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Abstract

We study the general problem of testing whether an unknown discrete distribution
belongs to a specified family of distributions. More specifically, given a distribution
family P and sample access to an unknown discrete distribution P, we want to
distinguish (with high probability) between the case that P € P and the case that
P is e-far, in total variation distance, from every distribution in P. This is the
prototypical hypothesis testing problem that has received significant attention in
statistics and, more recently, in computer science. The main contribution of this
work is a simple and general testing technique that is applicable to all distribution
families whose Fourier spectrum satisfies a certain approximate sparsity property.
We apply our Fourier-based framework to obtain near sample-optimal and com-
putationally efficient testers for the following fundamental distribution families:
Sums of Independent Integer Random Variables (SIIRVs), Poisson Multinomial
Distributions (PMDs), and Discrete Log-Concave Distributions. For the first two,
ours are the first non-trivial testers in the literature, vastly generalizing previous
work on testing Poisson Binomial Distributions. For the third, our tester improves
on prior work in both sample and time complexity.

1 Introduction

1.1 Background and Motivation

The prototypical inference question in the area of distribution property testing [6] is the following:
Given a set of samples from a collection of probability distributions, can we determine whether
these distributions satisfy a certain property? During the past two decades, this broad question —
whose roots lie in statistical hypothesis testing [43, 40] — has received considerable attention by the
computer science community, see [49, 10] for two recent surveys. After two decades of study, for
many properties of interest there exist sample-optimal testers (matched by information-theoretic
lower bounds) [44, 14, 54, 30, 2, 29, 12].

In this work, we focus on the problem of testing whether an unknown distribution belongs to a given
family of discrete structured distributions. Let P be a family of discrete distributions over a total order
(e.g., [n]) or a partial order (e.g., [n]*). The problem of membership testing for P is the following:
Given sample access to an unknown distribution P (effectively supported on the same domain as P),
we want to distinguish between the case that P € P versus dry (P, P) > €. (Here, dry denotes the

IThe full version of this paper is available at [13].
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total variation distance between distributions.) The sample complexity of this problem depends on
the underlying family /P. For example, if P contains a single distribution over a domain of size n, the
sample complexity of the testing problem is O(n'/2/€?) [14, 54, 30, 2].

In this work, we give a general technique to test membership in various distribution families over
discrete domains, i.e., to solve the following task:

T(P,¢): given a family of discrete distributions P over some partially or totally ordered set,
parameter € € (0, 1], and sample access to an unknown distribution P over the same domain,
how many samples are required to distinguish, with probability 3/5, between the case that
P € P versus dpy (P, P) > €?

Before we state our results in full generality, we present concrete applications to a number of
well-studied distribution families.

1.2 Our Results

Our first result is a nearly sample-optimal testing algorithm for sums of independent integer random
variables (SIIRVs). Formally, an (n, k)-SIIRV is a sum of n independent integer random variables
each supported in {0,1, ...,k — 1}. We will denote the set of (n, k)-SIIRVs by SZZRV,, ;.. SIIRVs
comprise a rich class of distributions that arise in many settings. The special case of k = 2 was first
considered by Poisson [45] as a non-trivial extension of the Binomial distribution, and is known as
Poisson binomial distribution (PBD). In application domains, SIIRVs have many uses in research
areas such as survey sampling, case-control studies, and survival analysis, see e.g., [16] for a survey
of the many practical uses of these distributions. In addition to their practical applications, SIIRVs are
of fundamental probabilistic interest and have been extensively studied in the theory of probability
and statistics [19, 38, 34, 46, 39, 5, 18, 15]. We prove:

Theorem 1 (Testing SIIRVs). Given parameters k,n € N and sample access to a distribution over
N, there exists an algorithm (Algorithm 1) for £(STIRV,, i, €) which takes
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samples, and runs in time n(k/e)Ok1o8(k/€)),

Prior to our work, no non-trivial® tester was known for (n, k)-STIRVs for any k > 2. [11] showed a
sample lower bound of Q(kl/ 2pl/ay) 62), but their techniques did not yield any non-trivial sample
upper bound.

