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SCATTERING RESONANCES FOR HIGHLY
OSCILLATORY POTENTIALS

 A DROUOT

A. – We study resonances of compactly supported potentials V".x/ D W.x; x="/ where
W W Rd � Rd=.2�Z/d ! C, d odd. That means that V" is a sum of a slowly varying potential, W0,
and one oscillating at frequency 1=". When W0 � 0 we prove that there are no resonances above
the line Im� D �A ln."�1/, except a simple resonance near 0 when d D 1. We show that this
result is optimal by constructing a one-dimensional example. This settles a conjecture of Duchêne-
Vukićević-Weinstein [12]. When W0 ¤ 0 and W smooth we prove that resonances in fixed strips
admit an expansion in powers of ". The argument provides a method for computing the coefficients
of the expansion. We produce an effective potential converging uniformly to W0 as " ! 0 and whose
resonances approach resonances of V" modulo O."4/. This improves the one-dimensional result of
Duchêne, Vukićević and Weinstein and extends it to all odd dimensions.

R. – Nous étudions les résonances de potentiels à support compact V".x/ D W.x; x="/, où
W W Rd � Rd=.2�Z/d ! C et d est impair. Ainsi, V" est la somme d’un potentiel qui varie lentement
W0 et d’un potentiel qui oscille à fréquence 1=". Quand W0 � 0 nous prouvons que V" n’a pas de
résonances dans la zone fIm� � �A ln."�1/g mise à part une unique résonance proche de 0 si d D 1.
Nous montrons par un exemple explicite que ce résultat est optimal. Cela prouve une conjecture de
Duchêne-Vukićević-Weinstein [12]. Quand W0 ¤ 0 et W est lisse nous montrons que les resonances
de V" qui restent bornées lorsque " tend vers 0 admettent une expansion en puissances de ". Les
arguments de la preuve permettent de calculer les coefficients de cette expansion. Nous construisons un
potentiel effectif qui converge uniformément versW0 lorsque " tend vers 0 et dont les résonances sont à
distanceO."4/ de celles deW0. Cela améliore et étend les résultats de Duchêne, Vukićević et Weinstein
à toutes les dimensions impaires.

1. Introduction

In this paper we are interested in the poles of the meromorphic continuation of
.�� C V � �2/�1 where d is odd and V W Rd ! C is a bounded compactly supported
potential. These poles called scattering resonances appear in many physical situations, for
instance their imaginary parts are the rates of decay of waves scattered by V.
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866 A. DROUOT

Let �� � 0 be the free Laplacian on Rd . The operator R0.�/ D .�� � �2/�1, well
defined as an operator L2.Rd / ! H 2.Rd / for Im� > 0, extends to a meromorphic family
of bounded operators L2comp.Rd / ! H 2

loc.R
d / for � 2 C (see §1.5 for review of nota-

tion). This family admits one simple pole at 0 if d D 1 and is entire if d � 3. If V is a
bounded compactly supported function on Rd then RV.�/ D .��C V � �2/�1 is well
defined for Im�� 1 as an operator L2.Rd / ! H 2.Rd /. It extends to a meromorphic
family of operators L2comp.Rd / ! H 2

loc.R
d /. In this sense, the resonances of a real-valued

potential V—similarly, the poles of the meromorphic continuation of RV.�/—are a gener-
alization of eigenvalues of ��C V: each eigenvalueE of ��C V is negative and generates
a resonance i

p
�E, and conversely every resonance � of V in the upper half-plane lies

in i Œ0;1/ and corresponds to the eigenvalue �2. Resonances of V in the lower half-plane
are not related to eigenvalues of ��C V, though they quantize the rate of decay of waves
scattered by V. We refer to [15, §2, 3] for a complete introduction to resonances in potential
scattering.

LetW be a bounded complex valued function with support in Bd .0; L/�Td . We define V"
as

V".x/ D W
�
x;
x

"

�
:

If W is formally given by

W.x; y/ D
X
k2Zd

Wk.x/e
iky

we can write V" as a highly oscillatory perturbation of W0:

(1.1) V".x/ D W0.x/C V].x/; V].x/ D
X
k¤0

Wk.x/e
ikx=":

In this paper we study resonances of potentials V" given by (1.1).

1.1. Main results

The first theorem concerns the case of a vanishing slowly varying part. In the notations of
(1.1) we will assume for this result thatW 2 L10 .Bd .0; L/�Td / (i.e., supp.W / is a compact
subset of Bd .0; L/ � Td and W is uniformly bounded) and that moreover,

9s 2 .0; 1/;
X
k¤0

jWkjH s

jkjs
<1 if d D 1;

X
k¤0

kWkk1

jkj
<1 if d � 3:

(1.2)

T 1. – LetW be inL10 .Bd .0; L/�Td ;C/ such thatW0 � 0 and (1.2) holds. Then
there exists C; c; A three positive constants such that

if d D 1; Res.V"/ n D
�
0; c"s=2

�
�
˚
� 2 C W Im� � C � A ln."�1/

	
I

if d � 3; Res.V"/ �
˚
� 2 C W Im� � C � A ln."�1/

	
:
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SCATTERING RESONANCES FOR HIGHLY OSCILLATORY POTENTIALS 867

This settles a conjecture of [12]: for odd dimensions d � 3 and " small enough the
potential V" does not have a bound state. In §2.3 we construct a step-like function W such
that V�=.2n/ has a resonance �n � �i ln.n/ as n!C1. This shows that one cannot improve
the rate of escape of resonances given by Theorem 1 in dimension 1.

In the next statements we always assume thatW is smooth. We consider the caseW0 ¤ 0.
If �0 is a simple resonance of W0 we can write

(1.3) RW0.�/ D
iu˝ v

� � �0
CH.�/; H.�/ holomorphic near �0;

for some functions u; v 2 H 2
loc.R

d ;C/ called resonant states. As the potential V" given
by (1.1) converges weakly to W0, it is natural to expect that resonances of V" converge to
resonances of W0. In fact a much stronger statement holds:

T 2. – LetW belong toC10 .Bd .0; L/�Td ;C/ andV" be given by (1.1). Let�0 be a
simple resonance ofW0. In a neighborhood of �0 and for " small enough the potential V" admits
a unique resonance �". Moreover, for any N ,

�" D �0 C c2"
2
C c3"

3
C � � � C cN�1"

N�1
CO."N /; cj 2 C:

If u; v are the resonant states of (1.3) then

(1.4)

c2 D i

Z
Rd
ƒ0.x/u.x/v.x/dx; c3 D i

Z
Rd
ƒ1.x/u.x/v.x/dx;

ƒ0 D
X
k¤0

WkW�k

jkj2
; ƒ1 D �2

X
k¤0

W�k..k �D/Wk/

jkj4
:

If W is real-valued then so are ƒ0 and ƒ1. In §3.1 we will prove a version of Theorem 2
for resonances of higher multiplicity. Theorem 2 implies that perturbations of W0 by a high
frequency potential V] enjoy some similarities with suitable analytic perturbations ofW0. In
fact we have the following

T 3. – Assume that W belongs to C10 .Bd .0; L/ � Td ;C/ and that V" is given
by (1.1). Let Veff;" D W0 � "

2ƒ0 � "
3ƒ1 where ƒ0; ƒ1 are given in (1.4). For every bounded

family " 7! �" of simple resonances of Veff;" there exists a family of resonances " 7! �" of V"
such that

j�" � �"j D O."
4/:

Conversely for every bounded family " 7! �" of simple resonances of V" there exists a family of
resonances " 7! �" of Veff;" such that

j�" � �"j D O."
4/:

The potential Veff;" plays the role of an effective potential. In dimension one ƒ0 was
already derived in [12].

We next give a uniform description of the behavior of resonances of V" as "! 0. For
W0 2 C

1
0 .Bd .0; L/;C/ we define mW0.�0/ the multiplicity of a resonance �0 of W0. If

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



868 A. DROUOT

"; B; c; A are given positive constants let C "; T " and D" be the sets

C " D
[

�2Res.W0/;
Im���B

D
�
�; c"2=mW0 .�/

�
; T " D

[
�2Res.W0/;

Im���B

D
�
�; h�i�d�1

�
D" D

n
� 2 C W Im� � �B; j�j2dC1 � A ln."�1/

o
:

(1.5)

T 4. – Assume that W belongs to C10 .Bd .0; L/ � Td ;C/ and that V" is given by
(1.1). There exists A > 0 with the following. For any B > 0, there exists c > 0 such that for all
" small enough if C "; T " and D" are given by (1.5) then

Res.V"/ � C " [ T " [ D":

A different version of Theorem 4 is stated as follow. Let " 7! �" be a family of resonances
of V". Then after passing to a subsequence "j ! 0, one of the three following scenarios
occurs:

(i) �" converges to a resonance �0 of W0 and �" D �0 CO."2=mW0 .�0//.
(ii) Im�" ! �1 and j�"j grows at least like ln."�1/1=.2dC1/.

(iii) Im�" ! �1 and d.�";Res.W0// D O.j�"j�d�1/.

In the above we suppressed the subsequence notation. We illustrated these results on
Figure 1.1.

