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Abstract

Capabilities to categorize a clause based on the

type of situation entity (e.g., events, states and

generic statements) the clause introduces to

the discourse can benefit many NLP applica-

tions. Observing that the situation entity type

of a clause depends on discourse functions the

clause plays in a paragraph and the interpre-

tation of discourse functions depends heav-

ily on paragraph-wide contexts, we propose

to build context-aware clause representations

for predicting situation entity types of clauses.

Specifically, we propose a hierarchical recur-

rent neural network model to read a whole

paragraph at a time and jointly learn represen-

tations for all the clauses in the paragraph by

extensively modeling context influences and

inter-dependencies of clauses. Experimen-

tal results show that our model achieves the

state-of-the-art performance for clause-level

situation entity classification on the genre-

rich MASC+Wiki corpus, which approaches

human-level performance.

1 Introduction

Clauses in a paragraph play different discourse

and pragmatic roles and have different aspectual

properties (Smith, 1997; Verkuyl, 2013) accord-

ingly. We aim to categorize a clause based on

its aspectual property and more specifically, based

on the type of Situation Entity (SE)1 (e.g., events,

states, generalizing statements and generic state-

ments) the clause introduces to the discourse, fol-

lowing the recent work by (Friedrich et al., 2016).

Understanding SE types of clauses is beneficial for

many NLP tasks, including discourse mode identi-

1The Situation Entity (SE) type of a clause is defined with
respect to three situation-related features: the main NP ref-
erent type (specific or generic), fundamental aspectual class
(stative or dynamic), and whether the situation evoked is
episodic or habitual (Friedrich and Palmer, 2014b).

fication2 (Smith, 2003, 2005), text summarization,

information extraction and question answering.

The situation entity type of a clause reflects

discourse roles the clause plays in a paragraph

and discourse role interpretation depends heavily

on paragraph-wide contexts. Recently, Friedrich

et al. (2016) used insightful syntactic-semantic

features extracted from the target clause itself for

SE type classification, which has achieved good

performance across several genres when evaluated

on the newly created large dataset MASC+Wiki.

In addition, Friedrich et al. (2016) implemented

a sequence labeling model with conditional ran-

dom fields (CRF) (Lafferty et al., 2001) for fine-

tuning a sequence of predicted SE types. However,

other than leveraging common SE label patterns

(e.g., GENERIC clauses tend to cluster together.),

this approach largely ignored the wider contexts a

clause appears in when predicting its SE type.

To further improve the performance and robust-

ness of situation entity type classification, we ar-

gue that we should consider influences of wider

contexts more extensively, not only by fine-tuning

a sequence of SE type predictions, but also in de-

riving clause representations and obtaining precise

individual SE type predictions. For example, we

distinguish GENERIC statements from GENER-

ALIZING statements depending on if a clause ex-

presses general information over classes or kinds

instead of specific individuals. We recognize the

latter two clauses in the following paragraph as

GENERALIZING because both clauses describe

situations related to the Amazon river:

(1): [Today, the Amazon river is experiencing

a crisis of overfishing.]STATE [Both subsistence

fishers and their commercial rivals compete in net-

ting large quantities of pacu,]GENERALIZING

2E.g., EVENTs and STATEs are dominant in narratives
while GENERALIZINGs and GENERICs are dominant in
informative discourses.
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[which bring good prices at markets in Brazil and

abroad.]GENERALIZING

If we ignore the wider context, the second

clause can be wrongly recognized as GENERIC

easily since “fishers” usually refer to one gen-

eral class rather than specific individuals. How-

ever, considering the background introduced in

first clause, “fishers” here actually refer to the fish-

ers who fish on Amazon river which become spe-

cific individuals immediately.

Therefore, we aim to build context-aware clause

representations dynamically which are informed

by their paragraph-wide contexts. Specifically,

we propose a hierarchical recurrent neural net-

work model to read a whole paragraph at a time

and jointly learn representations for all the clauses

in the paragraph. Our paragraph-level model

derive clause representations by modeling inter-

dependencies between clauses within a paragraph.

In order to further improve SE type classification

performance, we also add an extra CRF layer at

the top of our paragraph-level model to fine-tune

a sequence of SE type predictions over clauses

(Friedrich et al., 2016), which however is not our

contribution.

