CAP
theorem. If consistency were chosen, all writes should be
blocked; if availability were chosen, queries can still be pro-
cessed, but cache coherence cannot be guaranteed.

ToR switch failure. The servers in the rack would lose access
to the network. The switch needs to be rebooted or replaced.
If the switch is in a storage rack, the new switch starts with an
empty cache and uses the cache update process to populate
its cache. If the switch is in a client rack, the new switch
initializes the loads of all cache switches to be zero, and uses
the in-network telemetry mechanism to update them with
reply packets.

Other Switch failure. If the switch is not a cache switch,
the failure is directly handled by existing network protocols.
If the switch is a cache switch, the system loses throughput
provided by this switch. If it can be quickly restored (e.g., by
rebooting), the system simply waits for the switch to come
back online. Otherwise, the system remaps the cache partition
of the failed switch to other switches, so that the hot objects
in the failed switch can still be cached, alleviating the impact
on the system throughput. The remapping leverages consis-
tent hashing [25] and virtual nodes [26] to spread the load.
Finally, if the network is partitioned due to a switch failure,
the operator would choose consistency or availability, similar
to that of a link failure.

S Implementation

We have implemented a prototype of DistCache to realize
distributed switch-based caching, including cache switches,
client ToR switches, a controller, storage servers and clients.

Cache switch. The data plane of the cache switches is written

in the P4 language [27], which is a domain-specific language
to program the packet forwarding pipelines of data plane de-
vices. P4 can be used to program the switches that are based
on Protocol Independent Switch Architecture (PISA). In this
architecture, we can define the packet formats and packet pro-
cessing behaviors by a series of match-action tables. These
tables are allocated to different processing stages in a forward-
ing pipeline, based on hardware resources. Our implementa-
tion is compiled to Barefoot Tofino ASIC [23] with Barefoot
P4 Studio software suite [28]. In the Barefoot Tofino switch,
we implement a key-value cache module uses 16-byte keys,
and contains 64K 16-byte slots per stage for 8§ stages, provid-
ing values at the granularity of 16 bytes and up to 128 bytes
without packet recirculation or mirroring. The Heavy Hitter
detector module contains a Count-Min sketch [29], which has
4 register arrays and 64K 16-bit slots per array, and a Bloom
filter, which has 3 register arrays and 256K 1-bit slots per
array. The telemetry module uses one 32-bit register slot to
store the switch load. We reset the counters in the HH detector
and telemetry modules in every second. The local agent in the
switch OS is written in Python. It receives cache partitions
from the controller, and manages the switch ASIC via the
switch driver using a Thrift API generated by the P4 compiler.
The routing module uses standard L3 routing which forwards
packets based on destination IP address.

Client ToR switch. The data plane of client ToR switches is
also written in P4 [27] and is compiled to Barefoot Tofino
ASIC [23]. Its query routing module contains a register array
with 256 32-bit slots to store the load of cache switches. The
routing module uses standard L3 routing, and picks the least
loaded path similar to CONGA [21] and HULA [22].

Controller, storage server, and client. The controller is
written in Python. It computes cache partitions and notifies
the result to switch agents through Thrift API. The shim
layer at each storage server implements the cache coherence
protocol, and uses the hiredis library [30] to hook up with
Redis [19]. The client library provides a simple key-value
interface. We use the client library to generate queries with
different distributions and different write ratios.

USENIX Association

17th USENIX Conference on File and Storage Technologies 151

6 Evaluation

6.1 Methodology

Testbed. Our testbed consists of two 6.5Tbps Barefoot Tofino
switches and two server machines. Each server machine is
equipped with a 16 core-CPU (Intel Xeon E5-2630), 128 GB
total memory (four Samsung 32GB DDR4-2133 memory),
and an Intel XL710 40G NIC.

