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The nested Kingman coalescent describes the ancestral tree of a popula-
tion undergoing neutral evolution at the level of individuals and at the level of
species, simultaneously. We study the speed at which the number of lineages
descends from infinity in this hierarchical coalescent process and prove the
existence of an early-time phase during which the number of lineages at time
t decays as 2y / ct2, where c is the ratio of the coalescence rates at the individ-
ual and species levels, and the constant y = 3.45 is derived from a recursive
distributional equation for the number of lineages contained within a species
at a typical time.

1. Introduction. Kingman’s coalescent [15] lies at the centre of modern
mathematical population genetics. It is a simple probabilistic model describing
the ancestral tree of a population undergoing neutral evolution, which has been
shown to apply to a wide variety of population dynamical models [18], and gives
rise to the hugely important Ewens sampling formula [11] for the expected ge-
netic variation within a population. Work on Kingman’s coalescent and its variants
has fueled a wealth of developments in the probability literature, summarised suc-
cinctly in [6].

A key result of this theory is that Kingman’s coalescent comes down from infin-
ity, meaning coalescence occurs so quickly that even when the process is started
with an infinite number of lineages, only finitely many survive after any positive
time. It is in fact possible to be more precise and state the speed of this descent
from infinity. Let K, (¢) denote the number of lineages surviving to time ¢ in the
Kingman coalescent initialized on a population of size n. Theorem 1 of [5] (see
also [1]) states that taking n — oo and then t — 0 we have the almost sure con-
vergence 1K, (t) — 2. Thus, for small times the number of surviving lineages in
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the Kingman coalescent decays as 1/¢. This result is important to the population
genetics community as it characterizes the expected shape of the lineages through
time (LTT) plot [13, 19], a popular technique for analyzing phylogenetic trees re-
constructed from genetic data. The speed of descent from infinity has also been
studied for coalescents with multiple mergers in [5] and for more general birth and
death processes in [3].

From the perspective of applications to genetics, a limitation of Kingman’s co-
alescent is that it describes only the historical coalescence of lineages within a
species, and cannot at the same time account for macroevolutionary events occur-
ring between species. The problem of how the gene tree is embedded inside the
species tree has been one of the central research questions of population genetics
for some time now (see, e.g., [17, 24]), and the issue of how to draw the distinction
between intra- and inter-specific genetic variation is an important and contested
one [21-23].

In this article, we address this deficit in the theory by computing the speed of
descent from infinity in a nested (hierarchical) coalescent process which models
both the species tree and the embedded gene tree as a Kingman coalescent, with
the latter constrained to be embedded in the former; see Figure 1 for an illustra-
tion. We prove that this model exhibits an early-time period in which the number
of lineages decays as 1/72; much faster than Kingman’s coalescent. This result
is potentially important for the environmental metagenomics community, where
differentiating between inter- and intra-specific genetic variation is a key step in
quantifying biodiversity (see, e.g., [8]). Empirical verification of a 1/¢? scaling in
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F1G. 1. [llustration of the nested Kingman coalescent starting with s = 3 species and n = 4 lin-
eages per species. Black lines show a possible ancestral tree for the sampled individuals, with lineage
mergers constrained to lie within the species tree (shown behind in pale blue). The species mergers
are described by a Kingman coalescent with rate c, while the within species lineage mergers form a
Kingman coalescent with rate 1.
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the LTT plot of an experimentally reconstructed phylogeny would suggest, accord-
ing to our results, that the gene tree and species tree are evolving on the same time
scale, greatly complicating this task.

The article is organised as follows. In the remainder of this section, we give the
formal definition of our process (and its population dynamical dual), and state our
main theorem. Section 2 develops several results for the standard Kingman coales-
cent to do with the rate of decrease of the number of lineages, and the asymptotic
independence of branches in the ancestral tree. These results are needed for our in-
vestigation since, in the nested model, both the species tree and the within-species
gene trees (before and between species merger events) are described by Kingman’s
coalescent. Section 3 brings together the results of Section 2 to deduce a recursion
relation between species merger events in the nested coalescent and thence prove
our main theorem.

1.1. Definition of the model. We consider the following nested coalescent
model. We begin with a sample of n individuals from each of s species (includ-
ing the possibility that one or both of n and s is infinite). Each pair of individuals
within a species merges at rate one; also, each pair of species merges at rate ¢ > 0.
More formally, this process is a continuous-time Markov chain taking its values in
the set of labeled partitions of {(m,k) e Z x Z:1 <m <n,1 <k < s}, in which
each block of the partition is labeled with one of the integers 1, ..., s. At time zero,
the partition consists of ns singleton blocks, and the block (m, k) is labeled by the
integer k. Two types of transition are possible:

Lineage mergers Any pair of blocks with the same label may merge into a single
block with that label, with rate 1.

Species mergers For any pair of currently surviving labels i < j, all blocks with
label j have their label changed to i, with rate c.

We refer to this model as the nested Kingman coalescent because, both at the in-
dividual and species level, the merging follows the rule of the classical Kingman
coalescent [15]. This model has appeared before in the literature in [9]. This model
can be alternatively seen as a coalescent process with values in the set of bivariate
nested partitions. It is actually an example of simple nested coalescents as defined
in [7]. In this reference, a criterion is provided to determine whether nested coa-
lescents come down from infinity or not. However, to our knowledge the speed of
descent from infinity has not been computed previously.

The nested Kingman coalescent describes the genealogy in the following pop-
ulation model. Consider a population divided into s species, each composed of N
individuals. Within each species, the population evolves according to the classical
Moran model [20]. That is, each individual lives for an exponentially distributed
time with mean 1; when an individual dies, a new individual is born, and one of the
N individuals of the species is chosen at random to be the parent of the new indi-
vidual. To model the formation of new species, we also suppose that each species
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becomes extinct after an exponentially distributed time with rate c(s — 1)/N, at
which time all members of the species simultaneously die. At that time, N new
individuals are born, forming a new species. One of the s species is chosen at
random, and each member of that species gives birth to one member of the new
species. After scaling time by N/2, the genealogy of a sample consisting of n
individuals from each species converges to the nested Kingman coalescent in the
limit as N — oo because the large population size ensures that with probability
tending to one as N — oo, the sampled ancestral lines will not merge at the times
when new species form. Similar to the standard Kingman coalescent, we expect
that the nested Kingman coalescent will also appear as the asymptotic form of var-
ious other similar population models under suitable limits. However, this is not the
topic of our present study.

1.2. Main results. At time ¢, we write S(¢) for the number of species, and
N (t) for the total number of blocks (i.e., extant ancestral lines) across all species.
Informally, our main result is that, if the initial number of species is large, then
there is a period of time during the early evolution of the process in which N (¢)
decays as 1/¢%. Since the number of blocks in the standard Kingman coalescent
decays as 1/¢, one can understand the 1/¢% decay observed in the nested process as
a consequence of mergers occurring on both scales (individuals within a species,
and whole species mergers) simultaneously.

To state this claim precisely, it is necessary to consider a sequence of processes.
For j € N, consider an instance of the nested Kingman coalescent in which the
initial number of species is s; and the number of individuals sampled from each
species is n j (which, for simplicity, is assumed to be the same for each species). We
allow the cases in which s; = 00 or n; = 00. Using the notation a; < b; to mean
lim; ., aj/bj =0, — to denote convergence in probability, and =4 to denote
equality of distributions, our main result is expressed in the following theorem.

THEOREM 1. Suppose 1/s; <t; K< 1,and 1/ /njs; < t;. Then
2y .
I}N(tj) —p ~ as j — oo.

Here, y is the mean of the uniquely determined random variable W that takes
values in [2, 00) and obeys the recursive distributional equation

2
(1.1) W =4 :
1=U(l = i)

where U has a uniform distribution on [0, 1], W1 and W3 have the same distribu-
tion as W, and the random variables U, W1 and W, are independent.