Experimental results show that our paragraph-

level neural network model greatly improves the

performance of SE type classification on the same

MASC+Wiki (Friedrich et al., 2016) corpus and

achieves robust performance close to human level.

In addition, the CRF layer further improves the SE

type classification results, but by a small margin.

We hypothesize that situation entity type patterns

across clauses may have been largely captured by

allowing the preceding and following clauses to

influence semantic representation building for a

clause in the paragraph-level neural net model.

2 Related Work

2.1 Linguistic Categories of SE Types

The situation entity types annotated in the

MASC+Wiki corpus (Friedrich et al., 2016) were

initially introduced by Smith (2003), which were

then extended by (Palmer et al., 2007; Friedrich

and Palmer, 2014b). The situation entity types can

be divided into the following broad categories:

• Eventualities (EVENT, STATE and RE-

PORT): for clauses representing actual hap-

penings and world states. STATE and

EVENT are two fundamental aspectual

classes of a clause (Siegel and McKeown,

2000) which can be distinguished by the se-

mantic property of dynamism. REPORT is a

subtype of EVENT for quoted speech.

• General Statives (GENERIC and GENER-

ALIZING): for clauses that express general

information over classes or kinds, or regular-

ities related to specific main referents. The

type GENERIC is for utterances describing a

general class or kind rather than any specific

individuals (e.g., People love dogs.). The

type GENERALIZING is for habitual utter-

ances that refer to ongoing actions or prop-

erties of specific individuals (e.g., Audubon

educates the public.).

• Speech Acts (QUESTION and IMPERA-

TIVE): for clauses expressing two types of

speech acts (Searle, 1969).

2.2 Situation Entity (SE) Type Classification

Although situation entities have been well-studied

in linguistics, there were only several previous

works focusing on data-driven SE type classi-

fication using computational methods. Palmer

et al. (2007) first implemented a maximum en-

tropy model for SE type classification relying on

words, POS tags and some linguistic cues as main

features. This work used a relatively small dataset

(around 4300 clauses) and did not achieve satisfied

performance (around 50% of accuracy).

To bridge the gap, Friedrich et al. (2016) cre-

ated a much larger dataset MASC+Wiki (more

than 40,000 clauses) and achieved better SE type

classification performance (around 75% accuracy)

by using rich features extracted from the target

clause. The feature sets include POS tags, Brown

cluster features, syntactic and semantic features of

the main verb and main referent as well as fea-

tures indicating the aspectual nature of a clause.

Friedrich et al. (2016) further improved the per-

formance by implementing a sequence labeling

(CRF) model to fine-tune a sequence of SE type

predictions and noted that much of the perfor-

mance gain came from modeling the label pattern

that GENERIC clauses often occur together. In

contrast, we focus on deriving dynamic clause rep-

resentations informed by paragraph-level contexts

and model context influences more extensively.

Becker et al. (2017) proposed a GRU based neu-

ral network model that predicts the SE type for

one clause each time, by encoding the content

of the target clause using a GRU and incorporat-

ing several sources of context information, includ-
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ing contents and labels of preceding clauses as

well as genre information, using additional sepa-

rate GRUs (Chung et al., 2014). This model is dif-

ferent from our approach that processes one para-

graph (with a sequence of clauses) at a time and

extensively models inter-dependencies of clauses.

Other related tasks include predicting aspectual

classes of verbs (Friedrich and Palmer, 2014a),

classifying genericity of noun phrases (Reiter

and Frank, 2010) and predicting clause habitual-

ity (Friedrich and Pinkal, 2015).

2.3 Paragraph-level Sequence Labeling

Learning latent representations and predicting a

sequence of labels from a long sequence of sen-

tences (clauses), such as a paragraph, is a chal-

lenging task. Recently, various neural network

models, including Convolution Neural Network

(CNN) (Wang and Lu, 2017), Recurrent Neural

Network (RNN) based models (Wang et al., 2015;

Chiu and Nichols, 2016; Huang et al., 2015; Ma

and Hovy, 2016; Lample et al., 2016) and Se-

quence to Sequence models (Vaswani et al., 2016;

Zheng et al., 2017), have been applied to the gen-

eral task of sequence labeling. Among them, the

bidirectional LSTM (Bi-LSTM) model (Schuster

and Paliwal, 1997) has been widely used to pro-

cess a paragraph for applications such as lan-

guage generation (Li et al., 2015), dialogue sys-

tems (Serban et al., 2016) and text summariza-

tion (Nallapati et al., 2016), because of its ca-

pabilities in modeling long-distance dependencies

between words. In this work, we use two lev-

els of Bi-LSTMs connected by a max-pooling

layer to abstract clause representations by ex-

tensively modeling paragraph-wide contexts and

inter-dependencies between clauses.