For the special case of PBDs (k 2), Acharya and Daskalakis [1] gave a tester with sample
log 1 /e + © 1/ ) running time O(”:;4 log 1/ + (1/¢)Otlog” 1/6)), and
also showed a sample lower bound of Q(n'/*/€?). The special case of our Theorem 1 for k = 2
yields an improvement over [1] in both sample size and runtime:

complexity O (

Theorem 2 (Testing PBDs). Given parameter n € N and sample access to a distribution over N,
there exists an algorithm (Algorithm 1) for T(PBD,,, €) which takes
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2
samples, and runs in time n*/* - O (1/6 ) + (1/¢)CUceloe(l/e)),

Note that the sample complexity of our algorithm is n'/4 - O(l /€2), matching the information-
theoretic lower bound up to a logarithmic factor in 1/e. In particular, our algorithm does not incur
the extraneous Q(1/€%) term of [1]. Moreover, our runtime has a (1/¢)©{1°8198(1/€)) dependence,

as opposed to (1/ e)o(1°g2 1/€) . The improved running time relies on a more efficient computational

By the term “non-trivial” here we refer to a testing algorithm that uses fewer samples than just learning the
unknown distribution and then checking whether it is close to a distribution in the family.



“projection step” in our general framework, which leverages the geometric structure of Poisson
Binomial distributions.

We remark that the guarantees provided by the above two theorems are actually stronger than the
usual property testing one. Namely, whenever the algorithm returns accept, then it also provides a
(proper) hypothesis H such that dry (P, H) < e with probability at least 3/5.

A broad generalization of PBDs to the high-dimensional setting is the family of Poisson Multinomial
Distributions (PMDs). Formally, an (n, k)-PMD is any random variable of the form X = >"" | X,
where the X;’s are independent random vectors supported on the set {ej, ea, ..., e} of standard
basis vectors in R*. We will denote by PMD,, ;, the set of (n, k)-PMDs. PMDs comprise a
broad class of discrete distributions of fundamental importance in computer science, probability,
and statistics. A large body of work in the probability and statistics literature has been devoted
to the study of the behavior of PMDs under various structural conditions [4, 41, 5, 7, 47, 48].
PMDs generalize the familiar multinomial distribution, and describe many distributions commonly
encountered in computer science (see, e.g., [25, 26, 56, 53]). Recent years have witnessed a flurry of
research activity on PMDs and related distributions, from several perspectives of theoretical computer
science, including learning [22, 21, 31, 23, 32], property testing [56, 52, 53], computational game
theory [25, 26, 9, 24, 27, 35, 17], and derandomization [37, 8, 28, 36]. We prove the following:

Theorem 3 (Testing PMDs). Given parameters k,n € N and sample access to a distribution over
N*, there exists an algorithm for T(PMD,, ., €) which takes

n(k—1)/412k
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samples, and runs in time n°*") . (1/6)0( Tog 1og(k/c) )
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or alternatively in time n°%) .

For the sake of intuition, we note that Theorem 3 is particularly interesting in the regime that n is
large and k is small. Indeed, the sample complexity of testing PMDs is inherently exponential in
k: We prove a sample lower bound of Q,(n(*~1)/4/¢2) (Theorem 8),> nearly-matching our upper
bound for constant k.

Finally, we demonstrate the versatility of our techniques by obtaining a testing algorithm for discrete
log-concavity. Log-concave distributions constitute a broad and flexible non-parametric family that is
extensively used in modeling and inference [57]. In the discrete setting, log-concave distributions
encompass a range of fundamental types of discrete distributions, including binomial, negative
binomial, geometric, hypergeometric, Poisson, Poisson Binomial, hyper-Poisson, Pélya-Eggenberger,
and Skellam distributions. Log-concave distributions have been studied in a wide range of different
contexts including economics [3], statistics and probability theory (see [50] for a recent survey),
theoretical computer science [42], and algebra, combinatorics and geometry [51]. We will denote by
LCV,, the class of log-concave distributions over [n]. We prove:

Theorem 4 (Testing Log-Concavity). Given a parameter n € N and sample access to a distribution
over N, there exists an algorithm for T(LCV,,, €) which takes

o()+o(am)

samples, and runs in time O(y/n - poly(1/e)).