When s; = 00, Theorem 1 implies that

2
tzN(t) —p r ast — 0.
c
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Therefore, in this case Theorem 1 gives the speed at which (N (¢), t > 0) descends
from infinity. Note that the hypotheses of Theorem 1 require s; — oo, but not
necessarily that n; — oo. For example, the case n; = 1, which corresponds to
sampling one individual of each species, is included. When 7 ; equals some fixed
constant n for all j, Theorem 1 implies that, for any fixed ¢t > 0 and 8 € (0, 1/2),

N@s™Py 2y
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This scaling can be compared with non-nested models such as Beta-coalescents
(see Theorem 4.4 of [10]).

In the case that the initial number of lineages per species vastly exceeds the
number of species (n; > s;), the period of 1/ 1% scaling implied by Theorem 1
is preceded by an earlier phase dominated entirely by within-species coalescence.
There the usual 1/t scaling is recovered, as we make explicit in the following
proposition.

as s — oQ.

PROPOSITION 2. Suppose sj — oo and 1/nj Ktj K 1/s;. Then

tiN(t;
17(") —p2 as j — oo.
Sj

The proof of Proposition 2 is given in Section 2.2, and a numerical example
showing both 1/7 and 1/¢* phases is shown in Figure 2.

Lambert and Schertzer [16] independently obtained an alternative proof of The-
orem 1; see Theorem 5.6 of [16]. Rather than characterizing the random variable
W as the unique solution to a recursive distributional equation, they solved the

1010
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FI1G. 2. Simulation of the nested Kingman coalescent in the case n >> s > 1. Here the l/t2 phase
is preceded by a period of 1/t decay, corresponding to the coalescence occurring within species, but
before the species coalescence events kick in. The blue line shows the result of a single simulation
with s = 2000, n = 100,000, ¢ = 0.1, the red lines indicate slopes of —1 and —2 to illustrate the
different scaling regimes.
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problem by showing that the empirical distribution of the number of gene lineages
per species evolves like the solution to a certain coagulation-transport equation.
They also provided in Theorem 2.8 of [16] a clever alternative characterization of
W using the excursion measure of a continuous-state branching process.

1.3. Heuristics and simulations. Before presenting our proofs, it is instructive
to consider a simple mean-field heuristic for the time-evolution of the process. For
the purposes of this discussion, we will focus on the case when n > s > 1. First
note that the process (S(¢),t > 0) has the same law as the number of blocks in
Kingman’s coalescent (with time scaled by a factor of ¢). Therefore (following
[1]), for small times we can approximate S(¢) by the solution to the differential
equation

d . cS0? B
TSHx——=—,  50)=s.

It follows that when ¢t < 1, we have

(1.2) S(1) ~

ct—i—%'

We have N(t) = Ni(t) +--- + Ns()(¢), where N;(¢) denotes the number of lin-
eages belonging to the ith of the S(¢) species at time f. When r < 1/s, we see
from (1.2) that S(r) ~ s, which means very few species mergers have occurred.
Within each species, the lineages are merging according to Kingman’s coalescent.
Therefore, during this period, N;(¢) can be approximated by the solution to the
differential equation

d N;(1)?

NI~ - lz . Ni(0)=n.
It follows that
1.3 N;(t) ~
(1.3) i (1) (T2

for t <« 1/s and, in particular, N;(t) &~ 2/t when 1/n < t < 1/s. Consequently,
we should have N(f) =~ 2s/t when 1/n <« t <« 1/s, which is consistent with
Proposition 2.

Note, however, that the number of lineages belonging to a given species will
jump upwards when two species merge into one. Consequently, once species merg-
ers start to occur around times of order 1/s, we can no longer approximate the
quantities N; (¢) by solutions to a differential equation. Indeed, these random vari-
ables will no longer be well approximated by their expectation, due to the random-
ness resulting from the timing of the species mergers. Instead, we will argue that
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F1G. 3. Simulations of the nested Kingman coalescent for various values of ¢, compared to the
asymptotic form N(t) ~ 2y /ct2 given in Theorem 1. In each case, the simulation was started with
s = 1000 species each with n = 1000 members.

when 1/s < t < 1, the distribution of N;(¢) is well approximated by the distribu-
tion of W /¢, where W satisfies the recursive distributional equation (1.1). The law
of large numbers then suggests the approximation
N E[W] _ 2 vy . 2y

(1.4) N(1) = S(1) N T =
which matches the result of Theorem 1. Therefore, we see the possibility of both
1/t and 1/¢? behaviour, depending on the parameters. Figure 2 shows an exam-
ple simulation of the nested Kingman coalescent in which both phases of decay
are visible. Figure 3 shows several example simulations for different values of c,
compared to the asymptotic result (1.4).

To understand the recursive distributional equation (1.1), we consider choosing
at random one of the S(¢) species at time ¢. We then look for the last species merger
in the species subtree rooted at this individual at time ¢. It is well known that this
species merger happens at time Ut, where the distribution of U is approximately
uniform on [0, 1], as we will explain in more detail in Section 2.3 below. Then,
at time Ut, we merge two species with W1 /Ut and W,/ Ut individual lineages,
respectively, where W and W, are independent and have the same distribution
as W. Because the resulting (W; 4+ W»)/ Ut lineages then merge as in Kingman’s
coalescent for the remaining (1 — U)t time, the number of lineages left at time
t is given by the right-hand side of (1.3) with (W; + W5)/ Ut in place of n and
(1 — U)t in place of ¢. That is, we get the approximation

2 1 2

N;i(t) ~ =

A=+ 5y 1 1=U0 = gy)

Writing N;(t) =~ W/t leads to (1.1).
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Straightforward bounds on the constant y can be obtained based on the condi-
tional expectation

1 2
E[W|W;, W :/ du
. WIWL Wl = | T — 2o+ way
=— og .
WitW, 1 Wl + W2
On the one hand, we know that W;, W, > 2, and hence we obtain
(1.6) y > E[W|W; =W, =2] =4log(2) = 2.7726.

On the other hand, the right-hand-side of (1.5) is a concave function of the sum
Wi 4+ W, which has expectation 2y, hence by Jensen’s inequality we must have

1.7) 2 1 ( ! )
. y < og| — ).
Iy =1 1
Solving at equality, we obtain the upper bound
(1.8) y < —2W_1(—=1/2/e) ~3.5129,

where W_; denotes the lower branch of the Lambert W function.

We have also simulated from the distribution of W by constructing binary trees
of height 12 and using the “recursive tree process” discussed in more detail in
Section 2.3 of [2]. Two random variables W, and Wy were obtained from each run
of the procedure. The random variable W was obtained by starting with values of
2 at the leaf notes, while Wiy was obtained by starting with oo at the leaf nodes. The
same uniform random variables were used to obtain W; and Wy, which ensured
that Wy < Wy . Furthermore, W stochastically dominates Wy, and is stochastically
dominated by Wy . This procedure was repeated 10,000,000 times. The values for
W had a mean of 3.4466, and the values for Wy had a mean of 3.4467. The
standard error of these estimates was 0.0009, which means we can be 95 percent
confident that 3.4457 < y < 3.4476.

2. Results on Kingman’s coalescent.

2.1. Estimates on the number of blocks. Let (Ilso(t),t > 0) be Kingman’s co-
alescent [15], which is a stochastic process taking its values in the set of partitions
of N, and let (IT,(z), t > 0) be the restriction of (ITox(¢),¢ > 0) to {1, ..., n}. Re-
call Kingman’s coalescent is defined by the property that, for each n, the process
(IT,,(¢),t = 0) is a continuous-time Markov chain such that each transition that
involves two blocks of the partition merging together happens at rate one, and no
other transitions are possible. Let K,,(¢) denote the number of blocks of the parti-
tion IT,(¢), and let Ko, (¢) denote the number of blocks of [T, (). Theorem 1 of
[5] (see also [1]) states that

2.1) limtKeo(t) =2  as.
t—0
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Our next result provides a first moment estimate for the coalescent started with n
blocks.