The goal is to apply DistCache to switch-based caching to
provide load balancing for cloud-scale in-memory key-value
stores. Because of the limited hardware resources we have,
we are unable to evaluate DistCache at full scale with tens
of switches and hundreds of servers. Nevertheless, we make
the most of our testbed to evaluate DistCache by dividing
switches and servers into multiple logical partitions and run-
ning real switch data plane and server software, as shown
in Figure 8. Specifically, a physical switch emulates several
virtual switches by using multiple queues and uses counters
to rate limit each queue. We use one Barefoot Tofino switch
to emulate the spine switches, and the other to emulate the
leaf switches. Similarly, a physical server emulates several
virtual servers by using multiple queues. We use one server
to emulate the storage servers, and the other to emulate the
clients. We would like to emphasize that the testbed runs the
real switch data plane and runs the Redis key-value store [19]
to process real key-value queries.

Performance metric. By using multiple processes and using
the pipelining feature of Redis, our Redis server can achieve
a throughput of 1 MQPS. We use Redis to demonstrate that
DistCache can integrate with production-quality open-source
software that is widely deployed in real-world systems. We al-
locate the 1 MQPS throughput to the emulated storage servers
equally with rate limiting. Since a switch is able to process
a few BQPS, the bottleneck of the testbed is on the Redis
servers. Therefore, we use rate limiting to match the through-
put of each emulated switch to the aggregated throughput of
the emulated storage servers in a rack. We normalize the sys-
tem throughput to the throughput of one emulated key-value
server as the performance metric.

Workloads. We use both uniform and skewed workloads in
the evaluation. The uniform workload generates queries to
each object with the same probability. The skewed workload
follows Zipf distribution with a skewness parameter (e.g.,
0.9, 0.95, 0.99). Such skewed workload is commonly used
to benchmark key-value stores [10, 31], and is backed by
measurements from production systems [5, 6]. The clients
use approximation techniques [10, 32] to quickly generate
queries according to a Zipf distribution. We store a total of
100 million objects in the key-value store. We use Zipf-0.99 as
the default query distribution to show that DistCache performs
well even under extreme scenarios. We vary the skewness and
the write ratio (i.e., the percentage of write queries) in the
experiments to evaluate the performance of DistCache under
different scenarios.

One Physical
Barefoot Switch

Emulated Spine Switches

Emulated Leaf Switches Emulated Leaf Switches
for Storage Racks for Client Racks

Two Physical . eoe . oo

Servers Emulated Storage Servers Emulated Client Servers

One Physical
Barefoot Switch

Figure 8: Evaluation setup. The testbed emulates a datacenter
with a two-layer leaf-spine network by dividing switches and
servers into multiple logical partitions.

Comparison. To demonstrate the benefits of DistCache, we
compare the following mechanisms in the experiments: Dist-
Cache, CacheReplication, CachePartition, and NoCache. As
described in §2.2, CacheReplication is to replicate the hot
objects to all the upper layer cache nodes, and CachePartition
partitions the hot objects between nodes. In NoCache, we do
not cache any objects in both layers. Note that CachePartition
performs the same as only using NetCache for each rack (i.e.,
only caching in the ToR switches).

6.2 Performance for Read-Only Workloads

We first evaluate the system performance of DistCache. By
default, we use 32 spine switches and 32 storage racks. Each
rack contains 32 servers. We populate each cache switch with
100 hot objects, so that 64 cache switches provide a cache size
of 6400 objects. We use read-only workloads in this experi-
ment, and show the impact of write queries in §6.3. We vary
workload skew, cache size and system scale, and compare the
throughputs of the four mechanisms under different scenarios.

Impact of workload skew. Figure 9(a) shows the through-
put of the four mechanisms under different workload skews.
Under the uniform workload, the four mechanisms have the
same throughput, since the load between the servers is bal-
anced and all the servers achieve their maximum through-
puts. However, when the workload is skewed, the throughput
of NoCache significantly decreases, because of load imbal-
ance. The more skewed the workload is, the lower throughput
NoCache achieves. CachePartition performs better than No-
Cache, by caching hot objects in the switches. But its through-
put is still limited because of load imbalance between cache
switches. CacheReplication provides the optimal throughput
under read-only workloads as it replicates hot objects in all
spine switches. DistCache provides comparable throughput
to CacheReplication by using the distributed caching mech-
anism. And we will show in §6.3 that DistCache performs
better than CacheReplication under writes because of low
overhead for cache coherence.

