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Abstract—For individuals with neurological conditions (NCs)
affecting the muscles of their legs, motorized functional elec-
trical stimulation (FES) cycling is a rehabilitation strategy
which offers numerous health benefits. Motorized FES cycling
is an example of cooperative physical human-robot interaction
where both the cycle’s motor and rider’s muscles (through
electrical stimulation) must be well controlled to achieve desired
performance. Since every NC is unique, adaptive control of
motorized FES cycling is motivated over a one-size-fits-all
approach. In this paper, a robust sliding-mode controller is
employed on the rider’s muscles while an adaptive neural
network admittance controller is employed on the cycle’s motor
to preserve rider comfort and safety. Through a Lyapunov-like
switched systems stability analysis, global asymptotic stability
of the cycle controller is guaranteed and the muscle controller
is proven to be passive with respect to the cycle. Experiments
on one able-bodied participant were conducted to validate the
control design.

Index Terms—Functional electrical stimulation (FES), Reha-
bilitation robot, Lyapunov, Admittance, Passivity

I. INTRODUCTION

Within the United States (US), there are an estimated
2.5 million new cases of traumatic brain injury (TBI) [1],
800,000 cases of stroke [2], and nearly 18,000 cases of
spinal cord injury (SCI) [3] every year. Additionally, it is
reported that there are 3.17 million people within the US
with permanent disability from TBI [1] and 285,000 people
with a spinal cord injury [3]. Neurological conditions (NCs)
such as these, as well as diseases (e.g., Parkinson’s, etc.)
and other congenital disorders (e.g., cerebral palsy, spina
bifida, etc.) can severely impact a person’s neuromuscular
system, causing paresis/paralysis [1]–[3], and significantly
affect their activities of daily living. Consequently, these
individuals are at an increased risk of negative secondary
health effects such as obesity, heart disease, and diabetes
unless they participate in some form of rehabilitative therapy
such as motorized functional electrical stimulation (FES)
cycling which has been shown to positively impact motor
control, muscle strength, and bone mineral density (cf. [4],
[5]), etc.

Motorized FES cycling utilizes neuromuscular electrical
stimulation to apply electricity to targeted muscle groups on
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the legs to induce artificial, involuntary muscle contractions
to pedal a cycle in conjunction with an electric motor [6].
Although FES cycling is a safe (e.g., no risk of falling)
and convenient rehabilitation option for many people, when
applied in practice, it is commonly applied open-loop. How-
ever, it is well known that muscle dynamics exhibit highly
nonlinear, time-varying, and uncertain dynamics [6] while
FES results in nonphysiological muscle recruitment, and
poor coordination of the muscle groups [7]. Hence, closed-
loop control is required to produce accurate regulation of
generated movements [8]. Furthermore, because each NC is
unique, not only is the need to utilize closed-loop control
motivated, but the use of adaptive control as well. While
past results such as [6], [9], [10] have utilized robust closed-
loop methods, others have utilized learning-based methods
such as neural networks (NN), fuzzy logic, and repetitive
learning controllers to improve cadence/torque tracking of
FES cycling, but few conduct or include a rigorous stability
analysis (cf. exceptions in [6], [9]–[13]).

A stability analysis is required because it is well known
that people with NCs possess a weakened/impaired muscu-
loskeletal system and the utmost care must be taken to avoid
further injury when participating in robotic rehabilitation
[14], such as FES cycling. In other rehabilitation settings (cf.
[15], [16]), safety has been introduced through admittance
control [17], which artificially injects interaction dynamics
between the human and robot. While admittance control is
traditionally viewed as a safer alternative than robust control
in terms of physical human-robot interaction [18], a stability
analysis remains necessary to demonstrate safe interaction
between the human and robot. Thus, passivity is utilized to
demonstrate the robot is energetically dissipative with respect
to the human and will behave stably [19].

