Large Data Analysis and Lyme
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Introduction

Recent advances in technology have led to a monumental
increase in large-scale data across many platforms. One
may think that more data means more information, but the
large-scale nature of modern data actually ends up chok-
ing classical analytical methods, making information ex-
traction more challenging than ever before. One mathe-
matical model that has gained a lot of recent attention is
the use of sparsity. Sparsity captures the idea that high-
dimensional signals often contain a very small amount of
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intrinsic information. Using this notion, one may design
efficient low-dimensional representations of large-scale data
as well as robust reconstruction methods for those repre-
sentations. Moreover, in many applications one does not
desire to reconstruct the full signal but rather perform some
data analysis task such as classification, clustering, param-
eter estimation, and feature selection.

Organization. In this article, we will discuss some key
mathematical ingredients that can be used for large-scale
data analysis. We begin in the section “Signal Reconstruc-
tion” with a background to compressive signal processing
(CSP), which is used as a foundation and motivation for
more recent work in large-scale data analysis. In the sec-
tion “1-Bit CSP” we discuss the extension of CSP to the
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Figure 1. Figure 1. Summary of CSP process.

1-bit version, which utilizes only a single bit per measure-
ment. We relate CSP to the problem of data completion in
the section “Data Completion.” Finally, the section “Draw-
ing Conclusions from Large-Scale Data” provides an intro-
duction to classification as a simple problem that is moti-
vated by 1-bit CSP. To showcase important challenges with
real-world large-scale data, we will use recently acquired
Lyme data as a running example throughout. Lyme dis-
ease data is especially challenging because of its high varia-
tion in patient symptomatology, diagnosis, and treatment,
which leads to large-scale but highly incomplete and var-
ied data.

Signal Reconstruction

In many applications, information about a particular ob-
ject is acquired in a process called sampling. Sampling is
used in medical imaging, analog-to-digital converters, and
radar, just to name a few examples. The data objects that
we wish to sample are called signals and could be audio
signals, images, data files, or any other type of data. Many
signals of interest contain far less information than their
ambient dimension implies, and such signals are called
compressible. Compressive signal processing (CSP) is a re-
cent technology [7, 9] that shows these signals can be ac-
curately represented with far fewer samples than tradition-
ally thought. CSP uses the idea of dimension reduction,
which reduces the size of compressible signals while still
preserving most of their information. There are certain ran-
dom linear projections that, when applied, provide this
type of dimension reduction. Since the problem of recov-
ering a signal from its compressed form is in general ill-
posed (since the resulting mathematical system is highly
underdetermined), it is nontrivial to reconstruct a signal
from its highly undetermined measurements; we need so-
phisticated methods to reconstruct the signal from these
samples.
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Sparsity Model. We will denote our signal of interest by
f € C". We say that f is S-sparse when f has at most §
nonzero entries, written ||f]lo < §. Sparsity plays an im-
portant role in CSP because compressible signals are those
which are approximated well by sparse signals. In gen-
eral, a signal can be sparse in this sense or with respect to
some orthonormal or overcomplete basis, in which case
f = Dx for some matrix D and sparse vector X. Given a
compressible signal, we acquire samples by applying the
sampling matrix A. The sample vector can then be writ-
ten as Yy = Af + e, where e is an arbitrary noise vector.
The CSP problem is to reconstruct an arbitrary compress-
ible signal { from these noisy samples using a tractable al-
gorithm. That is, given knowledge of the measurements y,
the measurement matrix A, and the sparsifying dictionary
D, one wishes to (approximately) reconstruct the signal
vector f. Typically one may assume the sparsity level s is
approximately known, although not all methods require
such knowledge. The overall process is visualized in Fig-
ure 1.

Compressive Signal Processing. Two major approaches

for recovery emerged as work in CSP developed. The first

method solves an £1-minimization program to recover the

signal, which, when D is the identity, is simply
argmin, ||x||; s.t. [|[Ax — y|l» < &, where ¢ is the noise

tolerance. To analyze this problem, Candés and Tao [6]

introduced the restricted isometry property (RIP), which

requires the matrix A to be nearly orthonormal on sparse

signals [5]. It is now well known that many random m X n

matrices satisfy the RIP with high probability for an opti-
mal number of samples m =~ slogn. Candés et al. show
that under the RIP assumption, the £1-minimization pro-
gram robustly and accurately recovers sparse signals. The

second approach utilizes greedy algorithms that reconstruct
the signal iteratively. Greedy algorithms such as IHT and

CoSaMP provide both fast runtime and the same optimal

recovery guarantees as the optimization-based approach.

