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Abstract

We study the problem of learning multivariate log-concave densities with respect to a global loss
function. We obtain the first upper bound on the sample complexity of the maximum likelihood
estimator (MLE) for a log-concave density on R4, for all d > 4. Prior to this work, no finite sample
upper bound was known for this estimator in more than 3 dimensions.

In more detail, we prove that for any d > 4 and ¢ > 0, given O4((1/€)(*+3)/2) samples drawn
from an unknown log-concave density f, on R¢, the MLE outputs a hypothesis 4 that with high
probability is e-close to fo, in squared Hellinger loss. For any d > 2, a sample complexity lower
bound of Q,4((1/¢)(4+1)/2) was previously known for any learning algorithm that achieves this
guarantee. We thus establish that the sample complexity of the log-concave MLE is near-optimal
for d > 4, up to an O(1 /) factor.

1. Introduction

1.1. Background

The general task of estimating a probability distribution under certain qualitative assumptions about
the shape of its probability density function has a long history in statistics, dating back to the pio-
neering work of Grenander (1956) who analyzed the maximum likelihood estimator of a univariate
monotone density. Since then, shape constrained density estimation has been a very active research
area with a rich literature in mathematical statistics and, more recently, in computer science. A
wide range of shape constraints have been studied, including unimodality, convexity and concavity,
k-modality, log-concavity, and k-monotonicity. The reader is referred to Barlow et al. (1972) for
a summary of the early work and to Groeneboom and Jongbloed (2014) for a recent book on the
subject. (See Section 1.3 for a succinct summary of prior work.) The majority of the literature has
studied the univariate (one-dimensional) setting, which is by now fairly well-understood for a range
of distributions. On the other hand, the multivariate setting and specifically the regime of fixed
dimension is significantly more challenging and poorly understood for many natural distribution
families.

(© 2018 T. Carpenter, 1. Diakonikolas, A. Sidiropoulos & A. Stewart.
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In this work, we focus on the family of multivariate log-concave distributions. A distribution on
R is log-concave if the logarithm of its probability density function is concave (see Definition 1).
Log-concave distributions constitute a rich non-parametric family encompassing a range of fun-
damental distributions, including uniform, normal, exponential, logistic, extreme value, Laplace,
Weibull, Gamma, Chi and Chi-Squared, and Beta distributions (see, e.g., Bagnoli and Bergstrom
(2005)). Due to their fundamental nature and appealing properties, log-concave distributions have
been studied in a range of fields including economics An (1995), probability theory Saumard and
Wellner (2014), computer science Lovasz and Vempala (2007), and geometry Stanley (1989).

The problem of density estimation for log-concave distributions is of central importance in the
area of non-parametric shape constrained estimation Walther (2009); Saumard and Wellner (2014);
Samworth (2017) and has received significant attention during the past decade in statistics Cule et al.
(2010); Dumbgen and Rufibach (2009); Doss and Wellner (2016); Chen and Samworth (2013); Kim
and Samworth (2016); Balabdaoui and Doss (2018); Han and Wellner (2016) and theoretical com-
puter science Chan et al. (2013, 2014a); Acharya et al. (2017); Canonne et al. (2016); Diakonikolas
et al. (2016d, 2017).

1.2. Our Results and Comparison to Prior Work

In this work, we analyze the global convergence rate of the maximum likelihood estimator (MLE)
of a multivariate log-concave density. Formally, we study the following fundamental question:

How many samples are information-theoretically sufficient so that the MLE of an arbitrary
log-concave density on RY learns the underlying density, within squared Hellinger loss €?

Perhaps surprisingly, despite significant effort within the statistics community on analyzing the
log-concave MLE, our understanding of its finite sample performance in constant dimension has
remained poor. The only result prior to this work that addressed the sample complexity of the MLE
in more than one dimensions is by Kim and Samworth (2016). Specifically, Kim and Samworth
(2016) obtained the following results:

(1) a sample complexity lower bound of Q4 ((1/ €)(d+1)/ ?) that applies to any estimator for all
d > 2, and

(2) a sample complexity upper bound for the log-concave MLE, that is near-optimal (within
logarithmic factors) for d < 3.

Prior to our work, no finite sample upper bound was known for the log-concave MLE even for
d=4.

In recent related work, Diakonikolas et al. (2017) established a finite sample complexity upper
bound for learning multivariate log-concave densities under global loss functions. Specifically,
the estimator analyzed in Diakonikolas et al. (2017) uses Oy ((1/€){4+5)/2)1 samples and learns
a log-concave density on R% within squared Hellinger loss €, with high probability. We remark
that the upper bound of Diakonikolas et al. (2017) was obtained by analyzing an estimator that
is substantially different than the log-concave MLE. Moreover, the analysis in Diakonikolas et al.
(2017) has no implications on the performance of the MLE. Interestingly, some of the technical
tools employed in Diakonikolas et al. (2017) will be useful in our current setting.

1. The O(-) notation hides logarithmic factors in its argument.
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Due to the fundamental nature of the MLE, understanding its performance merits investigation
in its own right. In particular, the log-concave MLE has an intriguing geometric structure that is a
topic of current investigation Cule et al. (2010); Robeva et al. (2017). The output of the log-concave
MLE satisfies several desirable properties that may not be automatically satisfied by surrogate esti-
mators. These include the log-concavity of the hypothesis, the paradigm of log-concave projections
and their continuity in Wasserstein distance, affine equivariance, one-dimensional characterization,
and adaptation (see, e.g., Samworth (2017)). An additional motivation comes from a recent con-
jecture (see, e.g., Wellner (2015)) that for 4-dimensional log-concave densities the MLE may have
sub-optimal sample complexity. These facts provide strong motivation for characterizing the sample
complexity of the log-concave MLE in any dimension.

To formally state our results, we will need some terminology. The squared Hellinger distance
between two density functions f,g : R? — R is defined as h%(f,g) = (1/2) - Jpa(V/ f(x) —

9(0))2da.
We now define our two main objects of study:

Definition 1 (Log-concave Density) A probability density function f : R — R, d € Z,, is
called log-concave if there exists an upper semi-continuous concave function ¢ : R4 — [—o00, 00)
such that f(x) = e®@) for all x € R We will denote by Fy the set of upper semi-continuous,
log-concave densities with respect to the Lebesgue measure on R%.

Definition 2 (Log-concave MLE) Let fo € Fq and X1,..., X, be iid samples from fo. The
maximum likelihood estimator, fy, is the density fn € Fq whzch maximizes L 3" log(f(X;))
overall f € Fy.

We can now state our main result:

Theorem 3 (Main Result) Fix d € Z, and € € (0,1). Letn = Q ((1/6)(d+3)/2). For any
fo € Fy, with probability at least 9/10 over the n samples from fo, we have that h2(fy, fo) < e.