In this paper, physical human-robot interaction for motor-
ized FES cycling is accomplished through the use of multiple
controllers employed on the cycle’s motor and rider’s leg
muscles (i.e., quadriceps, hamstrings, and gluteals). The
rider’s muscles are stimulated through a robust sliding-
mode controller, which is guaranteed to be passive with
respect to the cycle to ensure rider safety. In comparison
to past works by the authors (cf. [20]–[22]), instead of
robustly rejecting the torque impressed by the human while
maintaining stability and passivity, this result activates the
cycle’s motor using an asymptotically stable adaptive NN
admittance controller, constructed by combining a gradient
adaptive term to compensate for the linear-in-the-parameter
(LP) dynamics and a NN feedforward term to account for



the unknown muscle control effectiveness of the rider’s mus-
cles. Merging a passive muscle stimulation controller with
an asymptotically stable adapting NN admittance controller
allows for accurate control of the motorized FES cycle
while preserving rider comfort and safety. The designed
controller is validated through experiments conducted on one
able-bodied participant and indicate the proposed controller
offers improved performance with the feedforward adaptive
compensation terms when compared to the same feedback-
only controller.

II. DYNAMICS

A. Cycle-Rider System

The nonlinear, uncertain cycle-rider dynamics are modeled
as1

M (q) q̈ + C (q, q̇) q̇ +G (q) + P (q, q̇) + bq̇ + d (t) =∑
m∈M

bm (q, q̇)σm (q)uh (t)︸ ︷︷ ︸
τm(q,q̇,t)

+Beue (t)︸ ︷︷ ︸
τe(t)

, (1)

where q : R≥0 → Q denotes the measurable crank angle, the
set Q ⊆ R contains all possible crank angles, q̇ : R≥0 → R
denotes the calculable velocity, and q̈ : R≥0 → R denotes the
non-measurable acceleration [6]. The torque from the rider’s
muscles is denoted by τm : Q × R × R≥0 → R, and the
torque from the cycle’s electric motor by τe : R≥0 → R.
The inertial, centripetal-Coriolis, and gravitational effects of
the combined cycle-rider system are denoted by M : Q → R,
C : Q× R → R, and G : Q → R, respectively. The rider’s
passive viscoelastic tissue torques and the cycle’s friction
are denoted by P : Q× R → R and b ∈ R>0, respec-
tively. System disturbances are denoted by d : R≥0 → R.
The individual muscle control effectiveness is denoted by
bm : Q × R → R>0, and the piecewise right-continuous
switching signals for activating the individual muscle groups
are denoted by σm : Q → {0, 1}, ∀m ∈ M, where the
set M ,

{
RQ LQ RH LH RG LG

}
includes

the right (R) and left (L) quadriceps femoris (Q), hamstring
(H), and gluteal (G) muscle groups (i.e., the stimulated
muscle groups). The subsequently designed muscle control
input is utilized across all muscle groups and is denoted by
uh : R≥0 → R. The known motor control constant relating
the motor’s input current to output torque is denoted by
Be ∈ R>0, and the subsequently designed motor control
current is denoted by ue : R≥0 → R. To facilitate further
analysis, a lumped switched muscle control effectiveness is
denoted by Bm : Q× R→ R>0 and defined as

Bm ,
∑
m∈M

bm (q, q̇)σm (q) . (2)

1For notational brevity, all explicit dependence on time, t, within the
states q(t), q̇(t), q̈(t) is suppressed.

The right-continuous switching signal σm is defined as [6]

σm ,

1 q ∈ Qm
0 q /∈ Qm

, (3)

∀m ∈ M, where Qm ⊂ Q denotes the regions in which
muscle group m is able to supply a positive torque about
the crank. The union of all muscle regions establishes
the combined FES region of the crank cycle, defined as
QM , ∪

m∈M
Qm, and the kinematic deadzone (KDZ) region

as the remainder QK , Q\QM . By appropriately designing
the switching signals in (3), each muscle is stimulated in
kinematically efficient regions (i.e., at a high torque transfer
ratio from muscle to crank) to delay fatigue. As different
muscles are activated through their respective switching
signals, the torque input to the system discretely changes;
however, the states continuously evolve. The combination
of discretely changing control inputs with continuous state
dynamics gives rise to a state-dependent switched system.
The switched system dynamics in (1) have the following
properties [6].