1-Bit CSP

Recovering a signal X from its highly underdetermined im-
age y = AXisalready mathematically challenging enough.
However, we now take this problem a step further—we ask
to keep only the first bit of each entry in ! One-bit com-
pressed sensing is a new branch of CSP that considers the
extreme case when each measurement is quantized to a
single bit [2].

In 1-bit CSP, the measurements y are of the form y; =
sign({a;, X)), where a; is the ith row of the measurement
matrix A, and the sign function returns —1 if the input
is negative and 1 otherwise. This gives a 1-bit (per en-
try) representation of the measurement vector y. Noise
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Figure 2. Figure 2. Geometry of 1-bit CSP.

may be added either before or after quantization, the lat-
ter type of noise corresponding to a bit-flip. One observa-
tion is immediate—there is no way one can ever hope to
reconstruct the magnitude of x from such nonlinear mea-
surements. Geometrically, each row of A corresponds to
a hyperplane, and the binary measurements y; simply en-
code on which side of the hyperplane x lies. For exam-
ple, given the norm of X, each measurement divides up
the sphere of that radius as in Figure 2. Using this geome-
try, one can obtain lower bounds on the best possible re-
construction error. Indeed, with this 1-bit model, the best
reconstruction X from Yy still must satisfy [|x — X|[> = %
where A = m/(slog(n/s)) denotes the oversampling fac-
tor (and recall n and m are the original data dimension
and compressed dimension, respectively).

However, all hope is not lost. Both issues (the loss of
magnitude information and the lower bound on the re-
covery rate) can be resolved by using dithers, purposefully
adding noise to the measurements prior to quantization:
yi = sign(Ax + T;), where T; is some cleverly chosen
scalar noise. Dithers are often used in the theory and prac-
tice of analog-to-digital conversion, and one sees that in
our case, the value of T; simply acts as a new threshold
on which to quantize—i.e., ¥; is now *1 depending on
whether it is larger or smaller than T;. Geometrically, one
envisions this as “jiggling” the hyperplanes in such a way
as to reveal the norm of the signal x. In addition, Baraniuk
et al. [1] and Knudson et al. [10] develop both optimiza-
tion-based and iterative methods that provably provide an
exponentially decaying error guarantee of the form
Ix — X|l> < exp(—Q(A)). In these works, the dithers
T; are chosen adaptively or set to be i.i.d. Gaussian, de-
pending on the method used for reconstruction.
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Data Completion

Although most data is now extremely large-scale, it is also

highly incomplete. State-of-the-art methods like matrix com-
pletion allow one to accurately complete a data matrix from

observing only a few of its entries, under the assumption

that the data is intrinsically low-rank. Generically, the prob-
lem is formulated as recovering a matrix M from linear

measurements of the form y; = (A;, M) .= trace(A;*M)

fori = 1... m, where A; are matrices of the same dimen-
sion as M and where A™ denotes the adjoint or conjugate

transpose of a matrix A. For example, when A; are matri-
ces of all zeros and a single 1, this corresponds to the classi-
cal matrix completion problem when only a subset of en-
tries are observed. In many applications, the underlying

complete matrix is approximately low-rank; for example,
in collaborative filtering applications like the now-famous

Netflix ratings problem, user preferences are accurately de-
scribed by a small number of variables, and the full set of
theoretical ratings is thus very low-rank. One then seeks

a low-rank matrix M consistent with these measurements.
Since rank minimization is not computationally tractable,
one may solve its semi-definite relaxation: minyy ||M ||«

s.t. (A;,M) = y; Vi, where ||[M||x .= trace(~/M*M)

denotes the nuclear-norm. It is now well known that when

m is on the order of nr, nuclear-norm minimization accu-
rately recovers any rank-r n X n matrix (from, e.g., Gauss-
ian measurements or uniformly at random chosen obser-
vations).

Lyme Data. Lyme disease is the most common vector-
borne disease in the United States, with CDC estimates of
over 300,000 people in the US diagnosed each year. A sig-
nificant proportion of patients with Lyme disease develop

chronic debilitating symptoms, often mimicking other ill-
nesses such as multiple sclerosis (MS) and ALS. Founded

over twenty-five years ago, LymeDisease.org (LDo) is a na-
tional nonprofit dedicated to advocacy, research, and ed-
ucation. In November 2015, LDo announced the launch

of MyLymeData, a patient-powered research project. This

data has over 10,000 patients enrolled, includes several

phases of initial and follow-up survey responses, and asks

patients questions about diagnosis, treatment, symptoms,
and quality of life. Like many large-scale surveys, this data

is noisy, incomplete, and has a tree-like structure that makes
it mathematically challenging. The data used in this work
was obtained from the LymeDisease.org patient registry,
MyLymeData, Phase 1, June 17, 2017.

