


In addition to the global causal structures re-

lated to main events of a document, we model

three types of fine-grained causal structures in or-

der to accurately identify each individual causal

relation. First, specific sentential syntactic rela-

tions may evoke causal relations between event

pairs. For instance, adverbial clause modifier of

a verb phrase explains its consequence, condition

or purpose. Second, we model implications of a

discourse relation between two text units (e.g., the

contingency discourse relation) towards causal re-

lations between events in the two text units. Third,

we model interactions between event causal re-

lations and event coreference relations. For ex-

ample, coreferent event mentions should have the

same causal relations; a causal relation and an

identity relation should not co-exist between any

two events.

We use Integer Linear Programming (ILP) to

model these rich causal structures within a docu-

ment by designing constraints and modifying the

objective function to encourage causal relations

akin to the observed causal structures and discour-

age the opposite. Our experimental results on the

dataset EventStoryLine (Caselli and Vossen, 2017)

show that modeling the global and fine-grained

aspects of causal structures within a document

greatly improves the performance of causal rela-

tion identification, especially in identifying cross-

sentence causal relations.

2 Related Work

In the last decade or so, both unsupervised and su-

pervised causal relation identification approaches

have been proposed including linguistic patterns,

statistical measures and supervised classifiers, pri-

marily with the goal of acquiring event causal-

ity knowledge from a text corpus. The pro-

posed approaches mainly rely on explicit contex-

tual patterns (Girju, 2003; Hashimoto et al., 2014)

or other causality cues (Riaz and Girju, 2010;

Do et al., 2011), statistical associations between

events (Beamer and Girju, 2009; Hu et al., 2017;

Hu and Walker, 2017; Do et al., 2011; Hashimoto

et al., 2014), and lexical semantics of events (Riaz

and Girju, 2013, 2014b,a; Hashimoto et al., 2014).

An increasing amount of recent works focused

on recognizing event causal relations within a doc-

ument, but mostly limited to identifying intra-

sentence causal relations with explicit causal indi-

cators. Mirza et al. (2014) annotated event causal

relations in the TempEval-3 corpus and created

CausalTimeBank. Mirza and Tonelli (2014) stated

that incorporating temporal information improved

the performance of a causal relation classifier.

Mirza and Tonelli (2016) built both a rule-based

multi-sieve approach and a feature based classi-

fier to recognize causal relations in CausalTime-

Bank. However, causal relations in CausalTime-

Bank are few and only explicitly stated intra-

sentence causal relations were annotated. In ad-

dition, Mostafazadeh et al. (2016) annotated both

temporal and causal relations in 320 short stories

(five sentences in each story) taken from the ROC-

Stories Corpus and indicated strong correlations

between causal relations and temporal relations.

Lately, Caselli and Vossen (2017) created a cor-

pus called EventStoryLine, which contains 258

documents and more than 5,000 causal relations.

The EventStoryLine corpus is the largest dataset

for causal relation identification till now with com-

prehensive event causal relations annotated, both

intra-sentence and cross-sentence, which presents

unique challenges for causal relation identifica-

tion. Caselli and Vossen (2017) showed that only

117 annotated causal relations in this dataset are

indicated by explicit causal cue phrases while the

others are implicit. We conduct experiments on

the EventStoryLine dataset. Distinguished from

most of the previous approaches that identify

one causal relation each time, we model coarse-

grained and fine-grained document-level event

causal structures and infer all the causal relations

in a document.

Integer linear programming (ILP) approaches

have been applied to predict a set of temporal re-

lations or an event timeline in a document (Do

et al., 2012; Teng et al., 2016; Ning et al., 2017).

ILP has been used to improve causal relation iden-

tification (Do et al., 2011), but only with fine-

grained constraints considering discourse relations

between two text units. Our approach innovates on

modeling other aspects of document-level causal

structures, especially heavy involvements of main

events in causal relations, that facilitate resolving

multiple causal relations.