Property 1. Parameter bounds: There exist known con-
stants cm, cM , cC , cG, cP1, cP2, cb, cd ∈ R>0 such that
cm ≤M ≤ cM ; |C| ≤ cC |q̇|; |G| ≤ cG; |P | ≤ cP1+cP2 |q̇|;
b ≤ cb; |d| ≤ cd.

Property 2. Linear in the parameters: The functions
M, C, G, and b are linearly parameterizable.

Property 3. Skew symmetry: The function Ṁ and C satisfy
Ṁ − 2C = 0, ∀q ∈ Q .

Property 4. Control effectiveness: When q ∈ QM , the
lumped switched unknown muscle control effectiveness is
bounded by Bm ≤ Bm ≤ Bm, where Bm, Bm ∈ R>0 are
known constants.

III. CONTROL DEVELOPMENT

In the following section, two controllers are developed,
a robust sliding-mode cadence controller for the rider’s
muscles and an adaptive NN admittance controller for the
cycle’s motor.

A. Cadence Controller

Although the cadence controller has the same form as in
[6], a new stability analysis is required (see Section IV) be-
cause a new objective is presented (i.e., admittance tracking).
For clarity, the cadence tracking errors and the controller
are presented here. The cycle’s cadence is regulated using
the rider’s muscles in the FES regions and quantified by the
tracking errors e : R≥0 → R and r : R≥0 → R, each defined
as2

e , qd − q, (4)
r , ė+ αe, (5)

2For notational brevity, all functional dependencies are hereafter sup-
pressed unless required for clarity of exposition.



where qd : R≥0 → R denotes the desired position, designed
to be sufficiently smooth (i.e., qd, q̇d, q̈d ∈ L∞), and
α ∈ R>0 denotes a selectable constant control gain. The
open-loop cadence error system is obtained by taking the
derivative of (5), multiplying by M , adding and subtracting
e, and substituting (1), (2), (4), and (5) to yield

Mṙ = χ1 −Bmuh − τe − Cr − e, (6)

where the lumped auxiliary signal χ1 : R2 × R≥0 → R is
defined as χ1 , M

(
q̈d + αr − α2e

)
+ C (q̇d + αe) + G +

P + b (q̇d − r + αe) + d+ e and bounded by Property 1 as
|χ1| ≤ c1 + c2 ‖z‖ + c3 ‖z‖2 , where c1, c2 c3 ∈ R>0 are
known constants, and the error vector z ∈ R2 is defined
as z , [e r]

T
. Based on (6) and the subsequent stability

analysis, the cadence controller is designed as

uh =
1

Bm

(
k1r +

(
k2 + k3 ‖z‖+ k4 ‖z‖2

)
sgn(r)

)
,

(7)

where ki ∈ R>0 ∀i = 1, 2, 3, 4 denote constant control
gains, ‖·‖ denotes the standard Euclidean norm, sgn(·) de-
notes the signum function, and Bm is introduced in Property
4. Substituting (7) into (6) yields the closed-loop cadence
error system

Mṙ = χ1 − τe − Cr − e−
Bm
Bm

(
k1r

+
(
k2 + k3 ‖z‖+ k4 ‖z‖2

)
sgn(r)

)
.