Theorem 2 of [5] implies that, for all d > 1,

Koolt) |

(2.2) lim E[

t—0

LEMMA 3. Let § > 0. There exists a positive number ty and a positive integer
M, both depending on 8, such that for all t <ty and n > M, we have

£|
PROOF. Let0 < e < 1. By (2.2) with d = 1, there exists #; > 0, depending on
g, such that if t < #; then

Kn(t) -

[
t+2/nll~ t+2/n

2.3) E[ Koo(t)——u 5?
Also, (2.1) implies that, for sufficiently large n,
2(1 2(1 —
2.4) P(Koo( ( +8))§n§Koo( ( 8)>)>1—8.
n n

The random variable K, (¢) is stochastically bounded from below by a random
variable Y1, which equals K, (f +2(1+¢)/n) on the event that K, (2(1+¢)/n) <
n and zero otherwise. Then, denoting the positive and negative parts of a random
variable X by X and X~ and using (2.3) and (2.4), we get thatif 1 +2(1 4+¢)/n <
t1 and n is sufficiently large, then

f(mo-im) |20 -3) |

< [k (14 252 - tfz/n }

t3 +22/n P<K°°<2(1:8)> g n)

- e +< 2 _ 2 )
T t+2(14+¢e)/n t+2/n t+2(+¢)/n

n

2¢e
t+2/n
3e 2 2e
< + i
“t+2/n (t+2/n)? n
5e

< .
“t+2/n
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Let (K., (1), > 0) be an independent copy of the process (Koo(f),t > 0). The
random variable K, (¢) is stochastically bounded from above by a random variable
Y, that equals Ko (f +2(1 — €)/n) on the event that Ko, (2(1 —¢)/n) > n. On the
event that Ko (2(1 —¢)/n) <n,weset Ya=nifn < (2+¢)/t and Yo = K/ (1)
otherwise. If t +2(1 — &) /n < t1 so that (2.3) can be applied and » is large enough
that (2.4) holds, then using that min{7, 7} < Zj:l' for fractions of positive numbers
to get the third inequality, we have

el (k=557 |

2(1—8))_ 2
n t+2/n

= EHKOO<I+

}

2(1 —¢)
+ (M n=ter/n + E[Kéo(t)]ﬂ{”(”g)/’})P(KOO( n ) = n)

e 2 2 . 2
t+2(1—-¢)/n t+2(1—-¢)/n t+2/n t
3 2¢e 22 +¢)e
= + +
A—-e)(t+2/n) A—e)(t+2/n) t+2/n

3¢
<|{—4+2012 .
_(1—8+ ( +FI)S)I%—Z/n

Combining these results gives thatif  +2(1 +¢)/n < t; and n is sufficiently large,
we have

EHK,,(t)— ‘]5(584-13%84-2(24-8)8)

1
t+2/n t+2/n

The result follows. [
COROLLARY 4. Let § > 0, and choose ty and M as in Lemma 3. Then for all
g€ (0,1),t <ty,and n = M such that € > 2/(nt), we have
2(1 — 8)) - ) .
t “e—=2/(nt)

P(Kn(t) <

PROOF. By Lemma 3 and Markov’s inequality,

(502079 (s < oo +.2)

2 ‘ - 2(1-(1-2e)1 +2/(nt))))
t+2/n t+2/n

EP(‘K,Z(I)—
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)
=20 — (-1 +2/mn))
)
< —,
T e—=2/(nt)

as claimed. [
2.2. Proof of Proposition 2.

PROOF OF PROPOSITION 2. We obtain upper and lower bounds on N (z;) by
comparing our process to simpler coalescent processes. For the upper bound, let
N7 (t) denote the number of individuals remaining at time ¢ in a model that is the
same as our model, except that all species mergers are suppressed. Suppressing
species mergers can only reduce the number of mergers of individual lineages,
so N7T(t) stochastically dominates N (¢) for all ¢. Let Nl-+(t) be the number of
individual lineages at time ¢ belonging to species i, in this new model. Let ¢ > 0.

Then, using Markov’s inequality,
2+e)s; ]
s
sz el -]
<——> E|IN;"(tj) — —||-
< DE(Na -

) < _]EHNJF(Z‘J) — i
ES; ti

P(N*(z,-) >
J

J
(2.5)
J

Using Lemma 3 and the assumption that 1/n; < t;, we get that for all i €
{I,...,sj}and all 6 > 0,

limsuptjE|:‘Ni+(tj)—g :| Slimsuptj< g— 2 + ) )

(2.6) - 1 jmoo TNt tj+2/nil 1 +2/n;
=34.

Combining (2.5) and (2.6) yields

(2.7) jl_i)rroloP<N+(tj) > @) =0.

For the lower bound, recall that at time zero, blocks of the partition are labeled
by the integers 1, ..., s;, corresponding to the s; species. When the two species
corresponding to the labels i and j merge, where i < j, individuals of both species
take the label i. Let N~ (¢;) denote the number of individual lineages at time ¢;
whose species label has not changed between times 0 and ¢;. That is, we keep
only the individuals from one of the original species corresponding to each of the
S(z;) species at time ¢;. Clearly, N~ (¢;) < N(¢;). Conditional on S(¢;) = s, the
distribution of N7 (¢;) is the same as the distribution of what we get by running
s independent copies of Kingman’s coalescent, each started with 7 ; lineages, and
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counting the total number of lineages remaining at time #;. Therefore, the same
reasoning that leads to (2.7) gives

2—¢)s

(2.8) lim P(N—(z_,-) < 5@t = s) =0,
j—o00

and the convergence is uniform in s. However, because 7; < 1/s;, another appli-
cation of Lemma 3 yields

lim P(S(tj)) <(1—¢)sj)=0
j—o00

Combining this result with (2.8) yields

(2.9) lim P(N—(zj) L2mad- S)Sj> —0.
j—oo

I
The proposition follows from (2.7) and (2.9). U

2.3. Kingman’s coalescent and time-changed Yule trees. We now define the
coalescent process that describes the species mergers. Let (W0 (?), f > 0) be a co-
alescent process having the same law as (I1oo(ct), f > 0). That is, (W (2),t > 0)
has the same law as Kingman’s coalescent, except that pairs of blocks merge at
rate ¢ rather than at rate 1. For s € N, let (W, (¢), t > 0) denote the restriction of
(Woo(?),t > 0) to {1,...,s}. Let Seo(?) be the number of blocks in the partition
W (f), and let S;(¢) denote the number of blocks in the partition W, (7). We in-
terpret Soo(f) as the number of species remaining at time ¢ when we start with
infinitely many species at time zero, and Ss(¢) as the number of species remaining
at time ¢+ when we start with s species at time zero. Note that the coalescent pro-
cess (Woo(?),t > 0) can also be depicted as a tree 7 with infinitely many leaves
at height zero and Soo () branches at height 7. The leaves can be labeled by the
positive integers.

For positive integers m, let 1, = inf{t : Soo(t) = m}. If we consider the portion
of the tree 7 below height 1,,_1, we have m subtrees, which we place in random

order and denote by 71, ..., 7™ ™ One of these trees is pictured in Figure 4.
For k € {1,. m} le {0 1,2,...},and iy, ...,i; € {1, 2}, we will define ran-
dom variables Ul1 ie and Vl1 i, as follows. We begin at time 7,,—; and follow the

tree 75™ in reversed time from time 7,,_; down to time 0, so that branches split
instead of coalescing. Define V5™ to be the time when the initial branch splits into

two. Then define Vlk " and Vzk " to be the times when the two branches created

at time V%™ ordered at random, split again. Given Vl]: mll let V1 41 and Vl]; '"”2

denote the times when the two branches created at time V spht into two. Let
ykm = ykm | and for £ > 1, define Ul. = ykm /V'lf”'ﬁl_l. Then

i1...0¢

(2.10) ykm _ gk '"U" mykm - gkm oo .

i1...0¢ i1ip i1...0¢
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Tm—1

FIG. 4. The tree TF™,

A key ingredient in our proof is that the random variables Ul-]‘l"mi are approxi-

mately independent, and have approximately a uniform distribution on [0, 1]. Mak-
ing this statement rigorous involves coupling the coalescent with a time-changed
Yule process. This connection between Kingman’s coalescent and a Yule process
was discussed in [4], in which both Kingman’s coalescent and a Yule process are
shown to be embedded in a Brownian excursion.