3 The EventStoryLine Corpus

Table 1 shows the statistics of the corpus

EventStoryLine v0.91 (Caselli and Vossen, 2017).

1Statistics are calculated based on latest release
https://github.com/tommasoc80/EventStoryLine



Item Size

Topics 22

Documents 258

Sentences 4,316

Event Mentions 5,334

Intra-sentence causal links 1,770

Cross-sentence causal links 3,855

The Total causal links 5,625

Explicit causal links 117

Table 1: EventStoryLine v0.9

Causal relations annotated in EventStoryLine

are between two event mentions. Different causal

relations are annotated in EventStoryLine, called

“rising action” and “falling action”, which indi-

cate the directions of causal relations and intu-

itively correspond to “precondition” and “conse-

quence” relations. Note that in this paper, we fo-

cus on identifying all the pairs of events in a doc-

ument that are causally related, but not on clas-

sifying the direction of a causal relation though;

specifically, we aim to recognize if there exists a

causal relation between any two events A and B in

a document, but we do not further distinguish if A

causes B vs. B causes A.

On average, there is 1.2 event mentions in

each sentence. There are 7,805 intra-sentence and

46,521 cross-sentence event mention pairs in total

in the corpus, around 22% (1,770) and 8% (3,855)

of them were annotated with a causal relation re-

spectively. Out of the annotated causal links, only

117 Caselli and Vossen (2017) causal relations are

indicated by explicit causal cue phrases while the

others are implicit. In our experiments, we use

the gold event mentions in EventStoryLine and ex-

clude aspectual, causative, perception and report-

ing event mentions2, most of which were not anno-

tated with any causal relation according to Caselli

and Vossen (2017).

4 The Feature Based Local Pairwise

Classifiers

Intra- and cross-sentence causal relations are dif-

ferent by nature. For instance, dependency rela-

tions between words in a sentence may be more

useful for detecting intra-sentence causal rela-

tions, than when used for detecting cross-sentence

causal relations. Therefore, we train two sepa-

rate logistic regression classifiers, one for intra-

sentence causal link detection and the other for

cross-sentence causal link detection.

2639 event mentions were excluded in this way.

We consider all event mention pairs within

a sentence as training instances for the intra-

sentence causal relation classifier. Then we pair

event mentions from two sentences with one event

mention from each sentence, which are used as

training instances for the cross-sentence classi-

fier. Note that training instances for both classi-

fiers are unbalanced, with a POS:NEG ration of

around 1:3 and 1:10 for intra- and cross-sentence

cases respectively. We applied the “balanced”

class weight option3 in logistic regression classi-

fiers to deal with the class imbalance problem.

We use the same set of features for training both

classifiers, but we expect the two classifiers to as-

sign different weights to features.

4.1 The Common Feature Set

Lexical Features: We implement rich lexical fea-

tures to capture event word forms and similarities

between two events, event modifiers and event ar-

guments. First, we encode word and lemma for

each token in two event phrases as features. Then

we created various similarity features between two

events.

• Similarities Based on Event Word Form

Match. Three binary features indicating

whether the lowercases of two event head

words, two event head lemmas and two com-

plete event phrases are exactly the same.

• Similarities Based on Wordnet. We first

identify synsets for each event head word in

Wordnet. Then for each pair of synsets, with

one synset for each event head word, we cal-

culate the Wup similarity (Wu and Palmer,

1994). We create numerical features using

the average, minimal and maximal Wup sim-

ilarities.

• Similarities Based on Word Embeddings. We

apply l2 normalization on event head word

embeddings, and then we calculate the Eu-

clidean distance and Cosine distance between

two word embeddings and use them as fea-

tures. We use Glove Vectors (Pennington

et al., 2014) for word embeddings.