152 17th USENIX Conference on File and Storage Technologies

USENIX Association

M DistCache I CachePartition 1024

Workload Distribution

(a) Throughput vs. skewness.

Cache Size (log scale)

(b) Impact of cache size.

5 5 3 [—@— Di

s B CacheReplication (] NoCache 2 - DistCache

871024 H < S == CacheReplication

2 3 3 —A— CachePartition

|'E '-E 512 " "E 2048 | = NoCache

§ 512 ¢ 3 —e— DistCache §

S % —— CacheReplication = . R

g " e A
S 0 g 0 L _ —— CachePartiion g 0 . o ‘ o
z uniform zipf-0.9 zipf-0.95zipf-0.99 = 64 96 160 320 640 6400 Z 0 1024 2048 3072 4096

Number of Storage Nodes

(c) Scalability.

Figure 9: System performance for read-only workloads.

Impact of cache size. Figure 9(b) shows the throughput of
the three mechanisms under different cache sizes. CacheP-
artition achieves higher throughput with more objects in the
cache. Because the skewed workload still causes load im-
balance between cache switches, the benefits of caching is
limited for CachePartition. Some spine switches quickly be-
come overloaded after caching some objects. As such, the
throughput improvement is small for CachePartition. On the
other hand, CacheReplication and DistCache gain big im-
provements by caching more objects, as they do not have the
load imbalance problem between cache switches. The curves
of CacheReplication and DistCache become flat after they
achieve the saturated throughput.

Scalability. Figure 9(c) shows how the four mechanisms scale
with the number of servers. NoCache does not scale because
of the load imbalance between servers. Its throughput stops to
improve after a few hundred servers, because the overloaded
servers become the system bottleneck under the skewed work-
load. CachePartition performs better than NoCache as it uses
the switches to absorb queries to hot objects. However, since
the load imbalance still exists between the cache switches,
the throughput of CachePartition stops to grow when there
are a significant number of racks. CacheReplication provides
the optimal solution, since replicating hot objects in all spine
switches eliminates the load imbalance problem. DistCache
provides the same performance as CacheReplication and
scales out linearly.

6.3 Cache Coherence

While read-only workloads provide a good benchmark to
show the caching benefit, real-world workloads are usually
read-intensive [5]. Write queries require the two-phase up-
date protocol to ensure cache coherence, which (i) consumes
the processing power at storage servers, and (i) reduces the
caching benefit as the cache cannot serve queries to hot ob-
jects that are frequently being updated. CacheReplication,
while providing the optimal throughput under read-only work-
loads, suffers from write queries, since a write query to a
cached object requires the system to update all spine switches.
‘We use the basic setup as the previous experiment, and vary
the write ratio.

Since both the workload skew and the cache size would

o5 1024 —&— DistCache
_&’ = -l CacheReplication
© 2 —a&— CachePartition
£3 512
= 9~ NoCache

<
=

0
0.0

0.4 0.6 0.8
Write Ratio

0.2 1.0

(a) Throughput vs. write ratio under Zipf-0.9 and cache size 640.

1024 —@— DistCache
—— CacheReplication
—&— CachePartition

<= NoCache

512

Normalized
Throughput

0
0.0

0.2

0.4 0.6
Write Ratio

0.8 1.0

(b) Throughput vs. write ratio under Zipf-0.99 and cache size 6400.
Figure 10: Cache coherence result.