Lyme data, like most real-world data, has missing en-
tries that are not random, much less uniformly selected at
random. Still, one would like to complete such data ma-
trices so that accurate conclusions can be drawn from the
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complete data, or so that future surveys can be purpose-
fully designed to have missing data (i.e., by not asking ev-
ery patient every question) to reduce survey fatigue. For
example, in the Lyme data, entries may be missing because
the user chose not to answer, the survey structure deemed
the question irrelevant (i.e., branching), there were corrup-
tions/errors in acquisition, or the survey was designed to
ask each patient only a subset of questions. Lee and Shraib-
man [11] and Foucart et al. [8] recently obtained results
(using other methods) exposing recovery guarantees that
depend on appropriate parameters of the observation pat-
tern. For example, the latter group analyzed a low-rank
projection with de-biasing scheme using a weight matrix
W depending on the observation pattern (2,

M = argmin,, <, |[Mg — W © M|?, (1)

where © denotes the Hadamard (entrywise) product.
Note that (1) can be solved very easily by simply using
a truncated singular value decomposition (SVD) of Mg to
find its best rank-r approximation and then multiplying
the result entrywise by the reciprocals of the entries in the
weight matrix W (assuming they are all nonzero). In other
words, the recovered matrix M is taken to be the rank-r
matrix that best matches the observed entries Mg, after an
appropriate rescaling of the entries. Without such a rescal-
ing, when the sampling pattern is far from uniform, the re-
construction M turns out to be very biased, so parts of the
matrix need to be scaled by different weights. They also
analyze a max-norm (|| X|lmax = minx—gy+ [[Ull2,c0 *
IV]l2.00) projection scheme that tolerates arbitrary non-
uniform sampling. Both methods can be applied to matri-
ces with arbitrary sampling patterns; of course, the meth-
ods unsurprisingly cannot guarantee accurate completion
when the patterns are far from uniform. The results of the
former method on the Lyme data are shown in Figure 3.
The left plot shows light areas for observed entries and
black for unobserved entries; in particular, note that the
observation pattern is far from uniform. The middle and
right plots show the actual (coded) survey values for the
full data matrix (with missing entries) and the completed
matrix. Without ground truth for this real data, we can-
not provide errors for the completed matrix, but one can
validate the method using other statistical techniques.

Structured Observations. Looking again at Figure 3 (left),
one immediately notices that the sampling pattern is far
from uniform. Indeed, in this type of data and many other
applications, the sampling pattern may be deterministic
and/or far from uniform. In the Lyme disease survey, miss-
ing data arose from patients skipping questions either by
survey design or by patient choice. In collaborative filter-
ing, most users do not rate most items whereas a small
number of so-called “super-users” rate a large number of
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(a)

Figure 3. Figure 3. Simple method (1) on the full
(incomplete) Lyme symptom data. The actual
sampling pattern from the survey for these
questions is shown in (a). The full matrix is shown in
(b) and the reconstruction in (c).

items. In fact, not only are these sampling patterns non-
random, the pattern itself yields a lot of untapped informa-
tion. In both of these examples, most of the unobserved
entries are likely due to participant disinterest or irrele-
vance. This information is useful! Motivated by this set-
ting, we consider a nuclear-norm matrix completion pro-
gram with an added regularizer that promotes unobserved
entries to have small values.

Let M € R™*™ be the unknown matrix we would like
to recover, and let Q be the set of indices of the observed
entries. Let Pg : RM*™ o RMXM2 ywhere

(M G EQ
[Paly = {0 (i,) & Q
as in [3].

Recall the nuclear-norm minimization,
M = argmin, ||A||4 st. Po(A) = Po(M). (2

Motivated by applications in which the unobserved en-
tries tend to have small values, we instead solve

~

M = argmin, |[Al[x + &|[Pqc(A) |1
st. Po(A) = Po(M), (3)

where ¢ > 0 and the entrywise Li-norm [|M||; =
2.ij IMijl.