• Similarities Based on Event Modifiers. We

run the dependency parsing tool from the

Stanford CoreNLP (Manning et al., 2014)

and identify event modifiers as words that

3http://scikit-learn.org/stable/modules/generated/
sklearn.linear model.LogisticRegression.html



have a certain dependency relation4 with an

event head word. We measure the similarity

between two events using the number of com-

mon modifiers and the number of common

dependency relations that connect a modifier

with an event head word.

• Similarities Based on Event Arguments. We

consider entities that have a direct depen-

dency relation with an event head word as

its event arguments. We use the Stan-

ford CoreNLP to identify entities and their

types. We measure the similarity between

two events using the number of common

event arguments and the number of common

entity types.

Causal Potential Features: As inspired by the

causal potential metric proposed by (Beamer and

Girju, 2009), we encode features based on the

point-wise mutual information (PMI) score and

the relative textual order between two events. We

calculate the PMI score of two event words in

EventStoryLine by using co-occurrences of two

events in one sentence, and we use the score as

a numerical feature.

Syntactic Features: We use dependency relations

on the dependency path between two events. We

use the basic dependencies extracted from Stan-

fordCoreNLP (Manning et al., 2014). For cross-

sentence event pairs, we consider the dependency

path from each event to the root node in its own

sentence in extracting dependency relations, fol-

lowing Cheng and Miyao (2017). In addition, we

use Part Of Speech tags of two event head words

as features.

4.2 Score Replacement

We observed that the cross-sentence causal rela-

tion classifier is usually not as capable as the intra-

sentence classifier, probably due to less contex-

tual evidence to rely on. Therefore, for cross-

sentence event mention pairs that can be converted

to intra-sentence cases through event coreference

links, we use a heuristic method to improve causal

relation prediction performance and replace the

predictions from the cross-sentence classifier with

the predictions from the intra-sentence classifier5,

by using system predicted event coreference links.

4Specifically, we consider ’nmod’, ’amod’, ’advmod’,
’mark’, ’aux’, ’auxpass’, ’expl’, ’cc’, ’cop’, ’punct’ to be
modifiers.

5Note that we only conduct the score replacement when a
score produced by the intra-sentence classifier is higher than

Note that two events may have more than one pair

of mentions, one mention for each event, co-occur

within one sentence, we will use the highest score

produced by the intra-sentence classifier over all

the event mention pairs.

In addition, the score replacement procedure

may change prediction scores of some intra-

sentence event mention pairs as well. For in-

stance, if one event mention has a coreferent men-

tion within the same sentence that is closer to and

is more clearly in a causal relation with the other

event mention according to the intra-sentence clas-

sifier, and when paired up, the new event pair has

received a higher score, then we will replace the

score of the original event pair with the higher

score. We implemented the within-document neu-

ral network based event coreference classifier as

described in (Choubey and Huang, 2017) and used

the system to obtain event coreference links.

5 Modeling Causal Structures Using ILP

Our Integer Linear Programming (ILP) system

performs document level global inference for re-

solving all the intra-sentence and inter-sentence

event causal relations in a document. Let pij de-

notes confidence score from the corresponding lo-

cal pairwise classifier for assigning a causal rela-

tion to the event pair (i, j). Let µ refer to the set

of event mentions in a document, we formulate our

basic ILP objective function with equation 1.

ΘBasic = max
∑

i∈µ

∑

j∈µ

[

pijxij + ¬xij(1− pij)
]

(1)

We then augment the objective function with

new objectives (equation 2) and add constraints to

induce causal structures, including heavy involve-

ments of main events (ΘM and ΘF ) in causal re-

lations throughout the document, as well as fine-

grained interactions of event causal relations with

discourse relations (ΘD), and event coreference

relations(ΘC) as well as syntactic structure con-

straints (ΘS) for identifying causal relations.