affect the result, we show two representative scenarios. Fig-
ure 10(a) shows the scenario for Zipf-0.9 and cache size 640
(i.e., 10 objects in each cache switch). Figure 10(b) shows the
scenario for Zipf-0.99 and cache size 6400 (i.e., 100 objects
in each cache switch), which is more skewed and caches more
objects than the scenario in Figure 10(a). NoCache is not
affected by the write ratio, as it does not cache anything (and
our rate limiter for the emulated storage servers assumes same
overhead for read and write queries, which is usually the case
for small values in in-memory key-value stores [33]). The
performance of CacheReplication drops very quickly, and it
is highly affected by the workload skew and the cache size,
as higher skewness and bigger cache size mean more write
queries would invoke the two-phase update protocol. Since
DistCache only caches an object once in each layer, it has
minimal overhead for cache coherence, and its throughput re-
duces slowly with the write ratio. The throughputs of the three
caching mechanisms eventually become smaller than that of
NoCache, since the servers spend extra resources on the cache
coherence. Thus, in-network caching should be disabled for
write-intensive workloads, which is a general guideline for
many caching systems.

USENIX Association

17th USENIX Conference on File and Storage Technologies

153

§ *g 512 1
T o T _ switch restoration
1S 5 256 failure recovery
32E switch failure
0 n n n n
0 50 100 150 200

Time (s)
Figure 11: Time series for failure handling.

Switches Match Entries ~ Hash Bits SRAMs Action Slots
Switch.p4 804 1678 293 503
Spine 149 751 250 98
Leaf (Client) 76 209 91 32
Leaf (Server) 120 721 252 108

Table 1: Hardware resource usage of DistCache.

6.4 Failure Handling

We now evaluate how DistCache handles failures. Figure 11
shows the time serious of this experiment, where x-axis de-
notes the time and y-axis denotes the system throughput.
The system starts with 32 spine switches. We manually fail
four spine switches one by one. Since each spine switch pro-
vides 1/32 of the total throughput, after we fail four spine
switches, the system throughput drops to about 87.5% of its
original throughput. Then the controller begins a failure re-
covery process, by redistributing the partitions of the failed
spine switches to other alive spine switches. Since the maxi-
mum throughput the system can provide drops to 87.5% due
to the four failed switches, the failure recovery would have no
impact if all alive spine switches were already saturated. To
show the benefit of the failure recovery, we limit the sending
rate to half of the maximum throughput. Therefore, after the
failure recovery, the throughput can increase to the original
one. Finally, we bring the four failed switches back online.

6.5 Hardware Resources

Finally, we measure the resource usage of the switches. The
programmable switches we use allow developers to define
their own packet formats and design the packet actions by
a series of match-action tables. These tables are mapped
into different stages in a sequential order, along with ded-
icated resources (e.g., match entries, hash bits, SRAMs, and
action slots) for each stage. DistCache leverages stateful mem-
ory to maintain the cached key-value items, and minimizes
the resource usage. Table 1 shows the resource usage of the
switches with the caching functionality. We show all the three
roles, including a spine switch, a leaf switch in a client rack,
and a leaf switch in a storage rack. Compared to the baseline
Switch.p4, which is a fully functional switch, adding caching
only requires a small amount of resources, leaving plenty
room for other network functions.

7 Related Work

Distributed storage. Distributed storage systems are widely
deployed to power Internet services [1-4]. One trend is to
move storage from HDDs and SDDs to DRAMs for high
performance [19,20,34,35]. Recent work has explored both
hardware solutions [36—47] and software optimizations [33,
48-52]. Most of these techniques focus on the single-node
performance and are orthogonal to DistCache, as DistCache
focuses on the entire system spanning many clusters.

Load balancing. Achieving load balancing is critical to
scale out distributed storage. Basic data replication tech-
niques [25, 53] unnecessarily waste storage capacity under
skewed workloads. Selective replication and data migration
techniques [54-56], while reducing storage overhead, increase
system complexity and performance overhead for query rout-
ing and data consistency. EC-Cache [31] leverages erasure
coding, but since it requires to split an object into multiple
chunks, it is more suitable for large objects in data-intensive
applications. Caching is an effective alternative for load bal-
ancing [9-11]. DistCache pushes the caching idea further by
introducing a distributed caching mechanism to provide load
balance for large-scale storage systems.