See Theorem 7 for a more detailed statement. The aforementioned lower bound of Kim and Sam-
worth (2016) implies that our upper bound is tight up to an Od( 1Y multiplicative factor.

1.3. Related Work

Shape constrained density estimation is a vibrant research field within mathematical statistics. Sta-
tistical research in this area started in the 1950s and has seen a recent surge of research activity, in
part due to the ubiquity of structured distributions in various domains. The standard method used
in statistics to address density estimation problems of this form is the MLE. See Brunk (1958);
Rao (1969); Wegman (1970); Hanson and Pledger (1976); Groeneboom (1985); Birgé (1987a,b);
Fougeres (1997); Chan and Tong (2004); Balabdaoui and Wellner (2007); Jankowski and Wellner
(2009); Dumbgen and Rufibach (2009); Balabdaoui et al. (2009); Gao and Wellner (2009); Bal-
abdaoui and Wellner (2010); Koenker and Mizera (2010); Walther (2009); Chen and Samworth
(2013); Kim and Samworth (2016); Balabdaoui and Doss (2018); Han and Wellner (2016) for a
partial list of works analyzing the MLE for various distribution families. During the past decade,
there has been a large body of work on shape constrained density estimation in computer science
with a focus on both sample and computational efficiency Daskalakis et al. (2012a,b, 2013); Chan
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et al. (2013, 2014a,b); Acharya et al. (2015, 2017); Diakonikolas et al. (2016a,b); Daskalakis et al.
(2016); Diakonikolas et al. (2016c¢); Valiant and Valiant (2016); Diakonikolas et al. (2017).

Density estimation of log-concave densities has been extensively investigated. The univariate
case is by now well understood Devroye and Lugosi (2001); Chan et al. (2014a); Acharya et al.
(2017); Kim and Samworth (2016); Han and Wellner (2016). For example, it is known Kim and
Samworth (2016); Han and Wellner (2016) that 9(6_5/ 4) samples are necessary and sufficient to
learn an arbitrary log-concave density over R within squared Hellinger loss €. Moreover, the MLE is
sample-efficient Kim and Samworth (2016); Han and Wellner (2016) and attains certain adaptivity
properties Kim et al. (2016). A recent line of work in computer science Chan et al. (2013, 2014a);
Acharya et al. (2017); Canonne et al. (2016); Diakonikolas et al. (2016d) gave efficient algorithms
for log-concave density estimation under the total variation distance.

Density estimation of multivariate log-concave densities has been systematically studied as well.
A line of work Cule et al. (2010); Dumbgen and Rufibach (2009); Doss and Wellner (2016); Chen
and Samworth (2013); Balabdaoui and Doss (2018) has obtained a complete understanding of the
global consistency properties of the MLE for any dimension. However, both the rate of convergence
of the MLE and the minimax rate of convergence remain unknown for d > 4. For d < 3, Kim and
Samworth (2016) show that the MLE is sample near-optimal (within logarithmic factors) under the
squared Hellinger distance. Kim and Samworth (2016) also prove bracketing entropy lower bounds
suggesting that the MLE may be sub-optimal for d > 3 (also see Wellner (2015)).

1.4. Technical Overview

Here we provide a brief overview of our proof in tandem with a comparison to prior work. We start
by noting that the previously known sample complexity upper bound of the log-concave MLE for
d < 3 Kim and Samworth (2016) was obtained by bounding from above the bracketing entropy
of the class. As we explain below, our argument is more direct making essential use of the VC
inequality (Theorem 4), a classical result from empirical process theory. In contrast to prior work
on log-concave density estimation Kim and Samworth (2016); Diakonikolas et al. (2017) which
relied on approximations to (log)-concave functions, we start by considering approximations to
convex sets. Let fjy be the target log-concave density. We show (Lemma 10) that given sufficiently
many samples from fj, with high probability, for any convex set C' the empirical mass of C' and
the probability mass of C' under fj are close to each other. We then leverage this structural lemma
to analyze the error in the log-likelihood of log-concave densities, using the fact that the superlevel
sets of a log-concave density are convex.

We remark that our aforementioned structural result (Lemma 10) crucially requires the assump-
tion of the log-concavity of fy. Naively, one may think that this lemma follows directly from the
VC inequality. Recall however that the VC-dimension of the family of convex sets is infinite, even
in the plane. For example, for the uniform distribution over the unit circle, a similar result does
not hold for any finite number of samples (the intersection of the convex hull of any subset S of
the unit circle with the unit circle is S itself, so we would need uniform convergence on all subsets
of the unit circle), and so we need to use the fact that fj is log-concave. To prove our lemma, we
consider judicious approximations of the convex set C' with convex polytopes using known results
from convex geometry. In more detail, we consider approximations to the convex set C' on the in-
side and outside with close probabilities under f to the convex set from a family with a bounded
VC-dimension.
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For any log-concave density f, the probabilities of any superlevel set are close under the em-
pirical distribution and fy. If log f were bounded, then that would mean that the empirical log-
likelihood of f and the log-likelihood of f under fy were close. Unfortunately, for any density f,
log f is unbounded from below. To deal with this issue, we instead consider log(max(f, Pmin)),
for some carefully chosen probability value pp,i, such that we could ignore the contribution of the
density below pp,iy if f is close to fy. If we can bound the range of log(max(f, pmin)), We can
show that its expectation under f; and its empirical version are close to each other (see Lemma 13).
To bound the range, we show that if the maximum value of f is much larger than the maximum of
fo, then f has small probability mass outside a set A of small volume; since A has small volume,
we see many samples outside it, and so the empirical log-likelihood of f is smaller than the em-
pirical log-likelihood of fy. Using this fact, we can show that for the MLE fn the expectation of
log(max( fos Pmin)) is large under fj and then that f,, is close in Hellinger distance to fo.

1.5. Organization

After setting up the required preliminaries in Section 2, in Section 3 we present the proof of our
main result, modulo the proof of our main lemma (Lemma 10). In Section 4, we give a slightly
weaker version of Lemma 10 that has a significantly simpler proof. In Section A, we present the
proof of Lemma 10. Finally, we conclude with a few open problems in Section 5.

2. Preliminaries

Notation and Definitions. For m € Z., we denote [m] = e {1 .,m}. Let f : R = R be a
Lebesgue measurable function. We will use f(A) to denote [, f 4 f(z)dz. A Lebesgue measurable
function f : R? — R is a probability density function (pdf) if f ( ) > 0 for all z € R? and
fRd r)dr = 1. Let f,g : R — R, be probability densuy functions. The squared Hellinger

distance between f, g is defined as H?(f,g) = 5 f (\/ — gz ) dx. The total variation

distance between f, g is defined as dry(f,g9) = supg|f(S) — g(5)|, where the supremum is
over all Lebesgue measurable subsets of the domain. We have that dry (f,g9) = (1/2) - ||f —
glli = (1/2) - Jpa |f ( )]dm The Kullback-Leibler (KL) divergence from g to f is defined as

KL(f|lg) = f [z g(x

For f: A —- B and A C A the restriction of f to A’ is the function f|4 : A’ — B. For
y € [0,00) and f : R? — [0, 00) we denote by L¢(y) o {x € RY| f(x) > y} its superlevel sets.
If f is log-concave, L ;(y) is a convex set for all y € R.. For a function f : R? — [0, 00), we will
denote by M its maximum value.