3 The Hierarchical Recurrent Neural

Network for SE Type Classification

We design an unified neural network to exten-

sively model word-level dependencies as well as

clause-level dependencies in deriving clause rep-

resentations for SE type prediction. Figure 1

shows the architecture of the proposed paragraph-

level neural network model which includes two

Bi-LSTM layers, one max-pooling layer in be-

tween and one final softmax prediction layer.

Given the word sequence of one paragraph as

input, the word-level Bi-LSTM will firstly gener-

ate a sequence of hidden states as word representa-

tions, then a max-pooling layer will be applied to

abstract clause embeddings from word represen-

tations within a clause. Next, another clause-level

Bi-LSTM will run over the sequence of clause em-

beddings and derive final clause representations by

further modeling semantic dependencies between

clauses within a paragraph. The softmax predic-

tion layer will then predict a sequence of situation

entity (SE) types with one label for each clause,

based on the final clause representations.

Word Vectors: To transform the one-hot repre-

sentation of each word into its distributed word

vector (Mikolov et al., 2013), we used the pre-

trained 300-dimension Google English word2vec

embeddings3. For the words which are not in-

cluded in the vocabulary of Google word2vec, we

randomly initialize their word vectors with each

dimension sampled from the range [−0.25, 0.25].

For situation entity type classification, it is im-

portant to recognize certain types of words such as

punctuation marks (e.g., “?” for QUESTION and

“!” for IMPERATIVE) as well as entities such as

locations and time values. We therefore created

feature-rich word vectors by concatenating word

embeddings with parts-of-speech (POS) tag and

named-entity (NE) tag one-hot embeddings4.

Deriving Clause Representations: In design-

ing the model, we focus on building clause rep-

resentations that sufficiently leverage cues from

paragraph-wide contexts for SE type prediction,

including both preceding and following clauses in

a paragraph. To process long paragraphs which

may contain a number of clauses, we utilize a two-

level bottom-up abstraction approach and progres-

sively obtain the compositional representation of

each word (low-level) and then compute a compo-

sitional representation of each clause (high-level),

with a max-pooling layer in between.

At both word-level and clause-level, we choose

the Bi-LSTM as our basic neural net component

for representation learning, mainly considering its

ability to capture long-distance dependencies be-

tween words (clauses) and to integrate influences

of context words (clauses) from both directions.

Given a word sequence X = (x1, x2, ..., xL)

3Downloaded from https://docs.google.com/

uc?id=0B7XkCwpI5KDYNlNUTTlSS21pQmM
4Our feature-rich word vectors are of dimension 343, in-

cluding 300 dimensions for Google word2vec + 36 dimen-
sions for POS tags + 7 dimensions for NE tags. We used the
Stanford CoreNLP to generate POS tags and NE tags.
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Figure 1: The Paragraph-level Model Architecture for Situation Entity Type Classification.

in a paragraph as the input, the word-level Bi-

LSTM will process the input paragraph by using

two separate LSTMs, one processes the word se-

quence from the left to right while the other pro-

cesses the sequence from the right to left. There-

fore, at each word position t, we obtain two hidden

states
−→
ht ,
←−
ht and concatenate them to get the word

representation ht = [
−→
ht ,
←−
ht ]. Then we apply the

max-pooling operation over the sequence of word

representations for words within a clause in order

to get the initial clause embedding:

hClause[j] =
Clause end

max
t=Clause start

ht[j] (1)

where, 1 ≤ j ≤ hidden unit size (2)

Next, the clause-level Bi-LSTM will process

the sequence of initial clause embeddings in

a paragraph and generate refined hidden states
−−−−−→
hClause t and

←−−−−−
hClause t at each clause position

t. Then, we concatenate the two hidden states

for a clause to get the final clause representation

hClause t = [
−−−−−→
hClause t,

←−−−−−
hClause t].

