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Abstract

We study the problem of learning multivariate log-concave densities with respect to a global loss

function. We obtain the first upper bound on the sample complexity of the maximum likelihood

estimator (MLE) for a log-concave density on R
d, for all d ≥ 4. Prior to this work, no finite sample

upper bound was known for this estimator in more than 3 dimensions.

In more detail, we prove that for any d ≥ 4 and ε > 0, given Õd((1/ε)
(d+3)/2) samples drawn

from an unknown log-concave density f0 on R
d, the MLE outputs a hypothesis h that with high

probability is ε-close to f0, in squared Hellinger loss. For any d ≥ 2, a sample complexity lower

bound of Ωd((1/ε)
(d+1)/2) was previously known for any learning algorithm that achieves this

guarantee. We thus establish that the sample complexity of the log-concave MLE is near-optimal

for d ≥ 4, up to an Õ(1/ε) factor.

1. Introduction

1.1. Background

The general task of estimating a probability distribution under certain qualitative assumptions about

the shape of its probability density function has a long history in statistics, dating back to the pio-

neering work of Grenander (1956) who analyzed the maximum likelihood estimator of a univariate

monotone density. Since then, shape constrained density estimation has been a very active research

area with a rich literature in mathematical statistics and, more recently, in computer science. A

wide range of shape constraints have been studied, including unimodality, convexity and concavity,

k-modality, log-concavity, and k-monotonicity. The reader is referred to Barlow et al. (1972) for

a summary of the early work and to Groeneboom and Jongbloed (2014) for a recent book on the

subject. (See Section 1.3 for a succinct summary of prior work.) The majority of the literature has

studied the univariate (one-dimensional) setting, which is by now fairly well-understood for a range

of distributions. On the other hand, the multivariate setting and specifically the regime of fixed

dimension is significantly more challenging and poorly understood for many natural distribution

families.
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ON THE MLE OF MULTIVARIATE LOG-CONCAVE DENSITIES

In this work, we focus on the family of multivariate log-concave distributions. A distribution on

R
d is log-concave if the logarithm of its probability density function is concave (see Definition 1).

Log-concave distributions constitute a rich non-parametric family encompassing a range of fun-

damental distributions, including uniform, normal, exponential, logistic, extreme value, Laplace,

Weibull, Gamma, Chi and Chi-Squared, and Beta distributions (see, e.g., Bagnoli and Bergstrom

(2005)). Due to their fundamental nature and appealing properties, log-concave distributions have

been studied in a range of fields including economics An (1995), probability theory Saumard and

Wellner (2014), computer science Lovász and Vempala (2007), and geometry Stanley (1989).

The problem of density estimation for log-concave distributions is of central importance in the

area of non-parametric shape constrained estimation Walther (2009); Saumard and Wellner (2014);

Samworth (2017) and has received significant attention during the past decade in statistics Cule et al.

(2010); Dumbgen and Rufibach (2009); Doss and Wellner (2016); Chen and Samworth (2013); Kim

and Samworth (2016); Balabdaoui and Doss (2018); Han and Wellner (2016) and theoretical com-

puter science Chan et al. (2013, 2014a); Acharya et al. (2017); Canonne et al. (2016); Diakonikolas

et al. (2016d, 2017).

1.2. Our Results and Comparison to Prior Work

In this work, we analyze the global convergence rate of the maximum likelihood estimator (MLE)

of a multivariate log-concave density. Formally, we study the following fundamental question:

How many samples are information-theoretically sufficient so that the MLE of an arbitrary

log-concave density on R
d learns the underlying density, within squared Hellinger loss ε?

Perhaps surprisingly, despite significant effort within the statistics community on analyzing the

log-concave MLE, our understanding of its finite sample performance in constant dimension has

remained poor. The only result prior to this work that addressed the sample complexity of the MLE

in more than one dimensions is by Kim and Samworth (2016). Specifically, Kim and Samworth

(2016) obtained the following results:

(1) a sample complexity lower bound of Ωd

(

(1/ε)(d+1)/2
)

that applies to any estimator for all

d ≥ 2, and

(2) a sample complexity upper bound for the log-concave MLE, that is near-optimal (within

logarithmic factors) for d ≤ 3.

Prior to our work, no finite sample upper bound was known for the log-concave MLE even for

d = 4.

In recent related work, Diakonikolas et al. (2017) established a finite sample complexity upper

bound for learning multivariate log-concave densities under global loss functions. Specifically,

the estimator analyzed in Diakonikolas et al. (2017) uses Õd

(

(1/ε)(d+5)/2
)

1 samples and learns

a log-concave density on R
d within squared Hellinger loss ε, with high probability. We remark

that the upper bound of Diakonikolas et al. (2017) was obtained by analyzing an estimator that

is substantially different than the log-concave MLE. Moreover, the analysis in Diakonikolas et al.

(2017) has no implications on the performance of the MLE. Interestingly, some of the technical

tools employed in Diakonikolas et al. (2017) will be useful in our current setting.

1. The Õ(·) notation hides logarithmic factors in its argument.
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ON THE MLE OF MULTIVARIATE LOG-CONCAVE DENSITIES

Due to the fundamental nature of the MLE, understanding its performance merits investigation

in its own right. In particular, the log-concave MLE has an intriguing geometric structure that is a

topic of current investigation Cule et al. (2010); Robeva et al. (2017). The output of the log-concave

MLE satisfies several desirable properties that may not be automatically satisfied by surrogate esti-

mators. These include the log-concavity of the hypothesis, the paradigm of log-concave projections

and their continuity in Wasserstein distance, affine equivariance, one-dimensional characterization,

and adaptation (see, e.g., Samworth (2017)). An additional motivation comes from a recent con-

jecture (see, e.g., Wellner (2015)) that for 4-dimensional log-concave densities the MLE may have

sub-optimal sample complexity. These facts provide strong motivation for characterizing the sample

complexity of the log-concave MLE in any dimension.

To formally state our results, we will need some terminology. The squared Hellinger distance

between two density functions f, g : Rd → R+ is defined as h2(f, g) = (1/2) ·
∫

Rd(
√

f(x) −
√

g(x))2dx.

We now define our two main objects of study:

Definition 1 (Log-concave Density) A probability density function f : Rd → R+, d ∈ Z+, is

called log-concave if there exists an upper semi-continuous concave function φ : Rd → [−∞,∞)
such that f(x) = eφ(x) for all x ∈ R

d. We will denote by Fd the set of upper semi-continuous,

log-concave densities with respect to the Lebesgue measure on R
d.

Definition 2 (Log-concave MLE) Let f0 ∈ Fd and X1, . . . , Xn be iid samples from f0. The

maximum likelihood estimator, f̂n, is the density f̂n ∈ Fd which maximizes 1
n

∑n
i=1 log(f(Xi))

over all f ∈ Fd.

We can now state our main result:

Theorem 3 (Main Result) Fix d ∈ Z+ and ε ∈ (0, 1). Let n = Ω̃d

(

(1/ε)(d+3)/2
)

. For any

f0 ∈ Fd, with probability at least 9/10 over the n samples from f0, we have that h2(f̂n, f0) ≤ ε.

See Theorem 7 for a more detailed statement. The aforementioned lower bound of Kim and Sam-

worth (2016) implies that our upper bound is tight up to an Õd(ε
−1) multiplicative factor.