From the Lyme data, we consider a subset of 2,126 pa-
tients responding to sixty-five particular questions that
gives a fully complete matrix (so we have ground truth
for testing purposes). Question responses are integer val-
ues between zero and four. Due to computational con-
straints, for each of the ten trials executed, we randomly
sample fifty of these patient surveys to generate a 50 x 65
matrix. We then subsample from the zero and nonzero en-
tries of the data matrix at various rates to generate a matrix
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with missing entries. We complete this subsampled ma-
trix with both (2) and (3) using L; regularization on the
unobserved entries and report | IJ\T—MI lF/] IM\—MI |F, av-
eraged over ten trials in Figure 4. The parameter &, for the
regularization term, is chosen to be optimal among & €
{1071,1072,1073,107%}. We see, as expected, that when
most of the unobserved entries are small and most of the
observed entries are large, there is the most improvement
in using the regularizer. Preliminary theoretical results can
be found in [12], which are motivated by work in robust
principal component analysis [4], but future work is needed
to clearly quantify the theoretical gains as a function of the
sampling rates.
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Figure 4. Figure 4. For M and M given by (3) and (2),
respectively, with L; regularization on the recovered
values for the unobserved entries, we plot

IIJ\T— Mg/ IJ\A/I — M||r. We consider fifty patient
surveys with sixty-five responses each chosen
randomly from 2,126 patient surveys. We average
results over ten trials and with & optimal among

x e {1071,1072,1073,1074}.

Drawing Conclusions from Large-Scale Data

Background. In many high-dimensional data applications,
one is not interested in just representing the data efficiently
or completing missing data, but also in drawing analyti-
cal conclusions from that data. Such analytical techniques
can be performed on the large-scale data itself or from the
efficient representations. Although there are many impor-
tant data analysis problems, and many sophisticated meth-
ods to address them, we focus here on the problem of clas-
sification and discuss a simple method motivated by 1-bit
CSP that exhibits extremely efficient computation and stor-
age as well as interpretability and mathematical theoretical
support.

12 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

Classification. Given labeled training data, the classifica-
tion problem asks to accurately label new unlabeled data.
Classification is a canonical problem considered in many
areas of statistics and machine learning. Classical ap-
proaches include support vector machines (SVM) and lo-
gistic regression, and recently there has been a surge in
so-called deep learning methods, which rely on learned
hidden features through a neural network design. Here,
we describe a recent approach put forth by Needell et al.
[13] that performs simple and efficient classification from
binary data. It will use random hyperplanes and the cor-
responding binary sign information that provides informa-
tion about which side of each hyperplane each data point
lies. For a new query point, this information will be com-
pared to the same information for all training data, and
then a label that best matches the new query point will
be assigned. Although motivated by other approaches like
SVM and deep learning, this approach is not very compa-
rable, since, e.g., SVM searches for a separating hyperplane
as a rule, whereas this approach will utilize and aggregate
information from many random hyperplanes.

Let us build some intuition for the approach. Consider
the two-dimensional data X shown in the top plot of Fig-
ure 5, consisting of three labeled classes (green, blue, red).
Consider the four hyperplanes shown in the same plot,
and suppose we had access only to the binary data Q =
sign(AX), where A contains the normals to each hyper-
plane as its rows. For the new test point x (which by vi-
sual inspection should be labeled blue) and its binary data
q = sign(Ax), one could simply cycle through the hyper-
planes and decide which class x matches most often. For
example, for the hyperplane colored purple in the plot,
X has the same sign (i.e., lies on the same side) as the
blue and green classes. For the black hyperplane, x only
matches the blue class, and so on. Then for this exam-
ple, x will clearly match the blue class most often, and
we could assign it that label correctly. However, next con-
sider the more complicated geometry given in the bottom
plot, where the data consists of only two classes (red and
blue), but they are now intermixed. This same strategy will
no longer be accurate for the test point X. However, now
instead of single hyperplanes, consider hyperplane pairs,
and ask which class label X most often matches (note that
in this context, by “matches” we now mean that points
lie in the same cone that the hyperplanes divide the space
into). For example, for the pair colored orange and green,
X matches both red and blue points, whereas for the pair
of hyperplanes colored orange and purple, X only matches
the blue class. One could now cycle through all pairs and
again ask which class x matches most often.

Let us now describe the approach more formally. Con-
sider a data matrix X € R Let A € R™*4 have rows
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Figure 5. Figure 5. Two motivating examples for the
classification method.

corresponding to the normal vectors of m randomly ori-
ented hyperplanes, and let Q = sign(AX) be the binary
sign information. Then, the training algorithm proceeds
in L “levels.” In the £th level, m index sets Ayp; C [m],
|Agil = €, i = 1,...,m, are randomly selected. Dur-
ing the ith “iteration” of the £th level, the rows of Q in-
dexed by Ay; are used to form the £ X p submatrix of
Q, the columns of which define the sign patterns {1}’
observed by the training data. As in 1-bit CSP, these sign
patterns contain the information about what sides of the
hyperplanes the data points lie on.