Θ = ΘBasic +ΘM +ΘF +ΘD +ΘC +ΘS (2)

5.1 Document Level Main Event Based

Constraints

Main Event: Main events are central to the story

in a document and tend to participate in multiple

the score produced by the cross-sentence classifier, which in-
dicates that the intra-sentence classifier is more confident.



causal links. We recognize main events based on

characteristics of event coreference chains within

a document. Specifically, we rank events based

on the number of event mentions referring to an

event, and choose the top two events as main

events. 6 Then we add a new objective function

(equation 3) and additional constraints to encour-

age causal links in event mention pairs containing

a main event (equation 4) and discourage causal

links in the remaining mention pairs (equation 5).

ΘM = max
[

∑

i∈Λ

[km1
m1(i) + km2

m2(i)]

−
∑

i∈µ−Λ

[kn1
n1(i) + kn2

n2(i)]
] (3)

∀i ∈ Λ,
∑

j∈µ,di=dj

xij ≥ m1(i)

∀i ∈ Λ,
∑

j∈µ,di 6=dj

xij ≥ m2(i)
(4)

∀i ∈ µ− Λ,
∑

j∈µ−Λ,di=dj

xij ≤ n1(i)

∀i ∈ µ− Λ,
∑

j∈µ−Λ,di 6=dj

xij ≤ n2(i)
(5)

In the above equations, Λ denotes the set of

main event mentions, and di denotes the sentence

number for event i. The independent variables

m1(i) and m2(i) indicate the minimum num-

ber of intra- and cross-sentence causal relations

that main events participate in. By maximizing

m1(i) and m2(i) in the objective function ΘM ,

our model favors main events to have more causal

relations. Similarly, variables n1(i) and n2(i)
in equation 5 are separately defined to set up-

per thresholds on the maximum number of intra-

and cross-sentence causal relations without a main

event. Unlike m1(i) and m2(i), we aim to mini-

mize the variables n1(i) and n2(i) to restrict non-

main events from participating in causal relations.

Notice that we apply the constraints separately to

intra- and cross-sentence mention pairs. This is

primarily because main events are likely to par-

ticipate in many more cross-sentence causal rela-

tions compared to intra-sentence cases. Further-

more, we observe that a main event may trigger

6If there is a tie between two event clusters with the same
number of coreferential event mentions, we use the sum of
confidence scores for pairs of coreferential event mentions
in a cluster to break the tie. The confidence scores were as-
signed by the local pairwise coreference relation classifier.

several consequent events which themselves are

causally related. However, causal relations involv-

ing only non-main events are less likely to show

transitivity. Therefore, we add the constraint 6

to ensure non-transitivity among causal relations

with no main event.

xij + xjk + xik ≤ 2 + 1i∈Λ + 1j∈Λ + 1k∈Λ (6)

Locality Constraints: Main events may not al-

ways have the largest coreference chain size, and

the position of an event mention provides another

strong heuristics for identifying the main event

(Upadhyay et al., 2016). In addition, the first

sentence often summarizes the central context of

story and are likely to describe foreground events

(Grimes, 1975) that have causal relation with mul-

tiple other events. Therefore, we add an objective

function (equation 7) and additional constraints

(equation 8) to encourage causal relations that

contain an event from the first sentence.

ΘS = max
∑

i∈S

kfb1(i)−
∑

i∈µ

∑

j∈µ

kf lij · |di − dj | (7)

∀i ∈ F,
∑

j∈µ

xij ≥ b1(i) (8a)

∀ < i, j >∈ M,xij ≤ lij + 1i/∈{F} ∧ 1j /∈{F} (8b)

where, F represents all the events in first sen-

tence, independent variable b1(i) indicates the

minimum number of causal relations that an event

in F participates in, M represents the set of event

mention pairs that can be mapped to the same sen-

tence and lij is a leakage variable that allows dis-

tant event mentions in F receiving a very high

confidence value pij to have a causal relation. Par-

ticularly, we encourage causal links between two

event mentions that are in nearby sentences or can

be mapped to the same sentence using corefer-

ence links7. By maximizing the variables b1(i)
and minimizing the term lij · |di − dj |, we encour-

age event mentions in F complying with certain

constraints to have more causal relations.