Theorems 2, 3 and 4 are consequences of a stronger result. For V 2 L10 .Bd .0; L/;C/ and
� 2 C10 .Rd / that is 1 on supp.V/, we defineKV.�/ D �R0.�/V. If p � d C 4 and ‰ is the
entire function defined by

(1.6) ‰.z/ D .1C z/ exp
�
�z C

z2

2
� � � � C

.�z/p�1

p � 1

�
� 1;

the operator ‰.KV.�// is trace class. This allows us to define the Fredholm determinant

(1.7) DV.�/ D Det .IdC‰.KV.�/// :

Apart from the special case of 0 in dimension one, resonances of V are exactly zeros ofDV—
see [16, Theorem 5.4]. To deal with the particular case of the zero resonance in dimension one
we define Xd D C if d � 3 and X1 D C n f0g. The following result shows thatDV admits an
expansion in powers of ".

T 5. – LetW in C10 .Bd .0; L/�Td ;C/ and V" be the potential given by (1.1). Fix
N � d C 4 and p D 4.d CN/N . If DV".�/ is the Fredholm determinant defined in (1.7) then
there exists a0; : : : ; aN�1 holomorphic functions of � 2 Xd such that uniformly on compact
subsets of Xd ,

DV".�/ D a0.�/C "
2a2.�/C "

3a3.�/C � � � C "
N�1aN�1.�/CO."

N /:

Moreover if ƒ0 and ƒ1 are the potentials defined in Theorem 2 then a0.�/ D DW0.�/;

a2.�/ D �DW0.�/ � Tr
�
.IdCKW0/

�1.�KW0/
p�2Kƒ0

�
;

a3.�/ D �DW0.�/ � Tr
�
.IdCKW0/

�1.�KW0/
p�2Kƒ1

�
:
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SCATTERING RESONANCES FOR HIGHLY OSCILLATORY POTENTIALS 869

C
C"

Im� D �B

T "

j�j D �A ln."�1/1=.2dC1/
D"

F 1. The red (resp. black, blue) crosses denote resonances of W0 (resp. V",
Veff;"). Above the line Im� D B resonances of Veff;" and V" lie within red disks
of radius � "2 centered at resonances of W0. Resonances of Veff;" and V" in these
disks lie within a distance � "4 from each other. In the middle zone resonances
of V" lie within disks of radius� 1 centered at resonances ofW0. Below both curves
Im� D �B and j�j D �A ln."�1/1=.2dC1/ resonances of V"; Veff;" and W0 are no
longer correlated.

Here again, we note that a perturbation of a potentialW0 by a highly oscillatory potential
enjoys similarities with a suitable analytic perturbation ofW0. We will make this observation
more precise in §3.2 below.

1.2. Relation with existing work

Our original motivation for investigating highly oscillatory potentials came from
Christiansen [5] where it was shown that certain complex-valued oscillatory potentials
have no resonances at all. The proof there is based on a priori estimates on solutions
of .Id C KV.�//u D 0. Although real valued potentials have infinitely many resonances—
see [22], [24] and references given there—ideas similar to [5] led us to the absence of resonance
in strips depending logarithmically on the frequency of oscillations (Theorem 1).

In dimension one scattering resonances of potentials of the form (1.1) have been exten-
sively studied. ForW withW0 � 0 and V" given by (1.1), Borisov and Gadyl’shin investigate

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



870 A. DROUOT

in [4] the behavior of eigenvalues of the Schrödinger operator D2
x C V". They give a suffi-

cient condition for an eigenvalue to exist for small ". Under this condition they derive an
expansion of the eigenvalue as " ! 0. In [3] Borisov refines this result by including poten-
tials that are less regular. These two papers focus on the spectrum and on the eigenvalues
rather than on scattering resonances. Scattering theory for operators of the form D2

x C V"
was systematically presented by Duchêne-Weinstein [14]. In that paper the authors study
the behavior of the transmission coefficient of such potentials. They prove that away from
possible poles, the transmission coefficient of V" converges to that ofW0. They give estimates
on the remainder that depend on the regularity ofW . The study is later continued in [12]. In
that paper Duchêne, Vukićević and Weinstein generalize the result of [4] to general poten-
tials V" given by (1.1). They give conditions for the existence of a bound state of V" for small ",
whose energy is expressed in terms of an effective potential which is an analytic perturbation
of W0.

Also in dimension one, [2] studies in detail the spectrum of Schrödinger operators with
a potential that is the sum of a compactly supported potential and a periodic potential
oscillating at frequency � "�1. The paper [13] deals with potentials that are a sum of a
periodic potential Qper perturbed by a term Q" oscillating at frequency "�1. As "! 0 they
observe the bifurcation of eigenvalues ofD2

xCQavCQ" at distance "4 from the edges of the
continuous spectrum of D2

x CQav.
In higher dimension the work [17] deals with general perturbations of operators��CW0.

The perturbation V] needs to be small when measured in a suitable space. They show that
simple resonances of perturbed operators depend analytically on V]. Although such a result
applies to potentials given by (1.1) it does not yield an expansion of resonances in powers
of " because V] does not depend smoothly on ".

Let us discuss in more detail the relation between our work specialized to dimension one
and [12]. By a fine analysis of the scattering coefficients, they show that the transmission
coefficient of V" is equal to the transmission coefficient of the effective potential

Veff.x/ D W0.x/ � "
2ƒ0.x/; ƒ0.x/ D

X
k¤0

jWk.x/j
2

jkj2

modulo an error of order "3. This remarkable result provided further motivation for our
investigation. One of the main consequences is [12, Corollary 3:7]: in the case d D 1;W0 � 0
and for " small enough a ground state emerges from the edge of the continuous spectrum
of D2

x , with energy �" given by

(1.8) �" D �
"4

4

�Z
R
ƒ0.x/dx

�2
CO."5/:

Theorem 2 refines (1.8). Since the functions u; v of (1.3) are given by u D v D 1=
p
2 the

energy of the bound state admits the expansion

�" D �
"4

4

�Z
R
ƒ0.x/dx

�2
�
"5

4

Z
R
ƒ0.x/dx

Z
R
ƒ1.x/dx CO."

6/;

and in fact �" is even a smooth function of ". In §1.3 we compare numerically the efficiency of
the effective potential Veff;" derived here compared to the efficiency of the effective potential
derived in [12].
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SCATTERING RESONANCES FOR HIGHLY OSCILLATORY POTENTIALS 871

Interest in Schrödinger operators with highly oscillatory potentials has grown since the
original version of this work. In [9], we showed the second conjecture of [12]: in dimension
two, if W 2 C10 .R2 � T2;R/ satisfies

R
R2 W.x; y/dy D 0 and V" is given by (1.1), then

�� C V" admits a unique eigenvalue for " sufficiently small. In addition, this eigenvalue is
exponentially close to 0: it is equal to

� exp
�
�

4�

"2
R
R2 ƒ0.x/dx C o."

2/

�
; ƒ0 D

X
k2Z2n0

WkW�k

jkj2
:

Again, this echoes Simon’s result [23, Theorem 3.4] for eigenvalues of weakly coupled
Schrödinger operators on the plane.

Dimassi [7] and Dimassi-Duong [8] showed trace formulae and Weyl laws for the operator
��C"�2V" for any value of d andW0 � 0. The scaling "�2 enables them to use semiclassical
methods to analyze the spectral properties of��CV". In dimension one, Duchêne-Raymond
[11] studied effective potentials, eigenvalues and eigenstates of �@2x C "�ˇV", for certain
values ofˇ and forV" real-valued with average zero. The homogenization results are classified
in three regimes: weak coupling (corresponding to ˇ 2 .2=3; 1/), critical (corresponding
to ˇ D 1) and semiclassical (corresponding to ˇ 2 .1; 3=2/). As of now, it is not clear how
to relate their results to those of [7, 8]. In the discrete 1D ergodic setting (i.e., random or
periodic), Klopp [18, 19] and Phong [20, 21] related eigenvalues of Schrödinger operators on
large bounded subsets Œ�L;L� � Z to resonances of the same operator considered on the
whole Z, in the regime L ! 1. After rescaling, this is a viscosity limit result for discrete
versions of potentials "�2V", where V" satisfies W0 � 0.

In a very recent paper [10], we prove stability results for resonances of random versions
of V" (with W0 non necessarily vanishing), in odd dimensions. We show almost sure conver-
gence of resonances of V" to the resonances of W0. We identify a stochastic and a determin-
istic regime for the speed of convergence. The type of regime depends whether the (stochastic)
low frequency effects due to large deviations overcome the (deterministic) constructive inter-
ference produced by highly oscillatory terms.

In a forthcoming work, we will apply the theory developed here to the derivation of edge
states in dimer and honeycomb structures.

1.3. Numerical results

Let W be the smooth function on R � T1 defined by

W.x; y/ D exp
�
�

x2

1 � x2

�
1Œ�1;1�.x/ .1C 2 cos.x=2C y// :

Let V" be given by (1.1) and ƒ0; ƒ1 the potentials defined in Theorem 2. Thanks to a
Matlab simulation whose code was transferred to us by Duchêne, Vukićević and Weinstein
we computed numerically the transmission coefficients t" of V", t1" of V 1eff;" D W0� "

2ƒ0 (the
effective potential as derived in [12]) and t2" of V 2eff;" D W0 � "

2ƒ0 � "
3ƒ1 (the improved

effective potential derived here). In Figure 2 we plotted the graphs of jt" � t
j
" j for different

values of " and j D 1; 2. For " > 0:1 neither the approximation of t" by t1" nor t2" give
satisfying results. For " 2 Œ0:01; 0:1� it is much better but we still cannot see the improvements
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-2 -1 0 1 2
x

-1

0

1

2

3
Oscillatory potential for " = 0:4

V"

V 1
e, ;"

V 2
e, ;"

0 0.2 0.4 0.6 0.8 1
6

0

0.2

0.4

0.6
Error for " = 0:4

--t" ! t1"
----t" ! t2"
--

-2 -1 0 1 2
x

-1

0

1

2

3
Oscillatory potential for " = 0:04

V"

V 1
e, ;"

V 2
e, ;"

0 0.2 0.4 0.6 0.8 1
6

0

2

4

6
#10-3 Error for " = 0:04

--t" ! t1"
----t" ! t2"
--

-2 -1 0 1 2
x

-1

0

1

2

3
Oscillatory potential for " = 0:004

V"

V 1
e, ;"

V 2
e, ;"

0 0.2 0.4 0.6 0.8 1
6

0

2

4

6

8
#10-8 Error for " = 0:004

--t" ! t1"
----t" ! t2"
--

F 2. Oscillatory potential and errors in approximating the transmission coef-
ficient of V" by the transmission coefficient of V jeff;" for different values of " and

j D 1; 2.

induced by choosing V 2eff;" instead of V 1eff;". For " < 0:01 the approximation of t" by t2" instead
of t1" gives better results.