Situation Entity Type Classification: Finally, the

prediction layer will predict the situation entity

type for each clause by applying the softmax func-

tion to its clause representation:

yt = softmax(Wy ∗ hClause t + by) (3)

3.1 Fine-tune Situation Entity Predictions

with a CRF Layer

Previous studies (Friedrich et al., 2016; Becker

et al., 2017) show that there exist common SE la-

bel patterns between adjacent clauses. For exam-

ple, Friedrich et al. (2016) reported the fact that

GENERIC sentences usually occur together in a

paragraph. Following (Friedrich et al., 2016), in

order to capture SE label patterns in our hierarchi-

cal recurrent neural network model, we add a CRF

layer at the top of the softmax prediction layer

(shown in figure 2) to fine-tune predicted situation

entity types.

The CRF layer will update a state-transition ma-

trix, which can effectively adjust the current label

depending on its preceding and following labels.

Both the training and decoding procedures of the

CRF layer can be conducted efficiently using the

Viterbi algorithm. With the CRF layer, the model

jointly assigns a sequence of SE labels, one label

per clause, by considering individual clause repre-

sentations as well as common SE label patterns.
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Figure 2: Fine-tune a Situation Entity Label Se-

quence with a CRF layer.

3.2 Parameter Settings and Model Training

We finalized hyperparameters based on the best

performance with 10-fold cross-validation on the

training set. The word vectors were fixed dur-

ing model training. Both word representations and

clause representations in the model are of 300 di-

mensions, and all the Bi-LSTM layers contain 300

hidden units as well. To avoid overfitting, we

applied dropout mechanism (Hinton et al., 2012)

with dropout rate of 0.5 to both input and output

vectors of Bi-LSTM layers. To deal with the ex-

ploding gradient problem in LSTMs training, we

utilized gradient clipping (Pascanu et al., 2013)

with gradient L2-norm threshold of 5.0 and used

L2 regularization with λ = 10−4 simultaneously.

These parameters remained the same for all our

proposed models including our own baseline mod-

els.

We chose the standard cross-entropy loss func-

tion for training our neural network models and

adopted Adam (Kingma and Ba, 2014) optimizer

with the initial learning rate of 0.001 and the batch

size5 of 128. All our proposed models were im-

plemented with Pytorch6 and converged to the best

result within 40 epochs. Note that to diminish the

effects of randomness in training neural network

models and report stable experimental results, we

ran each of the proposed models as well as our

own baseline models ten times and reported the

averaged performance across the ten runs.

4 Evaluation

4.1 Dataset and Preprocessing

The MASC+Wiki Corpus: We evaluated our

neural network model on the MASC+Wiki cor-

pus7 (Friedrich et al., 2016), which contains more

5Counted as the number of SEs rather than paragraph in-
stances.

6http://pytorch.org/
7www.coli.uni-saarland.de/projects/

sitent/page.php?id=resources

SE type MASC Wiki Count

STATE 49.8% 24.3% 18337

EVENT 24.3% 18.9% 9688

REPORT 4.8% 0.9% 1617

GENERIC 7.3% 49.7% 7582

GENERALIZING 3.8% 2.5% 1466

QUESTION 3.3% 0.1% 1056

IMPERATIVE 3.2% 0.2% 1046

Table 1: MASC+Wiki Dataset Statistics.

than 40,000 clauses and is the largest annotated

dataset for situation entity type classification. The

MASC+Wiki dataset is composed of documents

from Wikipedia and MASC (Ide et al., 2008) cov-

ering as many as 13 written genres (e.g., news,

essays, fiction, etc). Table 1 shows statistics of

the dataset, from which you can see that the SE

type distribution is highly imbalanced. The ma-

jority SE type of MASC documents is STATE

while the majority SE type of Wikipedia docu-

ments is GENERIC. To make our results compa-

rable with previous works (Friedrich et al., 2016;

Becker et al., 2017), we used the same 80:20 train-

test split with balanced genre distributions.

Preprocessing: As described in (Friedrich

et al., 2016), texts were split into clauses using

SPADE (Soricut and Marcu, 2003). There are

4,784 paragraphs in total in the corpus; and on

average, each paragraph contains 9.6 clauses. In

figure 4, the horizontal axis shows the distribution

of paragraphs based on the number of clauses in a

paragraph. The annotations of clauses are stored

in separate files from the text files. To recover the

paragraph contexts for each clause, we matched its

content with the corresponding raw document.