Our discrete log-concavity tester improves on previous work in terms of both sample and time
complexity. Specifically, [2] gave a log-concavity tester with sample complexity O(\/ﬁ/ e+1/ 65),
while [11] obtained a tester with sample complexity 0 (\/ﬁ / €7/ 2). Our sample complexity dominates
both these bounds, and is significantly better when € is small. The algorithms in [2, 11] run in
poly(n/e) time, as they involve solving a linear program of poly(n/e) size. In contrast, the running
time of our algorithm is sublinear in n.

3Here, we use the notation Q4 (+), Ox(-) to indicate that the parameter k is seen as a constant.



1.3 Our Techniques and Comparison to Previous Work

All the testing algorithms in this paper follow from a simple and general technique that may be of
broader interest. The common property of the underlying distribution families P that allows for our
unified testing approach is the following: Let P be the probability mass function of any distribution
in P. Then, the Fourier transform of P is approximately sparse, in a well-defined sense.

For concreteness, we elaborate on our technique for the case of SIIRVs. The starting point of our
approach is the observation from [31] that (n, k)-SIIRVs — in addition to having a relatively small
effective support — also have an approximately sparse Fourier representation. Roughly speaking,
most of their Fourier mass is concentrated on a small subset of Fourier coefficients, which can be
computed efficiently.

This suggests the following natural approach to testing (n, k)-SIIRVs: first, identify the effective
support I of the distribution P and check that it is appropriately small. If it is not, then reject. Then,
compute the corresponding small subset S of the Fourier domain, and check that almost no Fourier
mass of P lies outside S. Otherwise, one can safely reject, as this is a certificate that P is not an
(n, k)-SIIRV. Combining the two steps, one can show that learning the Fourier transform of P (in
Ls-norm) on this small subset S only, is sufficient to learn P itself in total variation distance. The
former goal can be performed with relatively few samples, as S is sufficiently small.

At this point, we have obtained a distribution H — succinctly represented by its Fourier transform on S
— such that P and H are close in total variation distance. It only remains to perform a computational
“projection step” to verify that H itself is close to some (n, k)-SIIRV. This will clearly be the case if
indeed P € STIRV,, 1.

Although the aforementioned approach forms the core of our SIIRV testing algorithm, the actual tester
has to address separately the case where P has small variance, which can be handled by a testing-via-
learning approach. Our main contribution is thus to describe how to efficiently perform the second
step, i.e., the Fourier sparsity testing. This is done in Theorem 6, which describes a simple algorithm
to perform this step. The algorithm proceeds by essentially considering the Fourier coefficients of
the empirical distribution (obtained by taking a small number of samples). Interestingly, the main
idea underlying Theorem 6 is to avoid analyzing directly the behavior of these Fourier coefficients —
which would naively require too high a time complexity. Instead, we rely on Plancherel’s identity and
reduce the problem to the analysis of a different task: that of the sample complexity of Ly identity
testing (Proposition 1). By a tight analysis of this Lo tester, we get as a byproduct that several Fourier
quantities of interest (of our empirical distribution) simultaneously enjoy good concentration — while
arguing concentration of each of these terms separately would yield a suboptimal time complexity.

A nearly identical method works for PMDs as well. Moreover, our approach can be abstracted to
yield a general testing framework, as we explain in Section 4. It is interesting to remark that the
Fourier transform has been used to learn PMDs and SIIRVs [31, 23, 32, 20], and therefore it may not
be entirely surprising that it has applications to testing as well. Notably, our Fourier testing technique
gives an improved and nearly-optimal algorithms for log-concavity, for which no Fourier learning
algorithm was known. More generally, testing membership to a class using the Fourier transform is
significantly more challenging than learning. A fundamental difference is that in the testing setting
we need to handle distributions that do not belong to the class (e.g., SIIRVs, PMDs), but are far
from the class in an arbitrary way. In contrast, learning algorithms work under the promise that the
distribution is in the underlying class, and thus can leverage the specific structure.