1.4. Plan of the paper

We organize the paper as follows. In §2 we focus on the case W0 � 0 and we prove
Theorem 1. The proof relies mainly on an application of the Lippman-Schwinger principle
combined with integration by parts. In §2.3 we construct a step-like potential V" whose
resonances are zeros of a 2� 2 explicit determinant. Uniform estimates on this determinant
and arguments from complex analysis show that V" admits a resonance �" � i ln."/.
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In §3 we apply Theorem 5 to prove that resonances of potentials of the form (1.1) admit an
expansion in powers of ". We compute the first terms in the expansion using a trace estimate.
Then we show that resonances of V" are comparable to the one of the effective potential Veff;"

by comparing two Fredholm determinants. We then prove Theorem 4 using complex analysis
arguments.

The Section 4 consists in the proof of Theorem 5. It is by far the hardest part of the
paper. We first describe how an expansion of the determinant DV".�/ in powers of " can
be reduced to an expansion on the trace of an operator that takes a complicated form. We
split this operator into two parts in a natural way. By arguments of combinatorial nature
we will prove that the first part is negligible as " ! 0 and therefore produces no term in
the expansion ofDV" . We will deal with the second part essentially by deriving an operator-
valued expansion of eik�="R0.�/e�ik�=" in powers of ". The operators in this expansion
will produce all the terms in the expansion of DV . The expression of the coefficients in the
expansion is theoretically traceable directly from the proof. We compute the first few terms.
In dimension one the pole ofR0.�/ at � D 0will cause some trouble. We will overcome these
difficulties by arguments specific to the one-dimensional case but that still rely on trace and
determinant computations rather than on ODE techniques.

1.5. Notation

From now on we drop the subscript " and we fix L > 0.

Given a functionW 2 L10 .Bd .0; L/ � Td ;C/, V is the function associated toW by (1.1).
We will use the following notation:

– Xd is the set equal to C n f0g when d D 1 and equal to C when d � 3.
– Any time˙ or� appears in an equation, this equation has two meanings: one for the

upper subscripts, one for the lower one. For instance, f .x/ D �1 for ˙x � 1 means
f .x/ D �1 for x � 1 and f .x/ D 1 for �x � 1.

– If x 2 R, x� D max.0;�x/.
– For x 2 Rn, hxi D .1C jxj2/1=2.
– If z 2 C and r > 0, D.z; r/ denotes the set of w 2 C with jz � wj < r .
– If x 2 Rd and L > 0, Bd .x; L/ denotes the set of y 2 Rd with jx � yj < L. Td is the
d -dimensional torus Rd=.2�Z/d .

– Let H be a space of functions on an open set U � Rd . We write f 2 H0 if f belongs
to H and has compact support in U and f 2 H loc if for every � 2 C10 .Rd /, �f 2 H .

– For a potential V, Res.V/ is the set of resonances of V. If � 2 Res.V/, mV.�/ is the
geometric multiplicity of � defined by

mV.�/ D rank
I
�

RV.�/d�:

– If H1; H2 are two Hilbert space, we denote by B.H1; H2/ (resp. L .H1; H2/)
the space of bounded (resp. trace class) operators from H1 to H2 and by B.H1/

(resp. L .H1/) the space of bounded (resp. trace class) operators from H1 to itself. If
H1 D L

2.Rd ;C/ we simply write B D B.H1/ and L D L .H1/.
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– If f is a function on Rd , Of and F f both denote the Fourier transform of f :

F f .�/ D Of .�/ D
1

.2�/d=2

Z
Rd
f .x/e�ix�dx:

– We defineH s.Rd / the space of complex-valued functions f with h�is Of .�/ 2 L2.Rd /.
If s is an integer we defineW s.Rd / the space of functions with s derivatives inL1.Rd /
and we write j�jW s D k�ks . SimilarlyW s

0 .Bd .0; L// is the space of functions inW s.Rd /
with support contained in Bd .0; L/.

– For k 2 Zd , eik�=" denotes the multiplication operator by the function eikx=".
– � denotes a smooth function that is 1 on Bd .0; L/ and 0 outside Bd .0; LC 1/.
– The operator D is �i@x . It is a vector-valued operator in dimension d > 1. For
k D .k1; : : : ; kd / 2 Zd , k �D is the operator k1Dx1 C � � � C kdDxd .

– In general if A.�/ is a family of operators depending on � we will write A for A.�/
unless there is a possible confusion.

Acknowledgment. I would like to thank Maciej Zworski for his help and guidance. I am
very grateful for the referee’s work and suggestions through the technical aspects of the
proofs. I also thank Michael Weinstein, Vincent Duchêne and Iva Vukićević for stimulating
discussions and for sharing the Matlab codes leading to Figure 2. This research was partially
supported by NSF grants DMS-1500852 and DMS-1800086, the Fondation CFM pour la
recherche and M. Weinstein’s Simons Math+X award.

2. Resonance escaping in the case W0 � 0

In this part we start with preliminary estimates that will be used all along the paper. Then
we prove Theorem 1 and construct in §2.3 an example of potential that proves that this
theorem is optimal.

2.1. Preliminaries

For V 2 L10 .Bd .0; L/;C/we defineKV the operator �R0.�/V. We start by the following
preliminary:

L 2.1. – For all˛; ˇ 2 f0; 1; 2gd with j˛jCjˇj � 2 and for all V 2 W
jˇ j
0 .Bd .0; L/;C/,ˇ̌̌

D˛KVD
ˇ
ˇ̌̌

B
�

(
C h�i˛Cˇ j�j�1e2L.Im�/�kVkjˇ j if d D 1;

C h�ij˛jCjˇ j�1 e2L.Im�/�kVkjˇ j if d � 3:

The constant C depends on d.supp.V/; @Bd .0; L// only.

Such estimates are proved in [15, Theorem 2:1] and follow from Schur’s test. We recall
that Xd D C if d � 3 and X1 D C n f0g. The following lemma characterizes resonances of a
potential V via a Lippman-Schwinger equation.

L 2.2. – Let V 2 L10 .Bd .0; L/;C/. � 2 Xd is a resonance of V if and only if there
exists 0 ¤ u 2 L2 such that u D �KVu.
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Proof. – For � 2 C if d � 3 and � 2 Cnf0g the operatorKV is compact. Thus IdCKV is
injective if and only if IdC KV is invertible. For Im� � 1 we can invert IdC R0.�/V via
Neumann series. Moreover,

RV.�/ D .IdCR0.�/V/�1R0.�/ D

 
1X
nD0

.�R0.�/V/n

!
R0.�/

D

 
1X
nD0

.�KV/
n
C .1 � �/

1X
nD1

.�R0.�/V/n

!
R0.�/

D

 
IdC .1 � �/

1X
nD1

.�R0.�/V/n.IdCK�/

!
.IdCKV/

�1R0.�/

D

 
IdC .1 � �/

1X
nD1

.�R0.�/V/n � .�R0.�/V/nC1

!
.IdCKV/

�1R0.�/

D .Id � .1 � �/R0.�/V/
�

Id � .IdCKV/
�1KV

�
R0.�/:

The operator R0.�/meromorphically continues to C as an operator L2comp toH 2
loc while the

operator .IdCKV/
�1 meromorphically continues to C as an operator L2 to L2. Thus the

identity

(2.1) RV.�/ D .Id � .1 � �/R0.�/V/
�

Id � .IdCKV/
�1KV

�
R0.�/

initially valid for Im�� 1meromorphically continues to all of C. The poles of the RHS are
precisely the set of � such that IdCKV is not invertible (apart from � D 0 in dimension one)
while the poles of the LHS are the resonances of V. This proves the lemma.