1.3. Related Work

Shape constrained density estimation is a vibrant research field within mathematical statistics. Sta-

tistical research in this area started in the 1950s and has seen a recent surge of research activity, in

part due to the ubiquity of structured distributions in various domains. The standard method used

in statistics to address density estimation problems of this form is the MLE. See Brunk (1958);

Rao (1969); Wegman (1970); Hanson and Pledger (1976); Groeneboom (1985); Birgé (1987a,b);

Fougères (1997); Chan and Tong (2004); Balabdaoui and Wellner (2007); Jankowski and Wellner

(2009); Dumbgen and Rufibach (2009); Balabdaoui et al. (2009); Gao and Wellner (2009); Bal-

abdaoui and Wellner (2010); Koenker and Mizera (2010); Walther (2009); Chen and Samworth

(2013); Kim and Samworth (2016); Balabdaoui and Doss (2018); Han and Wellner (2016) for a

partial list of works analyzing the MLE for various distribution families. During the past decade,

there has been a large body of work on shape constrained density estimation in computer science

with a focus on both sample and computational efficiency Daskalakis et al. (2012a,b, 2013); Chan
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et al. (2013, 2014a,b); Acharya et al. (2015, 2017); Diakonikolas et al. (2016a,b); Daskalakis et al.

(2016); Diakonikolas et al. (2016c); Valiant and Valiant (2016); Diakonikolas et al. (2017).

Density estimation of log-concave densities has been extensively investigated. The univariate

case is by now well understood Devroye and Lugosi (2001); Chan et al. (2014a); Acharya et al.

(2017); Kim and Samworth (2016); Han and Wellner (2016). For example, it is known Kim and

Samworth (2016); Han and Wellner (2016) that Θ(ε−5/4) samples are necessary and sufficient to

learn an arbitrary log-concave density over R within squared Hellinger loss ε. Moreover, the MLE is

sample-efficient Kim and Samworth (2016); Han and Wellner (2016) and attains certain adaptivity

properties Kim et al. (2016). A recent line of work in computer science Chan et al. (2013, 2014a);

Acharya et al. (2017); Canonne et al. (2016); Diakonikolas et al. (2016d) gave efficient algorithms

for log-concave density estimation under the total variation distance.

Density estimation of multivariate log-concave densities has been systematically studied as well.

A line of work Cule et al. (2010); Dumbgen and Rufibach (2009); Doss and Wellner (2016); Chen

and Samworth (2013); Balabdaoui and Doss (2018) has obtained a complete understanding of the

global consistency properties of the MLE for any dimension. However, both the rate of convergence

of the MLE and the minimax rate of convergence remain unknown for d ≥ 4. For d ≤ 3, Kim and

Samworth (2016) show that the MLE is sample near-optimal (within logarithmic factors) under the

squared Hellinger distance. Kim and Samworth (2016) also prove bracketing entropy lower bounds

suggesting that the MLE may be sub-optimal for d > 3 (also see Wellner (2015)).

1.4. Technical Overview

Here we provide a brief overview of our proof in tandem with a comparison to prior work. We start

by noting that the previously known sample complexity upper bound of the log-concave MLE for

d ≤ 3 Kim and Samworth (2016) was obtained by bounding from above the bracketing entropy

of the class. As we explain below, our argument is more direct making essential use of the VC

inequality (Theorem 4), a classical result from empirical process theory. In contrast to prior work

on log-concave density estimation Kim and Samworth (2016); Diakonikolas et al. (2017) which

relied on approximations to (log)-concave functions, we start by considering approximations to

convex sets. Let f0 be the target log-concave density. We show (Lemma 10) that given sufficiently

many samples from f0, with high probability, for any convex set C the empirical mass of C and

the probability mass of C under f0 are close to each other. We then leverage this structural lemma

to analyze the error in the log-likelihood of log-concave densities, using the fact that the superlevel

sets of a log-concave density are convex.

We remark that our aforementioned structural result (Lemma 10) crucially requires the assump-

tion of the log-concavity of f0. Naively, one may think that this lemma follows directly from the

VC inequality. Recall however that the VC-dimension of the family of convex sets is infinite, even

in the plane. For example, for the uniform distribution over the unit circle, a similar result does

not hold for any finite number of samples (the intersection of the convex hull of any subset S of

the unit circle with the unit circle is S itself, so we would need uniform convergence on all subsets

of the unit circle), and so we need to use the fact that f0 is log-concave. To prove our lemma, we

consider judicious approximations of the convex set C with convex polytopes using known results

from convex geometry. In more detail, we consider approximations to the convex set C on the in-

side and outside with close probabilities under f0 to the convex set from a family with a bounded

VC-dimension.
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For any log-concave density f , the probabilities of any superlevel set are close under the em-

pirical distribution and f0. If log f were bounded, then that would mean that the empirical log-

likelihood of f and the log-likelihood of f under f0 were close. Unfortunately, for any density f ,

log f is unbounded from below. To deal with this issue, we instead consider log(max(f, pmin)),
for some carefully chosen probability value pmin such that we could ignore the contribution of the

density below pmin if f is close to f0. If we can bound the range of log(max(f, pmin)), we can

show that its expectation under f0 and its empirical version are close to each other (see Lemma 13).

To bound the range, we show that if the maximum value of f is much larger than the maximum of

f0, then f has small probability mass outside a set A of small volume; since A has small volume,

we see many samples outside it, and so the empirical log-likelihood of f is smaller than the em-

pirical log-likelihood of f0. Using this fact, we can show that for the MLE f̂n the expectation of

log(max(f̂n, pmin)) is large under f0 and then that f̂n is close in Hellinger distance to f0.

1.5. Organization

After setting up the required preliminaries in Section 2, in Section 3 we present the proof of our

main result, modulo the proof of our main lemma (Lemma 10). In Section 4, we give a slightly

weaker version of Lemma 10 that has a significantly simpler proof. In Section A, we present the

proof of Lemma 10. Finally, we conclude with a few open problems in Section 5.

2. Preliminaries

Notation and Definitions. For m ∈ Z+, we denote [m]
def
= {1, . . . ,m}. Let f : Rd → R be a

Lebesgue measurable function. We will use f(A) to denote
∫

A f(x)dx. A Lebesgue measurable

function f : R
d → R is a probability density function (pdf) if f(x) ≥ 0 for all x ∈ R

d and
∫

Rd f(x)dx = 1. Let f, g : Rd → R+ be probability density functions. The squared Hellinger

distance between f, g is defined as H2(f, g) = 1
2

∫

(

√

f(x)−
√

g(x)
)2

dx. The total variation

distance between f, g is defined as dTV (f, g) = supS |f(S) − g(S)|, where the supremum is

over all Lebesgue measurable subsets of the domain. We have that dTV (f, g) = (1/2) · ‖f −
g‖1 = (1/2) ·

∫

Rd |f(x)− g(x)|dx. The Kullback-Leibler (KL) divergence from g to f is defined as

KL(f ||g) =
∫∞
−∞ f(x) ln f(x)

g(x)dx.

For f : A → B and A′ ⊆ A, the restriction of f to A′ is the function f |A′ : A′ → B. For

y ∈ [0,∞) and f : Rd → [0,∞) we denote by Lf (y)
def
= {x ∈ R

d | f(x) ≥ y} its superlevel sets.

If f is log-concave, Lf (y) is a convex set for all y ∈ R+. For a function f : Rd → [0,∞), we will

denote by Mf its maximum value.

The VC inequality. We start by recalling the notion of VC dimension. We say that a set X ⊆ R
d

is shattered by a collection A of subsets of Rd, if for every Y ⊆ X there exists A ∈ A such that

A ∩ X = Y . The VC dimension of a family A of subsets of Rd is defined to be the maximum

cardinality of a subset X ⊆ R
d that is shattered by A. If there is a shattered subset of size s for all

s ∈ Z+, then we say that the VC dimension of A is ∞.