(8)

B. Adaptive Admittance Controller

While the rider’s muscles regulate cadence, an interaction
torque error is introduced, quantified by eτ : R≥0 → R, and
defined as

eτ , τ − τd, (9)

where τd : R≥0 → R denotes the desired bounded
interaction torque and τ : R≥0 → R denotes the bounded
measurable interaction torque between the cycle and rider
(i.e., τ ∈ L∞) [16], [23]. By implementing an admittance
filter, the interaction torque error can be transformed into
an admittance error (i.e., a modified position and cadence
error), which can be regulated using an inner-loop position
controller. The admittance filter is given by

eτ ,Mdq̈a +Bdq̇a +Kdqa, (10)

where Md, Bd, Kd ∈ R>0 denote constant filter parameters,
selected such that the transfer function of (10) is passive (i.e.,
qa, q̇a, q̈a ∈ L∞) [24, Lemma 6.4]; and qa, q̇a, q̈a : R≥0 →
R denote the generated admitted position, velocity, and
acceleration, respectively. To track the admitted trajectory, an
adaptive inner-loop position controller is designed to regulate
the admittance error system, quantified by ξ : R≥0 → R
and ψ : R≥0 → R, and defined as

ξ , qa + qd − q, (11)

ψ , ξ̇ + βξ, (12)

where β ∈ R>0 denotes a constant control gain. The open-
loop admittance error system is generated by taking the time
derivative of (12), multiplying by M , adding and subtracting
ξ, and substituting (1), (11), and (12) to yield

Mψ̇ = Y θ + d+ P − Cψ
−Bmuh −Beue, (13)

Y θ , M
(
q̈a + q̈d + βψ − β2ξ

)
+C (q̇a + q̇d + βξ) +G

+b (q̇a + q̇d − ψ + βξ) , (14)

where Y : R2 × R≥0 → R1×7 denotes a computable
regression matrix (LP by Property 2), and θ ∈ R7×1 denotes
a matrix of constant system parameters. To facilitate the
subsequent analysis, (13) is further modified by adding and
subtracting ξ and fmuh, yielding

Mψ̇ = Y θ + χ2 − ξ − Cψ −Beue + (S − fm)uh, (15)

where fm , Bm
(
sin2 (qd + qa) , q̇d + q̇a

)
. The sin2 (·)

function is utilized to supply a bounded input to the NN,
as well as shape the input to match the positive torque
contribution of both legs. The auxiliary function χ2 :
Q×R×R≥0 → R is defined as χ2 , P+ξ+d, and bounded
by Property 1 as |χ2| ≤ c4 + c5 ‖φ‖ , where c4, c5 ∈ R>0

are known constants, and the error vectors φ ∈ R3, ζ ∈ R2

are defined as φ ,
[
ζT q̇a

]T
and ζ , [ξ ψ]

T
. The auxiliary

function S : R2 → R in (15) is defined as S , fm − Bm
and can be bounded using the Mean Value Theorem [25]
and Property 4 as |S| ≤ c6 + c7 ‖ζ‖, where c6, c7 ∈ R>0

are known constants. Knowing qd, q̇d, qa, q̇a ∈ L∞,
let S be a compact simply connected set of R3 with map
fm : S → R, where fm is continuous. Then, there exist
weights and thresholds such that the function fm (xd) can
be represented by a neural network as [26], [27]

fm = WT ρ
(
V Txd

)
+ ε (xd) , (16)

where xd ,
[

1 sin2 (qd + qa) q̇d + q̇a

]T
∈ S, V ∈

R3×L and W ∈ R(L+1)×1 are bounded constant ideal weight
matrices of the neural network, and L is the number of
neurons in the hidden layer. The function ρ : RL → RL+1 is

defined as ρ ,
[

1 ρ1 ρ2 ... ρL

]T
, where ρi, ∀i =

{1, 2, ..., L} represents the activation function for each
neuron, and the function reconstruction error is denoted by
ε : S→ R.

Assumption 1. By [28] and Property 4, Bm is continuous
and analytic on a compact set except at known locations
of discontinuities (i.e., σm transitions at known locations
based on a present muscle activation strategy). Accordingly,
based on the design of the discrete switching signals in
(3), Bm is right-continuous with finite jumps at known



locations. Following a development similar to [27, Theo-
rem 3.1.5], sigmoidal jump approximation functions can be
employed within the neural network to estimate the jumps.
For simplicity, within the current development, the jumps are
approximated by continuous functions and combined within
the structure of the activation function ρ and the error is
captured within ε in (16).