2.2. Escaping of resonances.

We prove here Theorem 1 in the case d D 1. Assume that (1.2) holds. If � ¤ 0 is a
resonance of V then by Lemma 2.2 there exists u such that u D �KV u and juj2 D 1. It
satisfies the a priori estimate

(2.2) jujH1 D jKV ujH1 � jKV jB.H1;L2/juj2 � C
h�i e2L.Im�/�

j�j
jW j1juj2;

in particular it belongs to H 1. The well-known estimate jfgjH1 � jf jH1 jgjH1 (valid in
dimension one) implies by duality that jfgjH�1 � jf jH1 jgjH�1 . The bound (2.2) yields

juj2 D jKV uj2 � jK�jB.H�1;L2/jV ujH�1

� C
h�i e2L.Im�/�

j�j
jV jH�1 jujH1 � C

h�i2 e4L.Im�/�

j�j2
jV jH�1 jW j1juj2:

(2.3)

To estimate jK�jB.H�1;L2/ we used the adjoint bound i.e., we estimated jK�.��/jB.L2;H1/
thanks to Lemma 2.1. We claim that jV jH�1 � "

sjW jXs , where jW jXs D
P
k¤0 jkj

�sjWkjH s .
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Indeed using that j h�is cWkj2 D jWkjH s and jV jH�1 D j h�i
�1 OV j2 we have

jV jH�1 D

ˇ̌̌̌
ˇ̌h�i�1X

k¤0

cWk.� � k="/
ˇ̌̌̌
ˇ̌
2

�

X
k¤0

ˇ̌̌
h�i�1 h� � k="i�s h� � k="is cWk.� � k="/ˇ̌̌

2

�

X
k¤0

j h�i�1 h� � k="i�s j1jWkjH s

�

X
k¤0

j h�i�s h� � k="i�s j1jWkjH s � C
X
k¤0

hk="i�s jWkjH s � "
s
jW jXs :

In the last line we used Peetre’s inequality: for every t � 0 there exists C > 0 with

(2.4) .x; y/ 2 Rd � Rd ) hxi�t hyi�t � C hx � yi�t :

Now combining u D �KV u and juj2 D 1 with the estimate (2.3) we get

1 � C"s
h�i2 e4L.Im�/�

j�j2
jW j2Xs :

Hence either j�j � 1 and then j�j � c"s=2 for some constant c; or j�j � 1 and

Im� �
1

4L
ln
�
C jW j2Xs

�
�

s

4L
ln."�1/:

This proves Theorem 1 for d D 1.

We next prove the theorem in dimension d � 3. In this case the inequality jfgjH1 �
jf jH1 jgjH1 no longer holds and we must find another way around. LetW such thatW0 � 0
and (1.2) holds and u ¤ 0 with juj2 D 1 and

(2.5) u D �KV u D �
X
k¤0

KWke
ik�="u:

As in the case d D 1 u satisfies the a priori estimate jujH1 � Ce
C.Im�/� jW j1juj2. Noting

that

eik�=" D
"

jkj
Œk �D; eik�="� where k �D D

k1Dx1 C � � � C kdDxd
jkj

;

we obtain the commutator identity

"�1jkjKWke
ik�="

D KWk .k �D/e
ik�="

�KWke
ik�=".k �D/:

Consequently,

"�1jkj
ˇ̌̌
KWke

ik�="u
ˇ̌̌
2
� jKWk .k �D/e

ik�="uj2 C jKWke
ik�=".k �D/uj2

� jKWk .k �D/jBjuj2 C jKWk jBj.k �D/uj2

� Ce2L.Im�/�kWkk1juj2 C Ce
C.Im�/� jWkj1jujH1

� Ce4L.Im�/�kWkk1.1C jW j1/juj2:

(2.6)
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From the second to the third line we used the estimates of Lemma 2.1. From the third to the
fourth line we used (2.2). Sum (2.6) over k 2 Zd n f0g to obtain

juj2 D jKV uj2 � C"e
4L.Im�/�.1C jW j1/

0@X
k¤0

kWkk1

jkj

1A juj2:
It follows that

1 � C"e4L.Im�/�.1C jW j1/

0@X
k¤0

kWkk1

jkj

1A ;
which implies an upper bound on Im� of the required form. This ends the proof of
Theorem 1.

2.3. Construction of an optimal potential

Here we show that the rate of decay of imaginary parts of resonances of V" provided by
Theorem 1 is optimal in dimension 1. We construct a functionW withW0 � 0 satisfying (1.2)
such that the potential V defined by (1.1) has a resonance �" � �i ln."�1/ with " D �=.2n/.
Define W by

W.x; y/ D 1Œ�1=2;1=2�.x/
�
1Œ0;��.y/ � 1Œ��;0�.y/

�
:

The k-th Fourier coefficient of W is given by

Wk.x/ D

8<: 0 if k is even,
2

i�k
1Œ�1=2;1=2�.x/ if k is odd.

The function 1Œ�1=2;1=2� belongs to H 1=2�ı for all 1=2 > ı > 0 andX
k¤0

jkj�1=2Cı jWkjH1=2�ı � cı
X
k¤0

jkj�3=2Cı <1:

ThereforeW satisfies (1.2) for every s 2 .0; 1=2/. The potential V associated toW by (1.1) is
plotted on Figure 3.

We next characterize resonances of V as zeros of a certain 2 � 2 determinant.

L 2.3. – Let A˙ be the matrix

(2.7) A˙ D

 
0 1

˙1 � �2 0

!
:

Then � ¤ 0 is a resonance of V for " D �=.2n/ if and only if D.�/ D 0 where

D.�/ D Det

 �
eAC=2neA�=2n

�n  1

�i�

!
;

 
1

i�

!!
:

Here Det.a; b/ denotes the determinant of two vectors a; b of C2.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



878 A. DROUOT

-1/2

1/2

1

-1

F 3. The potential V for " D �=12.

Proof. – We recall that since d D 1, � ¤ 0 is a resonance of V if and only if there exists
a non zero function u 2 H 2

loc with(
�u00 C V u � �2u D 0

u.x/ D a˙e
˙i�x ; ˙x � 1

;

see [15, Theorem 2.4]. Using standard uniqueness results for ODEs � ¤ 0 is a resonance of V
if and only if there exists a 2 C such that the boundary problem

(2.8)

8̂̂<̂
:̂

�u00 C V u � �2u D 0;

u.�1=2/ D 1; u0.�1=2/ D �i�;

u.1=2/ D a; u0.1=2/ D ia�

admits a non-zero solution u in H 2
loc. The ODE(
�u00 C V u � �2u D 0;

u.�1=2/ D 1; u0.�1=2/ D �i�

admits a unique solution u 2 H 2
loc. The coefficients of the ODE are constant equal to˙1 on

intervals of length �=.2n/. Hence u can be explicitly computed using a matrix exponential.
A direct calculation shows that

(2.9)

 
u.1=2/

u0.1=2/

!
D

�
eAC=2neA�=2n

�n  1

�i�

!
;

whereA˙ are the matrices given by (2.7). Putting together (2.8) and (2.9) � ¤ 0 is a resonance
if and only if there exists a such that

a

 
1

i�

!
D

�
eAC=2neA�=2n

�n  1

�i�

!
;

that is, if and only if D.�/ D 0. This ends the proof.
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In order to prove that V�=.2n/ has a resonance �n � �i ln.n/we study asymptotics ofD.�/
uniform in the region f.�; n/ W j�j D O.ln.n//g. By the Baker-Hausdorff-Campbell formula,
there exists a matrixZn 2M2.C/ such that eZn D eAC=neA�=n. Its asymptotic development
is

Zn D
AC C A�

2n
C

1

8n2
ŒAC; A��C

X
m�3

1

.2n/m
pm.AC; A�/:

The terms pm.X; Y / are homogeneous polynomial of degree m in the non-commuting vari-
ables X; Y . The expansion converges as long as jACj < 2n; jA�j < 2n—see [1]. This is real-
ized as long as j�j D o.

p
n/, hence when � D O.ln.n//. It yields

Zn D
AC C A�

2n
C

1

8n2
ŒAC; A��CO

�
n�3�6

�
when � D O.ln.n//:

Therefore

enZn D exp
�
AC C A�

2
C

1

8n
ŒAC; A��CO

�
n�2�6

��
D exp

�
AC C A�

2
C

1

8n
ŒAC; A��

� �
1CO

�
n�2�6

��
:

A direct computation leads to

AC C A�

2
C

1

8n
ŒAC; A�� D

 
�1=4n 1

��2 1=4n

!
:

The eigenvalues are˙�; � D i
p
�2 � .4n/�2 and therefore

AC C A�

2
C

1

8n
ŒAC; A�� D ���

�1 with � D

 
�� 0

0 �

!
and � D

 
1 1

�� C .4n/�1 � C .4n/�1

!
:

Another direct computation gives

D.�/ D Det.�/Det

 
e���1

 
1

�i�

!
; ��1

 
1

i�

!! �
1CO

�
n�2�6

��
D �

�2e��

2�

�� �
i�
C 1

�2
C .4n�/�2 � e2�

�� �
i�
� 1

�2
C .4n�/�2

�� �
1CO

�
n�2�6

��
D �

�2e��

2�

 
4CO

�
.n�/�2

�
�

e2i�

.4n�/2

�
1CO

�
n�2��1

��! �
1CO

�
n�2�6

��
as long as � D O.ln.n//. In order to investigate the behavior of zeros ofD.�/ we investigate
first the behavior of zeros of the function f given by

f .�/ D 4 �
e2i�

.4n�/2
:

L 2.4. – The zeros of f are given by �˙� D i W�.˙i=8n/; � 2 Z where W� is the
�-th branch of the Lambert function see [6]. In particular as n goes to infinity �C1 � �i ln.n/.
Moreover, there exists r0 (independent on n) such that for all n large enough and � 2 S1,

(2.10) jf .�C1 C r0e
i� /j � 3r0:
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Proof. – The equation f .�/ D 0 is equivalent to

�i�e�i� D ˙
i

8n
:

Therefore zeros of f are given by �i W�.˙i=8n/. From [6, equation .4:20/] we obtain the
asymptotic �C1 � �i ln.n/. In order to show the lower bound (2.10) we consider r 2 .0; 1/.
We prove some estimates that are uniform in n and � 2 S1 as r ! 0. The identity f .�C1 / D 0
yields

f .�C1 C re
i� / D 4 � 4

 
ere

i�

1C rei�=�C1

!2
:

As r ! 0, ere
i�
D 1C rei� C o.r/, therefore

1 �
ere

i�

1C rei�=�C1
D
rei� .1 � �C1 /C o.r/

1C rei�=�C1
:

For n large enough we have �C1 � �i ln.n/ and thus a fortiori j�C1 j � 2. This impliesˇ̌̌̌
ˇ1 � ere

i�

1C rei�=�C1

ˇ̌̌̌
ˇ � r=2C o.r/

1C r=2
D r=2C o.r/:

Similarly, ˇ̌̌̌
ˇ1C ere

i�

1C rei�=�C1

ˇ̌̌̌
ˇ � 2CO.r/:

Therefore for r small enough

jf .�C1 C re
i� /j � 4r C o.r/ � 3r:

This completes the proof of the lemma.