The empirical distribution, fn, corresponding to a density f : Rd → R+ is the discrete prob-

ability measure defined by fn(A) = (1/n) ·
∑n

i=1 1A(Xi), where the Xi are iid samples drawn

from f and 1S is the characteristic function of the set S. Let f : Rd → R be a Lebesgue mea-
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surable function. Given a family A of measurable subsets of Rd, we define the A-norm of f by

‖f‖A = supA∈A |f(A)|. The VC inequality states the following:

Theorem 4 (VC inequality, see Devroye and Lugosi (2001), p. 31) Let f : Rd → [0,∞) be a

probability density function and fn be the empirical distribution obtained after drawing n samples

from f . Let A be a family of subsets over Rd with VC dimension V . Then E[‖f−fn‖A] ≤ C
√

V/n,

for some universal constant C > 0.

We will also require a high probability version of the VC inequality which can be obtained using

the following standard uniform convergence bound:

Theorem 5 (see Devroye and Lugosi (2001), p. 17) Let A be a family of subsets over Rd and fn
be the empirical distribution of n samples from the density f : Rd → [0,∞). Let X be the random

variable ‖f − fn‖A. Then for all δ > 0, we have that Pr[X −E[X] > δ] ≤ e−2nδ2 .

Approximating Convex Sets by Polytopes. We make use of the following quantitative bounds

of Gordon et al. (1995) that provide volume approximation for any convex body by an inscribed and

a circumscribed convex polytope respectively with a bounded number of facets:

Theorem 6 For any convex body K ⊆ R
d, and n sufficiently large, there exists a convex polytope

P ⊆ K with at most ` facets such that vol(K \ P ) ≤ κd
`2/(d−1)vol(K), where κ > 0 is a universal

constant. Similarly, there exists a convex polytope P ′ where K ⊆ P ′ with at most ` facets such that

vol(P ′ \K) ≤ κd
`2/(d−1)vol(K).

3. Main Result: Proof of Theorem 3

The following theorem is a more detailed version of Theorem 3 and is the main result of this paper:

Theorem 7 Fix d ∈ Z+ and ε, τ ∈ (0, 1). Let n = Ω
(

(d2/ε) ln3(d/(ετ))
)(d+3)/2

. For any

f0 ∈ Fd, with probability at least 1− τ over the n samples from f0, we have that h2(f̂n, f0) ≤ ε.

This section is devoted to the proof of Theorem 7, which follows from Lemma 19. We will

require a sequence of intermediate lemmas and claims.

We summarize the notation that will appear throughout this proof. We use f0 ∈ Fd to denote the

target log-concave density. We denote by fn the empirical distribution obtained after drawing n iid

samples X1, . . . , Xn from f0 and by f̂n the corresponding MLE. Given d ∈ Z+ and 0 < ε, τ < 1,

for concreteness, we will denote:

N1
def
= Θ

(

(d2/ε) ln3(d/(ετ))
)(d+3)/2

,

for a sufficiently large universal constant in the big-Θ notation. We will establish that N1 is an upper

bound on the desired sample complexity of the MLE. Moreover, we will denote

z
def
= ln(100n4/τ2) , δ

def
= ε/(32z) ,

pmin
def
= Mf0e

−z ,
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and

S
def
= Lf0(pmin) .

We start by establishing an upper bound on the volume of superlevel sets:

Lemma 8 (see, e.g., Diakonikolas et al. (2017), p. 8) Let f ∈ Fd with maximum value Mf . Then

for all w ≥ 1, we have vol(Lf (Mfe
−w)) ≤ wd/Mf , and PrX∼f [f(X) ≤ Mfe

−w] ≤ O(d)de−w/2.

We defer this proof to Appendix B. We use Lemma 8 to get a bound on the volume of the

superlevel set that contains all the samples with high probability:

Corollary 9 For n ≥ N1, we have that:

(a) vol(S) ≤ zd/Mf0 , and

(b) PrX∼f0 [f0(X) ≤ Mf0/(100n
4/τ2)] ≤ τ/(10n). In particular, with probability at least

1− τ/10, all samples X1, . . . , Xn from f0 are in S.

Proof From Lemma 8, we have that vol(S) = vol(Lf0(Mf0e
−z)) ≤ O(zd/Mf0). Also from

Lemma 8, we have that PrX∼f0 [f0(X) ≤ Mf0/(100n
4/τ2)] ≤ τ/(10n), if we assume a suffi-

ciently large constant is selected in the definition of N1. Taking a union bound over all samples, we

get that with probability at least 1− τ/10, all of the n samples are in S, as required.

We can now state our main lemma establishing an upper bound on the error of approximating

the probability of every convex set:

Lemma 10 For n ≥ N1, we have that with probability at least 1 − τ/3 over the choice of

X1, . . . , Xn drawn from f0, for any convex set C ⊆ R
d it holds that |f0(C)− fn(C)| ≤ δ.

The proof of Lemma 10 is deferred to Section A. In Section 4, we establish a weaker version

of this lemma that requires more samples but has a simpler proof. Combining Lemma 10 with the

observation that for any log-concave density f and t > 0 we have that Lf (t) is convex, we obtain

the following corollary:

Corollary 11 Let n ≥ N1. Conditioning on the event of Lemma 10, we have that for any f ∈ Fd

and for any t ≥ 0 it holds |PrX∼f0 [f(X) ≥ t]− PrX∼fn [f(X) ≥ t]| < δ.

We will require the following technical claim, which follows from standard properties of Lebesgue

integration (see Appendix B):

Lemma 12 Let g, h : Rd → R be probability distributions, and φ : R → R. If EY∼g[φ(Y )],
EY∼h[φ(Y )] are both finite, then |EY∼g[φ(Y )] − EY∼h[φ(Y )]| ≤

∫∞
−∞ |PrY∼g[φ(Y ) < x] −

PrY∼h[φ(Y ) < x]|dx.

Our next lemma establishes a useful upper bound on the empirical error of the truncated likeli-

hood of any log-concave density:
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Lemma 13 Let n ≥ N1 and f ∈ Fd with maximum value Mf . For all ρ ∈ (0,Mf ], conditioning

on the event of Corollary 11, we have

|EX∼f0 [ln(max(f(X), ρ))]−EX∼fn [ln(max(f(X), ρ))]| ≤ δ · ln(Mf/ρ) .

Proof Letting h = f0, g = fn, and φ(x) = ln(max(f(x), ρ)), by Lemma 12 we have

|EX∼f0 [ ln(max(f(X), ρ))]−EX∼fn [ln(max(f(X), ρ))]|

≤

∫ ∞

−∞
|PrX∼f0 [ln(max(f(X), ln ρ)) < t]− PrX∼fn [ln(max(f(X), ρ)) < t]| dt

=

∫ lnMf

−∞
|PrX∼f0 [max(ln f(X), ln ρ)) < t]− PrX∼fn [max(ln f(X), lnρ)) < t]| dt

=

∫ lnMf

ln ρ
|PrX∼f0 [ln(f(X)) < t]− PrX∼fn [ln(f(X)) < t]| dt

=

∫ lnMf

ln ρ

∣

∣PrX∼f0 [f(X) < et]− PrX∼fn [f(X) < et]
∣

∣ dt

=

∫ lnMf

ln ρ

∣

∣PrX∼f0 [f(X) ≥ et]− PrX∼fn [f(X) ≥ et]
∣

∣ dt.

Since we conditioned on the event of Corollary 11, we have |PrX∼f0 [f(X) ≥ t]− PrX∼fn [f(X) ≥ t]| ≤
δ for all t ≥ 0. Therefore, we have that

|EX∼f0 [ln(max(f(X), ρ))]−EX∼fn [ln(max(f(X), ρ))]| ≤

∫ lnMf

ln ρ
δdt = δ · (lnMf − ln ρ) ,

which concludes the proof.