5.2 Fine-grained Causal Structure

Constraints

Syntactic Relations: Specific sentential syntac-

tic relations may evoke causal relations between

7Two event mentions are mappable if their respective co-
referential event mentions co-occur in at least one sentence.



event pairs. First, adverbial clause modifier of a

verb phrase explains its consequence, condition

or purpose; Second, nominal events mentioned as

subject in the main clause presents an assertional

structure that delivers foreground (Grimes, 1975)

information which may have causal associations

with other events; Third, non-finite verb events

that share arguments and complement the main

event of a sentence are likely to have causal as-

sociations with the main event.

Therefore, we add an objective function (equa-

tion 9) and additional constraints (equation 10) to

encourage causal relations that contain a nomi-

nal event as subject or verb event that modifies

its parent with advcl or xcomp dependency rela-

tions. Here, S represents event mentions that pos-

sess one of the above syntactic structures, indepen-

dent variable b2(i) indicates the minimum number

of causal relations that an event in S participates

in. Note that equation 10(b) was modified from

8(b) and allows discounted optimization (with lij)

for events in S that are mappable to the same or

nearby sentences.

ΘS = max
∑

i∈S

ksb2(i) (9)

∀i ∈ S,
∑

j∈µ

xij ≥ b2(i) (10a)

∀ < i, j >∈ M,xij ≤ lij + 1i/∈{F,S} ∧ 1j /∈{F,S} (10b)

Discourse Relations: Note that the implications

of discourse relations between two text units to-

wards causal relations between events in the two

text units have been discussed in the previous work

(Do et al., 2011). In this work, we consider three

types of discourse relations. First, two subtypes of

the contingency discourse relation, namely cause

and condition, strongly suggest that causal links

exist between events in the two discourse units.

On the contrary, the comparison discourse relation

highlights semantic independence between two

discourse units, thus inhibits causal relations be-

tween events described in them. Third, all causal

relations are inherently temporal. An event that

causes another event must necessarily occur be-

fore or temporally overlap with the latter. Thus,

clauses having one of these temporal discourse re-

lations may also favor causal relations between

events in them. We model the above three depen-

dencies between discourse relations and causation

through constraints 11 and the objective function

12.

∀r = Contingency,
∑

i∈arg1

∑

j∈arg2

xij ≥ 1

∀r = Comparison,
∑

i∈arg1

∑

j∈arg2

xij ≤ 0

∀r = Temporal,
∑

i∈arg1

∑

j∈arg2

xij ≥ T (r)

(11)

ΘD = max
∑

r=Temporal

ktT (r) (12)

Specifically, we enforce events in clauses with

the contingency discourse relation to have at least

one event pair with causal relation. Similarly, we

inhibit a causal relation between any event pair

in clauses with the comparison discourse relation.

For events in clauses with a temporal discourse re-

lation, we aim to maximize the number of causal

relations without grounding it to any hard lower

bound. Here, r denotes the discourse relation be-

tween two discourse arguments, arg1 and arg2,

and Temporal refers to the set of temporal dis-

course relations. We use the pre-trained PDTB

discourse parser (Lin et al., 2014) to obtain dis-

course relations in a document.

Event Coreference Relations: We model inter-

actions between event causal relations and event

coreference relations by adding constraints 13 and

14 and an objective function 15.

∀i ≡ j, xij ≤ c3(i, j) (13)

∀i ≡ j, xik + ¬xjk ≤ 1 + c1(i, j, k)

∀i ≡ j,¬xik + xjk ≤ 1 + c2(i, j, k)
(14)

ΘC = max
∑

i∈µ

∑

j∈µ

[

∑

k∈µ

−kc(c1(i, j, k)

+c2(i, j, k))
]

− (1− kc)(c3(i, j))

(15)

Here ≡ represents the identity (coreference) re-

lation. The constraint 13 ensures that causal rela-

tion and coreference relation are mutually exclu-

sive, allowing some violations when pi,j is high.