The VC inequality. We start by recalling the notion of VC dimension. We say that a set X C R
is shattered by a collection A of subsets of R?, if for every Y C X there exists A € A such that
AN X =Y. The VC dimension of a family A of subsets of R? is defined to be the maximum
cardinality of a subset X C R that is shattered by .A. If there is a shattered subset of size s for all
s € Z4, then we say that the VC dimension of A is co.

The empirical distribution, f,,, corresponding to a density f : RY — R is the discrete prob-
ability measure defined by f,(A) = (1/n) - > ", 14(X;), where the X; are iid samples drawn
from f and 1g is the characteristic function of the set S. Let f : R — R be a Lebesgue mea-
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surable function. Given a family A of measurable subsets of R%, we define the .A-norm of f by
|| fll.a = supaea | f(A)]. The VC inequality states the following:

Theorem 4 (VC inequality, see Devroye and Lugosi (2001), p. 31) Let f : R — [0,00) be a
probability density function and f,, be the empirical distribution obtained after drawing n samples
from f. Let A be a family of subsets over R with VC dimension V. Then B[|| f — full4] < C\/V/n,

for some universal constant C' > 0.

We will also require a high probability version of the VC inequality which can be obtained using
the following standard uniform convergence bound:

Theorem 5 (see Devroye and Lugosi (2001), p. 17) Let A be a family of subsets over R¢ and f,
be the empirical distribution of n samples from the density f : R% — [0,00). Let X be the random
variable || f — fnll.a. Then for all § > 0, we have that Pr[X — E[X] > §] < e~2"0",

Approximating Convex Sets by Polytopes. We make use of the following quantitative bounds
of Gordon et al. (1995) that provide volume approximation for any convex body by an inscribed and
a circumscribed convex polytope respectively with a bounded number of facets:

Theorem 6 For any convex body K C R%, and n sufficiently large, there exists a convex polytope
P C K with at most { facets such that vol(K \ P) < M%UVOI(K), where k > 0 is a universal
constant. Similarly, there exists a convex polytope P’ where K C P’ with at most ¢ facets such that

vol(P'\ K) < /s vol(K).

3. Main Result: Proof of Theorem 3

The following theorem is a more detailed version of Theorem 3 and is the main result of this paper:

Theorem7 Fixd € Zy and e,7 € (0,1). Let n = Q ((d?/e) lng(d/(eT)))(d+3)/2. For any
fo € Fq, with probability at least 1 — T over the n samples from fy, we have that hQ(fn, fo) <e

This section is devoted to the proof of Theorem 7, which follows from Lemma 19. We will
require a sequence of intermediate lemmas and claims.

We summarize the notation that will appear throughout this proof. We use fy € F, to denote the
target log-concave density. We denote by f,, the empirical distribution obtained after drawing n iid
samples X7, ..., X, from fy and by fn the corresponding MLE. Givend € Z4 and 0 < €, 7 < 1,
for concreteness, we will denote:

Ny 0 ((d2/e) md(d/ (er))) 7

for a sufficiently large universal constant in the big-© notation. We will establish that [V; is an upper
bound on the desired sample complexity of the MLE. Moreover, we will denote

2 1000t /72) 6 e/ (322) |

def —
Pmin = Mfoe “,
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and ot
S = Lfo(pmin) .

We start by establishing an upper bound on the volume of superlevel sets:

Lemma 8 (see, e.g., Diakonikolas et al. (2017), p. 8) Let f € Fy with maximum value M;. Then
forallw > 1, we have vol(L s (Mpe™)) < w? /My, and Prx.;[f(X) < Mye™™] < O(d)de="/2.

We defer this proof to Appendix B. We use Lemma 8§ to get a bound on the volume of the
superlevel set that contains all the samples with high probability:

Corollary 9 Forn > Ni, we have that:
(a) vol(S) < z4/Mjy,, and

(b) Prx~s[fo(X) < My, /(100n*/72)] < 7/(10n). In particular, with probability at least
1 —7/10, all samples X1, ..., X, from foarein S.

Proof From Lemma 8, we have that vol(S) = vol(Ly,(Mye ) < O(z4/Mjy,). Also from
Lemma 8, we have that Prx ., [fo(X) < My, /(100n*/72)] < 7/(10n), if we assume a suffi-
ciently large constant is selected in the definition of N;. Taking a union bound over all samples, we
get that with probability at least 1 — 7/10, all of the n samples are in .S, as required. |

We can now state our main lemma establishing an upper bound on the error of approximating
the probability of every convex set:

Lemma 10 For n > Ny, we have that with probability at least 1 — 7/3 over the choice of
X1,..., Xy, drawn from fo, for any convex set C C R% it holds that | fo(C) — fn(C)| < 6.

The proof of Lemma 10 is deferred to Section A. In Section 4, we establish a weaker version
of this lemma that requires more samples but has a simpler proof. Combining Lemma 10 with the
observation that for any log-concave density f and ¢ > 0 we have that L¢(t) is convex, we obtain
the following corollary:

Corollary 11 Let n > Ni. Conditioning on the event of Lemma 10, we have that for any f € Fy
and for any t > 0 it holds |Prx.z [f(X) > t] — Prx~y, [f(X) > t]| <.

We will require the following technical claim, which follows from standard properties of Lebesgue
integration (see Appendix B):

Lemma 12 Let g,h : R? — R be probability distributions, and ¢ : R — R. If Ey.4[6(Y)],
Ey1[0(Y)] are both finite, then |Ey4[¢(Y)] — Eyp[o(Y)]| < ffooo |Pry4lo(Y) < ] —
Pryn[o(Y) < a]ldz.