Testing via the Fourier Transform: the Advantage One may wonder how the detour via the
Fourier transform enables us to obtain better sample complexity than an approach purely based on Lo
testing. Indeed, all distributions in the classes we consider, crucially, have small L, norm. For testing
identity to such a distribution P, the standard L, identity tester (see, e.g., [14] or Proposition 1), which
works by checking how large the Ly-distance between the empirical and the hypothesis distribution
is, will be optimal. We can thus test membership of a class of such distributions by (i) learning P
assuming it belongs to the class, and then (ii) test whether what we learned is indeed close to P using
the Lo identity tester. The catch is that, in order to get guarantees in L;-distance using this approach,
would require us to learn to very small Ly distance (because of the Cauchy—Schwarz inequality). In
particular, if the unknown distribution P has support size IV, we would have to learn to Lo distance

€/ V/N in (i), and then in (ii) test that we are within Lo-distance €/ V/N of the learned hypothesis.



However, if a distribution P has a sparse discrete Fourier transform (whose effective support is
known), then it suffices to estimate only these few Fourier coefficients [31, 33]. This step enables

us to learn P in (i) not just to within L;-distance e, but indeed (crucially) within Lo-distance \/Eﬁ

with good sample complexity. Additionally, the identity testing algorithm can be put into a simpler
form for a hypothesis with sparse Fourier transform, as previously mentioned. Now, the tester has
higher sample complexity, roughly /N /€?; but if it accepts, then we have learned the distribution P
to within e total variation distance, with much fewer samples than the 2 (N / 62) required for arbitrary
distributions over support size N. Lastly, we note that we can replace the support size N in the above
description by the size of the effective support, i.e., the smallest set that contains 1 — O(¢) fraction of
the mass. Doing so for the case of (n, k)-SIIRVs leads to a sample complexity proportional to n'/4,
instead of n'/2.

1.4 Organization

The rest of the paper is organized as follows: In Section 2, we set up notation and provide definitions
as well as standard results relevant to our purposes. Section 3 contains the details of one of the main
subroutines our testers rely on, namely for Fourier sparsity testing.In Section 4, we describe our
general approach to obtain a tester applicable to any class of distributions which enjoys good Fourier
sparsity. In Section 5, we state and sketch the proof of our sample complexity lower bound for testing
PMDs. Due to space constraints, most proofs have been deferred to the full version [13].

2 Notation and Definitions

We begin with some standard notations and definitions, as well as basics of Fourier analysis and
results from Probability that we shall use throughout the paper. For m € N, we write [m] for the set
{0,1,...,m — 1}, and log (resp. In) for the binary logarithm (resp. the natural logarithm).

Distributions and Metrics A probability distribution over (discrete) domain €2 is a function

P: Q — [0,1] such that |P||, e > weq P(w) = 1; we denote by A(€2) the set of all probability

distributions over domain €2. Recall that for two probability distributions P, Q € A(Q), their total

variation distance (or statistical distance) is defined as dry (P, Q) Lef supgco(P(S) — Q(S)) =

13 calP(w) — Q)| ie. drv(P,Q) = ||P — QJ|,. Given a subset P C A({2) of distributions,
the distance from P to P is then defined as drv (P, P) def infqep dry (P, Q). If dpy (P, P) > ¢,
we say that P is e-far from P; otherwise, it is e-close.

Discrete Fourier Transform Our algorithms will rely heavily on the (discrete) Fourier transform,

whose definition we recall next.

Definition 1 (Discrete Fourier Transform). For z € R, we let e(z) e exp(—2imz). The Discrete
Fourier Transform (DFT) modulo M of a function F': [n] — C is the function F': [M] — C defined

) Fle) = Z(j}) F()

for £ € [M]. The DFT modulo M of a distribution P, P, is then the DFT modulo M of its
probability mass function (note that one can then equivalently see P () as the expectation P (&) =

Ex~rle(§5 )] for € € [M)).

The inverse DFT modulo M onto the range [m,m + M — 1] of F': [M] — C, is the function
F:[m,m+ M —1]NZ — C defined by

- | M-l &\ ~
F(j) = M = 6(—M> F(¢),

forj € [m,m+ M —1]NZ.



Note that the DFT (modulo M) is a linear operator; moreover, we recall the standard fact relating the
norms of a function and of its Fourier transform, that we will use extensively:

Theorem 5 (Plancherel’s Theorem). For M > n and F,G: [n] — C, we have (i)
S F()GU) = 25 Yoty F(O)G(E); and (ii) | F||, = 2| Flly, where F,G are the DFT
modulo M of F, G, respectively.