Consider a Yule process (Y (¢),t > 0), which is a continuous-time branching
process in which there are no deaths and each individual independently gives birth
at rate 1. Consider the time-change which maps ¢t to u = 1 — ¢/, so that 1 =
—log(1 —u).Itis well known that for all u € [0, 1), the next time that an individual
at time u gives birth is uniformly distributed on [u«, 1]. To see this, note that the
probability that an individual at time u gives birth before time u + x(1 — u) is
the same as the probability that an individual in the original Yule process at time
—log(1 — u) gives birth before time —log(1 —u — x(1 — u)), which is

| — plog(—u—x(1—u)~log(1—u) _ | _ l—u—x(1—u) —

1—u

We can then do the time-reversal v=1—u =e~’, s0 t = —logv. After this addi-
tional time change, we start at time 1, and individuals branch as we go backwards
in time. An individual at time v will branch next at a time which is uniformly
distributed on [0, v], and individuals reproduce independently.

Fix a positive integer m. We now obtain a Yule process started with m individ-
uals by starting with Kingman’s coalescent and then performing a random time
change.

LEMMA 5. ForO<t <ty_1,let

foult) = log(%) w [ R
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Then (Soo(fnjl(u)), u > log(mc/2)) is a Yule process started with m individuals
at time log(mc/2).

PROOF. First, note that f;,(¢) is a strictly decreasing function of ¢, so the in-
verse function is well defined. Now let kK > m, and note that t;_| — 7, which is the
amount of time for which there are k species, has an exponential distribution with
rate ck(k — 1)/2. Because the time change stretches time by a factor of c(k — 1) /2
during this interval, the distribution of f,; 1 () — [ 1 (Tk—1) is exponential with
rate k, matching the distribution of the amount of time for which there are k indi-
viduals in a Yule process. [

We can now make the further time change discussed in the paragraph before
Lemma 5, and define $*(v) = Soo(fnjl(—log v)) for 0 < v < 2/cm. Just as there
is a coalescent tree T, with subtrees 7™, ..., T"™"™ associated with the original
coalescent process (Seo (f), > 0), there are m subtrees 7 "%, ... T™™* associ-
ated with the process (S*(v), 0 < v < 2/cm), and we can use these trees to define
associated random variables Ulk mi* and Vlk m”* as before. Furthermore, because
(8*(v),0 < v < 2/cm) arises by time- Changmg a Yule process, it follows from the
discussion above that the new random variables U i1,~.’j'1 are independent, and each
has exactly the uniform distribution on [0, 1].

For 0 <t < T,y_1, we have Soo (1) = S*(e~/m®). Lemmas 6 and 7 below estab-
lish that this time change is only a small perturbation of time.

LEMMA 6. We have

sup
0<t<tp_1

t
e In® 1‘ ~p 0

where —, denotes convergence in probability as m — 00.

PROOF. Taking logarithms, it suffices to show that as m — oo,

2.11) sup |log? + fin(t)| =0

O<r=<tp-1

From (2.1), we have ¢S (f) — 2/c almost surely as t — 0. It follows that 7 ~
2/ck almost surely, where ~ means that the ratio of the two sides tends to one as
k — oo. Taking logarithms,

(2.12) lim
k— 00

2
log 7y —log(—k>‘ =0 a.s.
c

Fork>m — 1, let

(S =1) o .
Hk:/rk fdrzigl(rj_l—rj)g—l).
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Because 71 — 7, has an exponential distribution with rate parameter ¢j (j —1)/2,
and these random variables are independent for different values of j, we have

ko
E[H]=)_ -
j=m/
and
ko
Var(Hy) = ZJ—Z

S

J=mn

By Kolmogorov’s maximal inequality applied to the independent mean zero ran-
dom variables Hy — Hy—1 — 1/k, we have for all & > 0,

d 1 &1
o 251> ) 2L T e

Now suppose 1y <t < 1x_1 for some k > m. Then

(2.13) P(sup

k>m

&|>—~

togt + £ (1) <log et +log "5 ) + Hy

<l 2 1 1 2
SR W
¥

clk—1)
m ko1 1
+log<2>+E J—i—Hk—E ;

Jj=m

2
logtp—1 — log(c(k — 1))‘

(2.14)

ko k—1
o5
j=m’ "

|
j=mJ
and likewise
10gt+fm(t)>10gfk+10g( ) )+Hk 1
S S R S T o
- —1lo — [log 7, — log|{ — || — -1 — —1.
= g " g Tk g ok k—1 2.7
J=m j=m

From (2.14) and (2.15), combined with the bounds (2.12) and (2.13) and standard
estimates for the harmonic series, we obtain (2.11). [
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LEMMA 7. We have
e_fm(u) _ e_fm(v)

sup
O<u<v<ty,_

—1|—,0,
u—v ’ P

where —, denotes convergence in probability as m — 0.

PROOF. Let g(r) = ¢~ /»)_ We have
e Fn@) _ o= fu(v)

sup
O<u<v<ty_i

—1‘5 sup g/ (1) — 1.

u—v O<t<ty

Also,

e In W et (Soo(t) — 1)
> .
Equation (2.1) implies that ct (Seo () — 1)/2 — 1 almost surely as ¢t — 0, and also

that 7,,, — 0 almost surely as m — co. Combining these results with Lemma 6, we
see that as m — oo,

gt)y=—e MmO f (1) =

sup |g'(t) — 1| =0,

O<t<ty

which implies the result. [
3. Results on the nested coalescent.

3.1. Convergence to a unique solution of the RDE. Let P denote the set of
probability distributions on [2, oo], and let P; denote the set of probability distri-
butions on [2, co] with finite mean. Let 7" : P — P be the mapping defined such
that 7 () is the distribution of

2

1= U0 = i)

(3.1

k)

where U has a uniform distribution on [0, 1], the random variables W; and W
have distribution u, and the random variables U, W1 and W5 are independent. Let
T" . P — P be the map obtained by iterating n times the map 7. Our goal in this
subsection is to prove the following result.

PROPOSITION 8.  The equation T (1) = wu has a unique solution u*, and u* €
P1. For all @ € P, the sequence T"(j1) converges to u* in the sense of weak
convergence of probability measures on [2, 00]. Also, the mean of T" () converges
as n — oo to the mean of u*.
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For u € (0, 1) and x € (0, o], define

(3.2) h(u, x) 2 :
. U,x) = = .
l—u(1—2)  (1—u)+2

x

LEMMA 9. We have T (P;) C Py, and T*(P) C P;.

PROOF. Letu €P;r.Let U, Wi and W, be independent random variables such
that U has a uniform distribution on [0, 1], and W; and W, have distribution .
Then T (u) has the same distribution as #(U, W1 4+ W), and a stochastic upper
bound can be obtained by removing one of the two terms from the denominator on
the right-hand side of (3.2). Therefore,

2 Wi+ W
E[h(U, Wi + Wz)] < E[mﬂ{Uil/Z}} + E[#

ﬂ{uzl/z}}

<44+2E[W; + W,].

It follows that T'(u) € P, which proves the first statement of the lemma.