4.2 Systems for Comparisons

We compare the performance of our neural net-

work model with two recent SE type classification

models on the MASC+Wiki corpus as well as hu-

mans’ performance (upper bound).

• CRF (Friedrich et al., 2016): a CRF model

that relies heavily on features extracted from

the target clause itself.

• GRU (Becker et al., 2017): a GRU based neu-

ral network model that incorporates context

information by using separate GRU units and

predicts the SE type for one clause each time.

• Humans (Friedrich et al., 2016): one annota-

tor’s performance when using two other an-
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Model Macro Acc STA EVE REP GENI GENA QUE IMP

Humans 78.6 79.6 82.8 80.5 81.5 75.1 45.8 90.7 93.6

CRF (Friedrich et al., 2016) 71.2 76.4 80.6 78.6 78.9 68.3 29.4 84.4 75.3

Clause-level Bi-LSTM 74.4 78.3 82.6 81.3 84.9 66.2 36.1 88.5 80.9

Paragraph-level Model 77.6 81.2 84.3 82.1 85.3 76.4 43.2 90.8 81.2

Paragraph-level Model+CRF 77.8 81.3 84.3 82.0 85.7 77.0 43.5 90.4 81.5

Table 2: Situation Entity Type Classification Results on the Training Set of MASC+Wiki with 10-Fold

Cross-Validation. We report accuracy (Acc), macro-average F1-score (Macro) and class-wise F1 scores

for STATE (STA), EVENT (EVE), REPORT (REP), GENERIC (GENI), GENERALIZING (GENA),

QUESTION (QUE) and IMPERATIVE (IMP).

Model Macro Acc

CRF (Friedrich et al., 2016) 69.3 74.7

GRU (Becker et al., 2017) 68.0 71.1

Clause-level Bi-LSTM 73.5 76.7

Paragraph-level Model 77.0 80.0

Paragraph-level Model + CRF 77.4 80.7

Table 3: Situation Entity Type Classification Re-

sults on the Test Set of MASC+Wiki. We report

accuracy (Acc) and macro-average F1 (Macro).

notators’ annotation as “gold labels”. It has

been reported that labeling SE types is a non-

trivial task even for humans.

In addition, we implemented a clause-level Bi-

LSTM model as our own baseline, which takes a

single clause as its input. Since there is only one

clause, the upper Bi-LSTM layer shown in Figure

1 is meaningless and removed in the clause-level

Bi-LSTM model.

4.3 Experimental Results

Following the previous work (Friedrich et al.,

2016) on the same task and dataset, we report

accuracy and macro-average F1-score across SE

types on the test set of MASC+Wiki.

The first section of Table 3 shows the results of

the previous works. The second section shows the

result of our implemented clause-level Bi-LSTM

baseline, which already outperforms the previous

best model. This result proves the effectiveness of

the Bi-LSTM + max pooling approach in clause

representation learning (Conneau et al., 2017).

The third section reports the performance of the

paragraph-level models that uses paragraph-wide

contexts as input. Compared with the baseline

clause-level Bi-LSTM model, the basic paragraph-

level model achieves 3.5% and 3.3% of perfor-

mance gains in macro-average F1-score and ac-

curacy respectively. Building on top of the basic

paragraph-level model, the CRF layer further im-

proves the SE type prediction performance slightly

by 0.4% and 0.7% in macro-average F1-score and

accuracy respectively. Therefore, our full model

with the CRF layer achieves the state-of-the-art

performance on the MASC+Wiki corpus.

5 Analysis

5.1 10-Fold Cross-Validation

We noticed that the previous work (Friedrich et al.,

2016) did not publish the class-wise performance

of their model on the test set, instead, they reported

the detailed performance on the training set using

10-fold cross-validation. For direct comparisons,

we also report our 10-fold cross-validation results8

on the training set of MASC+Wiki.