The constraints 14 along with the objective func-

tion 15 encourage coreferent event mentions to

have a causal relation with the same other event.



While this relation between causal and corefer-

ence relations is strictly true for gold standard

data, we observed that these constraints make the

system very sensitive to noise when using system

predicted coreference links. Therefore, we added

binary leakage variables c1(i, j, k), c2(i, j, k) and

c3(i, j) to relax these constraints.By maximizing

the negative of leakage variables, we allow our

model to overcome this instability.

6 Evaluation

6.1 Experimental settings

There are 22 topics in the EventStoryLine corpus.

We put them in order based on their topic IDs and

use documents in the last two topics as the devel-

opment set. We trained the ILP system using the

rest 20 topics and tuned parameters based on the

system performance on the development set. We

report experimental results by conducting 5-fold

cross validation on the rest 20 topics. For event

causal relation identification, we report precision,

recall, and F1-score.

The weighting parameters for constraints, in-

cluding km1
, km2

, kn1
, kn2

, kf , kt, kc and ks, were

first pre-set to be a small number 0.1. We then con-

ducted grid search and searched for the best value

for each parameter over the range from 0.1 to 0.5
with a step size of 0.1. The best values for the pa-

rameters are 0.2, 0.1, 0.1, 0.5, 0.2, 0.1, 0.1, 0.2 re-

spectively.

6.2 Baseline Systems

We consider six baseline systems:

OP: a dummy model used in (Caselli and Vossen,

2017) that assigns a causal relation to every event

mention pair.

(Cheng and Miyao, 2017): a dependency path

based sequential neural network model that exten-

sively models compositional meanings of the con-

text between two event mentions for causal rela-

tion identification.8

LR (Lexical): the same logistic regression clas-

sifier as our local pairwise classifier but using the

lexical features only.

LR (Causal Potential): the same logistic regres-

sion classifier as our local pairwise classifier but

using the causal potential features only.

8This model has been shown effective in identifying tem-
poral relations between event mentions within a sentence and
across sentences. We applied this model for causal relation
identification considering that causal relations are closely re-
lated with certain temporal relations.

LR (Full): our local pairwise classifier using the

full set of features.

+ Score Replacement: our local pairwise classi-

fier using the full set of features, with the heuristic

score replacement procedure applied.

6.3 Experimental Results

The first section of table 2 shows the performance

of baseline models on intra- and cross-sentence

causal relation identification. The model OP la-

bels each event mention pair as causal and suf-

fers from low precisions9, especially on identify-

ing cross-sentence causal relations. The depen-

dency path based neural network model (Cheng

and Miyao, 2017) does not perform effectively on

identifying causal relations. The performance is

especially poor on cross-sentence cases.

The model LR (Lexical) improved the pre-

cision of causal relation identification but suf-

fers from low recall. In contrast, the model LR

(Causal Potential) improved the recall but suffers

from low precision. The model LR (full) with rich

lexical, semantic and syntactic features achieved

the best trade-off between precision and recall.

+ Score Replacement significantly improves the

recall and F1-score on identifying cross-sentence

causal relations, which also slightly improves the

recall of intra-sentence cases. But the precision

of causal relation identification remains low, espe-

cially on cross-sentence cases.

The second section of table 2 shows the perfor-

mance of our ILP model after gradually adding

each type of constraints. +Main Event Con-

straints shows the performance of the ILP sys-

tem with constraints encouraging causal relations

involving a main event. By modeling this as-

pect of document-level causal structures, the pre-

cision of cross-sentence causal relation identifica-

tion was clearly improved by around 6.3%. With a

small loss on recall, the F1-score was improved

by 4.1%. Modeling this document-level causal

structure also improves both precision and recall

on identifying intra-sentence causal relations, but

with a relatively small margin. +Locality Con-

straints strengthens the effects of modeling main

events and further improved the performance of

both cross- and intra-sentence causal relation iden-

tification. Next, adding sentential syntactic struc-

ture based constraints (+Syntactic Constraints)

9The reason it did not achieve the 100% recall is that we
did not consider reporting, causative, perception or aspectual
events.