Let §, denote the unit mass at a. Because the expression in (3.1) is an increasing
function of W, and W», if we can show that 72(8s) € P, then it will follow that
T2(w) € P; for all 4 € P, which will establish the second part of the lemma. Note
that T (§00) has the same distribution as 2/(1 — U), which has the same distribution
as 2/ U. Therefore, T2(85) has the same distribution as

2 2

Y = =
1-U( - 555 0=+ 75855
270+2/02 O+170;

where U, U, and U, are independent random variables, each having the uniform
distribution on [0, 1]. Thus, it suffices to show that E[Y] < co. We have

o= oo+ )]
Y <min sy = —+ =)
1-U U\U, Uy
Letx > 4.1f Y > x, then we must have 2/(1 — U) > x and, therefore, U > 1 —2/x.
We also must have 2/U)(1/U1+1/Uz) > x. When U > 1 —2/x > 1/2, this can
only happen if 1/U; + 1/U; > x /4, which requires either U; < 8/x or U < 8/x.
Thus,

P(Y >x)<P(U;>1-2/x and either Uy <8/x or Uy < 8/x)
2(8 8) 32
<—|l-+-)=—.
“x\x X x2

00 o 32
E[Y]=/O P(YZx)dx§4+L x_de<oo’

It follows that

which completes the proof. [J
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Let d denote the Kantorovich—Rubinstein metric on Py, which goes back to [14]
and is also the Wasserstein metric for p = 1. That is,

d(p,v) =inf{ E[|X — Y|] : X has distribution x and Y has distribution v}.

It is well known that d is a complete metric on P; (see, e.g., [12]). Because 2(1 —
log2) < 1, the following lemma shows that, with respect to this metric, T is a strict
contraction.

LEMMA 10. Suppose i, v € Py and i # v. Then
d(T (), T(v)) <2(1 —log2)d (s, v).

PROOF. Lete > 0. Let i, v € P;. By the definition of d, on some probability
space one can construct random variables X and Y such that X has distribution
W, Y1 has distribution v and E[|X| — Y]] <d(u, v) + €. One can construct X, and
Y>, independently of (X, Y1), so that they satisfy these same conditions. Let U be
a random variable that has a uniform distribution on (0, 1) and is independent of
(X1, X0, Y1, Y»).Let X =h(U, X1+ Xp) and Y = h(U, Y1 + Y>), where A is the
function defined in (3.2). Note that X has the same distribution as 7'(u), and Y has
the same distribution as 7' (v). For x > 4,

_ 4y - 4u B u
T —w)+2u)? T G —u) +2u)? 41 —u/2)?

oh . %)

—(u, x

0x
Therefore,

| 100+ X0 -+ 1),

XY <—"———
41-U/2

Taking expectations, we get

d(u, U d(u,
E[x — v < ¥ ”)+8E[ ]: W) TE 41 log2).
2 (1—U/2)? 2
Letting ¢ — 0 gives E[|X — Y|] <2(1 — log2)d(u, v), which implies the result.

O

PROOF OF PROPOSITION 8. Because T2(u) € Py for all 4 € P (by Lem-
ma 9), any solution to the equation 7 (x) = 4 must be in P;. By Lemma 10, the
map T is a strict contraction with respect to the Kantorovich—Rubinstein metric
on Pj. Therefore, as noted in Lemma 5 of [2], it follows from the Banach con-
traction theorem that the equation 7 (1) = u has a unique solution p*, and 7" (u)
converges to u* as n — oo with respect to the Kantorovich—Rubinstein metric for
all u € P1. Because convergence with respect to the Kantorovich—Rubinstein met-
ric implies both weak convergence and convergence of means (see, e.g., [12]), the
result follows. [
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3.2. Mergers of individual ancestral lines. We now consider the merging of
individual ancestral lines within a species. Recall that, at time zero, there are s;
species, and we sample n; individuals from each of the s; species. Pairs of ances-
tral lines belonging to the same species merge at rate one.

Recall the definition of the trees 7™, ..., 7™ derived from the species tree
in Section 2.3. Let N©™ be the number of individual lineages remaining at time
T,,—1— that belong to the species represented by the tree 7% . Note that this num-
ber could be zero when s; is finite because T*m is derived from a species tree

starting from infinitely many species, whereas we only sample n; lineages from
s of these species. Let N; k, ml. be the number of individual lineages, belonglng to
the species created by the merger at time V , that remain at time Vl
If we know the values of le
by starting with N l[ at N l[ 2
for time ‘/i]:iﬁg,z — Vi,...ig,l' Also, let Wl.]j’.'i.[ = ‘/i]](ifligleik]’.’.qtlig for £ > 1, and let
wkm — ‘L’m_lNk’m.

Fix a positive integer d. Let Wk’m-’*’+ = 00, and let W.k’m.’*’_ =2. Let W.k’m.’*

and Wk " both equal maX{W g 2} Recall the deﬁmtlon of the function & from

l

(32).For0<t<d—1andir .. ipe{l,2}, let

km* km* k,m,*
U 1g1+W 1g2)

sle—1
m

de—1
lineages and running Kingman’s coalescent

,m
.

Z forall iy, ...,ip € {1, 2}, then we obtain le

km*

ka*-i—

km* km,*,—i— k,m,x,+
U ’ l gl +W g2 )’

l

km,*,— k,m, %, —
T WS,

h(

h(
km,*,— h(Ukm *

(

h U 0’ 121+W 152)

Because the random variables U;, -k "% are independent and have a uniform distri-

7
bution on [0, 1], the distribution of Wk mld*:r 18 T (800), While the distribution of

Wk ’ml’d_l is T(83). More generally, for 0 < £ < d, the distributions of Wk "%+ and

Wl]i ml; are T9~%(80) and T9~¢(8,), respectively. In particular, the dlstrlbutions
of Wkm*+ and Wk™*~ are T9(5x) and T9(8,), respectively. Also, because

h(u, x) is an increasing function of x, we have
(33) Wk,m,*,— < Wk,m,* < Wk,m,*,-F.

To prove Theorem 1, we will consider a sequence (m j)?il tending to infinity.
That is, for the process in which there are s; species and n; individuals sampled
from each of these species, we will consider the trees 7% . Throughout the rest
of this section, we will occasionally drop the superscripts k and m; to lighten
notation, when doing so seems unlikely to cause confusion.
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LEMMA 11. We have
Wk,mj

SUp |

1<k<m;

— 1‘ —5 0,
where —, denotes convergence in probability as j — 00.

PROOF. Recall the definition of the function / from (3.2). Note that

h(uy,x1) _ (I —u2) +2uz/x;
h(uz, x2) (1 —up)+2ur/x;

: fa ¢ atc a ¢
Therefore, using that min{3, 5} < bid = max{y, 7},
h(uy, x1) I —uy uzx

———— <max , ——

h(uz, x2) I—up uixy

1—u 2 2
<m0 () (5) ]
1 —u; \up X2

1—ur upy x; }2

=< max s )
1—uy u; xp

and

h(uy, x1) . {l—uz Uz X }2

— "~ > min L, =1 .

h(uz, x2) I—uy ur x
Recall that Wl."]‘ml-d = _ilmid’ and for 0 < £ <d — 1, we have
(3.4) Wiy iy _ hi.. i Wipigt + Wi i2)

WZT R h(U:i dp?

