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Project funded by NOAA's Hurricane Forecast and
Improvement Project (HFIP)

Obijectives:

* To increase usefulness of observations in high-
resolution hurricane modeling systems (e.g., HWRF) .

* To develop advanced model diagnostic techniques to
support model improvements and identification of
sources of model errors.

A developmental framework for improving hurricane
model physics (Jun Zhang et al. 2012, TCRR)

1. Model diagnostics against observations

2. Development of new physics using observations
3. Observation-based model physics upgrade

4. Evaluation of the Impact of physics upgrade



Use aircraft observations to improve PBL
physics in the operational hurricane HWRF
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<u’'w’>=-K_ du/dz

K, = k (UJ®,) Z {a(1 — Z/h) 2 (Gopal et al. 2013, JAS; Jun Zhang et al. 2012, TCRR)

Observations were collected by P3 aircraft at ~450 m in Cat5 Hurricanes Hugo (1989)
and Allen (1980). (Marks 1985; Marks et al. 2008; Jun Zhang et al. 2011a) 3



Data used for eddy diffusivity calculation
(Zhang et al. 2011a MWR)

We use the flight-level data that were collected using the low-level eyewall
penetrations of Hurricanes Allen (1980) and Hugo (1989).

Allen, Aug. 6, 1980 Hugo, Aug. 15, 1989
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Further Evaluation: Improved Track and Intensity

Forecasts based HWRF Retrospective Runs
(Zhang et al. 2015 MWR)
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Composite study on impact of PBL changes on RI forecasts
(Zhang et al. 2017MWR)

« Composite of HWREF forecasts of Earl (2010), Karl (2010)
« 55 forecasts in total for each PBL configuration
» Cycled forecasts, 3-km grid length

* Only difference was in K., formulation
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» Low-Km forecasts produce more Rl events, fewer misses, more hits, but slightly more
false alarms.

» Composite analysis of axisymmetric structure shows that low-Km forecasts have
stronger inflow, stronger and deeper convection that is located further inward from the
RMW, and stronger boundary-layer convergence at the Rl onset. 6
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Effects of horizontal diffusion on hurricane intensity and
iIntensity change
(Zhang and Marks 2015, MWR )

Peak intensity of the five—day forecast
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» Both the maximum intensity and intensity change rate are sensitive to the
horizontal mixing length (Lh). This result is conssitent with Bryan and Rotunno
(2009); Bryan et al. (2010); Rotunno and Bryan (2012).



Horizontal mixing length from observations

(Zhang and Montgomery, 2012 JAS)
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Flight-level data collected during low-level eyewall penetrations of Hurricanes
Allen (1980), Hugo (1989) and David (1979).
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HWRF forecasts of Hurricane Earl (2010):

Sensitivity to horizontal mixing length (L)
(Zhang et al. 2018WAF)
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» The HWRF forecast with L, =750 m simulated the storm intensity and structure of Hurricane Earl
better than other forecasts with other values of L,,.

» In the control experiment L,=1900 m, same as in the 2015 version operational HWRF model (H215),

which is too large based on the sensitivity test.
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Impact of reduced L, in H216 on HWRF forecasts

(Zhang et al. 2018WAF)

HWRF FORECAST — INTENSITY VMAX ERROR (KT) STATISTICS
VERIFICATION FOR NATL BASIN 2014,2016
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Impact of reduced L, in H216 on HWRF forecasts

(Zhang et al. 2018WAF)

HWRF FORECAST — INTENSITY FSP ERROR (%) STATISTICS
VERIFICATION FOR NATL BASIN 2014,2016
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Impact of reduced L, in H216 on HWRF forecasts
(Zhang et al. 2018WAF)

HWRF FORECAST — BIAS ERROR (KT) STATISTICS
VERIFICATION FOR NATL BASIN 2014,2016
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Impact of reduced L, in H216 on HWRF forecasts

(Zhang et al. 2018WAF)

HWRF FORECAST — RADIUS OF MAXIMUM WIND BIAS (NM) STATISTICS
VERIFICATION FOR NATL BASIN 2014,2016

e HOAC: FY16 HWRF, Control
901 " COAC: FY16 HWRF with H215 coac
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Summary

1. Successful Examples of Research to Operations
(R20) are shown in terms of using observational data
to improve turbulence parameterizations in HWRF.

2. Model deficiency can be identified through model
diagnostics of TC structures against observations.

3. Turbulence observations provide baseline for model
physics improvement.

4. Observation-based turbulence parameterizations
led to improvements in hurricane intensity and
structure forecasts.
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Backup slides
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Effects of vertical diffusion on hurricane structure
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Why does the vertical diffusion in the boundary layer have such a profound effect on the
(Jun Zhang et al. 2015, MWR)

structure and intensity of hurricanes?

1.The radial inflow is stronger for the case with the weaker diffusion.

2. As this radial inflow travels past the point of gradient wind balance (near the RMW),
its greater inertia will carry it further inward, leading to a stronger azimuthal wind

maximum in the boundary layer.
3. Furthermore, the base of the eyewall updraft will be at smaller radius, which further

favors intensity due to the greater inertial stability there.

r
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Effects of horizontal diffusion on the hurricane spin-up dynamics
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1. The total mean advection of
<M> and the Fr term are the

main contributors to the gain
and loss of <M>, respectively;

2. Convergence of <M> in the
boundary layer is very
important for hurricane
intensification;

3. The resolved eddy advection of
<M> is important for the spin-
up of the low-level vortex inside
the RMW when Lh is small.

(J. Zhang and F. Marks, 2015, MWR)
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Horizontal diffusion in HWRF

For the horizontal diffusion, the NMM uses a 2°® order, nonlinear Smagorinsky-type
parameterization (Janjic 1990). The diffusion has the form:

817 F?H .
V(K V). GT:V.(KJ?VH)_ (9.1.1)
ot ot

Here V and H stand for any v point or / point variable, respectively. In the NMM, the exchange
coefficient K 1s flow dependant:

K, =Cd_ |7 (9.1.2)

where C 1s a constant, 4_. 1s the mmimum grid distance and A 1s proportional to the horizontal

deformation, which in the NMM is modified by the presence of turbulent kinetic energy (Janjic
1990):
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Further Evaluation: Improved Hurricane Structure

PBL11 :

PBL12:

Dropsonde

Composite :
(Jun Zhang et al. 2011b MWR)
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Model composites of 120 HWRF forecasts of four hurricanes (PBL11 and PBL12)