For f0 itself, we can use Hoeffding’s inequality to get a bound on the empirical error of its

likelihood:

Lemma 14 Let n ≥ N1. Conditioning on the event of Corollary 9, with probability at least 1−τ/3
over X1, . . . , Xn, we have that

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ln f0(Xi)−EX∼f0 [ln f0(X)]

∣

∣

∣

∣

∣

≤ ε/8 .

We defer this proof to Appendix B. The following simple lemma shows that the MLE is supported

in the convex hull of the samples:

Lemma 15 Let n ≥ 1. Let X1, . . . , Xn be samples drawn from f0, and C be the convex hull of

these samples. Then, for all x ∈ R
d \ C, we have f̂n(x) = 0.

We defer this proof to Appendix B. We need to truncate the likelihood at a density small enough to

be ignored for f close to f0. This motivates the following definition:

Definition 16 We define f̃ : Rd → R such that f̃(x)
def
= max{pmin, f̂n(x)}.

8
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We show that this truncation and renormalization does not affect the MLE f̂n by much:

Lemma 17 Let n ≥ N1. Let g(x)
def
= αf̃(x)1S(x), α ∈ [0,∞), be such that

∫

S g(x)dx = 1.

Conditioning on the event of Corollary 9, we have the following:

(a) 1− ε/32 ≤ α ≤ 1, and

(b) dTV(g, f̂n) ≤ 3ε/64.

Proof We start by proving (a). By the definition of g and Lemma 15, we have α = α
∫

S f̂n(x)dx ≤
α
∫

S f ′(x)dx =
∫

S g(x)dx = 1, i.e., α ≤ 1. Furthermore, by the definition of pmin and Corollary 9,

we have

pmin ·vol(S) ≤
Mf0

(100n4/τ2)
·
O((ln(100n4/τ2))d)

Mf0

≤ ε/32, (1)

and therefore

1 =

∫

S
g(x)dx ≤ α

(∫

S
pmin dx+

∫

S
f̂n(x)dx

)

≤ α(pmin ·vol(S) + 1) ≤ α(ε/32 + 1).

From this it follows that α ≥ 1/(1 + ε/32) ≥ 1− ε/32. We have

dTV(g, f̂n) =
1

2

∫

Rd

|g(x)− f̂n(x)|dx =
1

2

∫

S
|g(x)− f̂n(x)|dx , (2)

since g(x) = 0 for x /∈ S and f̂n is supported in S by Lemma 15. We can then write

1

2

∫

S
|g(x)− f̂n(x)|dx =

1

2

∫

S
|αf ′(x)− f̂n(x)|dx

≤
1

2

∫

S
|α− 1| · f̂n(x)dx+ pmin ·vol(S)

≤
|α− 1|

2

∫

S
f̂n(x)dx+ ε/32 (from (1))

≤
|1− α|

2
+ ε/32 ≤ 3ε/64 ,

which completes the proof.

To deal with the dependence on the maximum value of f in Lemma 13, we need to bound the

maximum value of the MLE.

Lemma 18 Let n ≥ N1. Let X1, . . . , Xn be samples drawn from f0. Then conditioning on

the events of Corollary 11 and Lemma 14, for any f ∈ Fd with maximum value Mf such that

ln(Mf/ pmin) ≥ 4 ln(100n4/τ2), we have 1
n

∑n
i=1 ln f(Xi) <

1
n

∑n
i=1 ln f0(Xi).

This holds because a density f with a large Mf is small outside on a set of small volume, which

most of the samples will be outside. We defer this proof to Appendix B.

We have now reached the final result of this section, from which Theorem 7 directly follows.

Combining previous lemmas, we show that the likelihood under f0 of the truncated MLE is close to

that of f0 and so they are close in KL divergence, which leads to a bound in the Hellinger distance

of the MLE itself:

9
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Lemma 19 Let n ≥ N1. Let X1, . . . , Xn be samples drawn from f0. With probability at least

1− τ , we have that h2(f0, f̂n) ≤ ε.

Proof In this lemma, we will apply Lemmas 13, 14, 17, and 18. By examining the conditions of

these lemmas, it is easy to see that with probability at least 1 − τ they all hold. We henceforth

condition on this event.

Let X1, . . . , Xn be samples drawn from f0, let f̂n be as in Definition 2. Let g and f̃ be as

defined in Lemma 17 and Definition 16. Let S be as defined in Corollary 9 Then we have that

EX∼f0 [ln g(X)] = EX∼f0 [ln(αf̃(X))]

≥ EX∼f0 [ln f̃(X)]−ε/16 (since α > 1− ε/32)

= EX∼f0 [ln(max{f̂n(X), pmin})]−ε/16

≥ EX∼fn [ln(max{f̂n(X), pmin})]−3ε/16 (by Lemmas 13 and 18)

≥
1

n

∑

i

ln f̂n(Xi)−3ε/16

≥
1

n

∑

i

ln f0(Xi)−3ε/16

≥ EX∼f0 [ln f0(X)]−5ε/16. (using Lemma 14)

Thus, we obtain that

KL(f0||g) = EX∼f0 [ln f0(X)]−EX∼f0 [ln g(X)] ≤ 5ε/16. (3)

For the next derivation, we use that the Hellinger distance is related to the total variation distance and

the Kullback-Leibler divergence in the following way: For probability functions k1, k2 : Rd → R,

we have that h2(k1, k2) ≤ dTV(k1, k2) and h2(k1, k2) ≤ KL(k1||k2). Therefore, we have that

h(f0, f̂n) ≤ h(f0, g) + h(g, f̂n)

≤ KL(f0||g)
1/2 + dTV(g, f̂n)

1/2

= (5ε/16)1/2 + (3ε/64)1/2 (by (3) and Lemma 17)

≤ ε1/2 ,

concluding the proof.

4. Warmup for the Proof of Lemma 10

For the sake of exposition of the main ideas used in the proof of Lemma 10, we first prove Lemma

21, which achieves a weaker bound on the sample complexity, but has a significantly simpler proof.

Let us first give a brief, and somewhat imprecise, overview of the proof of Lemma 21. The high-

level goal is to approximate some convex set C ⊆ R
d by some set, belonging to a family of low VC

dimension. We then can obtain the desired bound using Theorem 4. To that end, we compute inner

and outer approximations, C in and Cout, of C via polyhedral sets with a small number of facets.

By Lemma 20, we can argue that the VC dimension of this family is low. We therefore obtain that

10
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f0 and fn are close on the inner and outer approximations of C. It remains to argue that the total

difference between f0 and fn in Cout \ C in is also small. It thus suffices to bound the volume of

Cout\C in. This can be achieved by first defining some set S ⊆ R
d that excludes the tail of f0. Since

f0 is logconcave, we can show that S has small volume. The final bound is obtained by restricting

the above argument on C ∩ S.

Throughout this section, we define N2
def
=Θ

(

2O(d)(d(2d+3)/ε)(ln(d(d+1)/(ετ)))(d+1)
)(d+5)/2

.

We will require the following simple fact:

Lemma 20 (see Alon et al. (1992)) Let h, d ∈ Z+, and let A be the set of all convex polytopes in

R
d with at most h facets. Then, the VC dimension of A is at most 2(d+ 1)h log((d+ 1)h).

The main result of this section is the following:

Lemma 21 Let n ≥ N2. With probability at least 1 − 3τ
10 over the choice of X1, . . . , Xn, for any

convex set C ⊆ R
d it holds that |f0(C)− fn(C)| < δ.

Proof Recall that z = ln(100n4/τ2) and S = Lf0(Mf0e
−z). Let C be the family of convex sets on

R
d. For any C ∈ C, let C ′ = C ∩ S. Since f0 is log-concave, it follows that S is convex, and thus

C ′ is also convex.