‘/Vl>i< el +W1 lgz)

Recall also that, defining the random function f;, as in Lemma 5 and defining

VzT ;, as in the discussion following that lemma, we have Vszg = ¢ ImWirie),

For1 <¢ <d — 1, we have

35) Ui i, _ Vi Vi _ ¢ i Vineie) - Vi
Uiie Vi, Vi Vii.ie e ImiWinig—y)
and
- U;i de (VIT dem1 VtT i) Virie
1—- Ull---le 11 d 1(V11 iy = Viyig)

eifmj(‘/il"'iﬁfl) _ eifm] (‘/l'lmi[) ‘/il,”i[71
V:

. . T Vi
..dlg—1 — ‘/11...lg e fm]( ll“‘llfl)
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Likewise, for the £ = 0 case,

U - \% 'e_fmj(fmj—l)
and
1 _ U* _ e_fmj(fmj—l) _ e—fmj(V) ij_l
1-U -1 — V R Cg
Let
t e_fmj(u) _e—fmj(v)
R = max su _ 1], su b
{ p e_ﬁnj(t) p U—v }

0<t§rm/.,1 0<u<v§rmj,1

which converges in probability to zero as j — oo by Lemmas 6 and 7. Using the
fact that if |a — 1| < R then a and 1/a are both between 1 — R and 1/(1 — R), it
follows from these results with (3.4), we obtain

W 1 4
1 . R 4 < 1...0d—1 < ( ) )
( )= wr “\1—-R

i1...lg—1

Then by induction, we end up with
d+1 wkom; 1
1-R)?¥ < <
( ) _Wk’mj’*_<1—R)

forall k € {1,...,m }. Because d is a fixed positive integer, the result follows. []

2!1+l

LEMMA 12. Suppose sj > mj. Let ¢ > 0. For iy,...,ig € {1,2} and k €

k,m . .
{1,....mj}, let Rilﬁ-’d be the number of species, among the s; present at time

. . k,m
zero, that are descended from the species created by the merger at time Vllmlfl .
Then there exists § > 0 such that for sufficiently large j, we have

O Ss
P(Ri’.rili’d > %) >1—e¢.
j

PROOF. For all # > 0, the partition given by Kingman’s coalescent at time f,
[Too(2), is an exchangeable random partition of N. Therefore, if B is a block of the
partition [T, (¢), then the limit

1 n
im0 2 e
1=

exists and is called the asymptotic frequency of B. Let K (¢) be the number of
blocks of I1y (%), and let 7, = inf{r : Koo () = m} be the first time that the coa-
lescent has m blocks. Denote by A(#) the sequence consisting of the asymptotic
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frequencies of the blocks of 1. (), ranked in decreasing order. It is shown in [15]
that the distribution of A (t,,) is uniform on the simplex

Ap={x1>22xp20:x1+ - +x, =1}

In particular, if we choose one of the m blocks uniformly at random, the distribu-
tion of the asymptotic frequency of this block is Beta(1, m — 1). Furthermore, if
we follow Kingman’s coalescent in reversed time, so that blocks split instead of
merging, and B is a block with asymptotic frequency A, then immediately after
this block splits into two, the new blocks will have asymptotic frequencies AU and
A(1 — U), where U has a uniform distribution on [0, 1].

By the discussion above, the asymptotic frequency of the block of Woo (T )

corresponding to the species represented by the tree 7%/ has the Beta(l,
m; — 1) distribution. Moreover, let A;, ;, be the asymptotic frequency of the
block of W (V;,..;,) created by the merger at time V;, ;,. Then the distribution
of A;,. i, is the same the distribution of the product of d 4 1 independent random
variables, one of them having the Beta(1, m; — 1) distribution and d of them hav-
ing the Uniform(0, 1) distribution. Because d is a fixed positive integer, it follows
that there exists § > 0 such that for all j, we have

Conditional on A;, . ;,, the distribution of R;, . ;, is Binomial(s;, A;, ;,). Because
sj > mj, the result now follows from elementary concentration results for the
binomial distribution. []

LEMMA 13. Let

k,m
(3.6) LM=  max |l 1’.
it,enia€{1,2} M

i1...0q

Suppose sj > mj and sjn;j > m?. Then

lim E[L*™miwkmixt] =,

J—> 00

PROOF. Note that W;, ;, = Wil--~id unless W;, i, < 2. Therefore, |[Lkmi| <
1, and LK™ = 0 unless Wi,..i, <2 for some iy, ...,i4. Because the distribution
of Wkmis+ ig exactly T%(8s0) for all k and m j» the collection of random vari-
ables {Lk’mf' whmjxt J €N, 1 <k <mj} is uniformly integrable. Therefore,
noting also that the distribution of L™ W*™j-*+ does not depend on k, it suf-
fices to show that LK wk.mj.*+ —p 0 as m — oo. Because the random variables
Wkmj-*+ are identically distributed and finite, it suffices to show that LK™ — 0
as j — oo.



1830 BLANCAS, ROGERS, SCHWEINSBERG AND SIRI-JEGOUSSE
Let £ > 0. We have

W. .
P(Lk’mf >¢) < 2dP(‘ _Held 1‘ > e)
Wi, ..y

=21P (Wi, <2(1 —¢))

3.7

= 2dP(‘/i1...id_1Ni1...id < 2(1 - 8))

Recall the definition of R;, ;, from Lemma 12. Note that there are R;, ;,n;
individual lineages at time zero descended from the species created by the merger
at time V;, _;,. Pairs of these individual lineages are subject to mergers at rate one,
once the corresponding species lineages have merged, which means we can ob-
tain a stochastic lower bound on the number of individual lineages by allowing all
pairs of these lineages to merge at rate one. Therefore, a stochastic lower bound
for Nj,.i, can be obtained first constructing the species tree and then running
the block-counting process associated with Kingman’s coalescent, started with
R;,..i,n; lineages, for time V;, ;,_,.In particular, denoting by G the o -field gen-
erated by the process (W (#), t > 0) that governs the species mergers, we have

P(‘/il...id_lNil...id < 2(1 - 8)|g) =< P(‘/l.lujd—]KRilN.idnj(‘/il--J.d—l) < 2(1 - 8){g)

Now let § = &2 and apply Corollary 4 with V;, ;, , in place of  and R;, ;,n; in
place of n to get

g2

€ — 2/(Vil...id_1Ri1,,_jdni)

(38) P(‘/ilu-id—lKRil.“idnj(‘/ilnjd—l) < 2(1 - ‘9)|g) =<

ontheeventthat Vi, ;, , <to, Ry iynj > M,and2/(V;, i, ,Ri,..i,nj) < &.Note
that P(V;, i, , <o) > P(‘Emj_l < tg) = 1 as j — oo by (2.1). Therefore, the
result that L5 —p 0 and, therefore, the result of the lemma, will follow from
(3.7) and (3.8) provided we can show that

Vitig_ Riy.ignj —>p 00 as j — oo.

Recall from equation (2.10) that V;, _;, , =UU;, Ui, ... Ui, iy, T j—1- It fol-
lows from (2.1) that m 7, ;-1 — 2/c almost surely as j — oco. Combining this
observation with (3.5) and Lemma 6, we see that there is a constant §; > 0 such
that P(V;,..i,, > 81/mj) > 1 — /2 for sufficiently large j. By Lemma 12 and
the assumption that s; > m, there is a constant §; > 0 such that P(R;, i, >
d2sj/mj) > 1 — &/2 for sufficiently large j. Combining these results, we get
8182sj~nj> e

P<Vi1...id_1Ri1...idnj > 2
mj

for sufficiently large j. Because s;jn; > m? by assumption, the result follows. [J
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LEMMA 14. Lete > 0. Suppose sj > m and sjn; > m?. There is a positive
constant to, depending on &, such that if we define the events
whom; l 1 }

Aj={tm;—1 <to}, Bj={ SUP | 5

1<k=<m;

11 <
-2
then for sufficiently large j, we have
E[[WEm — WE™i |14 g, ] <&

PROOF. By Proposition 8, we can choose a positive integer d large enough
that the mean of the dlstrlbutlon T4 (8o0) is less than 4y /3. Choose 0 < § < 1 small
enough that (6/2) Z (2 +8)" < /2 and 67y 8 < £/4. Choose a positive integer
M and then choose fg < §/M such that if ¢ < ¢y and n > M, then the conclusion of
Lemma 3 holds for this choice of §.