Table 2 reports the cross-validation classifica-

tion results. Consistently, our clause-level base-

line model already outperforms the previous best

model. By exploiting paragraph-wide contexts,

the basic paragraph-level model obtains consistent

performance improvements across all the classes

compared with the baseline clause-level predic-

tion model, especially for the classes GENERIC

and GENERALIZING, where the improvements

are significant. After using the CRF layer to

fine-tune the predicted SE label sequence, slight

performance improvements were observed on the

four small classes. Overall, the full paragraph-

level neural network model achieves the best

macro-average F1-score of 77.8% in predicting SE

types, which not only outperforms all previous ap-

proaches but also reaches human-like performance

on some classes.

8The original folds split used by Friedrich et al. (2016) is
not available. So we manually split folds by ourselves with
even genre distribution across folds.
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Model Macro Acc STA EVE REP GENI GENA QUE IMP

CRF (Friedrich et al., 2016) 66.6 71.8 78.2 77.0 76.8 44.8 27.4 81.8 70.8

Clause-level Bi-LSTM 69.3 73.3 79.5 78.7 82.8 47.6 31.9 86.9 77.7

Paragraph-level Model 73.2 77.2 81.5 80.1 83.2 64.7 37.2 88.1 77.8

Paragraph-level Model+CRF 73.5 77.4 81.5 80.3 83.7 66.5 37.4 88.5 76.7

Table 4: Cross-genre Classification Results on the Training Set of MASC+Wiki. We report accuracy

(Acc), macro-average F1-score (Macro) and class-wise F1 scores.

Figure 3: Learning Curve of the Paragraph-level

Model + CRF on MASC+Wiki.

5.2 Impact of Genre

Considering that MASC+Wiki is rich in written

genres, we additionally conduct cross-genre clas-

sification experiments, where we use one genre of

documents for testing and the other genres of doc-

uments for training. The purpose of cross-genre

experiment is to see whether the model can work

robustly across genres.

Table 4 shows cross-genre experimental results

of our neural network models on the training set of

MASC+Wiki by treating each genre as one cross-

validation fold. As we expected, both the macro-

average F1-score and class-wise F1 scores are

lower compared with the results in Table 2 where

in-genre data were used for model training as well.

But the performance drop on the paragraph-level

models is little, which clearly outperform the pre-

vious system (Friedrich et al., 2016) and the base-

line model by a large margin. As shown in Ta-

ble 5, benefited from modeling wider contexts and

common SE label patterns, our full paragraph-

level model improves performance across almost

all the genres. The high performance in the cross-

genre setting demonstrates the robustness of our

paragraph-level model across genres.

Genre Baseline Full Model Humans

blog 66.7 70.3 72.9

email 71.1 71.5 67.0

essays 61.2 64.1 64.6

ficlets 67.9 68.8 81.7

fiction 70.2 72.1 76.7

gov-docs 68.6 68.9 72.6

jokes 70.0 75.0 82.0

journal 66.7 66.4 63.7

letters 68.6 71.2 68.0

news 70.4 72.7 78.6

technical 55.7 60.5 54.7

travel 51.3 53.6 48.9

wiki 55.2 60.6 69.2

Table 5: Cross-genre Classification Results by

Genre on the Training Set of MASC+Wiki.

Baseline: Clause-level Bi-LSTM; Full Model:

Paragraph-level Model + CRF. We report macro-

average F1-score for each genre.

5.3 Impact of Training Data Size

In order to understand how much training data is

required to train the paragraph-level model and

obtain a good performance for SE type classifi-

cation, we plot the learning curve shown in Fig-

ure 3 by training the full model several times us-

ing an increasing amount of training data. The

classification performance increased quickly be-

fore the amount of training data was increased to

30% of the full training set; then the learning curve

starts to become saturated afterwards. We con-

clude that the paragraph-level model can achieve

a high performance quickly without requiring a

large amount of training data.

5.4 Impact of Paragraph Length

To study the influence of paragraph lengths to

the performance of the paragraph-level models,

we report the performance of our proposed mod-

els on subsets of the test set, with paragraphs di-

vided based on the number of clauses in a para-
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Figure 4: Impact of Paragraph Lengths. We plot the macro-average F1-score for each paragraph length.

graph. The histogram in Figure 4 compares per-

formance of the two paragraph-level models and

the baseline model. Note that the last bucket (para-

graphs containing ten or more clauses) of the his-

togram is especially large and contains over 30%

of all the paragraphs in the test set. Clearly,

the paragraph-level model greatly outperforms the

baseline clause-level model on paragraphs con-

taining more than 6 clauses, which covers over

50% of the test set. Adding the CRF layer fur-

ther improves the performance of the paragraph-

level model on long paragraphs (with 10 or more

clauses), while the influences to the performance

are mixed on short paragraphs. Therefore, it is

beneficial to model wider paragraph-level contexts

and inter-dependencies between clauses for situ-

ation entity type classification, especially when

processing long paragraphs.