In-network computing. Emerging programmable network
devices enable many new in-network applications. In-
cBricks [57] uses NPUs as a key-value cache. It does not
focus on load balancing. NetPaxos [58, 59] presents a solu-
tion to implement Paxos on switches. SpecPaxos [60] and
NOPaxos [61] use switches to order messages to improve
consensus protocols. Eris [62] moves concurrency control to
switches to improve distributed transactions.

8 Conclusion

We present DistCache, a new distributed caching mechanism
for large-scale storage systems. DistCache leverages indepen-
dent hash functions for cache allocation and the power-of-
two-choices for query routing, to enable a “one big cache”
abstraction. We show that combining these two techniques
provides provable load balancing that can be applied to vari-
ous scenarios. We demonstrate the benefits of DistCache by
the design, implementation and evaluation of the use case for
emerging switch-based caching.

Acknowledgments We thank our shepherd Ken Salem
and the reviewers for their valuable feedback. Liu, Braver-
man, and Jin are supported in part by NSF grants CNS-
1813487, CRII-1755646 and CAREER 1652257, Facebook
Communications & Networking Research Award, Cisco Fac-
ulty Award, ONR Award N0O0014-18-1-2364, DARPA/ARO
Award W911NF1820267, and Amazon AWS Cloud Cred-
its for Research Program. Ion Stoica is supported in part by
NSF CISE Expeditions Award CCF-1730628, and gifts from
Alibaba, Amazon Web Services, Ant Financial, Arm, Capi-
talOne, Ericsson, Facebook, Google, Huawei, Intel, Microsoft,
Scotiabank, Splunk and VMware.

154 17th USENIX Conference on File and Storage Technologies

USENIX Association

References

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google
file system,” in ACM SOSP, October 2003.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s highly
available key-value store,” in ACM SOSP, October 2007.

[3] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, et al.,
“Finding a needle in Haystack: Facebook’s photo stor-
age.,” in USENIX OSDI, October 2010.

[4] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani,
“Scaling Memcache at Facebook,” in USENIX NSDI,
April 2013.

[5] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny, “Workload analysis of a large-scale key-
value store,” in ACM SIGMETRICS, June 2012.

[6] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking cloud serving systems
with YCSB,” in ACM Symposium on Cloud Computing,
June 2010.

[7] Q. Huang, H. Gudmundsdottir, Y. Vigfusson, D. A.
Freedman, K. Birman, and R. van Renesse, “Charac-
terizing load imbalance in real-world networked caches,”
in ACM SIGCOMM HotNets Workshop, October 2014.

[8] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash
crowds and denial of service attacks: Characterization
and implications for CDNs and web sites,” in WWW,
May 2002.

[9] B. Fan, H. Lim, D. G. Andersen, and M. Kaminsky,
“Small cache, big effect: Provable load balancing for ran-
domly partitioned cluster services,” in ACM Symposium
on Cloud Computing, October 2011.

[10] X. Li, R. Sethi, M. Kaminsky, D. G. Andersen, and
M. J. Freedman, “Be fast, cheap and in control with
SwitchKV,” in USENIX NSDI, March 2016.

[11] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster,
C. Kim, and I. Stoica, “NetCache: Balancing key-value
stores with fast in-network caching,” in ACM SOSP,
October 2017.

[12] M. Mitzenmacher, “The power of two choices in ran-
domized load balancing,” IEEE Transactions on Parallel
and Distributed Systems, October 2001.

[13] S.P. Vadhan et al., “Pseudorandomness,” Foundations
and Trends®) in Theoretical Computer Science, vol. 7,
no. 1-3, pp. 1-336, 2012.

[14] J. Nesetril, “Graph theory and combinatorics,” Lecture
Notes, Fields Institute, pp. 11-12, 2011.