For � 2 @D.�C1 ; r0/, f .�/ is bounded from below uniformly as n ! 1. Hence, for
� 2 @D.�C1 ; r0/,

4CO
�
.n�/�2

�
�

e2i�

.4n�/2

�
1CO

�
n�2��1

��
D f .�/

�
1CO

�
n�2��1

��
D f .�/

�
1CO

�
n�2 ln.n/�1

��
:

This implies that for � 2 @D.�C1 ; r0/,

D.�/ D �
�2e��

2�
f .�/

�
1CO

�
n�2 ln.n/�1

�� �
1CO

�
n�2 ln.n/6

��
D �

�2e��

2�
f .�/

�
1CO

�
n�2 ln.n/6

��
:

By Rouché’s theorem this is enough to ensure that for n large enough, D.�/ has exactly one
zero on C .�C1 ; r0/. This proves that there exists a resonance behaving like �i ln.n/.
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3. Applications of Theorem 5

Here we consider W 2 C10 .Bd .0; L/ � Td ;C/ and V" given by (1.1). We assume that
Theorem 5 holds and we get directly to the applications. We prove that resonances of V"
in compact sets admit a full expansion as " ! 0 (Theorem 2); that they can be well
approximated by a small perturbation Veff;" of W0 (Theorem 3); and we give a description
of the localization of resonances of V" (Theorem 4).

3.1. Expansion of resonances in powers of "

In this paragraph we prove Theorem 2. We start with the case d � 3 or �0 ¤ 0.

Proof of Theorem 2 assuming d � 3 or �0 ¤ 0. – Let �0 be a simple resonance of W0
with �0 ¤ 0 if d D 1. For N � d C 4 and p D 4N.d C N/ consider DV .�/ given in (1.7).
This is a holomorphic function of � near �0. By Theorem 5 it converges to DW0 as " ! 0

uniformly on a neighborhood of �0. Thus by Hurwitz’s theoremDV has exactly one zero �"
that converges to �0. It follows that for " small enough and r0 small enough �" is the only
resonance of V on D.�0; r0/.

Define f .�; "/ D DV .�/ if " ¤ 0 and f .�; 0/ D DW0.�/ otherwise. By Theorem 5 the
function f is of class CN�1 in a neighborhood of .�0; 0/. In addition since

@f

@�
.�0; 0/ D D

0
W0
.�0/ ¤ 0

the implicit function theorem implies that the equation f .�; "/ D 0 has exactly one solution
in a neighborhood of .�0; 0/. Using uniqueness it must be .�"; "/. It follows that the function
"! �" is CN�1. As N was arbitrary we conclude that "! �" is C1 for " near 0. Thus for
all N ,

�" D �0 C "c1 C � � � C "
N�1cN�1 CO."

N /; cj 2 C:
We now derive the values of c1; c2; c3. LetRW0.�/ be the meromorphic continuation of the

operator .����2CW0/�1. Since�0 is a simple resonance ofW0 there existsu 2 H 2
loc.R

d ;C/,
v 2 D

0
.Rd ;C/ such that

RW0.�/ D
iu˝ v

� � �0
CH.�/;

whereH.�/ W L2comp ! H 2
loc is a family of operators holomorphic near�0. Let f be a smooth

compactly supported function on Rd . Since RW0.�/.��C V � �
2/f D f we have

0 D .iu˝ v/.��CV ��20/f D iu
˝
v; .��C V � �20/f

˛
D
0 D iu

˝
.��C V � �20/

�v; f
˛

D
0 :

Since this is valid for arbitrary f it yields .�� C V � �20/
�v D 0. Thus v 2 H 2

loc and
.��C V � �20/v D 0 which implies v CR0.�0/W0v D 0.

Let …0 be the operator �i�.u˝ v/W0. We claim that the family of operators

(3.1) .�KW0/
p�2

�
IdCKW0

��1
�

…0

� � �0

is holomorphic in a neighborhood of �0. Indeed since .Id C KW0/
�1 D Id � �RW0.�/W0

there exists a family of operators B.�/ holomorphic near �0 such that

.IdCKW0/
�1
D

…0

� � �0
C B.�/:
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It leads to

.�KW0/
p�2

�
IdCKW0

��1
�

…0

� � �0
D .�KW0/

p�2
�
IdCKW0

��1
� .IdCKW0/

�1
C B.�/

D �
�
Id � .�KW0/

p�2
� �

IdCKW0
��1
C B.�/ D �.IdC � � � C .�KW0/

p�3/C B.�/:

This is as claimed holomorphic near �0.

Let ƒ 2 L1.Bd .0; L/;C/. We now compute the trace Tr
�
.�KW0/

p�2.IdCKW0/
�1Kƒ

�
modulo a holomorphic function. Since the operator given by (3.1) is holomorphic near �0
and trace class there exists a function ' holomorphic near �0 such that

Tr
�
.�KW0/

p�2.IdCKW0/
�1Kƒ

�
D

Tr.…0Kƒ/

� � �0
C '.�/:

Using …0 D �i�u˝ vW0 and v CR0.�0/W0v D 0 we get

Tr.…0Kƒ/.�0/ D �i

Z
Rd
�.x/u.x/v.y/W0.y/R0.�0; y; x/ƒ.x/dxdy

D �i

Z
Rd
u.x/ƒ.x/

�Z
Rd
R0.�0; x; y/W0.y/v.y/dy

�
dx

D �i

Z
Rd
u.x/ƒ.x/.R0.�0/W0v/.x/dx D i

Z
Rd
ƒ.x/u.x/v.x/dx:

It follows that

Tr
�
.�KW0/

p�2.IdCKW0/
�1Kƒ

�
D

i

� � �0

�Z
Rd
ƒuv

�
C '.�/:(3.2)

Apply the Formula (3.2) to ƒ D "2ƒ0 to obtain

DV .�/ D DW0.�/
�
1 � Tr

�
.�KW0/

p�2.IdCKW0/
�1K"2ƒ0

��
CO."3/

D DW0.�/

�
1 �

i"2

� � �0

�Z
Rd
ƒ0uv

�
� "2'0.�/

�
CO."3/:

Here the function '0 is holomorphic near �0 and does not depend on ". If g is the holomor-
phic function such that g.�/.� � �0/ D DW0.�/ then

(3.3) DV .�/ D g.�/

�
� � �0 � i"

2

�Z
Rd
ƒ0uv

�
� "2.� � �0/'0.�/

�
CO."3/:

Note that as " ! 0 we have g.�"/ ! D0W0.�0/ ¤ 0. Thus specializing the identity (3.3)
at � D �" leads to

0 D �" � �0 � i"
2

�Z
Rd
ƒ0uv

�
� "2.�" � �0/'0.�"/CO."

3/:

Since �" � �0 D O."/ and '0.�"/! '0.�0/ as "! 0 we obtain

(3.4) �" D �0 C i"
2

�Z
Rd
ƒ0uv

�
CO."3/:

This recovers the result of [12].
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Now to get the second order correction we apply (3.2) successively to ƒ D "2ƒ0 and
ƒ D "3ƒ1. The same operations as in the previous paragraph lead to

DV .�/ D DW0.�/
�
1 � Tr

�
.�KW0/

p�2.IdCKW0/
�1K"2ƒ0C"3ƒ

��
CO."4/

D g.�/

�
� � �0 � i

�Z
Rd

�
"2ƒ0 C "

3ƒ1
�
uv

�
� .� � �0/."

2'0.�/C "
3'1.�//

�
CO."4/

for a function '1 holomorphic near �0. Here again specialize this identity at � D �" and use
g.�"/! g.�0/ ¤ 0 to obtain

0 D �" � �0 � i

�Z
Rd

�
"2ƒ0 C "

3ƒ1
�
uv

�
� .�" � �0/."

2'0.�"/C "
3'1.�"//CO."

4/:

This time by (3.4) we know that �" � �0 D O."2/. It follows that

�" D �0 C i"
2

�Z
Rd
ƒ0uv

�
C i"3

�Z
Rd
ƒ1uv

�
CO."4/:

This proves the theorem.

In the case �0 D 0 and d D 1 we use the following refinement of Theorem 5:

L 3.1. – LetW belong toC10 .Œ�L;L��T1;C/ and V be given by (1.1). There exists
an entire function hV satisfying the following:

(i) �0 is a resonance of V of multiplicity m if and only if it is a zero of hV of multiplicity m.
(ii) There exists h4; : : : ; hN�1 such that locally uniformly on C

hV .�/ D �dW0.�/
�
1 � Tr

�
.IdCKW0/

�1Kƒ
��
C "4h4.�/C � � � C "

N�1hN�1.�/CO."
N /;

where dW0.�/ D Det.IdCKW0/ and ƒ is the potential given by

ƒ D "2ƒ0 C "
3ƒ1 D "

2
X
k¤0

WkW�k

k2
� 2"3

X
k¤0

Wk.DW�k/

k3
:

We defer the proof of Lemma 3.1 to §4.6. The proof of Theorem 2 in the case �0 D 0 and
d D 1 is the same as in the case d ¤ 1 or �0 ¤ 0 using hV instead of DV and we skip the
details. We end this part with a version of Theorem 2 for resonances �0 of W0 with higher
multiplicity.