Our next lemma establishes a useful upper bound on the empirical error of the truncated likeli-
hood of any log-concave density:
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Lemma 13 Letn > Ny and f € Fy with maximum value My. For all p € (0, My], conditioning
on the event of Corollary 11, we have

[Ex~ o In(max(f(X), p))] = Exnp, [In(max(f(X), p))]| <6 -In(My/p) -

Proof Letting h = fo, g = fn, and ¢(x) = In(max(f(z), p)), by Lemma 12 we have

[Ex~fo [In(max(f(X), p))] = Ex~f, [In(max(f(X), p))]l

< [ P ltn(max(F(X).1np) < 6 = Pryey, [n(max(F(X). ) < d] d

M
- / " [Prxe gy lmax(in f(X),In p)) < 1] - Pry, max(in f(X),Inp)) < ]|t

—00

lan

- /1 IPrxe o In(F(X)) < 1] — Prxoy, [In(f(X)) < ] dt

np
lan

_ /l Prxos[£(X) < €] — Proy, [f(X) < ]| dt
np

lan
_ /1 Prycop[f(X) > €] — Pryoy, [f(X) > €] dt.
np

Since we conditioned on the event of Corollary 11, we have [Prx ., [f(X) > t] — Prx~y, [f(X) > t]| <
¢ for all ¢ > 0. Therefore, we have that

In My
Bl In(max(£(X), )] = B, fn(max(F(X) o)) < [ 6t =5+ (M ~1np)
np

which concludes the proof. |

For fy itself, we can use Hoeffding’s inequality to get a bound on the empirical error of its
likelihood:

Lemma 14 Letn > Ny. Conditioning on the event of Corollary 9, with probability at least 1 —7/3
over X1, ..., X, we have that

%Zln fo(X:) — Exoy, [In fo(X)]| < ¢/8.
=1

We defer this proof to Appendix B. The following simple lemma shows that the MLE is supported
in the convex hull of the samples:

Lemma 15 Letn > 1. Let Xi,..., Xy be samples drawn from fo, and C be the convex hull of
these samples. Then, for all x € R%\ C, we have f,(x) = 0.

We defer this proof to Appendix B. We need to truncate the likelihood at a density small enough to
be ignored for f close to fy. This motivates the following definition:

Definition 16 We define f : R — R such that f(x) def max{Pmin, fn(x)}.
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We show that this truncation and renormalization does not affect the MLE fn by much:

Lemma 17 Let n > Nj. Let g(x) & af(x)lg(z), o € [0,00), be such that Js9(x)dr = 1.
Conditioning on the event of Corollary 9, we have the following:

(a) 1 —¢/32<a <1, and
(b) drv(g, fn) < 3¢/64.

Proof We start by provmg (a). By the definition of g and Lemma 15, we have o = « [, g fn Ydx <
«Q f g x)dx = f g g(z)dxr = 1,i.e., a < 1. Furthermore, by the definition of pyy,;,, and Corollary 9,
we have

My, O((In(100n*/72))4)
(100n1/72) M

0

Prmin -Vol(S) < < €/32, (1)

and therefore
1= /Sg(a:)dm <« </Spmin dz —I—/an(x)dac> < a(pmin -vol(S) + 1) < a(e/32+1).
From this it follows that & > 1/(1 4 ¢/32) > 1 — ¢/32. We have
drvio.fo) = 5 [ lot@) = fu@lde = 5 [ lote) = Fu@)ide @
since g(x) = 0 for z ¢ S and fn is supported in .S by Lemma 15. We can then write
3 1o = fua@idr = 5 [ or'@) = futwlds
< /S @ — 1]+ fu(@)dz + pugn vol(S)

<22 [ uwnte+ e/ (from (1)
S
L—qf

< +¢€/32 < 3¢/64 ,

which completes the proof. |

To deal with the dependence on the maximum value of f in Lemma 13, we need to bound the
maximum value of the MLE.

Lemma 18 Let n > Ny. Let Xy,...,X,, be samples drawn from fo. Then conditioning on
the events of Corollary 11 and Lemma 14, for any f € Fq with maximum value My such that

In(My/ pmin) > 41In(100n*/72), we have L 37 In f(X;) < 230 | In fo(X;).

This holds because a density f with a large My is small outside on a set of small volume, which
most of the samples will be outside. We defer this proof to Appendix B.

We have now reached the final result of this section, from which Theorem 7 directly follows.
Combining previous lemmas, we show that the likelihood under f; of the truncated MLE is close to
that of fy and so they are close in KL divergence, which leads to a bound in the Hellinger distance
of the MLE itself:
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Lemma19 Letn > Ny. Let Xi,..., Xy be samples drawn from fo. With probability at least
1 — 7, we have that h*(fo, fn) < e.

Proof In this lemma, we will apply Lemmas 13, 14, 17, and 18. By examining the conditions of
these lemmas, it is easy to see that with probability at least 1 — 7 they all hold. We henceforth
condition on this event.

Let X1,..., X, be samples drawn from fy, let fn be as in Definition 2. Let g and f be as
defined in Lemma 17 and Definition 16. Let .S be as defined in Corollary 9 Then we have that

EXNfo [lng(X)] = EXNfo [ln(af(X))]
> Ex~f[In f(X)]—€/16 (since « > 1 —¢/32)

=Ex~j, [In(max{ fn(X), Pmin })] —€/16
>Ex~, [In(max{ fn(X), pmin} )] —3¢/16 (by Lemmas 13 and 18)

> %Zlnfn(Xi)—&/lG

iZm fo(Xi)—3¢/16

>
> Ex~,[In fo(X)]—5¢/16. (using Lemma 14)
Thus, we obtain that
KL(follg) = Ex~ o[ fo(X)] — Exn o [In g(X)] < 5¢/16. 3)

For the next derivation, we use that the Hellinger distance is related to the total variation distance and
the Kullback-Leibler divergence in the following way: For probability functions ki, ks : R¢ — R,
we have that h%(kq, ko) < dpv(ki, k2) and h?(ki, ko) < KL(k1||k2). Therefore, we have that

h(fo, fn) < h(fo.9) + h(g, fn)
< KL(follg)"/* + drv(g, fu)'/?
= (5¢/16)"/% + (3¢/64)"/? (by (3) and Lemma 17)
<€/?,

concluding the proof. |

4. Warmup for the Proof of Lemma 10

For the sake of exposition of the main ideas used in the proof of Lemma 10, we first prove Lemma
21, which achieves a weaker bound on the sample complexity, but has a significantly simpler proof.
Let us first give a brief, and somewhat imprecise, overview of the proof of Lemma 21. The high-
level goal is to approximate some convex set C C R? by some set, belonging to a family of low VC
dimension. We then can obtain the desired bound using Theorem 4. To that end, we compute inner
and outer approximations, C'™ and C°", of C' via polyhedral sets with a small number of facets.
By Lemma 20, we can argue that the VC dimension of this family is low. We therefore obtain that

10
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fo and f,, are close on the inner and outer approximations of C'. It remains to argue that the total
difference between fy and f,, in C°%* \ C'" is also small. It thus suffices to bound the volume of
C°Ut\ O™, This can be achieved by first defining some set S C R? that excludes the tail of fy. Since
fo 1s logconcave, we can show that S has small volume. The final bound is obtained by restricting
the above argument on C'N S.