[15] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman,
X. Jin, and 1. Stoica, “Distcache: Provable load bal-
ancing for large-scale storage systems with distributed
caching,” CoRR, vol. abs/1901.08200, 2017.

[16] S. Foss and N. Chernova, “On the stability of a partially
accessible multi-station queue with state-dependent rout-
ing,” Queueing Systems, 1998.

[17] R. D. Foley and D. R. McDonald, “Join the shortest
queue: stability and exact asymptotics,” Annals of Ap-
plied Probability, pp. 569—607, 2001.

[18] L. Lamport, “The part-time parliament,” ACM Transac-
tions on Computer Systems, May 1998.

[19] “Redis data structure store.” https://redis.io/.

[20] “Memcached key-value store.” https://memcached.
org/.

[21] M. Alizadeh, T. Edsall, S. Dharmapurikar,
R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam,
F. Matus, R. Pan, N. Yadav, and G. Varghese, “CONGA:
Distributed congestion-aware load balancing for
datacenters,” in ACM SIGCOMM, August 2014.

[22] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford,
“Hula: Scalable load balancing using programmable data
planes,” in ACM SOSR, March 2016.

[23] “Barefoot Tofino.” https://www.barefootnetworks.
com/technology/#tofino.

[24] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Con-
currency Control and Recovery in Database Systems.
Addison-Wesley Longman Publishing Co., Inc., 1986.

[25] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin, “Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving
hot spots on the world wide web,” in ACM Symposium
on Theory of Computing, May 1997.

[26] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica, “Wide-area cooperative storage with CFS,” in
ACM SOSP, October 2001.

[27] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, and D. Walker, “P4: Programming
protocol-independent packet processors,” SIGCOMM
CCR, July 2014.

[28] “Barefoot P4 Studio.”
barefootnetworks.com/products/
brief-p4-studio/.

https://www.

USENIX Association

17th USENIX Conference on File and Storage Technologies 155

[29] G. Cormode and S. Muthukrishnan, “An Improved Data
Stream Summary: The Count-min Sketch and Its Appli-
cations,” J. Algorithms, 2005.

[30] “Hiredis: Redis library.” https://redis.io/.

[31] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica,
and K. Ramchandran, “EC-Cache: Load-balanced, low-
latency cluster caching with online erasure coding,” in
USENIX OSDI, November 2016.

[32] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and
P. J. Weinberger, “Quickly generating billion-record syn-
thetic databases,” in ACM SIGMOD, May 1994.

[33] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky,
“MICA: A holistic approach to fast in-memory key-value
storage,” in USENIX NSDI, April 2014.

[34] “Amazon DynamoDB accelerator (DAX).” https://
aws.amazon.com/dynamodb/dax/.

[35] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang,
“The RAMCloud storage system,” ACM Transactions on
Computer Systems, August 2015.

[36] M. Blott, K. Karras, L. Liu, K. A. Vissers, J. Bir, and
Z. Istvéan, “Achieving 10Gbps line-rate key-value stores
with FPGAs,” in USENIX HotCloud Workshop, June
2013.

[37] S.R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung,
P. Ranganathan, and M. Margala, “An FPGA Mem-
cached appliance,” in ACM/SIGDA FPGA, February
2013.

[38] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and
T. F. Wenisch, “Thin servers with smart pipes: Designing
SoC accelerators for Memcached,” in ACM/IEEE ISCA,
June 2013.

[39] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang, “KV-Direct: High-performance
in-memory key-value store with programmable NIC,” in
ACM SOSP, October 2017.

[40] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using
RDMA efficiently for key-value services,” in ACM SIG-
COMM, August 2014.

[41] A.Kalia, M. Kaminsky, and D. G. Andersen, “Design
guidelines for high performance RDMA systems,” in
USENIX ATC, June 2016.

[42] A.Dragojevié, D. Narayanan, M. Castro, and O. Hodson,
“FaRM: Fast remote memory,” in USENIX NSDI, April
2014.