(The latter equality is sometimes referred to as Parseval’s theorem.) We also note that, for our PMD
testing, we shall need the appropriate generalization of the Fourier transform to the multivariate
setting. We leave this generalization to the full version.

3 Testing Effective Fourier Support

In this section, we prove the following theorem, which will be invoked as a crucial ingredient of
our testing algorithms. Broadly speaking, the theorem ensures one can efficiently test whether an
unknown distribution Q has its Fourier transform concentrated on some (small) effective support

S (and if this is the case, learn the vector Ql s, the restriction of this Fourier transform to .S, in Lo
distance).

Theorem 6. Given parameters M > 1, e,b € (0,1], as well as a subset S C [M] and sample
access to a distribution Q over [M|, Algorithm 1 outputs either reject or a collection of Fourier

coefficients H = (fo(g ))ees such that with probability at least 7/10, all the following statements
hold simultaneously.

L. if | Q3 > 2b, then it outputs reject;

2. if ||Q||§ < 2b and every function Q*: [M] — R with Q* supported entirely on S is such
that |Q — Q*||, > € then it outputs reject;

3. if ||Q||§ < b and there exists a function Q*: [M] — R with é\* supported entirely on S
such that |Q — Q*||, < §, then it does not output reject;

4. ifit does not output reject, then |Qls — I-}’\H2 < <€ 1(1)\/{ and the inverse Fourier transform

(modulo M) H' of the Fourier coefficients H' it outputs satisfies | Q — H'||, < 5.

Moreover, the algorithm takes m = O(E—\/Qg + ]\l/[i |2 +vM ) samples from Q, and runs in time
O(m|S)).

Note that the rejection condition in Item 2 is equivalent to || Q1 3ll; > eV M, that is to having Fourier
mass more than ¢ outside of .S; this is because for any Q* supported on .S,

N2 =110 — 0F° = 101c — O 1P +101s — O 121> > 1012 — O 12 = 10117
MQ-Q7; = 1Q - Q*[l; = [1Qls — Q* 15[, +]|Q15 — Q* 15[, > [Q15 — Q* 15|, = [Q1s],
and the inequality is tight for Q* being the inverse Fourier transform (modulo M) of le.

High-level idea. Let Q be an unknown distribution supported on M consecutive integers (we will
later apply this to Q TP mod M ), and S C [M] be a set of Fourier coefficients (symmetric with
regard to M: £ € S implies —€ mod M € S) such that 0 € S. We can further assume that we know
b > 0 such that ||Q||> < b.

Given Q, we can consider its “truncated Fourier expansion” (with respect to 5) H= Ql s defined as

fi(e) & {Q(f) if¢es

0 otherwise

for £ € [M]; and let H be the inverse Fourier transform (modulo M) of H. Note that H is no longer
in general a probability distribution.



To obtain the guarantees of Theorem 6, a natural idea is to take some number m of samples from
Q. and consider the empirical distribution Q' they induce over [M]. By computing the Fourier
coefficients (restricted to .S) of this Q’, as well as the Fourier mass “missed” when doing so (i.e.,

—~ 2
the Fourier mass ||Q’15||, that Q' puts outside of .S) to sufficient accuracy, one may hope to
prove Theorem 6 with a reasonable bound on m.

The issue is that analyzing separately the behavior of ||Q’1z ||z and ||Q1ls — Q'1g Hz to show that
they are both estimated sufficiently accurately, and both small enough, is not immediate. Instead, we
will get a bound on both at the same time, by arguing concentration in a different manner — namely,
by analyzing a different tester for tolerant identity testing in Lo norm.

In more detail, letting H be as above, we have by Plancherel that
1 M-1 N

/. N2 A 2 1 =~ =~ 2 =
> (Q(i)-H>)*=Q —H; = 71Q —Hl, = 7 52::0@ (&) —-H©]?

i€[M]

and, expanding the definition of H and using Plancherel again, this can be rewritten as
) , A . 2 2 /e 2
M [Z ](Q'(Z) —H(i))* = |Q1s — Q'1sll, + M[|Q']5 — [ Q"Ls]l,-
i€[M
(The full derivation will be given in the proof.) The right-hand side has two non-negative compound
terms: the first, [|Qlg — Q'1s ||, corresponds to the L; error obtained when learning the Fourier

— 2 —
coefficients of Q on S. The second, M||Q’||§ - 1Q1sll, =Q'1s
empirical Q' puts “outside of S.”