Let E1 be the event that all samples X1, . . . , Xn lie in S. Let X = X1, . . . , Xn. By Corollary 9,

we have

PrX∼f0 [E1] ≥ 1− τ/10. (4)

Conditioned on E1 occurring, we have with probability 1, for any C ∈ C, fn(C) = fn(C
′). In other

words,

PrX∼f0 [∀C ∈ C, fn(C \ C ′) = 0|E1] = 1. (5)

From Corollary 9, we have PrX∼f0 [f0(X) ≤ Mf0/(100n
4/τ2)] ≤ τ/(10n), and therefore

f0(C \ C ′) ≤ f0(R
d \ S) ≤ τ/(10n) ≤ δ/5. (6)

Combining (4), (5), (6), and letting Q = supC∈C |f0(C \ C ′)− fn(C \ C ′)|, we have that

PrX∼f0 [Q ≤ δ/5] ≥ PrX∼f0 [Q ≤ δ/5|E1] · PrX∼f0 [E1]

≥ PrX∼f0

[

∀C ∈ C, fn(C \ C ′) = 0|E1
]

· PrX∼f0 [E1]

≥ 1− τ/10. (7)

Let A be the set of convex polytopes in R
d with at most H = (10κdzd/δ)(d−1)/2 facets, where κ is

the universal constant in Theorem 6. By Theorem 6, there exist convex polytopes T, T ′ ∈ A, with

T ⊆ C ′ ⊆ T ′, such that vol(C ′ \ T ) ≤ δ
10zd

vol(S) ≤ δ
10Mf0

and vol(T ′ \ C ′) ≤ δ
10zd

vol(S) ≤
δ

10Mf0
. Therefore, since Mf0 is the maximum value of f0, we have

f0(C
′ \ T ) ≤ vol(C ′ \ T ) ·Mf0 ≤ δ/10, (8)

11
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and

f0(T
′ \ C ′) ≤ vol(T ′ \ C ′) ·Mf0 ≤ δ/10. (9)

Noting that E[|f0(T ) − fn(T )|] ≤ E[||f0 − fn||A], by Theorem 4 we have for some universal

constant α that E[|f0(T ) − fn(T )|] ≤
√

αV/n. The following claim is obtained via a simple

calculation (see Appendix B):

Claim 22 For n ≥ N2, we have that
√

αV/n ≤ δ/10.

Let E2 be the event that ||f0 − fn||A ≤ 3δ/10. By Claim 22 and Theorem 5 we have

PrX∼f0 [E2] = 1− PrX∼f0 [||f0 − fn||A > 3δ/10]

≥ 1− PrX∼f0 [||f0 − fn||A −E[||f0 − fn||A] > δ/5]

≥ 1− e−2n(δ/5)2

≥ 1− τ/5. (10)

For any choice of samples X1, . . . , Xn, we have

fn(C
′) ≥ fn(T ) (since T ⊆ C ′)

≥ f0(C
′)− f0(C

′ \ T )− |f0(T )− fn(T )|

≥ f0(C
′)−

δ

10
− |f0(T )− fn(T )|. (by (8)) (11)

In a similar way, using that C ′ ⊆ T ′, we have

fn(C
′) ≤ f0(C

′) +
δ

10
+ |f0(T

′)− fn(T
′)|. (by (9)) (12)

By (11) and (12) and the union bound, we obtain

|fn(C
′)− f0(C

′)| ≤
δ

10
+ max

{

|f0(T )− fn(T )|, |f0(T
′)− fn(T

′)|
}

. (13)

Combining (7), (10), (13), and letting Q′ = supC∈C |fn(C)− f0(C)|, we get

PrX∼f0 [Q
′ ≤ 2δ/5] ≥ PrX∼f0 [(sup

C∈C
|fn(C \ C ′)− f0(C \ C ′)| ≤ δ/5) ∧Q ≤ 3δ/10)]

≥ PrX∼f0 [(sup
C∈C

|fn(C \ C ′)− f0(C \ C ′)| ≤ δ/5) ∧ (||fn − f0||A ≤ 3δ/10)]

≥ 1− 3τ/10,

which concludes the proof.

5. Conclusions

In this paper, we gave the first sample complexity upper bound for the MLE of multivariate log-

concave densities on R
d, for any d ≥ 4. Our upper bound agrees with the previously known lower

bound up to a multiplicative factor of Õd(ε
−1).

A number of open problems remain: What is the optimal sample complexity of the multivariate

log-concave MLE? In particular, is the log-concave MLE sample-optimal for d ≥ 4? Does the

multivariate log-concave MLE have similar adaptivity properties as in one dimension? And is there

a polynomial time algorithm to compute it?
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Appendix A. Proof of Lemma 10

We are now ready to prove the main technical part of our work, which is Lemma 10. The proof

builds upon the argument used in the proof of Lemma 21, which achieves a weaker sample complex-

ity bound. Recall that in the proof of Lemma 21 we use inner and outer polyhedral approximations

of C, restricted on some appropriate bounded S ⊆ R
d. The main difference in the proof of Lemma

10 is that we now use roughly O(log n) inner and outer polyhedral approximations of intersections

of C with different super-levelsets of f0. We need slightly more samples due to the higher number

of facets, and consequently higher VC dimension of the resulting approximations. However, since

we use a finer discretization of the values of f0, we incur lower error in total.

The following Lemma is implicit in Diakonikolas et al. (2017). We reproduce its proof for

completeness in Appendix B.

Lemma 23 Let L,H ∈ Z+. We define the set AH,L, elements of which are defined by the following

process: Starting with L convex polytopes each with at most H facets, all combinations of inter-

section, difference, and union of these polytopes are elements of AH,L. If V is the VC dimension of

AH,L, then V/ log(V ) = O(dLH).

We are now prepared to present the proof of Lemma 10. Let

Si = Lf0(Mf0e
−i)

and let S0 = ∅. Let L = ln(100n4/τ). Note that by Lemma 8, we have that PrX∼f0 [f0(X) ≤
Mf0e

−z] = O(d)de−z/2 and thus

PrX∼f0 [X /∈ SL] = PrX∼f0 [f0(X) < Mf0e
−L] ≤

τ

10n
.
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Let E1 be the event that all samples X1, . . . , Xn lie in SL. Let X = X1, . . . , Xn. We have that

PrX∼f0 [E1] ≥ 1− τ/10. (14)

Let C be the set of convex sets in R
d. For any C ∈ C, for all i ∈ [L], let

Ci = C ∩ Si.

Note that, conditioned on E1 occurring, we have with probability 1 that, for all C ∈ C, fn(C) =
fn(CL). In other words,

PrX∼f0 [∀C ∈ C, fn(C \ CL) = 0|E1] = 1. (15)

Furthermore, by our choice of L we have f0(R
d \ SL) ≤

τ
10n , and therefore

f0(C \ CL) ≤
τ

10n
≤ δ/5. (16)

Combining 14, 15, 16, and letting Q = supC∈C |f0(C \ CL)− fn(C \ CL)|, we have

PrX∼f0 [Q ≤ δ/5] ≥ PrX∼f0

[

Q ≤ δ/5
∣

∣E1
]

· PrX∼f0 [E1]

≥ PrX∼f0 [∀C ∈ C, fn(C \ CL) = 0|E1] · PrX∼f0 [E1]

≥ 1− τ/10. (17)

Using Theorem 6, for i ∈ [L] let P in
i , P out

i be convex polytopes with H = (10κd/δ)(d−1)/2

facets, where κ is the universal constant from Theorem 6, such that P in
i ⊆ Ci ⊆ P out

i ,

vol(Ci \ P
in
i ) ≤ δ · vol(Ci)/10 ≤ δ · vol(Si)/10, (18)

and

vol(P out
i \ Ci) ≤ δ · vol(Ci)/10 ≤ δ · vol(Si)/10. (19)

Let

C in =
⋃

i∈[L]

P in
i .