[43] S.Li, K. Lim, P. Faraboschi, J. Chang, P. Ranganathan,
and N. P. Jouppi, “System-level integrated server archi-
tectures for scale-out datacenters,” in IEEE/ACM MI-
CRO, December 2011.

[44] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos,
O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S. Id-
gunji, E. Ozer, et al., “Scale-out processors,” in
ACM/IEEE ISCA, June 2012.

[45] A. Gutierrez, M. Cieslak, B. Giridhar, R. G. Dreslinski,
L. Ceze, and T. Mudge, “Integrated 3D-stacked server
designs for increasing physical density of key-value
stores,” in ACM ASPLOS, March 2014.

[46] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and
B. Grot, “Scale-out NUMA,” in ACM ASPLOS, March
2014.

[47] S.Li,H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kamin-
sky, D. G. Andersen, O. Seongil, S. Lee, and P. Dubey,
“Architecting to achieve a billion requests per second
throughput on a single key-value store server platform,”
in ACM/IEEE ISCA, June 2015.

[48] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan, “FAWN: A fast array
of wimpy nodes,” in ACM SOSP, October 2009.

[49] X.Li, D. G. Andersen, M. Kaminsky, and M. J. Freed-
man, “Algorithmic improvements for fast concurrent
cuckoo hashing,” in EuroSys, April 2014.

[50] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3:
Compact and concurrent memcache with dumber
caching and smarter hashing,” in USENIX NSDI, April
2013.

[51] V. Vasudevan, M. Kaminsky, and D. G. Andersen, “Us-
ing vector interfaces to deliver millions of IOPS from
a networked key-value storage server,” in ACM Sympo-
sium on Cloud Computing, October 2012.

[52] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky,
“SILT: A memory-efficient, high-performance key-value
store,” in ACM SOSP, October 2011.

[53] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica, “Wide-area cooperative storage with CFS,” in
ACM SOSP, October 2001.

[54] Y. Cheng, A. Gupta, and A. R. Butt, “An in-memory
object caching framework with adaptive load balancing,”
in EuroSys, April 2015.

[55] M. Klems, A. Silberstein, J. Chen, M. Mortazavi, S. A.
Albert, P. Narayan, A. Tumbde, and B. Cooper, “The
Yahoo!: Cloud datastore load balancer,” in CloudDB,
October 2012.

156 17th USENIX Conference on File and Storage Technologies

USENIX Association

[56] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. El-
more, A. Aboulnaga, A. Pavlo, and M. Stonebraker, “E-
Store: Fine-grained elastic partitioning for distributed
transaction processing systems,” in VLDB, November
2014.

[57] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy,
and K. Atreya, “IncBricks: Toward in-network computa-
tion with an in-network cache,” in ACM ASPLOS, April
2017.

[58] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé, “NetPaxos: Consensus at network speed,” in
ACM SOSR, June 2015.

[59] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos
made switch-y,” SIGCOMM CCR, April 2016.

[60] D.R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krish-
namurthy, “Designing distributed systems using approx-
imate synchrony in data center networks,” in USENIX
NSDI, May 2015.

[61] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. Ports, “Just say NO to Paxos overhead: Replacing
consensus with network ordering,” in USENIX OSDI,
November 2016.

[62] J. Li, E. Michael, and D. R. Ports, “Eris: Coordination-
free consistent transactions using in-network concur-
rency control,” in ACM SOSP, October 2017.

USENIX Association

17th USENIX Conference on File and Storage Technologies 157

	Introduction
	Background and Motivation
	Small, Fast Cache for Load Balancing
	Scaling out Distributed Storage

	DistCache Caching Mechanism Design
	Key Idea
	Analysis
	Remarks
	Use Cases

	DistCache for Switch-Based Caching
	System Architecture
	Query Handling
	Cache Coherence and Cache Update
	Failure Handling

	Implementation
	Evaluation
	Methodology
	Performance for Read-Only Workloads
	Cache Coherence
	Failure Handling
	Hardware Resources

	Related Work
	Conclusion