Since the weights W and V are unknown, an approximated
version of (16) is generated as

f̂m , ŴT ρ
(
V̂ Txd

)
, (17)

where V̂ : R≥0 → R3×L and Ŵ ∈ : R≥0 → R(L+1)×1

are the estimates of V and W , respectively. To facilitate the
following development, let the notation (̃·) , (·)− (̂·) denote
estimation errors, then ρ

(
V Txd

)
may be approximated at

ρ
(
V̂ Txd

)
using a Taylor series expansion as

ρ
(
V Txd

)
= ρ̂+ ρ̂′Ṽ Txd +O2, (18)

where ρ̂ , ρ
(
V̂ Txd

)
, ρ̂′ ,

∂ρ(V T xd)
∂V T xd

∣∣∣∣∣
V̂ T xd

denotes the

partial derivative, and O2 denotes the higher order terms of
the expansion.

Assumption 2. The ideal weights, thresholds, function ap-
proximation error of (16), and higher order terms of (18) are
assumed to be bounded.

Based on (15) and the subsequent stability analysis, the
admittance controller is designed as

ue ,
1

Be

(
Y θ̂ + k5ψ − f̂muh +

(
k6 + k7 ‖φ‖

+(k8 + k9 ‖ζ‖) |uh|
)

sgn (ψ)
)
, (19)

where ki ∀i ∈ {5, 6, ..., 9} ∈ R>0 denote constant control
gains; |uh| , 1

Bm

[
k1 |r| + k2 + k3 ‖z‖ + k4 ‖z‖2

]
; and

θ̂ : R≥0 → R7×1 denotes an estimate of the constant
system parameters. Substituting (19) into (15), adding and
subtracting

(
WT ρ̂+ ŴT ρ̂′Ṽ Txd

)
uh, utilizing (18), and

performing some algebraic manipulation yields the closed-
loop admittance error system

Mψ̇ = Y θ̃ − ξ − Cψ − k5ψ −
(
k6 + k7 ‖φ‖+

(
k8

+k9 ‖ζ‖
)
|uh|

)
sgn (ψ)−

(
W̃T ρ̂

+ŴT ρ̂′Ṽ Txd −N
)
uh + χ2, (20)

where θ̃ : R≥0 → R7×1 denotes the error between the actual
and estimated system parameters, and the auxiliary function
N : R3 → R is defined as

N , S − ε− W̃T ρ̂′Ṽ Txd −WTO2. (21)

Based on the subsequent stability analysis, the estimates for
the system parameters in (14) and the neural network weights
in (17) are generated on-line as

˙̂
θ = proj

(
Γ1Y

Tψ
)
, (22)

˙̂
W = proj (−Γ2ρ̂uhψ) , (23)
˙̂
V = proj

(
−Γ3xduhψŴ

T ρ̂′
)
, (24)

where Γ1 ∈ R7×7, Γ2 ∈ R(L+1)×(L+1), Γ3 ∈ R3×3 denote
constant positive definite learning gains, and proj(·) denotes
a projection algorithm [29, Section 4.4].

Property 5. By the Mean Value Theorem, Assumption 1,
and the projection algorithm, |N | ≤ c8 + c7 ‖ζ‖ for any
combination of switching signals, where c8 ∈ R>0 is a
known constant and c7 was introduced above.

IV. STABILITY ANALYSIS

To facilitate the following theorems, let V1 : R2 → R
denote a continuously differentiable, positive definite storage
function defined as

V1 ,
1

2
Mr2 +

1

2
e2, (25)

and let V2 : R4L+10 → R denote a continuously differen-
tiable, positive definite Lyapunov function candidate defined
as

V2 ,
1

2
Mψ2 +

1

2
ξ2 +

1

2
θ̃TΓ−11 θ̃

+
1

2

(
W̃TΓ−12 W̃ + tr

(
Ṽ TΓ−13 Ṽ

))
, (26)

where tr(·) is the trace of a matrix.