5.5 Impact of Discourse Connective Phrases

As one aspect of modeling context influences and

clause inter-dependencies in SE type identifica-

tion, we investigated the role of discourse connec-

tive phrases in determining the SE type of clauses

they connect. Our assumption is that discourse

connectives are important to glue clauses together

and removing them affects text coherence and in-

formation flow between clauses. Intuitively, the

connective “and” may occur between two clauses

with the same SE type; “for example” may indi-

cate that the following clause is not GENERIC.

Therefore, we designed a pilot experiment to see

whether discourse connective phrases are indis-

pensable in building clause representations.

In this pilot experiment, we extracted a list of

100 explicit discourse connectives. PDTB cor-

pus (Prasad et al., 2008) and identified clauses

that start with a discourse connecte9. Then we

ran the full paragraph-level model with one mod-

ification, i.e., disregarding words in connective

phrases when conducting the max-pooling oper-

ation in equation (1), thus we did not consider dis-

course connective phrases directly when building

a clause representation.

As shown in Table 6, for clauses containing a

discourse connective phrase, both macro-average

F1-score and accuracy dropped due to the exclu-

sion of discourse connective phrases. The perfor-

mance was negatively influenced across all the SE

types except the type of QUESTION and IMPER-

ATIVE10. The performance decreases on three SE

types, REPORT, GENERIC and GENERALIZ-

ING, are noticeable. To some extent, this pilot

study shows that modeling text coherence and the

overall discourse structure of a paragraph is im-

portant in situation entity type classification.

5.6 Confusion Matrix

Table 7 reports the confusion matrix of the

full model on the training set of MASC+Wiki

with cross-validation. We can see that the four

situation entity types, including two eventuali-

ties (STATE and EVENT) and two general sta-

9We found that 20.6% of clauses in the MASC+Wiki cor-
pus contain a discourse connective phrase.

10A possible explanation is that recognizing QUESTION
(IMPERATIVE) clauses mainly relies on seeing certain punc-
tuation marks and key words, such as “?” (“!”) and “why”
(“please”), which are independent from discourse connec-
tives.
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Macro Acc STA EVE REP GENI GENA QUE IMP

-1.2 -0.9 -1.0 -0.8 -2.3 -3.4 -2.2 0.5 0.3

Table 6: Impact of Discourse Connective Phrases. We report performance losses (percentages) on clauses

containing a connective phrase, when discourse connective phrases were excluded from clause represen-

tation building.

SE Type
Predicted

STA EVE REP GENI GENA QUES IMP

Gold

STA 12558 980 32 931 155 51 85

EVE 819 6626 116 242 124 11 16

REP 42 143 1097 3 4 1 2

GENI 1157 175 3 4523 117 14 14

GENA 281 254 5 161 431 5 12

QUES 51 7 2 8 1 773 4

IMP 106 21 7 18 3 3 650

Table 7: Confusion Matrix of the Paragraph-level Model + CRF on the Training Set of MASC+Wiki with

10-Fold Cross-Validation.

tives (GENERIC and GENERALIZING), are of-

ten mutually confused with each other. To fur-

ther improve the performance of situation en-

tity type classification, it is important to accu-

rately detect events within a clause (for fixing

STATE/EVENT errors) and identify the generic-

ity of main referents (for fixing STATE/GENERIC

and GENERIC/GENERALIZING errors), which

can be potentially achieved by incorporating lin-

guistic features into neural net models.

6 Conclusion

We presented a paragraph-level neural network

model for situation entity (SE) type classification

which builds context-aware clause representations

by modeling inter-dependencies of clauses in a

paragraph. Evaluation shows that the paragraph-

level model outperforms previous systems for SE

type classification and approaches human-level

performance. In the future, we plan to incorpo-

rate SE type information in various downstream

applications, e.g., many information extraction ap-

plications that require distinguishing specific fact

descriptions from generic statements.
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