For any i ∈ [L], let PS
i be a convex polytope with at most H facets such that PS

i ⊆ Si and

vol(Si \ P
S
i ) ≤ δ · vol(Si)/10.

Let

S′
i =

⋃

1≤j≤i

PS
j

and S′
0 = ∅. Let

Cout =
⋃

i∈[L]

(P out
i \ S′

i−1).

We will now show that C in and Cout satisfy the following conditions:

1. C in ⊆ CL ⊆ Cout.
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Now we consider Cout. Let x ∈ CL. Then there exists i ∈ [L] such that x ∈ Si and x /∈ Si−1.

Thus x ∈ P out
i and x /∈ S′

i−1, from which we have that x ∈ Cout =
⋃

i∈[L](P
out
i \S′

i−1). Therefore

CL ⊆ Cout. Let y ∈ Cout \ CL. From the definition of Cout, there must exist some i ∈ [L] such

that y ∈ P out
i \ S′

i−1. If y ∈ P out
i \ Ci, we are done. Suppose that y /∈ P out

i \ Ci. Since we have

that y ∈ P out
i , we must also have that y ∈ Ci. But Ci ⊆ CL, and we began with y ∈ Cout \ CL,

which makes a contradiction. Therefore,

Cout \ CL ⊆ ∪i∈[L]

(

P out
i \ Ci

)

. (23)

Thus, we have that

f0(C
out \ CL) ≤

∑

i∈[L]

f0(P
out
i \ Ci) (by (23))

≤
∑

i∈[L]

vol(P out
i \ Ci)Mf0e

−(i−1)

≤
∑

i∈[L]

(δ/10)vol(Si)Mf0e
−(i−1) (by (19))

≤ (δ/10)
∑

i∈[L]

vol(Lf0(Mf0e
−i))Mf0e

−(i−1)

≤ (δ/10)

∫ Mf0

0
vol(Lf0(y))dy < δ/2. (24)

We define the set A, elements of which are defined by the following process: Starting with 2L
convex polytopes each with at most H facets, all combinations of intersection, difference, and union

of these convex polytopes are elements of A. Then for any convex set C with C in, Cout as defined

above, we have that Cout, C in ∈ A. From Lemma 23, we have that if V is the VC dimension of A,

then

V/ ln(V ) = O(dLH).

Using Theorem 4, we have for some universal constant α that

E[|f0(C
in)− fn(C

in)|] ≤ E[||f0 − fn||A] =

√

αV

n
. (25)

The following claim is obtained via a simple calculation (see Appendix B):

Claim 24 For n ≥ N1 we have that

√

αV
n ≤ δ/10.

Let E2 be the event that ||f0 − fn||A ≤ δ/2. Then by (25), Claim 24, and Theorem 5, we have

that

PrX∼f0 [E2] = 1− PrX∼f0 [||f0 − fn||A > δ/2]

≥ 1− PrX∼f0 [||f0 − fn||A −E[||f0 − fn||A] > δ/10]

≥ 1− e−2n(δ/10)2

≥ 1− τ/10. (26)

This next claim follows from (22) and (24). The full proof can be found in Appendix B.
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Claim 25 If E1 and E2 hold, we have that supC∈C |fn(CL)− f0(CL)| ≤ 7δ/10.

Combining (17), (26), Claim 25, and letting Q′ = supC∈C |fn(C)− f0(C)|, we get

PrX∼f0 [Q
′ ≤ δ] ≥ PrX∼f0 [sup

C∈C
|fn(C \ CL)− f0(C \ CL)| ≤ δ/5) ∧ sup

C∈C
|fn(CL)− f0(CL)| ≤ 7δ/10)]

≥ 1−
τ

10
−

τ

5
≥ 1− 3τ/10,

which concludes the proof.

Appendix B. Deferred Proofs

B.1. Proof of Lemma 8

W.l.o.g. we may assume that f(0) = Mf . We let R = Lf (Mf/e). Then using the fact that if

y ≤ Mf/e then R ⊆ Lf (y), we have that

1 =

∫

R+

vol(Lf (y))dy ≥

∫

0≤y≤Mf/e
vol(Lf (y))dy ≥

∫

0≤y≤Mf/e
vol(R)dy =

Mf

e
· vol(R)

(27)

Suppose that f(x) ≥ Mfe
−w, for some x ∈ R

d. By the definition of log-concavity we have

f(x/w) ≥ f(0)(w−1)/wf(x)1/w. By the assumption we get f(x/w) ≥ M
(w−1)/w
f (Mf/e

w)1/w =

M
(w−1)/w
f M

1/w
f /e = Mf/e. Thus x/w ∈ R, and so x ∈ wR. Therefore Lf (Mfe

−w) ⊆ wR.

Thus by (27) we get

vol(Lf (Mfe
−w)) ≤ vol(wR) ≤ wd · vol(R) = wd/Mf , (28)

which proved the first part of the assertion.

It remains to prove the second part. We have

PrX∼f [f(X) ≤ Mfe
−z] ≤

∫ Mf e
−z

0
vol(Lf (y))dy

=

∫ ∞

z
vol(Lf (Mfe

−x))Mfe
−xdx (setting y = Mfe

−x)

≤

∫ ∞

z
O(xd/Mf )Mfe

−xdx (by (28))

=

∫ ∞

z
O(xde−x)dx

≤

∫ ∞

z
O(d)de−x/2dx (since ex/2 ≥ (x/2)d/d!)

= O(d)de−z/2,

which concludes the proof.
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B.2. Proof of Lemma 12

We begin with a few common definitions and observations. If X is a random variable defined on a

probability space (Ω,Σ, P ), then the expected value E[X] of X is defined as the Lebesgue integral

E[X] =

∫

Ω
X(ω)dP (ω).

Next, we define two functions

X+(ω) = max(X(ω), 0)

and

X−(ω) = −min(X(ω), 0).

We observe that these functions are both measurable (and therefore also random variables), and that

E[X] = E[X+] − E[X−]. Finally, we observe that if X : Ω → R≥0 ∪ {∞} is a non-negative

random variable then

E[X] =

∫ ∞

0
Pr[X > x]dx.

Similarly, if X : Ω → R≥0 ∪ {−∞} is a non-positive random variable then

E[X] = −

∫ 0

−∞
Pr[X < x]dx.
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Applying the definitions and observations of the previous paragraph, we have the following

derivation:

EY∼g[φ(Y )]−EY∼h[φ(Y )]

= (EY∼g[φ(Y )+]−EY∼g[φ(Y )−])− (EY∼h[φ(Y )+]−EY∼h[φ(Y )−])

= (EY∼g[φ(Y )+] +EY∼g[−φ(Y )−])− (EY∼h[φ(Y )+] +EY∼h[−φ(Y )−])

=

(∫ ∞

0
PrY∼g[φ(Y )+ > x]dx+

∫ 0

−∞
PrY∼g[−φ(Y )− < x]dx

)

−

(∫ ∞

0
PrY∼h[φ(Y )+ > x]dx+

∫ 0

−∞
PrY∼h[−φ(Y )− < x]dx

)

=

(∫ ∞

0
PrY∼g[φ(Y ) > x]dx+

∫ 0

−∞
PrY∼g[φ(Y ) < x]dx

)

−

(∫ ∞

0
PrY∼h[φ(Y ) > x]dx+

∫ 0

−∞
PrY∼h[φ(Y ) < x]dx

)

=

∫ ∞

0
PrY∼g[φ(Y ) > x]− PrY∼h[φ(Y ) > x]dx

+

∫ 0

−∞
PrY∼g[φ(Y ) < x]− PrY∼h[φ(Y ) < x]dx

=

∫ ∞

0
(1− PrY∼g[φ(Y ) < x])− (1− PrY∼h[φ(Y ) < x])dx

+

∫ 0

−∞
PrY∼g[φ(Y ) < x]− PrY∼h[φ(Y ) < x]dx

=

∫ ∞

0
PrY∼h[φ(Y ) < x]− PrY∼g[φ(Y ) < x])dx

+

∫ 0

−∞
PrY∼g[φ(Y ) < x]− PrY∼h[φ(Y ) < x]dx

≤

∫ ∞

0
|PrY∼g[φ(Y ) < x]− PrY∼h[φ(Y ) < x]| dx

+

∫ 0

−∞
|PrY∼g[φ(Y ) < x]− PrY∼h[φ(Y ) < x]| dx

=

∫ ∞

−∞
|PrY∼g[φ(Y ) < x]− PrY∼h[φ(Y ) < x]| dx.