Suppose 0 < £ < d — 1. Then, dropping the superscripts k and m to lighten
notation,

Wil...ig Wil‘..ig h(Uil...i[’ Wil...i(l + Wil...igZ)

Wi, i, ' B 'h(Uil...ip Wi it + Wirii2) (Ui iy Wiy it + Wiy i2)
Recall the definition of the function £ from (3.2). Because

xy—1|=[x—=14+x(—-D|<|x—=1]+x]y—1]

for positive real numbers x and y, we have
Wi, i
W;

i1...0¢

_1‘

- ‘ Wi, i, _ ‘
" AUy .ips Wiy it + Wiy ig2)
n Wi iy h(Ui,..iy» ‘/Yil...igl + VYil,..iﬂ) _ 1‘.
h(Uiy..ips Wiy it + Wiy i) Th(Ui, iy, Wiy it + Wiy i2)
If0<u <1andxy, x2, y1, y2 > 0, then

’h(u,x1+x2)_1‘ ‘(1 —u)+ 55 y1+y2 e x1+xz_1‘ - x_1_1'+ 2_1‘.
h(u, y1 + y2) (1_M)+x1+xz Tyt +y i »
Therefore,
Wi _ 1'
Wi i
(3.9) < ’ Wiy..i - 1'
h(Ui,..ips Wiy it + Wiy _ip2)
(s iz )
h(Ui,..i,» Wzl il Wi i) \I Wi, it Wi g2
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Interpreting V;, ;, , to be Tmj—1 when £ =0, we have

‘ Wi, ., _

h(Ui, ...ips Wiy it + Wiy _ip2)
Niy iy Viy .oy B

h(Viy..io/ Viy.io_y> Viy.iy (Niy i1 + Niy_iy2))

(‘/i]...ig,1 - ‘/il...i({) + 2/(Nl'|.‘.igl + Ni]...igZ)
= Ni]...ig 2 = 1.

1

1\

Recall that N;, _;, is obtained by running Kingman’s coalescent started with
Ni,..i;t + Ni.i,2 blocks for time Vi, ;,_, — Vi, ..i,- Now let F ; denote the o-
field generated by the process (Woo(?),t > 0) and the random variables W;, ;,
withf+1<b<dandij...ip €{l,2}. By Lemma 3,

EH Wil..‘ig
h(Ui,...ip» Wiy.igt + Wiy i2)

on the event D;, ;, = {Nj, i1 + Ni, .i,2 > M}. Combining this result with (3.9)
yields that on D;, _;,,

)
-1 e
2

JlA,‘fe,j} =<

Wi
EH# —1 ]lAj’]:e,j]
Wi, ..
(3.10) 5 SN /W W
<24 (1 + _)(‘ _11...141 . 1‘ + _11...152 . IDRAj-
2 2 Wil..‘i({l Wil...igz

Now suppose Dj ; occurs. Then Wi, i, = Vi iy Ni iy < Vij.ig(Niyipy +
Ni,_ip2) < rmj_lM. Because Wil...iz > 2 by construction in view of the defini-
tion of the function #, it follows that Wil...u/Wil...il <t 1M/2 < Mity/2 <6/2
on Aj. By the same reasoning, if N;, ;1 < M, we have Wil...igl/Wil...igl <45/2
on Aj, and likewise if N;, ;2 < M. Thus, on the event Dflmig, the left-hand side
of (3.10) is bounded above by 1, while the right-hand side is bounded below by
3/24+(1+46/2)(1—=45/2) > 1 on A;. Therefore, (3.10) also holds on Dl.c1 .. Now
taking conditional expectations with respect to F;_1,; on both sides of (3.10), we
get

R7

(3.11) EHM—l

i1...0¢

8 W
]lA/‘]:a'—l,j] =3 +(2+5)EHW’1%~’61 -1

i1...0¢1

]lAj‘]:d—l,j]-

Recall the definition of L% from (3.6). Note that LX)/ is Fa-1,j-measurable
and Aj € F4_1, ;. Therefore, when £ = d — 1, equation (3.11) implies

E[ Wiiar
Wl’]...id,|

) .
IlAj‘fd_Lj] < (E + Q2+ 3)Lk’m1)ﬂAj.
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Applying (3.11) inductively as £ goes from d — 2 down to 0 gives

Wk’mj
iz

whmj 1

8 A
14, ]fd_l,,] < (5 Y 2+y"+2+ 5)de’mJ>1Aj
n=0

& dykm;
§<§+3 L mJ):ﬂ.Aj.

Because Yf/k’m/’ is F4-1,j-measurable and B; € F;_1,;, we can multiply both
sides by Wk, 1p; to get

o € N\ s km:
E[’Wk’m/ . Wksmj ‘1].Ajﬂ3j|fd—1,j] < (5 + Sde,mJ)Wk,mj:[]_AjﬁBj

§§<§+3de,mj>Wk,mj,*,+‘
2\2

Taking expectations of both sides, we get

- 3¢ 34t
E[JW5™i — WE™i14,08,] < Vi TE[Wk~mf’*~+Lk,mj],

The result now follows from Lemma 13. [

LEMMA 15. Define u* as in Proposition 8, and let y = [5° xu*(dx) be the
mean of L*. Suppose s; > m; and sjn; > m% Then

1 mj
m; DoWEM sy,
J k=1

where —, denotes convergence in probability as j — 00.

PROOF. Let 5 > 0, and let ¢ = 2. By Proposition 8, we can choose a positive
integer d sufficiently large that the mean of T9(8,) is greater than y — 7, and
the mean of 7% (84 is less than y + 7. Because the random variables W*j-*+
are independent of one another and have the distribution 7% (8+), and the random
variables WK%~ are independent of one another and have distribution T4(8,),
it follows from the law of large numbers and the assumption that lim;_, .o m ; = 00
that

1 m;j 1 m;
lim P(y —p<— Y Whmirm < N ket <y g n) =1.
Jj—00 mj k=1 I’I’lj k=1

Therefore, by (3.3),

1 m;j
lim P y—n<—ZWk’mf’*<y+n =1.
J=00 Mj k=1



1834 BLANCAS, ROGERS, SCHWEINSBERG AND SIRI-JEGOUSSE

It now follows from Lemma 11 that

1 Y
(3.12) lim Ply—n<—>) W' <y+p)=1.
J— 00 mjk:l

Define 79 and the events A; and B; as in Lemma 14. We have

al =

1 m;

_ ZWk’mj -y

mj =

mj

1 _
(3.13) < P(A%) + P(B )+p< SO Wk y Zn)
' mj =
’nj
( > WM — Zwkm’ 1a;nB; >77)
mj =1 mj =1

Note that lim; _, » P(A;) =0by (2.1)and lim;_, o P(BJC.) =0by Lemma 11. The
third term on the right-hand side of (3.13) tends to zero as j — oo by (3.12). By
Lemma 14 and Markov’s inequality, for sufficiently large j, we have

1 mj ' 1 mj -
Pll— wemip — W51 A AR >
<mm; '"J'/; AJHB’_U)

1
<—ZE [|whmi — Whmi|1,qp,] <
nmj 2

3|(‘0

Because n > 0 is arbitrary, the result follows. [
3.3. Proof of Theorem 1.

PROOF OF THEOREM 1. For positive integers j, let mj =2(1 +¢&)/ctj and

m; = 2(1 — &) /ct;. It follows from (2.1) that mt,, — 2/c as m — oo, which im-
plies that almost surely 7, + <t; < 7, - for sufficiently large j. Therefore, almost
J J

surely
(3.14) N(t,-) =N(j) = N(t,+)

for sufficiently large j. The assumptions of Theorem 1 imply that s; > m+ and

njs;j > (er)2 and the same is true for m’; . Therefore, by Lemma 15, using —
to denote convergence in probability as j — oo, we have

+ +
m . m .
‘L’m;r_lN(‘Eme_l) T, mt—1 j 1 ot
T =7 doNET FZW S =p Y
J Mj k=1 J k=1
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Now using again that mt,, — 2/c almost surely as m — 0o, we get

() PN = S
and, therefore,
(3.15) tij(rm;r) —p M.
By the same reasoning,
21— &)y

(3.16) 17N (z,-) —p
J
By letting ¢ — 0, we obtain the result from (3.14), (3.15) and (3.16). U

Acknowledgements. This project began while the authors were attending a
Bath, UNAM, and CIMAT (BUC) workshop in Guanajuato, Mexico in May, 2016.
The authors thank Andreas Kyprianou, Juan Carlos Pardo and Victor Rivero for
their roles in organizing this workshop. ASJ would like to thank Amaury Lambert
and Emmanuel Schertzer for insightful discussions about the nested coalescent.