Throughout this section, we define No"2 0 (200 (d(2d+3)/e)(ln(d(dﬂ)/(ﬂ)))(d“))(d+5)/2.
We will require the following simple fact:

Lemma 20 (see Alon et al. (1992)) Let h,d € Z., and let A be the set of all convex polytopes in
R< with at most h facets. Then, the VC dimension of A is at most 2(d + 1)hlog((d + 1)h).

The main result of this section is the following:

Lemma 21 Let n > N. With probability at least 1 — 3% over the choice of X1, ..., X, for any

10
convex set C' C R% it holds that | fo(C) — f.(C)| < 6.

Proof Recall that z = In(100n*/72) and S = Ly, (My,e~*). Let C be the family of convex sets on
R?. Forany C € C, let C' = C'N S. Since fy is log-concave, it follows that .S is convex, and thus
("’ is also convex.

Let & be the event that all samples X1, ..., X, liein S. Let ¥ = X1,..., X,,. By Corollary 9,
we have

PrXNfO [51] > 1-— 7'/10 (4)

Conditioned on &; occurring, we have with probability 1, for any C' € C, f,,(C) = f,(C"). In other
words,

Pryp,[VC €C, fo(C\ C') =0/&] = 1. 5)

From Corollary 9, we have Prx. 7, [fo(X) < My, /(100n*/72)] < 7/(10n), and therefore
fo(C\C") < fo(R?\ S) < 7/(10n) < 6/5. (6)

Combining (4), (5), (6), and letting Q = supgec | fo(C \ C') — f.(C'\ C")|, we have that

Pry s [Q < 6/5] > Prawy, [Q < 6/5[€1] - Pray[€1]
> PTXNfO [VC S C, fn(C \ C,) = 0|51] . PI")(NfO[gl]
>1-7/10. %

Let A be the set of convex polytopes in R? with at most H = (10xdz?/8)(4~1/2 facets, where & is

the universal constant in Theorem 6. By Theorem 6, there exist convex polytopes T, 7" € A, with

T C C" C T, such that vol(C' \ T') < 1dﬁvol(b’) < % and vol(T"\ C") < ld%vol(S) <
s

TOM;, - Therefore, since M, is the maximum value of fj, we have

Jo(C'\'T) <vol(C'"\T) - My, <4/10, ®)

11
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and
fo T’\C’)gvol(T’\C’)-Mfo35/10. 9)
<

(
Noting that E[|fo(T) — fn(T)|] < E[||fo — fn|la], by Theorem 4 we have for some universal
constant « that E[|fo(T) — fn(T)|] < y/aV/n. The following claim is obtained via a simple
calculation (see Appendix B):

Claim 22 Forn > Ns, we have that \/aV/n < §/10.
Let & be the event that || fo — fn||.4 < 36/10. By Claim 22 and Theorem 5 we have

Prygo[€2] =1 = Pray[llfo = falla > 36/10]
> 1 —=Prawplllfo = falla = Elllfo = falla] > /5]
2 1 o 6—2”(5/5)2

>1-171/5. (10)
For any choice of samples X1, ..., X,, we have
[n(C) > fu(T) (since T C C")
> fo(C') = fo(C'\'T) — | fo(T) — fu(T)|
)
= fo(C") = 15 = Wo(T) = fu(T)]: by @) D
In a similar way, using that C' C T”, we have
)
Fal€) < fo(C) + 15 + fo(T) = fu(T')]. (by (9)) (12)
By (11) and (12) and the union bound, we obtain
)
| fu(C) = fo(CN)] < 1g T max {[fo(T) = fu(T)|, | fo(T") = fulT)]} - (13)

Combining (7), (10), (13), and letting Q' = supcec | fn(C) — fo(C)], we get
Pra.f[Q < 20/5] = PrXNfo[(gléIé [fn(C\C) = fo(C\C) < 6/5) AQ < 35/10)]
= Pravpol(sup [ fo(C) C") = fo(C\C) < 6/5) A (Il fn = folla < 35/10)]

> 1—37/10,

which concludes the proof. |

5. Conclusions

In this paper, we gave the first sample complexity upper bound for the MLE of multivariate log-
concave densities on R, for any d > 4. Our upper bound agrees with the previously known lower
bound up to a multiplicative factor of Og(e ™).

A number of open problems remain: What is the optimal sample complexity of the multivariate
log-concave MLE? In particular, is the log-concave MLE sample-optimal for d > 4? Does the
multivariate log-concave MLE have similar adaptivity properties as in one dimension? And is there
a polynomial time algorithm to compute it?

12
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Appendix A. Proof of Lemma 10

We are now ready to prove the main technical part of our work, which is Lemma 10. The proof
builds upon the argument used in the proof of Lemma 21, which achieves a weaker sample complex-
ity bound. Recall that in the proof of Lemma 21 we use inner and outer polyhedral approximations
of C, restricted on some appropriate bounded S C R?. The main difference in the proof of Lemma
10 is that we now use roughly O(log n) inner and outer polyhedral approximations of intersections
of C' with different super-levelsets of f;. We need slightly more samples due to the higher number
of facets, and consequently higher VC dimension of the resulting approximations. However, since
we use a finer discretization of the values of fy, we incur lower error in total.

The following Lemma is implicit in Diakonikolas et al. (2017). We reproduce its proof for
completeness in Appendix B.

Lemma 23 Let L, H € Z.. We define the set Ay 1, elements of which are defined by the following
process: Starting with L convex polytopes each with at most H facets, all combinations of inter-

section, difference, and union of these polytopes are elements of Ay 1. If V' is the VC dimension of
AH,Ly then V/ log(V) = O(dLH).

We are now prepared to present the proof of Lemma 10. Let
Si= Ly, (Mfoe_i)

and let Sy = (. Let L = In(100n*/7). Note that by Lemma 8, we have that Prx. s, [fo(X) <
My, e=*] = O(d)%e~*/? and thus

Prxaso[X &S] = Prxog[fo(X) < Mpe ] < Ton’
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Let &1 be the event that all samples X1, ..., X, liein Sg. Let ¥ = X3,..., X,,. We have that
Pry~gl&1] > 1 —7/10. (14)
Let C be the set of convex sets in R?. For any C € C, for all i € [L], let
C;i=0nS§;.