2
5 1s the Fourier mass that our

So if the LHS is small (say, order €2), then in particular both terms of the RHS will be small as
well, effectively giving us bounds on our two quantities in one shot. But this very same LHS is very
reminiscent of a known statistic [14] for testing identity of distributions in Ly. So, one can analyze
the number of samples required by analyzing such an L, tester instead. This is what we will do
in Proposition 1.

Algorithm 1 Testing the Fourier Transform Effective Support

Require: parameters M > 1, b, e € (0,1]; set S C [M]; sample access to distribution Q over [M]

: Setm < [C(g + AI/[SEL +V M)-‘ > C > 0 is an absolute constant

1
2: Draw m’ < Poi(m); if m' > 2m, return reject
3: Draw m’ samples from Q, and let Q' be the corresponding empirical distribution over [M]

— _ 2
4: Compute |Q'[|3, Q/(€) for every € € S, and ||Q'15]|; > Takes time O(m|S])
50 if m2||Q'||; —m' > 3bm? then return reject

— 2 N 2 .

6: elseif |Q']; — & [|Q1s], > 3¢2 (%) + -1 then return reject
7
8
9

: else

: return H' = (Q\’(S))ges
: end if

The detailed proof of Theorem 6 is given in the full version.

3.1 A Tolerant L, Tester for Identity to a Pseudodistribution

As previously mentioned, one building block in the proof of Theorem 6 (and a result that may be
of independent interest) is an optimal L4 identity testing algorithm. Our tester and its analysis are
very similar to the tolerant Lo closeness testing algorithm of Chan et al. [14], with the obvious
simplifications pertaining to identity (instead of closeness). The main difference is that we emphasize
here the fact that P* need not be an actual distribution: any P*: [r] — R would do, even taking
negative values. This will turn out to be crucial for our applications.

Proposition 1. There exists an absolute constant ¢ > 0 such that the above algorithm (Algorithm 2),
when given Poi(m) samples drawn from a distribution P and an explicit function P*: [r] — R will,



Algorithm 2 Tolerant L, identity tester

Require: ¢ € (0,1), Poi(m) samples from distributions P over [r], with X; denoting the number
of occurrences of the i-th domain elements in the samples from P, and P* being a fixed, known
pseudo distribution over [r].

Ensure: Returns accept if |P — P*||, < e and rejectif |P — P*||, > 2e.

Define Z = >\, (X; — mP*(i))? — X,. > Can actually be computed in O(m) time

Return reject if % > /3¢, accept otherwise.

with probability at least 3 /4, distinguishes between (a) |P — P*||, < e and (b) |P — P*||, > 2¢
provided that m > cg, where b is an upper bound on ||PH§, |P* ||§

Moreover, we have the following stronger statement: in case (a), the statistic Z computed in the

algorithm satisfies g < V/2.9¢ with probability at least 3 /4, while in case (b) we have g >V3.1e
with probability at least 3 /4.

4 The General tester

In this section, we provide our general testing framework. In more detail, our theorem (Theorem 7)
has the following flavor: if P is a property of distributions such that every P € P has both (i) small
effective support and (ii) sparse effective Fourier support, then one can test membership to P with
O(VsM /€* + s/€?) samples (where M and s are the bounds on the effective support and effective
Fourier support, respectively). As a caveat, we do require that the sparse effective Fourier support S
be independent of P € P, i.e., is a characteristic of the class P itself.

The high-level idea is then quite simple: the algorithm proceeds in three stages, namely the effective
support test, the Fourier effective support test, and the projection step. In the first, it takes some
samples from P to identify what should be the effective support I of P, if P did have the property:
and then checks that indeed |I| < M (as it should) and that P puts probability mass 1 — O(e) on

I. In the second stage, it invokes the Fourier testing algorithm of Section 3 to verify that P indeed
puts very little Fourier mass outside of .S; and, having verified this, learns very accurately the set of
Fourier coefficients of P on this set S, in L, distance. At this point, either the algorithm has detected
that P violates some required characteristic of the distributions in P, in which case it has rejected
already; or is guaranteed to have learned a good approximation H of P, by the Fourier learning
performed in the second stage. It only remains to perform the third stage, which “projects” this good
approximation H of P onto P to verify that H is close to some distribution P* € P (as it should if
indeed P € P).