T 6. – Assume thatW belongs toC10 .Bd .0; L/�Td ;C/ and that�0 is a resonance
of W0 with multiplicity m. Then in a neighborhood of �0 the potential V" has exactly m
resonances �1;"; : : : ; �m;" for " small enough. In addition for every j 2 Œ1;m� and N � d C 4,

�j;" D �0 C cj;2"
2=m
C cj;3"

3=m
C � � � C cj;N�1"

.N�1/=m
CO."N=m/; cj;n 2 C:

Proof. – Let �0 2 Xd be a resonance of W0 of multiplicity m > 1. Fix N � d C 4

and p, DV given by Theorem 5. Since locally uniformly on C we have DV .�/ ! DW0.�/,
by Hurwitz’s theorem the function DV has exactly m zeros (counted with multiplicity)
converging to �0. These zeros admit a Puiseux expansion: there exists c1;1; : : : ; cm;N�1 such
that the zeros �1;"; : : : ; �m;" of DV near �0 are given by

�j;" D �0 C "
1=mcj;1 C � � � C "

.N�1/=mcj;N�1 CO."
N=m/:

Now since DV .�/ D DW0.�/ C O."
2/, cj;1 D 0. In the case �0 D 0 in dimension one the

proof can be modified by considering hV instead of DV . This proves Theorem 6.
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3.2. Derivation of an effective potential

In this part we prove Theorem 3. We start by giving a few preliminaries concerning trace
class operators and Fredholm determinant. The reader can consult [15, Chapter B] for a
complete introduction. The singular values of a compact operator X W H ! H are defined
as the nonincreasing sequence sj .X/ D �j ..X�X/1=2/. In particular s0.X/ D jX jB.H/. The
singular values satisfy two remarkable inequalities. If Y is another compact operator then
for every j; `,

sjC`.X C Y / � sj .X/C s`.Y /;

sj`.XY / � sj .X/s`.Y /:

We say that a compact operatorX is trace class if the sequence sj .X/ is summable. The trace
class norm of X denoted by jX j L is the sum of the series. If X trace class we can define the
trace of X and the Fredholm determinant Det.Id C X/. This determinant vanishes if and
only if Id C X is not invertible. Recall that X8d D C for d � 3, X1 D C n f0g and that
KV D �R0.�/V.

L 3.2. – Let V inL1.Bd .0; L/;C/. Uniformly on fIm� � 1g and locally uniformly
on Xd , sj .KV/ � C jVj1j

�2=d . Consequently if p � d is an integer the operatorKpV is trace
class and locally uniformly in Xd , uniformly in fIm� � 1g, jKpVj L � C jVj

p
1.

Proof. – We combine [15, Equation (B.3.9] with Lemma 2.1. This gives:

sj .KV/ � Cj
�2=d
j hDi2KVjB � C jVj1j

�2=d :

This estimate works both locally uniformly on Xd and uniformly on fIm� � 1g. In order to
prove that the operator KpV belongs to L for p � d it suffices to prove that the sequence of
singular values sj .K

p

V/ is summable. Using the properties of the singular values,

1X
jD0

sj .K
p

V/ � p

1X
jD0

spj .K
p

V/ � p

1X
jD0

sj .KV/
p
� C jVjp1

1X
jD0

j�2p=d :

Since p � d the series converges and the lemma follows.

This lemma implies that for V 2 L1.Bd .0; L/;C/ the Fredholm determinant

DV.�/ D Det.IdC‰.KV//; ‰.z/ D .1C z/ exp
�
�z C

z2

2
� � � � C

.�z/p�1

p � 1

�
� 1

is well defined when � 2 Xd—see [23, Lemma 6.1]. It is an entire function of � for d � 3 and
is a meromorphic function of � with a pole at � D 0 for d D 1. We now show the seemingly
unknown:

L 3.3. – Let W0; ƒ 2 L1.Bd .0; L/;C/. If p � d and DW0C"ƒ is the Fredholm
determinant given by (1.7) then there exists b0; b1; : : : holomorphic functions of � 2 Xd such
that locally uniformly on Xd ,

DW0C"ƒ.�/ D

1X
jD0

bj .�/"
j :
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In addition b0.�/ D DW0.�/ and

b1.�/ D DW0.�/ � Tr
�
.IdCKW0/

�1.�KW0/
p�1Kƒ

�
:

Proof. – Let W0; ƒ 2 L1.Bd .0; L/;C/. By [23, Theorem 3.3] if p � d and ‰ is given by
(1.6) the determinant ."; �/ 7! DW0C"ƒ.�/ D Det.Id C ‰.KW0C"ƒ// is an entire function
of " (with � 2 Xd fixed) and a holomorphic function of � on Xd (with " fixed). Thus by
Hartogs’s theorem it is analytic on C�Xd . Write a power expansion of DW0C"ƒ as follows:
DW0C"ƒ.�/ D

P1
nD0 bn.�/"

n. Since

bn.�/ D
1

nŠ

@nDW0C"ƒ

@"n
j"D0

.�/

the function bn is holomorphic on Xd . We next identify the coefficients b0.�/ and b1.�/.
Fix m � d and assume that � 2 D.�0; 1/, Im�0 � 1. By Lemma 2.1 and Lemma 3.2,ˇ̌

KmW0C"ƒ
ˇ̌

L
�

ˇ̌̌
Km�dW0C"ƒ

ˇ̌̌
B
jKdW0C"ƒj L �

Cm

j�jm�d
:

It follows that the series
1X
mDp

.�1/m
KmW0C"ƒ

m

converges absolutely in L for Im�� 1 and in addition

(3.5) DW0C"ƒ.�/ D exp

0@� 1X
mDp

.�1/m
Tr
�
KmW0C"ƒ

�
m

1A ;
see [23, Theorem 6.2]. If d D 1 then Tr.KW0C"ƒ/ D Tr.KW0/C "Tr.Kƒ/. We now obtain a

first order Taylor expansion of Tr
�
KmW0C"ƒ

�
for m � d . Using the binomial expansion, the

cyclicity of the trace and the Taylor-Lagrange inequality,

Tr
�
KmW0C"ƒ

�
D Tr

�
KmW0

�
Cm"Tr

�
Km�1W0

Kƒ
�
C rm."/;

jrm."/j �
1

2
sup
"02Œ0;"�

@2Tr
�
KmW0C"ƒ

�
@"2

."0/:
(3.6)

We claim that jrm."/j � "2 for Im� large enough. The function " 7! Tr
�
KmW0C"ƒ

�
is

holomorphic and satisfiesˇ̌
Tr
�
KmW0C"ƒ

�ˇ̌
� jKmW0C"ƒj

d
L jK

m
W0C"ƒ

j
m�d
L �

Cm

h�im�d
jW0 C "ƒj

m
1:

when Im� � 1. Therefore the Cauchy estimate for derivatives of holomorphic functions
shows that jrm."/j � Cm"2 h�i

m�d .jW0j1C jƒj1/
m when Im� � 1. This proves the claim.

(3.6) implies then

1X
mDp

.�1/m
Tr
�
KmW0C"ƒ

�
m

D

1X
mDp

.�1/m
Tr
�
KmW0

�
m

C "

1X
mDp

.�1/mTr
�
Km�1W0

Kƒ
�
CO."2/

D

1X
mDp

.�1/m
Tr
�
KmW0

�
m

� "Tr
�
.�KW0/

p�1.IdCKW0/
�1Kƒ

�
CO."2/:
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when Im� � 1. The following determinant asymptotic follows: for Im� large enough,

DW0C"ƒ.�/ D exp

0@� 1X
mDp

.�1/m
Tr
�
KmW0

�
m

C "Tr
�
.�KW0/

p�1.IdCKW0/
�1Kƒ

�
CO."2/

1A
D DW0.�/

�
1C "Tr

�
.�KW0/

p�1.IdCKW0/
�1Kƒ

��
CO."2/:

Thus b0.�/ D DW0.�/ and b1.�/ D DW0.�/Tr
�
.�KW0/

p�1.IdCKW0/
�1Kƒ

�
for Im�� 1.

Since the functions b0; b1 are holomorphic by the unique continuation principle these iden-
tities must also hold on Xd . This ends the proof of the theorem.