Note that, conditioned on &; occurring, we have with probability 1 that, for all C' € C, f,(C) =
fn(CL). In other words,

Pry p[VC €C, fo(C\CL) =0|&1] = 1. 15)

Furthermore, by our choice of L we have fo(R%\ S1) < and therefore

T
.
< —X< .
Jo(C\Cr) < o < 5/5 (16)
Combining 14, 15, 16, and letting @ = supgoec |fo(C \ Cr) — fn(C\ CL)|, we have

Pry~s, [Q < 0/5] > Pra~y, [Q < 6/5|&1] - Pra~y, 1]
> Prawso[VC € C, fu(C\ CL) = 0[&1] - Prap[&1]
>1—1/10. a7

Using Theorem 6, for i € [L] let Pi®, P?" be convex polytopes with H = (10xd/§)4—1)/2
facets, where & is the universal constant from Theorem 6, such that PZ-in C(C; C Pio‘“,

vol(Cy \ P™) < §-vol(C;)/10 < 6 - vol(S;) /10, (18)
and
vol(PP" \ C;) < 6 -vol(C;)/10 < 6 - vol(S;)/10. (19)
Let
o — U Rln
i€[L]

For any i € [L], let PZ-S be a convex polytope with at most H facets such that PiS C §; and
vol(S; \ P?) < & - vol(S;)/10.
Let

si=|J P/

1<j<i
and Sj = 0. Let

oot = |J (P siy).
1€[L]

We will now show that C'™ and C°" satisfy the following conditions:

1. ¢ C Cp C Covt,

17
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Figure 1: Constructing C'®. For each set S;, a convex polytope approximating C' N S; from the
inside is found, and C™ is formed by taking the union of these convex polytopes.

2. fo(Cout \ CL) < 5/2
3. fo(CL\ C™) < 6/2.

First, we consider C'. Since P C C; C Cy, for all i € [L], it follows that Uiy P =
C™ C (. Observe that by the above definitions, we have that

(CL\C™) N (Si\ Sim1) € (CL\C™\ i1 € (Cr\ B™)\ Si-1. (20)
From (20), we therefore have
c\e™ = [c\e™n S\ Sin] € | (@\ PM\ i, 21
i€[L] i€[L]
and so
Fo(CLNC™) <Y fol(Ci\ P\ Sic) (by (21))
i1€[L]
< > vol((Ci \ P\ i) Mp,e= (7
1€[L]
< > vol(Ci \ P Mpye” Y
1€[L]
< ) (6/10)vol(S;) M,e =Y (by (18))
i€[L]
< (6/10) Z VOI(Lfo (Mfoe_i))Mfoe_(i_l)
i€[L]
Mfo
< (6/10)/ vol(Ly,(y))dy < /2. (22)
0

18
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(@ s
(b) s
( s
(d)

Figure 2: Constructing C°". For each set S;, a convex polytope approximating S; from the inside
is found (PZ.S , see row (a)), and a convex polytope approximating C'N S; from the outside
is found (PP, see row (b)). For each i, the set PP\ (U};ll PJS ) is constructed (see row

(c)), and the union of these sets finish the construction of C°U* (see row (d)).
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Now we consider C°". Let 2 € Cp. Then there exists i € [L] such thatz € S; and = ¢ S;_1.
Thus z € PP and = ¢ S]_,, from which we have that x € C°"* = UiE[L](Piout \'S/_,). Therefore
Cr C C°%. Lety € C°" \ Cf. From the definition of C°", there must exist some i € [L] such
thaty € PP\ S!_,. Ify € PP\ C;, we are done. Suppose that y ¢ P\ C;. Since we have
that y € PP, we must also have that y € C;. But C; C Cf, and we began with y € C°"\ O,
which makes a contradiction. Therefore,

Co"\ Op C Uiy (PPN Gi) - (23)
Thus, we have that

fo(CONCL) < > fo(PPM\ C) (by (23))
1€[L)
< > vol(PP\ i) My,e (7
i€[L]

< > (6/10)vol(S;) Mp,e~ Y (by (19))
i€[L]

< (5/10) Z VOI(Lfo (Mfoe_i))Mfoe_(i_l)
1€[L)

M 0
< (5/10) /0 " ol(Ly, () dy < 5/2. (24)

We define the set A, elements of which are defined by the following process: Starting with 2L
convex polytopes each with at most H facets, all combinations of intersection, difference, and union
of these convex polytopes are elements of ,A. Then for any convex set C' with C'", C°" as defined
above, we have that C°" C'™ € A. From Lemma 23, we have that if V is the VC dimension of A,
then

V/In(V) = O(dLH).

Using Theorem 4, we have for some universal constant o that

E[|fo(C™) — £u(C™)]] < Efllfo— fulla] = ﬁ

The following claim is obtained via a simple calculation (see Appendix B):

(25)

Claim 24 For n > Ni we have that % < §/10.

Let & be the event that || fo — fn||4 < d/2. Then by (25), Claim 24, and Theorem 5, we have
that

PrXNfo[EQ] =1- PrXNfo[HfO - fn||A > 5/2]

> 1=Pra~plllfo— falla = Elllfo — fulla] > 6/10]
>1— 67271(5/10)2

>1—7/10. (26)

This next claim follows from (22) and (24). The full proof can be found in Appendix B.
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Claim 25 If & and & hold, we have that supccc | fn(CrL) — fo(CL)| < 76/10.
Combining (17), (26), Claim 25, and letting Q' = supccc | fn(C) — fo(C)], we get

Prave @ < 0] = Prag, [sup [ fo(C\ CL) = fo(C'\ CL)| < 6/5) Asup |fo(CL) = fo(CL)| < 76/10)]
ceC ceC

>1- T
= 710 5
> 1 - 37/10,

which concludes the proof.

Appendix B. Deferred Proofs

B.1. Proof of Lemma 8

W.l.o.g. we may assume that f(0) = M;. Welet R = L;(My/e). Then using the fact that if
y < My /ethen R C L¢(y), we have that

M
1 :/ vol(L¢(y))dy 2/ vol(L¢(y))dy 2/ vol(R)dy = r -vol(R)
R+ 0<y<Mj/e 0<y<M;/e €
(27)

Suppose that f(x) > Mye™", for some = € R¢. By the definition of log-concavity we have
f(z/w) > f(0)w=D/wf(g)1/v By the assumption we get f(z/w) > M](cwfl)/w(Mf/ew)l/w =

M}(f”_l)/wM}/w/e = M;y/e. Thus z/w € R, and so x € wR. Therefore Ls(Mse™") C wR.
Thus by (27) we get

vol(Lf(Mge™™)) < vol(wR) < w - vol(R) = w? /My, (28)

which proved the first part of the assertion.
It remains to prove the second part. We have

Mye™*
Pra () < Mye] < [ volliy )y

= /00 vol(L¢(Mype™ ™)) Mype “dx (setting y = Mye™™)
< / 0 /M) Mye " da (by (28))
_ / T 0(ae ™) da

< /OO O(d)%e™/?dx (since €*/% > (x/2)?/d!)
_ Oz(d)de—z/Q’

which concludes the proof.
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B.2. Proof of Lemma 12

We begin with a few common definitions and observations. If X is a random variable defined on a
probability space (€2, X, P), then the expected value E[X | of X is defined as the Lebesgue integral

HM:/XMMW)
Q
Next, we define two functions

X+ (w) = max(X(w),0)

and
X_(w) = —min(X(w),0).