Theorem 7 (General Testing Statement). Assume P C A(N) is a property of distributions satisfying
the following. There exist S: (0,1] — 25, M: (0,1] = N, and g : (0,1] — N such that, for every
e € (0,1],

1. Fourier sparsity: for all P € P, the Fourier transform (modulo M (€)) of P is concentrated

~ 2 €2
Plgll, < 155

on S(€): namely,

2. Support sparsity: for all P € P, there exists an interval I(P) C N with |I(P)| < M((e)
such that (i) P is concentrated on I(P): namely, P(I(P)) > 1 — ¢ and (ii) I(P) can be
identified with probability at least 19/20 from q(€) samples from P.

3. Projection: there exists a procedure PROJECTp which, on input ¢ € (0,1] and the ex-
plicit description of a distribution H € AN), runs in time T'(€); and outputs accept if
dry (H,P) < 2, and reject if dry (H, P) > § (and can answer either otherwise).

4. (Optional) Ly-norm bound: there exists b € (0, 1] such that, for all P € P, |[P||3 < b.

Then, there exists a testing algorithm for P, in the usual standard sense: it outputs either accept or
reject, and satisfies the following.

1. if P € P, then it outputs accept with probability at least 3/5;



Algorithm 3 Algorithm Test-Fourier-Sparse-Class

Require: sample access to a distribution P € A(N), parameter € € (0,1], b € (0, 1], functions
S:(0,1] — 2N, M: (0,1] = N, gr: (0,1] — N, and procedure PROJECTp as in Theorem 7
1: Effective Support
2: Take ¢y (e) samples from P to identify a “candidate set” I. > Guaranteed to work w.p.
19/20if P € P.
3: Draw O(1/¢) samples from P, to distinguish between P(/) > 1 - £ and P(I) <1 — . >
Correct w.p. 19/20.

4: if |I| > M (e) or we detected that P(/) > { then

5: return reject

6: end if

T

8: Fourier Effective Support

9: Simulating sample access to P’ P mod M (¢), call Algorithm 1 on P’ with parameters
M (e), e b, and S(e).

10: if Algorithm 1 returned reject then

11: return reject

12: endif

13: Let H = (H(&))¢es(c) denote the collection of Fourier coefficients it outputs, and H their
inverse Fourier transform (modulo M (¢)) > Do not actually compute H here.

14:

15: Projection Step

16: Call PROJECTp on parameters € and H, and return accept if it does, reject otherwise.

17:

2. ifdry (P, P) > ¢ then it outputs reject with probability at least 3 /5.

The algorithm takes

€

O<\/|S<e>2|M<e> + 150 m(e))

samples from P (if Item 4 holds, one can replace the above bound by O (% + @ + QI(E)) );
and runs in time O(m|S| + T (¢)), where m is the sample complexity.

Moreover, whenever the algorithm outputs accept, it also learns P; that is, it provides a hypothesis
H such that dvv (P, H) < e with probability at least 3/5.

We remark that the statement of Theorem 7 can be made slightly more general; specifically, one
can allow the procedure PROJECTp to have sample access to P and err with small probability, and

further provide it with the Fourier coefficients H learnt in the previous step.

S Lower Bound for PMD Testing

In this section, we obtain a lower bound to complement our upper bound for testing Poisson Multino-
mial Distributions. Namely, we prove the following:

Theorem 8. There exists absolute constants ¢,c’ € (0,1) such that the following holds. For any
k<n®ande>1/ 2¢'"any testing algorithm for the class of PMD,, j, must have sample complexity

Q((%)k/zl n(k;)/zl).

The proof will rely on the lower bound framework of [11], reducing testing PMD,, i, to testing
identity to some suitable hard distribution P* € PMD,, ;.. To do so, we need to (a) choose a
convenient P* € PMD,, ; (b) prove that testing identity to P* requires that many samples (we
shall do so by invoking the [54] instance-by-instance lower bound method); (c) provide an agnostic
learning algorithm for PMD,, ;, with small enough sample complexity, for the reduction to go
through. Invoking [11, Theorem 18] with these ingredients will then conclude the argument.
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