A symmetric argument shows that

EY∼h[φ(Y )]−EY∼g[φ(Y )] ≤

∫ ∞

−∞
|PrY∼h[φ(Y ) < x]− PrY∼g[φ(Y ) < x]| dx,

concluding the proof.

B.3. Proof of Lemma 14

Recall that z = ln(100n4/τ2), S = Lf0(Mf0e
−z), and pmin = Mf0/(100n

4/τ2). Note that for

any x ∈ S, we have f0(x) ≥ pmin by construction. Since we have conditioned on the event of
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Corollary 9 holding, it follows that for each i ∈ [n], f0(Xi) ≥ pmin. Therefore, letting ρ
def
= pmin,

we have
∣

∣

∣

∣

∣

1

n

n
∑

i=1

ln(f0(Xi))−EX∼f0 [ln f0(X)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ln(max(f0(Xi), ρ))−EX∼f0 [ln f0(X)]

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ln(max(f0(Xi), ρ))−EX∼f0 [ln(max(f0(X), ρ))]

∣

∣

∣

∣

∣

+ |EX∼f0 [ln(max(f0(X), ρ))]−EX∼f0 [ln f0(X)]|

≤

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ln(max(f0(Xi), ρ))−EX∼f0 [ln(max(f0(X), ρ))]

∣

∣

∣

∣

∣

+

∫ ln ρ

−∞
Pr[ln f0(X)≤T ]dT . (29)

By Hoeffding’s inequality we have

Pr

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

ln(max(f0(Xi), ρ))−EX∼f0 [ln(max(f0(X), ρ))]

∣

∣

∣

∣

∣

>
ε

16

]

≤ 2 exp

(

−2n2(ε/16)2

n · (lnMf0 − ln ρ)2

)

≤ 2 exp

(

−nε2/162

(ln(100n4/τ2))2

)

≤ τ/3 . (since n ≥ N1) (30)

Next we have

∫ ln ρ

−∞
PrX∼f0 [ln f0(X)≤T ]dT ≤

∫ ∞

0
PrX∼f0 [ln f0(X)≤ ln ρ− y]dy (setting y = ln ρ− T )

≤

∫ ∞

0
O(d)d(ρ/Mf0)

1/2e−y/2dy (by Lemma 8)

=

∫ ∞

0
O(d)d

τ

10n2
e−y/2dy (ρ = Mf0/(100n

4/τ2))

≤ 2 ·O(d)d
τ

10n2

≤ ε/16. (since n ≥ N1)

(31)

By applying (30) and (31) to bound (29) from above, with probability at least 1− τ/3 we have that

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ln f0(Xi)−EX∼f0 [ln f0(X)]

∣

∣

∣

∣

∣

≤ ε/8 ,

which concludes the proof.
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B.4. Proof of Lemma 15

Suppose there exists x ∈ R
d \ C such that f̂n(x) > 0. Then, we have that Lf̂n

(f̂n(x)) \ C 6= ∅

and thus
∫

Rd\C f̂n(x)dx > 0. From this, it follows that
∫

C f̂n(x)dx < 1, and so there exists some

α > 1 such that α
∫

C f̂n(x)dx = 1. Let ĝn : C → R be such that ĝn = α · f̂n |C . Since C is a

convex set and
∫

C ĝn(x)dx = 1, we have that ĝn is a log-concave density. Observe that

1

n

n
∑

i=1

log(ĝn(Xi)) =
1

n

n
∑

i=1

log(αf̂n(Xi)) >
1

n

n
∑

i=1

log(f̂n(Xi)) , (32)

where we used that α > 1. By definition, f̂n maximizes 1
n

∑n
i=1 log(f(Xi)) over all log-concave

densities f , which contradicts (32). Therefore, for all x ∈ R
d \ C, we have that f̂n(x) = 0.

B.5. Proof of Lemma 18

This lemma holds because for a density f with a large maximum value Mf , f is small outside a set

of small volume, and most of the samples drawn from f0 will be outside this set. Let

γ = exp

(

2

(

1

n

n
∑

i=1

ln f0(Xi)−
1

2
lnMf − 1

))

and

A = Lf (γ).

If we have that vol(A) ·Mf0 ≤ 1/3, then it follows that f0(A) ≤ 1/3. Since f is log-concave, A
is a convex set, and since we condition on Corollary 11 holding, we have with probability 1 that

|f0(A) − fn(A)| < δ < 1/6. Therefore, we have that fn(A) < 1/2, in which case at least 1/2 of

the samples X1, . . . , Xn are not contained within A. Thus, we have that

1

n

n
∑

i=1

ln f(x) ≤
1

2
ln γ +

1

2
lnMf

=
1

2
· 2

(

1

n

n
∑

i=1

ln f0(Xi)−
1

2
lnMf − 1

)

+
1

2
lnMf

<
1

n

n
∑

i=1

ln f0(Xi).

Now we check to see how large Mf must be to ensure that vol(A) ·Mf0 ≤ 1/3. We have that

vol(A) ·Mf0 = vol(Lf (γ)) ·Mf0

= vol

(

Lf

(

Mf · exp

(

2

n

n
∑

i=1

ln f0(Xi)− 2− 2 lnMf

)))

·Mf0

≤
Mf0

Mf
·O





(

2−
2

n

n
∑

i=1

ln f0(Xi) + 2 lnMf

)d


 . (by Lemma 8)
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Since we condition on the event of Lemma 14 holding, we have with probability 1 that

1

n

n
∑

i=1

ln f0(Xi) ≥ EX∼f0 [ln f0(X)]− ε ≥ ln pmin−ε,

and so we have that

vol(A) ·Mf0 ≤
Mf0

Mf
·O
(

(2 + 2 lnMf − 2 ln pmin+2ε)d
)

<
Mf0

Mf
·O
(

(

2 lnMf − 2 lnMf0 + 3 ln(n4100/τ2)
)d
)

.

The following claim follows by a simple calculation:

Claim 26 If ln(Mf/Mf0) ≥ 3 ln(100n4/τ2), then vol(A) ·Mf0 ≤ 1/3.

Proof Recall that

vol(A) ·Mf0 ≤
Mf0

Mf
·O
(

(2 + 2 lnMf − 2 ln pmin+2ε)d
)

<
Mf0

Mf
·O
(

(

2 lnMf − 2 lnMf0 + 3 ln(n4100/τ2)
)d
)

.