We observe that these functions are both measurable (and therefore also random variables), and that
E[X] = E[X4] — E[X_]. Finally, we observe that if X : O — R>o U {00} is a non-negative
random variable then

E[X]| = /000 Pr[X > z]dx.

Similarly, if X :  — R>¢ U {—o0} is a non-positive random variable then

mm:—/oﬁm<ﬂm.

— 00
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Applying the definitions and observations of the previous paragraph, we have the following
derivation:

Eyg[o(Y)]=Eyn[o(Y)]
= (Ey~g[d(Y)+] — Eyy[d(Y)-]) = (Byn[d(Y)+] — Eyn[o(Y)-])
= (Eyng[d(Y)+] + Eyyg[—0(Y)-]) = (Eyan[o(Y)+] + Eyon[—0(Y)-])

- ( /O T Pryaglo(Y)s > aldz+ / " Pryg[o(V). < x]dw)

—00

[T Pryn6 V), > alde+ [ Prynl-6(Y). < alda
( / )

—0o0

00 0
= (/0 Pry4[o(Y) > z|dx + /_OO Pry4lo(Y) < a:]d:c)
_ </OO PI‘yNh[(Z)(Y) > I’]dl’ + /0 PI‘YNh[¢(Y> < $]d$>
0 —o0
= /0 Pry4[¢(Y) > 2] — Pryup[o(Y) > zldx
0
+/ Pry4[o(Y) < 2] = Pryup[o(Y) < z]dx
= /000(1 — Pry4[o(Y) < z]) = (1 = Pryplo(Y) < 2])dx
0
+/ Pry4[o(Y) < z] = Prywp[o(Y) < z|dx
_ /0 T Prynld(Y) < 2] — Pryg[¢(Y) < a])da
0
+ /_ Pry,[6(Y) < 2] — Pry_u[6(Y) < a]da
< / T Prymy[6(Y) < 2] — Prynlé(Y) < o]| da
0
0
+/_ ‘PI"YNg[(b(Y) < l’] — Prywh[¢(Y) < iL’” dzx
= [ Prvglo(v) < o] - Pryasfo(v) < ] da.
A symmetric argument shows that
Eyn[o(Y)] = Ey~g[o(Y)] < /_oo [Pry~n[@(Y) < a] = Pryy[o(Y) <zl dz,
concluding the proof.

B.3. Proof of Lemma 14

Recall that z = In(100n*/72), S = Ly, (Me™?), and pmin = My, /(100n*/7%). Note that for
any x € S, we have fo(z) > pmin by construction. Since we have conditioned on the event of
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Corollary 9 holding, it follows that for each i € [n], fo(X;) > pmin. Therefore, letting p def Drnins
we have

> In(fo(X) ~ Exegy I fo(X)]' = 23" Infmax(fo(X0), ) ~ Exegy i fo(X)
i=1 i=1

IN

S In(max(fo(X1), ) ~ B, [n(max(fo(X), p)]
=1

+ [Ex~ g [In(max(fo(X), p))] = Ex~j, [In fo(X)]]

< izln(maX(fo(Xz)m)) — Ex~f, In(max(fo(X), p))]
or
+ / Prln fo(X)<T)dT . (29)

By Hoeffding’s inequality we have

|

< 2exp<

=3 (max(fo(X:), ) — Excw gy [m(max(fo(X), )
i=1

—2n?%(e/16)? )
n-(In My, —Inp)?

< 2exp ( —ne’/16° >

- (In(100n*/72))2

<7/3. (since n > Np) (30)

> £
16

Next we have

Inp [e%S)
/ Prx.f[n fo(X)<T]dT < / Prx s n fo(X)<Inp —yldy (settingy =1Inp —1T)
0

< / O(d)d(p/MfO)lpe*ymdy (by Lemma 8)
0
(o] T _
= || o'y (p = My, /(100" /)
<2. d_T
=2-0[d) 35,2
< €/16. (since n > Np)
31

By applying (30) and (31) to bound (29) from above, with probability at least 1 — 7/3 we have that

%Zln fo(Xi) — Exop, [In fo(X)]| < €/8,
=1

which concludes the proof.
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B.4. Proof of Lemma 15

Suppose there exists z € R? \ C' such that f,,(z) > 0. Then, we have that L; ( () \C # 0
and thus fRd\C fn(x)dz > 0. From this, it follows that Jo fn(x)dz < 1, and so there exists some

« > 1 such that ozfcfn dxr = 1. Let g, : C' — R be such that g, = « - fn|c. Since C'is a
convex set and |, o 9n(x)dz = 1, we have that g, is a log-concave density. Observe that

e s
fZ]og Zlog afu(X;) >n;10g(fn(Xi)), (32)

where we used that o > 1. By definition, f,, maximizes 151 log(f(X;)) over all log-concave
densities f, which contradicts (32). Therefore, for all z € R®\ C, we have that f,, () = 0.

B.5. Proof of Lemma 18

This lemma holds because for a density f with a large maximum value M}, f is small outside a set
of small volume, and most of the samples drawn from f; will be outside this set. Let

1< 1
v = exp (2 (n;lnfo(Xi) - §Ianf 1))

A= L¢(v).

If we have that vol(A) - My, < 1/3, then it follows that fo(A) < 1/3. Since f is log-concave, A
is a convex set, and since we condition on Corollary 11 holding, we have with probability 1 that
|fo(A) — fn(A)| < § < 1/6. Therefore, we have that f,,(A) < 1/2, in which case at least 1/2 of
the samples X7, ..., X, are not contained within A. Thus, we have that

and

1< 1
EZlnf( < Shy+ o 1an

1o 1 1
2 (n;lnfO(Xi) — 5 InM; - 1) + 5 In Mj
1=

Now we check to see how large M must be to ensure that vol(A) - My, < 1/3. We have that

vol(A) - Mg, = vol(Lg(v)) - My,

= vol (Lf (Mf-exp (iilnfo(Xi) -2 —2lan>>> - My,
i=1

d
M
< MJ;) ) (2 _ 7z1n fo(X;) + 21an> ) (by Lemma 8)
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Since we condition on the event of Lemma 14 holding, we have with probability 1 that
{jln fo(Xi) > Exyy [In fo(X)] — € > Inprin —e,

and so we have that

M
vol(A) - My, < =12 .0 ((2 +21n My — 210 pin +26)d)
M;

M
(et gt 0 ).
f

The following claim follows by a simple calculation:
Claim 26 [fIn(M;/M;y,) > 31n(100n*/7%), then vol(A) - My, < 1/3.

Proof Recall that

M
vol(A) - My, < =22 .0 ((2 +2In My — 210 pin +26)d)
My

M d
< V? .0 ((2 In My — 21n My, + 3In(n*100/7)) ) .