Theorem 1. Given the closed-loop cadence error system in
(8), when q ∈ QM , the cadence controller is passive from
input |τe| to output |r|, ∀t provided the following constant
gain conditions are satisfied: k2 ≥ c1, k3 ≥ c2, k4 ≥ c3.

Proof: Because of the discontinuity in the muscle
controller in (7), the time derivative of V1 exists almost
everywhere (a.e.) (i.e., for almost all t ∈ [t0, ∞)). After
substituting (5), (8), using Properties 1, 3, and 4, and upper
bounding, the time derivative of (25) can be expressed as

V̇1
a.e.
≤ −αe2 − k1r2 + |r| |τe| , (27)

provided the aforementioned gain conditions are satisfied.
Because the interaction torque is bounded, from the per-
spective of the rider, the physically applied motor torque
is similarly bounded. Hence, by [24, Definition 6.3] the
cadence error system is output strictly passive with input |τe|,
output |r|, storage function V1, and the cadence controller is
bounded (i.e., uh ∈ L∞).

Theorem 2. Given the closed-loop error system in (20) and
the admittance relation in (10), the admittance error system
is globally asymptotically stable in the sense that ‖ζ‖ → 0



as t → ∞, provided the following constant gain conditions
are satisfied: k6 ≥ c4, k7 ≥ c5, k8 ≥ c7, k9 ≥ c8.

Proof: Similar to Theorem 1, because of the disconti-
nuity in the admittance controller in (19), the time derivative
of (26) exists almost everywhere. After substituting (12) and
(20), using Properties 1, 3, and 4, inserting the update laws
in (22)-(24), and upper bounding, the time derivative of (26)
can be expressed as

V̇2
a.e.
≤ −βξ2 − k5ψ2, (28)

provided the aforementioned gain conditions are satisfied.
Hence, (26) has a negative semi-definite derivative across
both the FES and KDZ regions. Subsequently, [30] can be
invoked, along with the radially unboundedness of (26), to
show |ξ|, |ψ|, ‖ζ‖ → 0 as t → ∞. Since V2 > 0 and

V̇2
a.e.
≤ 0, V2 ∈ L∞. Hence, ξ, ψ, θ̃ ∈ L∞, which implies

q̇, θ̂ ∈ L∞. Since (10) is passive, q̇a, q̈a ∈ L∞, which
implies Y, ‖φ‖, xd ∈ L∞. By (23), (24), and xd ∈ L∞,
f̂m ∈ L∞. Finally, because uh ∈ L∞ by Theorem 1, ue ∈
L∞.

V. EXPERIMENTS

A. Experimental Testbed

Please refer to [13] for details of the instrumented motor-
ized FES cycle.

B. Experimental Methods

Two experimental protocols were conducted on one able-
bodied male participant aged 26, in random order. Protocol
A ran the controllers in (7) and (19), and Protocol B
disabled both the NN feedforward and adaptive feedforward
components of (19). The purpose of such a design was to
isolate the contribution of the feedforward components of the
cycle’s motor controller. Each protocol had a total duration of
180 seconds, with the first 30 seconds consisting of a smooth
motor-only ramp to the desired cadence of 50 RPM using
(19), i.e., with the admittance controller active. After the
initial ramp, the controller in (7) was switched on, the rider
was stimulated, and steady-state (SS) errors were recorded.
For all experiments, the participant was blind to the desired
trajectories for the duration of the experiment. The experi-
mental protocols were approved by the Institutional Review
Board at the University of Florida. For all experiments, the
admittance parameters in (9) and (10) were selected as Kd =
0 Nm

rad , Bd = 2 Nm·s
rad , Md = 2 Nm·s2

rad , and τd ∈ [0, 0.2] Nm.
The activation function of the NN was selected as the soft-
plus function, ρ (x) , ln (1 + exp (x)), and the number of
neurons was set to 5 (i.e., L = 5).