We are now ready to prove Theorem 3. It is the special case m D 1 of

T 7. – Let Veff D W0 C "
2ƒ0 C "

3ƒ1 were ƒ0; ƒ1 where defined in Theorem 5.
Let �" be a family of resonances of Veff;" with multiplicity m. For every " > 0 there exist m
resonances counted with multiplicity �1;"; : : : ; �m;" of V" such that

j�j;" � �"j D O."
4=m/:

Conversely let �" be a family of resonances of V" with multiplicitym. For every " > 0 there exist
m resonances counted with multiplicity �1;"; : : : ; �m;" of Veff;" such that

j�j;" � �j;"j D O."
4=m/:

Proof. – Assume d � 3. Fix N D d C 4, p D 4N.d C N/ and DV given in Theorem 5.
Let Veff D W0 � "

2ƒ0 � "
3ƒ1. By Theorem 5,

(3.7) DV D DW0.�/
�
1C Tr

�
.IdCKW0/

�1.�KW0/
p�2K�"2ƒ0�"3ƒ1

��
CO."4/:

Define D V the Fredholm determinant

D V.�/ D Det.IdC  .KV//;  .z/ D exp
�
.�z/p�1

p � 1

�
‰.z/:

The Fredholm determinants DV defined in (1.7) and D V are related through

DV.�/ D exp
�

Tr..�KV/
p�1/

p � 1

�
D V.�/:

Therefore (3.7) implies DV .�/ D

exp
�

Tr..�KW0/
p�1/

p � 1

�
DW0.�/

�
1C Tr

�
.IdCKW0/

�1.�KW0/
p�2K�"2ƒ0�"3ƒ1

��
CO."4/:

Lemma 3.3 leads to

DV .�/ D exp
�

Tr..�KW0/
p�1/

p � 1

�
DVeff

.�/CO."4/;

where Veff D W0� "
2ƒ0� "

3ƒ1. Consider now �" a bounded family of resonances of Veff of
multiplicity m. As �" is bounded there exist C; r such that for every � 2 D.�"; r/,

(3.8)

ˇ̌̌̌
exp

�
Tr..�KW0/

p�1/

p � 1

�
DVeff

.�/

ˇ̌̌̌
� C j� � �"j

m:
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Let " D @D.�"; c"4=m/. If c is small enough then by (3.8) for every � 2 ",ˇ̌̌̌
DV .�/ � exp

�
Tr..�KW0/

p�1/

p � 1

�
DVeff

.�/

ˇ̌̌̌
<

ˇ̌̌̌
exp

�
Tr..�KW0/

p�1/

p � 1

�
DVeff

.�/

ˇ̌̌̌
:

By Rouché’s theorem this implies that V and Veff have the same number of resonances inside
the disk D.�"; c"4=m/. The proof of the convert part is similar and we omit it. This proves
Theorem 7 away from the resonance 0 in dimension one.

We now concentrate on d D 1. In this case by Theorem 5 and Lemma 3.3 the function hV
of Lemma 3.1 satisfies hV .�/ D �dVeff.�/ C O."

4/ locally uniformly on Xd . The functions
hV and dVeff are both entire. By a Cauchy formula, if � 2 D.0; 1/ then

hV .�/ D
1

2�i

I
@D.0;2/

�dVeff.�/d�

� � �
CO."4/

and this holds uniformly on D.0; 1/. Thus the estimate hV .�/ D �dVeff.�/ C O."4/ holds
locally uniformly on C. The end of the proof is the same as in the case d � 3.

3.3. Uniform description of the resonant set

Here we prove Theorem 4. LetW 2 C10 .Bd .0; L/�Td ;C/ andV associated toW by (1.1).
Fix B > 0. We first localize resonances of V that are above the line Im� D �B. According
to (2.1) the set of resonances of V in Xd is the set of � such that the operator IdCKV .�/ is
not invertible on L2. Thus if � 2 Xd is a resonance then jKV jB � 1. Since for Im� � �B,
jKV jB � C jV j1e

2LB=j�j, for " small enough resonances of V and W0 in the half plane
Im� � �B all belong to a same disk D.0; �/. By Theorem 5,

DV .�/ D DW0.�/CO."
2/ uniformly on D.0; �/:

As DW0 has no zero on @D.0; �/ we have

1

2�i

I
@D.0;�/

D0V .�/

DV .�/
d�!

1

2�i

I
@D.0;�/

D0W0.�/

DW0.�/
d�:

Therefore W0 and V have the same (finite) number of resonances on D.0; �/ for " small
enough. By Theorem 6 there exists c > 0 such that these resonances belong to

C " D
[

�02Res.W0/;
Im�0��B

D
�
�0; c"

2=mW0 .�0/
�
:

Now assume that � 2 Res.V / satisfies Im� � �B and that � does not belong to the
set T " defined in (1.5). This means

� …
[

�02Res.W0/;
Im�0��B

D
�
�0; h�0i

�d�1
�
:

Then (see the proof of [15, Theorem 3:49]):ˇ̌
.IdCKW0/

�1
ˇ̌

B
� eC h�i

2dC1

:
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We now reproduce the proof of Theorem 1 for d � 3. Since � 2 Res.V / there must exist
u 2 L2 with u D �KV u. In particular u belongs to H 1 with jujH1 � Ce

C.Im�/� jW j1juj2.
The equation u D �KV u is equivalent to

u D �
�
IdCKW0

��1
KV]u D �

�
IdCKW0

��1X
k¤0

KWke
ik�="u;

where V].x/ D
P
k¤0Wk.x/e

ikx=". As in the proof of Theorem 1, we perform an integration
by parts on the term KWke

ik�="u:

jkj

"
KWke

ik�="u D KWk .k �D/e
ik�="u �KWke

ik�=".k �D/u:

This yields

jkj

"
jKWke

ik�="uj2 � Ce
2L.Im�/�kWkk1juj2 C Ce

2L.Im�/� jWkj1jujH1 :

Using the a priori bound on jujH1 and summing over k ¤ 0 we obtain

jKV]uj2 � C"e
2L.Im�/� jW j1

0@X
k¤0

kWkk1

jkj

1A juj2:
It follows that

juj2 D
ˇ̌
.IdCKW0/

�1KV]u
ˇ̌
2
� C"e2L.Im�/�eC h�i

2dC1

jW j1

0@X
k¤0

kWkk1

jkj

1A juj2:
Since u ¤ 0, this implies a lower bound on j�j of the form j�j � A�C ln."�1/1=.2dC1/. Thus
� belongs to the set D" defined in (1.5). This ends the proof of Theorem 4.

4. Proof of Theorem 5

We now get to the core of the paper: the proof of Theorem 5. We first explain the ideas. If
DV is the determinant given by (1.7) we can write formally

DV .�/ D exp

 
�

1X
mDp

.�1/m

m
Tr
�
KmV

�!
:

It order to prove Theorem 5 it seems necessary to obtain an expansion in powers of "
of Tr.KmV /. For a potential V given by V.x/ D

P
k2Zd Wk.x/e

ikx=" then Tr.KmV / can be
decomposed as a sum of terms of the form

T Œk1; : : : ; km� D Tr

0@ mY
jD1

KWkj
eikj �="

1A ;
where k1; : : : ; km 2 Zd . We now explain how to obtain an expansion for T Œk1; : : : ; km�. We
say that the sequence k1; : : : ; km is constructive if k1C� � �Ckm D 0 and destructive otherwise.
We use this terminology for the following reason. In the case of a destructive sequence the
behavior of the oscillatory terms eikj x=" imply

Qm
jD1 e

ikj x=" ! 0 weakly as " ! 0—one
sometimes say that the interference between oscillatory terms is destructive, which explains
the above terminology. We will prove that in this case T Œk1; : : : ; km� is of order O."N / and
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thus produces no term in the expansion provided by Theorem 5. Now if k1; : : : ; km is a
constructive sequence let R.�/ D .�2 � �2/�1 so that formally R0.�/ D R.D/. Using the
commutation relation e�ik�="Deik�=" D D C k=", we have

(4.1) T Œk1; : : : ; km� D Tr

0@ mY
jD1

�R.D/Wkj e
ikj �="

1A D Tr

0@ mY
jD1

�R.D C �j ="/Wkj

1A ;
where �j D kj C � � � C km. We note that there are no more oscillatory terms in the
second line of (4.1). An expansion of T Œk1; : : : ; km� follows then from an operator-valued
expansion of the operator R.D C �j ="/, which in turn follows from an expansion of the
functionR.� C �j ="/. The terms in this expansion are specifically created by the constructive
interference between oscillatory factors eik`�=".

4.1. Preliminaries on Fredholm determinants

We start by giving a formula for general Fredholm determinants as infinite series.
Consider X; Y two trace class operators on L2 and assume that Id C X is invertible.
Define the Fredholm determinant

D.�/ D Det.IdCX C �Y /:

This is a holomorphic function of the variable�, satisfying the bound jD.�/j � ejX j LC�jY j L .
Expand it in power series: there exists a sequence !n.X; Y / such that

(4.2) D.�/ D

1X
nD0

�n

nŠ
!n.X; Y /:

The terms !n.X; Y / are given by the n � n determinant

(4.3) !n.X; Y / D Det.IdCX/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌

�1 n � 1 0 : : : 0

�2 �1 n � 2 : : : 0

:::
: : :

: : :
: : :

:::

�n�1
: : :

: : :
: : : 1

�n �n�1 : : : �2 �1

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌
;

where �j D Tr
�
..IdCX/�1Y /j

�
—see [23, Theorem 6.8].

L 4.1. – Let s � 0 and assume that hDis X and hDis Y , initially defined as operators
from L2 to H�s , are trace class operator on L2. Then

(4.4) j!n.X; Y /j � j hDi
s Y hDi�s jnLe

jhDisXhDi�s j L :

Proof. – First note that since hDi�s 2 B and hDis .XC�Y / 2 L we can use the cyclicity
of the determinant to get

Det.IdCX C �Y / D Det.IdC hDis .X C �Y / hDi�s/:

Therefore

jDet.IdCX C �Y /j � exp.j hDis X hDi�s j L C j�jj hDi
s Y hDi�s j L /:
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This proves that Det.Id C X C �Y / is an entire function of order 1. Therefore by Cauchy
estimates the coefficients !n.X; Y / must satisfy (4.4). This completes the proof.