We search for M such that vol(A) - My, < 1/3. Itis sufficient for M to satisfy, for some constant
c>1,

My, /My - ¢ (2In My — 21n My, + 31n(n*100/72))" <
d

In ((Mfo/Mf) ¢ (2In(M;/Mj,) + 31n(n*100/72) ) 1/3
In (My,/M;) +Inc+In ((2 In(M;/Mj,) + 31n(n*100/72)) d) In(1/3)
In ((2 In(M;g/Mjy,) + 31In(n*100/72)) ) In(3¢) < In (M;/Mj,)

) <
dln (2In(My/My,) + 3In(n*100/7%)) +In(3¢) < In (My/My).  (33)

If we have M such that In(My/My,) > 31In(n*100/72), and a sufficiently large constant is chosen
for N7 so that In(3¢c) < In(n*100/72), then (33) becomes

dIn (3In(My/Mpg,)) < 2In (My/Mg,) . (34)
The next inequality is equivalent to (34) :
(3In(My/Mj,))" < My /My,

We note that the derivative of (31nz)%? is

3d/2d(1n x)d/2—1
2x '
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We also note that for 2 = (3d)%?*1(In(9d))%?** we have that

3%/2d(In z)4/?~1
2x

<1

and

(3Inz)%? = [3(d/2 + 1) In(9d In(9d)]%/?
=392 q/2 . [21n(9d)]%/?
<z

Therefore, assuming sufficiently large constants are chosen in the definition of Ny, if
In(My/M;y,) > 31n(n*100/72)
then vol(A) - My, < 1/3. [

Therefore, for In(My/My,) > 31n(100n*/72) we have that 23°"  In f(X;) < 1 3. 1n fo(;)
and

In My — In pin = In(My/M;,) + In(100n* /%) > 41n(100n*/7%)

concluding the proof.

B.6. Proof of Claim 22

By Lemma 20 we have that the VC dimension of A is V' < 2(d + 1)H In((d + 1)H), and so
V < (10k)(4HD/2(d49)/2(1n(100n* /72))4 /5)(@+1D/2, Noting that E[| fo(T) — f(T)|] < E[||fo —
fnlla]s by Theorem 4 we get that

Blfo(1) — fu(T)]] < 1
< \/O ((10/-;)(d+1)/2d(d+5)/2(ln(100n4/7-2))d/(;)(d+1)/2)

For the next part we want that E[| fo(7") — f,(T)|] < §/10. This holds when
d+5)/2
n=0 <(d/e)(ln(100n4/72))(d+1)>( /

Ifn>0 (cd“(d(2d+3)/e)(ln(d(d“)/(m)))(d“))(d+5)/2 for some constants b > 1,¢ > 1001nc,
then we have

(d/e)(In(100n? /72)) 4+ < (dP9+3) /¢)(100 In ¢) @+ (1n(d<d+1> /(7))
< TP fe) (In(d Y / (er))) (Y

)(d+1)

and therefore n = € ((d/e)(In(100n*/ 72)(d+1))(d+5)/ ? as desired. Therefore, for n > N5 we have

E[|/o(T) — fu(T)]] < 6/10. (35)
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B.7. Proof of Lemma 23

Consider an arbitrary set 7 of ¢ points in R%. We wish to bound the number of possible distinct
sets that can be obtained by the intersection of 7" with a set in Ag ;. We note that Ag ; can
also be constructed in the following manner: Take an arrangement consisting of at most [ - L
hyperplanes. This arrangement partitions R¢ into a set of components. Then, the union of subsets
of these components are elements of Az 1. Any halfspace can be perturbed, without changing its
intersection with 7', so that its boundary intersects d’ + 1 points in 7', where d’ < d is the dimension
of the affine subspace spanned by 7. Any such subset uniquely determines the intersection of the
halfspace with T'. Therefore, the number of possible intersections with a set of size ¢ is at most
O(t)?. It follows then that the number of possible intersections of any A € Ay 1, and any set of size
tis at most (O(t)))*H < O(t)*H If A has VC dimension ¢, then is must be that O(¢)?*# > 2¢,
and therefore ¢/ log(t) = O(dLH).

B.8. Proof of Claim 24
Recalling that L = In(100n*/72) and H = (10kd/8)(@~1/2, we have that
V/In(V) =0 (d In(100n*/72) - (1oﬁd/5)(d*1>/2)
~0 ((10/@)(d‘1)/2d(d+1)/2 In(100n% /72) /5<d—1>/2) : (36)
We note that
In ((10/@)(‘1_1)/2(1(”3)/2(ln(100n4 /7)) /5<d—1>/2) < d% In ((10)d®(In(100n* /72))/5)

<dln ((10/{)(13(1n(100n4/72))6/5)
< cdIn(In(100n* /7%))

for some sufficiently large constant c. Therefore, letting
V = 0 ((108) /292 (1 (100n* /72))2 /54112

satisfies (36). Therefore, we have that

[aV \/ a - O ((10k)(@d=D/2q(d+3)/2(In(100n4 /72))2 /5(d=1)/2)
mn

n

)

and thus when

n = ((108)4=D/2d D2 (1n (1000t /72)) D12 el 43)/2) (37)
we have that % < 6/10. To simplify (37), we note that the

d(d+3)/2(ln(1001’L4/T2))(d+7)/2/6(d+3)/2 < ((d/e)(ln(100n4/72))2)(d+3)/2 ‘
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Thus, if we let n = (c¢(d?/€)(In(d/(e7)))?)(@+3)/2 for some large constant c, then we have that

In(100n*/7%) = In(100c(d?/€)(In(d/(e7)))?) + In(1/72)
< ddln(d/(eT))

d+3
2

for some large constant ¢’. Thus, assuming a sufficiently large constant is chosen, for n > N; we

have that (37) holds, and therefore

JY <50,
n

For any choice of the samples X7, ..., X,,, we have

B.9. Proof of Claim 25

fa(CL) > fa(C™) (since C'™ C C)
> fo(C™) = [ fo(C™) = fulC™)]
= fo(CL) = fo(CL\ C™) = [fo(C™) — fu(C™)]
> fo(CL) — g — [fo(C™) = fa(C™)]. (by (22))

Similarly, we have

fn(CL) < fn(COUt) (since C1, C COUt)
§ fO(Cout) 4 ‘fo(COUt) o fn(COUt)’
= fo(CL) + fo(C™\ CL) = | fo(C™™) = fu(C*™)]
< olCr) + 5 + o) — FalC)]. (by (24)

Combining (39) and (40), we therefore have that

5 in in ou ou
|£a(CL) = fo(Cr)l = 5 + max {|fo(C™) = fu(C™)],[fo(C™) — fu(C™)|}
From this, we therefore have that

sup [ fn(C) — fo(CL)| < 76/10,
cec

concluding the proof.
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