Intra-sentence Cross-sentence Intra + Cross

Models P R F1 P R F1 P R F1

Local Pairwise Models

OP 22.5 98.6 36.6 8.4 99.5 15.6 10.5 99.2 19.0

(Cheng and Miyao, 2017) 34.0 41.5 37.4 13.5 30.3 18.7 17.6 33.9 23.2

LR (Lexical) 38.7 37.0 37.8 24.3 29.1 26.5 28.2 31.6 29.8

LR (Causal Potential) 28.2 61.2 38.6 10.7 74.6 18.7 12.9 70.4 21.8

LR (full) 37.6 41.4 39.4 23.8 33.6 27.9 27.4 36.1 31.2

+Score Replacement 37.0 45.2 40.7 25.2 48.1 33.1 27.9 47.2 35.1

Modeling Causal Structure using ILP

+Main Event Constraints 38.1 47.6 42.3 31.5 45.4 37.2 33.4 46.1 38.7
+Locality Constraints 38.0 50.4 43.4 32.1 45.8 37.8 33.9 47.3 39.5

+Syntactic Constraints 37.2 54.8 44.3 32.1 48.6 38.7 33.7 50.6 40.4
+Discourse Constraints 37.4 55.8 44.7 32.2 48.7 38.8 33.8 51.0 40.6
+Coreference Constraints 38.8 52.4 44.6 35.1 48.2 40.6 36.2 49.5 41.9

Table 2: Performance of different models on causal relation identification

recovered additional intra-sentence causal rela-

tions and cross-sentence causal relations as well

due to score replacement, and improved their re-

call by 4.4% and 2.8% respectively with little or

no drop on precision. Then, due to few cross-

sentence discourse relations identified by the dis-

course parser, adding discourse constraints (+Dis-

course Constraints) only slightly improved pre-

cision and recall on intra-sentence causal relation

identification. Finally, after adding conference

constraints (+Coreference Constraints), the pre-

cision of cross-sentence causal relation identifica-

tion was increased by 2.9%, with a small loss on

recall, the F1-score was improved by 1.8%10.

To sum up, by modeling the global and fine-

grained aspects of causal structures, the perfor-

mance of both intra- and cross-sentence causal re-

lation identification was greatly improved by 3.9%

and 7.5% in F1-score respectively.

Impact of Document Lengths Figure 2 shows

performance comparisons of three models on doc-

uments with different lengths. The first impres-

sion is that causal relation identification becomes

harder when documents are longer. If we look

into the figure, the score replacement heuristic im-

proves the performance of causal relation iden-

tification on medium-sized documents, but not

on short (< 4 sentences) or long (> 10 sen-

tences) documents. This may either due to lit-

10Unsurprisingly, the overall performance on intra-
sentence causal relation identification was not affected much
by coreference constraints since event coreference relations
often involve events across sentences.

Figure 2: F1-scores on documents with different

lengths. The x-axis indicates the number of sentences a

document has. The y-axis indicates the macro average

F1-score of causal relation identification.

tle event coreference information for use in short

documents or event coreference information be-

coming too noisy in long documents. Compared

to the mixed effects of the score replacement

heuristic, the ILP system improved the perfor-

mance of causal relation identification consistently

in documents of any length, through modeling rich

document-level causal structures.

7 Conclusions

We have presented an ILP system that collectively

identifies all the causal relations within a docu-

ment, both intra- and cross-sentence causal rela-

tions, by modeling the global and fine-grained as-

pects of causal structures. In the future, we will

continue to enrich document-level causal struc-

tures, e.g., by considering segment-wise topic lay-

out and RST-style hierarchical discourse struc-

tures.
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