C. Results and Discussion

Table I provides details on the average and standard
deviation of the measured cadence, admitted cadence, ad-
mittance cadence error, and estimated power production by
the rider, calculated at steady state (i.e., after the initial
cadence ramp to 50 RPM). The average estimated power

Table I
EXPERIMENTAL RESULTS, REPORTED AS AVERAGE ± STANDARD

DEVIATION

Protocol q̇ (RPM)∗ q̇α (RPM)† ξ̇ (RPM) P̂ (W)

A 48.84±1.87 -1.24±1.49 -0.08±1.30 3.31±2.79
B 49.04±1.90 -1.15±1.30 -0.19±1.53 3.22±2.72

∗At SS, the average cadence error is given as ė = 50− q̇.
†q̇α : R≥0 → R denotes the average admitted cadence defined as q̇α ,
q̇d + q̇a.

Figure 1. Protocol A: (Top) The actual, admitted, and desired cadence;
(Middle) cadence errors; and (Bottom) RMS cadence errors, with the vertical
lines representing the time of activation of (7).

production is denoted by P̂ : R≥0 → R, which is defined
as P̂ , mean (q̇) (mean (τ)− τp) , where τp : R≥0 → R
denotes an estimate of the passive torque required to actuate
the combined rider-cycle system at the desired cadence,
collected during each trial for 4.8 seconds prior to controller
activation (i.e., approximately four crank cycles at 50 RPM).
Figure 1 displays cadence tracking results, including errors
and root-mean-squared (RMS) errors, and for visual clarity,
a one second moving average filter was applied.

Prior to the muscle controller in (7) being activated, the
rider’s legs act as a drag on the system, generating negative
torque, and therefore decreasing the admitted cadence. Be-
cause only the admitted error system is being regulated at this
point, the position error e begins to accumulate; therefore,
when the muscle controller in (7) is activated, a nonzero
stimulation is applied. Under normal circumstances, this
error accumulation would be undesirable, however, because
the rider’s muscles do not generate torque at low levels
of stimulation, this effect becomes desirable to “prime” the
muscles for torque generation. By applying low stimulation
levels and increasing them over the course of the experiment,
torque production is gradually increased and results in a
more comfortable experience for the rider. Furthermore, by
decreasing the derivative gain k1 on muscle stimulation,
sharp increases in stimulation are avoided due to system
disturbances, and again, the rider experiences a smoother



stimulation pattern. As the stimulation level increases, the
rider’s leg muscles are gradually able to produce the desired
amount of torque (at t ≈ 70 s) and due to the admittance
filter in (10), the admitted trajectory begins to align with the
desired, resulting in a less error accumulation (i.e., e) and a
less aggressive ramp in the stimulation input. As the muscles
begin to fatigue, their cumulative torque production lessens
and the admitted trajectory begins to decrease; consequently,
the stimulation input increases to maintain torque levels. At
t = 30 s, the update laws for both θ̂ and f̂m are activated and
the estimate begin to evolve. The adaptive and NN feedfor-
ward components simultaneously estimate system dynamics,
and affect each other over time; therefore, the gains on the
adaptive gradient component were set significantly higher
than those of the NN to learn on two different time scales.

To demonstrate the effect of the feedforward components
of (19), the adaptive gradient and NN components were
disabled (i.e., Protocol B). As illustrated by Table I, using
adaptation results in the admittance cadence error ξ̇ being re-
duced by 58%, with the standard deviation of the admittance
cadence error being reduced by 15%. Despite the reduction
in error, the average control inputs to the motor were similar,
with similar torque production by the rider.

VI. CONCLUSION

An adaptive NN admittance controller was successfully
developed for an FES cycle to promote rehabilitation in
individuals with NCs. The adaptive component of the ad-
mittance controller estimated the parameters within the
dynamics while the NN component estimated the muscle
control effectiveness. Stability of the combined cycle-rider
system was proven with a Lyapunov-like switched systems
stability analysis and the efficacy of the proposed controller
was demonstrated through experiments with and without
adaptation on one able-bodied participant. Future works will
involve conducting additional experiments on people with
NCs and accounting for stimulation saturation.
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