REFERENCES

[1] ALDous, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation
and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 3—48.
MR1673235

[2] ALDOUS, D. J. and BANDYOPADHYAY, A. (2005). A survey of max-type recursive distribu-
tional equations. Ann. Appl. Probab. 15 1047-1110. MR2134098

[3] BANSAYE, V., MELEARD, S. and RICHARD, M. (2016). Speed of coming down from infinity
for birth-and-death processes. Adv. in Appl. Probab. 48 1183-1210. MR3595771

[4] BERESTYCKI, J. and BERESTYCKI, N. (2009). Kingman’s coalescent and Brownian motion.
ALEA Lat. Am. J. Probab. Math. Stat. 6 239-259. MR2534485

[S] BERESTYCKI, J., BERESTYCKI, N. and LIMIC, V. (2010). The A-coalescent speed of coming
down from infinity. Ann. Probab. 38 207-233. MR2599198

[6] BERESTYCKI, N. (2009). Recent Progress in Coalescent Theory. Ensaios Matemdticos [Math-
ematical Surveys] 16. Sociedade Brasileira de Matematica, Rio de Janeiro. MR2574323

[71 BLANCAS, A., DUCHAMPS, J.-J., LAMBERT, A. and SIRI-JEGOUSSE, A. (2018). Trees
within trees: Simple nested coalescents. Electron. J. Probab. 23 1-217.

[8] CREER, S. et al. (2010). Ultrasequencing of the meiofaunal biosphere: Practice, pitfalls and
promises. Mol. Ecol. 19 4-20.

[9] DAwSON, D. A. (2018). Multilevel mutation-selection systems and set-valued duals. J. Math.
Biol. 76 295-378. MR3742789

[10] DHERSIN, J.-S., FREUND, F., SIRI-JEGOUSSE, A. and YUAN, L. (2013). On the length
of an external branch in the beta-coalescent. Stochastic Process. Appl. 123 1691-1715.
MR3027896

[11] EWENS, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3
87-112; erratum, ibid. 3 (1972), 240; erratum, ibid. 3 (1972), 376. MR0325177

[12] GIVENS, C. R. and SHORTT, R. M. (1984). A class of Wasserstein metrics for probability
distributions. Michigan Math. J. 31 231-240. MR0752258


http://www.ams.org/mathscinet-getitem?mr=1673235
http://www.ams.org/mathscinet-getitem?mr=2134098
http://www.ams.org/mathscinet-getitem?mr=3595771
http://www.ams.org/mathscinet-getitem?mr=2534485
http://www.ams.org/mathscinet-getitem?mr=2599198
http://www.ams.org/mathscinet-getitem?mr=2574323
http://www.ams.org/mathscinet-getitem?mr=3742789
http://www.ams.org/mathscinet-getitem?mr=3027896
http://www.ams.org/mathscinet-getitem?mr=0325177
http://www.ams.org/mathscinet-getitem?mr=0752258

1836

[13]
[14]
[15]
[16]
(7]
(18]
[19]
[20]

(21]

[22]
(23]

[24]

BLANCAS, ROGERS, SCHWEINSBERG AND SIRI-JEGOUSSE

HARVEY, P. H., MAY, R. M. and NEE, S. (1994). Phylogenies without fossils. Evolution 48
523-529.

KANTOROVIC, L. V. and RUBINSTEIN, G. S. (1958). On a space of completely additive func-
tions. Vestnik Leningrad Univ. Math. 13 52-59. MR0102006

KINGMAN, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235-248.
MRO0671034

LAMBERT, A. and SCHERTZER, E. (2018). Coagulation-transport equations and the nested
coalescents. Available at arXiv:1807.09153.

MADDISON, W. P. (1997). Gene trees in species trees. Syst. Biol. 46 523-536.

MOHLE, M. (2000). Total variation distances and rates of convergence for ancestral coales-
cent processes in exchangeable population models. Adv. in Appl. Probab. 32 983-993.
MR1808909

MOOERS, A. O. and HEARD, S. B. (1997). Inferring evolutionary process from phylogenetic
tree shape. Q. Rev. Biol. 72 31-54.

MORAN, P. A. P. (1958). Random processes in genetics. Proc. Camb. Philos. Soc. 54 60-71.
MRO0127989

MORGAN, M. J., Bass, D, Bik, H., BIRKY, C. W., BLAXTER, M., Crisp, M. D,
DERYCKE, S., FITCH, D., FONTANETO, D. et al. (2014). A critique of Rossberg et al.:
Noise obscures the genetic signal of meiobiotal ecospecies in ecogenomic datasets. Proc.
Royal Soc., Biol. Sci. 281 20133076.

ROSSBERG, A. G., ROGERS, T. and MCKANE, A. J. (2013). Are there species smaller than
1 mm? Proc. Royal Soc. Biol. Sci. 280 20131248.

ROSSBERG, A. G., ROGERS, T. and MCKANE, A. J. (2014). Current noise-removal methods
can create false signals in ecogenomic data. Proc. Royal Soc. Biol. Sci. 281 20140191.

SZOLLOSI, G. J., TANNIER, E., DAUBIN, V. and BOUSSAU, B. (2014). The inference of gene
trees with species trees. Syst. Biol. 64 e42—e62.

A. BLANCAS

INSTITUT FUR MATHEMATIK
GOETHE UNIVERSITAT FRANKFURT
ROBERT-MAYER-STR. 10,

60325 FRANKFURT AM MAIN
GERMANY

E-MAIL: airam.blancas @gmail.com

J. SCHWEINSBERG

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, SAN DIEGO
9500 GILMAN DRIVE

LA JOLLA, CALIFORNIA 92093-0112
USA

E-MAIL: jschwein@math.ucsd.edu

T. ROGERS

DEPARTMENT OF MATHEMATICAL SCIENCES
UNIVERSITY OF BATH

BATH BA27AY

UNITED KINGDOM

E-MAIL: t.c.rogers @bath.ac.uk

A. SIRI-JEGOUSSE

DEPARTAMENTO DE PROBABILIDAD Y ESTADISTICA
IIMAS

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
APARTADO POSTAL 126

CIUDAD DE MEXICO

CDMX, 01000 MEXICO

MEXICO

E-MAIL: arno@sigma.iimas.unam.mx


http://www.ams.org/mathscinet-getitem?mr=0102006
http://www.ams.org/mathscinet-getitem?mr=0671034
http://arxiv.org/abs/arXiv:1807.09153
http://www.ams.org/mathscinet-getitem?mr=1808909
http://www.ams.org/mathscinet-getitem?mr=0127989
mailto:airam.blancas@gmail.com
mailto:t.c.rogers@bath.ac.uk
mailto:jschwein@math.ucsd.edu
mailto:arno@sigma.iimas.unam.mx

	Introduction
	Deﬁnition of the model
	Main results
	Heuristics and simulations

	Results on Kingman's coalescent
	Estimates on the number of blocks
	Proof of Proposition 2
	Kingman's coalescent and time-changed Yule trees

	Results on the nested coalescent
	Convergence to a unique solution of the RDE
	Mergers of individual ancestral lines
	Proof of Theorem 1

	Acknowledgements
	References
	Author's Addresses