We search for Mf such that vol(A) ·Mf0 ≤ 1/3. It is sufficient for Mf to satisfy, for some constant

c > 1,

Mf0/Mf · c
(

2 lnMf − 2 lnMf0 + 3 ln(n4100/τ2)
)d

≤ 1/3

ln
(

(Mf0/Mf ) · c
(

2 ln(Mf/Mf0) + 3 ln(n4100/τ2)
)d
)

≤ ln(1/3)

ln (Mf0/Mf ) + ln c+ ln
(

(

2 ln(Mf/Mf0) + 3 ln(n4100/τ2)
)d
)

≤ ln(1/3)

ln
(

(

2 ln(Mf/Mf0) + 3 ln(n4100/τ2)
)d
)

+ ln(3c) ≤ ln (Mf/Mf0)

d ln
(

2 ln(Mf/Mf0) + 3 ln(n4100/τ2)
)

+ ln(3c) ≤ ln (Mf/Mf0) . (33)

If we have Mf such that ln(Mf/Mf0) ≥ 3 ln(n4100/τ2), and a sufficiently large constant is chosen

for N1 so that ln(3c) ≤ ln(n4100/τ2), then (33) becomes

d ln (3 ln(Mf/Mf0)) ≤ 2 ln (Mf/Mf0) . (34)

The next inequality is equivalent to (34) :

(3 ln(Mf/Mf0))
d/2 ≤ Mf/Mf0

We note that the derivative of (3 lnx)d/2 is

3d/2d(lnx)d/2−1

2x
.
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We also note that for x = (3d)d/2+1(ln(9d))d/2+1 we have that

3d/2d(lnx)d/2−1

2x
≤ 1.

and

(3 lnx)d/2 = [3(d/2 + 1) ln(9d ln(9d)]d/2

= 3d/2 · dd/2 · [2 ln(9d)]d/2

≤ x.

Therefore, assuming sufficiently large constants are chosen in the definition of N1, if

ln(Mf/Mf0) ≥ 3 ln(n4100/τ2)

then vol(A) ·Mf0 ≤ 1/3.

Therefore, for ln(Mf/Mf0) ≥ 3 ln(100n4/τ2) we have that 1
n

∑n
i=1 ln f(Xi) < 1

n

∑

i ln f0(xi)
and

lnMf − ln pmin = ln(Mf/Mf0) + ln(100n4/τ2) ≥ 4 ln(100n4/τ2) ,

concluding the proof.

B.6. Proof of Claim 22

By Lemma 20 we have that the VC dimension of A is V ≤ 2(d + 1)H ln((d + 1)H), and so

V ≤ (10κ)(d+1)/2d(d+5)/2(ln(100n4/τ2))d/δ)(d+1)/2. Noting that E[|f0(T )−fn(T )|] ≤ E[||f0−
fn||A], by Theorem 4 we get that

E[|f0(T )− fn(T )|] ≤

√

O(V )

n

≤

√

O
(

(10κ)(d+1)/2d(d+5)/2(ln(100n4/τ2))d/δ)(d+1)/2
)

n
.

For the next part we want that E[|f0(T )− fn(T )|] ≤ δ/10. This holds when

n = Ω
(

(d/ε)(ln(100n4/τ2))(d+1)
)(d+5)/2

If n ≥ b
(

cd+1(d(2d+3)/ε)(ln(d(d+1)/(ετ)))(d+1)
)(d+5)/2

for some constants b > 1, c ≥ 100 ln c,
then we have

(d/ε)(ln(100n4/τ2))(d+1) ≤ (d(2d+3)/ε)(100 ln c)(d+1)
(

ln(d(d+1)/(ετ))
)(d+1)

≤ cd+1(d(2d+3)/ε)(ln(d(d+1)/(ετ)))(d+1)

and therefore n = Ω
(

(d/ε)(ln(100n4/τ2)(d+1)
)(d+5)/2

as desired. Therefore, for n ≥ N2 we have

E[|f0(T )− fn(T )|] ≤ δ/10. (35)
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B.7. Proof of Lemma 23

Consider an arbitrary set T of t points in R
d. We wish to bound the number of possible distinct

sets that can be obtained by the intersection of T with a set in AH,L. We note that AH,L can

also be constructed in the following manner: Take an arrangement consisting of at most H · L
hyperplanes. This arrangement partitions Rd into a set of components. Then, the union of subsets

of these components are elements of AH,L. Any halfspace can be perturbed, without changing its

intersection with T , so that its boundary intersects d′+1 points in T , where d′ ≤ d is the dimension

of the affine subspace spanned by T . Any such subset uniquely determines the intersection of the

halfspace with T . Therefore, the number of possible intersections with a set of size t is at most

O(t)d. It follows then that the number of possible intersections of any A ∈ AH,L and any set of size

t is at most (O(t)d)LH ≤ O(t)dLH . If A has VC dimension t, then is must be that O(t)dLH ≥ 2t,
and therefore t/ log(t) = O(dLH).

B.8. Proof of Claim 24

Recalling that L = ln(100n4/τ2) and H = (10κd/δ)(d−1)/2, we have that

V/ ln(V ) = O
(

d · ln(100n4/τ2) · (10κd/δ)(d−1)/2
)

= O
(

(10κ)(d−1)/2d(d+1)/2 ln(100n4/τ2)/δ(d−1)/2
)

. (36)

We note that

ln
(

(10κ)(d−1)/2d(d+3)/2(ln(100n4/τ2))2/δ(d−1)/2
)

≤
d− 1

2
ln
(

(10κ)d3(ln(100n4/τ2))6/δ
)

≤ d ln
(

(10κ)d3(ln(100n4/τ2))6/δ
)

≤ cd ln(ln(100n4/τ2))

for some sufficiently large constant c. Therefore, letting

V = O
(

(10κ)(d−1)/2d(d+3)/2(ln(100n4/τ2))2/δ(d−1)/2
)

satisfies (36). Therefore, we have that

√

αV

n
=

√

α ·O
(

(10κ)(d−1)/2d(d+3)/2(ln(100n4/τ2))2/δ(d−1)/2
)

n
,

and thus when

n = Ω
(

(10κ)(d−1)/2d(d+3)/2(ln(100n4/τ2))(d+7)/2/ε(d+3)/2
)

(37)

we have that

√

αV
n ≤ δ/10. To simplify (37), we note that the

d(d+3)/2(ln(100n4/τ2))(d+7)/2/ε(d+3)/2 ≤
(

(d/ε)(ln(100n4/τ2))2
)(d+3)/2

.
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Thus, if we let n = (c(d2/ε)(ln(d/(ετ)))3)(d+3)/2 for some large constant c, then we have that

ln(100n4/τ2) =
d+ 3

2
ln(100c(d2/ε)(ln(d/(ετ)))3) + ln(1/τ2)

≤ c′d ln(d/(ετ))

for some large constant c′. Thus, assuming a sufficiently large constant is chosen, for n ≥ N1 we

have that (37) holds, and therefore

√

αV

n
≤ δ/10. (38)

B.9. Proof of Claim 25

For any choice of the samples X1, . . . , Xn, we have

fn(CL) ≥ fn(C
in) (since C in ⊆ CL)

≥ f0(C
in)− |f0(C

in)− fn(C
in)|

= f0(CL)− f0(CL \ C in)− |f0(C
in)− fn(C

in)|

≥ f0(CL)−
δ

2
− |f0(C

in)− fn(C
in)|. (by (22)) (39)

Similarly, we have

fn(CL) ≤ fn(C
out) (since CL ⊆ Cout)

≤ f0(C
out) + |f0(C

out)− fn(C
out)|

= f0(CL) + f0(C
out \ CL)− |f0(C

out)− fn(C
out)|

≤ f0(CL) +
δ

2
+ |f0(C

out)− fn(C
out)|. (by (24)) (40)

Combining (39) and (40), we therefore have that

|fn(CL)− f0(CL)| ≤
δ

2
+ max

{

|f0(C
in)− fn(C

in)|, |f0(C
out)− fn(C

out)|
}

From this, we therefore have that

sup
C∈C

|fn(CL)− f0(CL)| ≤ 7δ/10,

concluding the proof.
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