At a given level £, for the tth sign pattern (out of the
possible 23) and gth class, a membership index parameter
r(€,i,t,g) thatuses knowledge of the number of training
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points in class g having the tth sign pattern is calculated
for every Ap;. Larger values of r (,i,t,g) suggest that
the tth sign pattern is more heavily dominated by class
g; thus, if a signal with an unknown label corresponds
to the tth sign pattern, we will be more likely to classify
it into the gth class. In [13], the authors define the fol-
lowing membership index parameter ¥ (¥, 1,t,g). Below,
Pyit= Pgit(Ayp,;) denotes the number of training points
from the gth class with the tth sign pattern at the ith set
selection in the £th level:

G
Pg\t ijl |Pg\t_Pj|t|
G G '
Zj:Ilet Zj:Ilet

Note that the first fraction in (4) indicates the proportion
of training points in class g out of all points with sign pat-
tern t (at the £th level and ith iteration). The second frac-
tion in (4) is a balancing term that gives more weight to
group g when that group is much different in size than the
others with the same sign pattern. Thus intuitively, these
values should be large when the sign pattern t is very pop-
ular among data points labeled as class g and not as pop-
ular among other classes. With this intuition, we can then
assign a label to a new test point X using its binary data
q = sign(Ax). For each class g, we simply sum the mem-
bership index function values over all £ and i, for those
sign patterns t that match the sign pattern of the new test
point X (which is known via the data gq). The label for x
is then decided by simply taking the class g corresponding
to the largest sum.

Figure 6 shows classification results for the Lyme data.
For this result, we use the survey responses for the symptom-
related questions as our data matrix. This matrix consists
of 3,686 “unwell” patients and 362 “well” patients (so
4, 048 patients in total) who each answered twelve symptom-
related questions (the “well” patients were asked about
their worst symptoms while being sick). We randomly se-
lect a number (ten, fifty, or one hundred, see Figure 6) of
those patients from each group to serve as our training
data, and the remaining serve as our test data. We then
run our method using this training and testing data and
compute the correct classification rate, where the “ground
truth” is determined from the separately asked question
in the survey about whether the patient identifies as be-
ing “well” or “unwell.” The top plot of Figure 6 demon-
strates the ability to accurately identify well versus unwell
patients from the symptoms (current or past) that they re-
port. Since the “well” patients were asked about their worst
prior symptoms, one might ask whether it is simply the
case that “well” patients showcase higher (or lower) symp-
tom levels in general, making classification easy. However,
the bottom plot of the figure demonstrates this is not the
case, and that perhaps more intricate and complex symp-
tom patterns are at work.

ri,it,g) = (4)

NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 13



3 17
o . —
o 0.8+ T 1
5 H/,.e—’ | B i
i)
@ i
E-% s —e—10 Training per Group
o —+—50 Training per Group
Qo04t 100 Training per Group
B
o
Soz2t
)]
()]
&
g 0 L 1 L |
= 8 50 100 150 200
Number of Measurements (m)
iE Mean Physical Symptom Response
a| | TN Well ]
1 Unwell

35 -
g 3 :
c
% 25} :
x
5 2t 4
=15 1

1 d
0.5 .

1 2 3 4 5 6 7 8 9 10 11 12
Physical Symptom

Figure 6. Figure 6. Top: Results from classification
approach on symptom data using five layers for
various numbers of randomly selected training
points (patients). Bottom: Means on the survey
questions for these groups.

Conclusion

Large-scale data is now ubiquitous, and the magnitude and
abundance of data only continue to grow. Without proper
mathematical techniques, this data will only bog down
symptoms and stall scientific understanding. However, with
sophisticated mathematical methods for large-scale data,
the ability to acquire, store, complete, and analyze such
data is possible. The recently acquired Lyme disease data
is a perfect example of complicated data that has the abil-
ity to significantly enhance scientific and medical under-
standing. Unfortunately, clinical research of this illness
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has been somewhat stagnant, controversial, and challeng-
ing. That makes the use of big data and mathematical anal-
ysis even more critical to make progress toward better un-
derstanding, diagnosis, and treatment of Lyme disease and
on other important scientific fronts.
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