4.2. Reduction to a trace expansion

We now start the proof of Theorem 5. Fix N � d C 4 and p D 4.d C N/N . Let W
in C10 .Bd .0; L/ � Td ;C/, V; V] 2 C10 .Rd ;C/ be given by

W.x; y/ D
X
k2Zd

Wk.x/e
iky ; V .x/ D W0.x/C V].x/; V].x/ D

X
k¤0

Wk.x/e
ikx=":

We define jW jZs D
P
k2Zd kWkks . This quantity is finite for every s � 0.

Let X and Y be the trace class operators given by

X D ‰.KW0/; Y D ‰.KV / �‰.KW0/;

‰.z/ D .1C z/ exp
�
�z C

z2

2
� � � � C

.�z/p�1

p � 1

�
� 1:

(4.5)

The expansion (4.2) yields

DV .�/ D Det.IdCX C Y / D
1X
nD0

1

nŠ
!n.X; Y /:

We now reduce this exact infinite expansion to a finite expansion modulo a term of
order O."2N /. We recall that Xd D C if d � 3 and X1 D C n f0g.

L 4.2. – Locally uniformly on Xd , we have

DV .�/ D

NX
nD0

1

nŠ
!n.X; Y /CO."

2N /:

Proof. – It is enough to show that the coefficients !n.X; Y / satisfy the inequality

(4.6) j!n.X; Y /j � .C"
2/n

for all n � 0. Because of (4.4) it suffices then to estimate jY j L . Recall that the first p � 1
derivatives of ‰ vanish at 0 and write a power series expansion of ‰ as

‰.z/ D

1X
mDp

˛mz
m; ˛m D

1

mŠ

dm‰

dzm
.0/:

Since the function‰ is entire of order p�1 and type .p�1/�1 the coefficients ˛m satisfy the
estimate

(4.7) j˛mj � C .m
�mem/

1=.p�1/
� C.m1=2=mŠ/1=.p�1/

—see for instance [25]. Next write

Y D ‰.KV / �‰.KW0/ D

Z 1

0

d

dt
‰.KW0CtV]/dt D

Z 1

0

1X
mDp

˛m

m�1X
`D0

K`W0CtV]KV]K
m�`�1
W0CtV]

dt:
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This yields

hDi2
�
‰.KV / �‰.KW0/

�
hDi�2

D

Z 1

0

1X
mDp

˛m

m�1X
`D0

�
hDi2KW0CtV] hDi

�2
�`�1

hDi2KW0CtV]KV]

�
hDi2KW0CtV] hDi

�2
�m�`�1

dt:

The singular values of hDi2KW0CtV] hDi
�2 are bounded as follows:

sj

�
hDi2KW0CtV] hDi

�2
�
�

ˇ̌̌
hDi2KW0CtV]

ˇ̌̌
B
sj

�
� hDi�2

�
� C jW j1sj

�
� hDi�2

�
:

To estimate sj
�
� hDi�2

�
we note that as the singular values of an operatorX are the square

roots of the eigenvalues of XX�,

(4.8) sj

�
� hDi�2

�
D �j

�
� hDi�4 �

�1=2
� sj

�
� hDi�4 �

�1=2
� Cj�2=d :

In the last line we used [15, (B.3.9)]. It follows that sj
�
hDi2KW0CtV] hDi

�2
�
� C jW j1j

�2=d .

In addition using the commutation relation

eik�=" D
"

jkj
Œ.k �D/; eik�="�; .k �D/ D

k1Dx1 C � � � C kdDxd
jkj

;

we obtain

jKV] hDi
�2
jB � jK� hDi

2
jBj hDi

�2 V] hDi
�2
jB

�

X
k¤0

jK� hDi
2
jBj hDi

�2Wke
ik�="
hDi�2 jB

�

X
k¤0

"2

jkj2
jK� hDi

2
jBj hDi

�2Wk Œ.k �D/; Œ.k �D/; e
ik�="�� hDi�2 jB

� C"2jW jZ2 :

(4.9)

Consequently,

s.m�2/j

��
hDi2KW0CtV] hDi

�2
�`�1

hDi2KW0CtV]KV] hDi
�2
�
hDi2KW0CtV] hDi

�2
�m�`�1�

� sj

�
hDi2KW0CtV] hDi

�2
�m�2

j hDi2KW0CtV] jBjKV] hDi
�2
jB

� Cm"2jW jm�11 jW jZ2j
�2.m�2/=d :

Sum over ` 2 Œ0;m � 1�; j � 0 and note that m � p � d C 2 to obtain the boundˇ̌̌̌
ˇm�1X
`D0

hDi2K`W0CtV]KV]K
m�1�`
W0CtV]

hDi�2

ˇ̌̌̌
ˇ

L

� m2Cm"2jW jm�11 jW jZ2 :

This yieldsˇ̌̌
hDi2

�
‰.KV / �‰.KW0/

�
hDi�2

ˇ̌̌
L
�

1X
mDp

m2j˛mjC
m"2jW jm�11 jW jZ2 � C"

2;

where the series indeed converges because of the decay of the coefficients ˛m proved in (4.7).
This ends the proof of the lemma.
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We now show that Theorem 5 can be reduced to the following key result:

L 4.3. – Let X; Y be given by (4.5) and T X be the holomorphic continuation of the
operator Det.IdCX/.IdCX/�1 given in Appendix A. There existN functions c0; c1; : : : cN�1
holomorphic on Xd such that for all 1 � a � N ,

Tr
�
.T XY /

a
�
D c0.�/C "c1.�/C � � � C "

N�1cN�1.�/CO."
N /:

This holds uniformly locally on Xd .

Assuming that this lemma holds Theorem 5 is only a consequence of a complex analysis
argument resumed in

L 4.4. – Let E D C or C n f0g, S0 be a discrete subset of E. Also let
.�; "/ ! f .�; "/; g.�; "/ two functions such that f .�; "/; g.�; "/ are meromorphic with poles
in S0 and such that h.�; "/ D f .�; "/g.�; "/ is holomorphic on E. Assume moreover that locally
uniformly on E n S0 we have

f .�; "/ D f0.�/C "f1.�/C � � � C "
N�1fN�1.�/CO."

N /

g.�; "/ D g0.�/C "g1.�/C � � � C "
N�1gN�1.�/CO."

N /;
(4.10)

where f0; g0; : : : ; fN�1; gN�1 are meromorphic functions of � 2 C. Then there exist holomor-
phic functions h0; : : : ; hN�1 on E such that uniformly locally on E,

(4.11) h.�; "/ D h0.�/C "h1.�/C � � � C "
N�1hN�1.�/CO."

N /:

Proof. – First note that (4.10) and the fact that h D fg imply that the expansion (4.11)
holds for � away from S0. It remains to show that the functions hj are holomorphic on E
and that the expansion holds locally uniformly on E. We first note that locally uniformly
on E n S0,

fj .�/ D lim
"!0

f .�/ � f0.�/ � � � � � "
j�1fj�1.�/

"j
;

where by convention f�1 D 0. A uniform limit of holomorphic functions is holomorphic;
thus by an immediate recursion f0,. . . , fN�1 must be holomorphic onE. The poles of the fn
are then a subset of the poles of f and thus they all belong to S0. The same holds for the
poles of gn. Consequently the poles of the hn belong to S0. Let n minimal so that hn has
a singularity at a point �0 2 S0. For r small enough �0 is the unique singularity of hn
on D.�0; 2r/. For every " > 0, the function

Hn.�; "/ D
h.�; "/ � "h1 � � � � � "

n�1hn�1

"n

is holomorphic on D.�0; 2r/. As " ! 0, Hn.�; "/ D O.1/ and Hn.�; "/ ! hn.�/, both
holding uniformly locally in D.�0; 2r/ n f�0g. By the maximum principle there existsM > 0

such that for every � 2 D.�0; r/ n f�0g,

jhn.�/j D lim
"!0
jHn.�; "/j � lim sup

"!0

sup
�2@D.�0;r/

jHn.�; "/j �M:

Therefore hn is uniformly bounded in a neighborhood of �0 and its singularity is removable.
It follows that all the hj are holomorphic on E. Now to prove that (4.11) holds uniformly
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locally on E we recall that it already holds uniformly locally on E n S0. Now if �0 2 S0 and
r > 0 is such that D.�0; r/ � E and @D.�0; r/ � E n S0 then Cauchy’s formula shows

h.�/ D
1

2�i

I
@D.�;r/

h.�/

� � �
d� D

1

2�i

I
@D.�;r/

h0.�/C � � � "
N�1hN�1.�/CO."

N /

� � �
d�

D h0.�/C � � � "
N�1hN�1.�/CO."

N /;

with convergence realized uniformly in D.�; r/. This ends the proof.

Proof of Theorem 5 assuming Lemma 4.3.. – By Lemma 4.2 it suffices to prove that for
every n 2 Œ0; N �, !n.X; Y / admits an expansion in powers of " at order N . By (4.3),
!n.X;Det.IdCX/Y / is a finite combination of terms of the form Tr..T XY /

˛/, 1 � a � N .
Thus by Lemma 4.3, !n.X;Det.IdCX/Y / has an expansion of the form

(4.12) !n.X;Det.IdCX/Y / D f0.�/C "f1.�/C � � � C "N�1fN�1.�/CO."N /:

Here the convergence holds locally uniformly on Xd . In addition,

!n.X; Y / D
1

det.IdCX/n
!n.X;Det.IdCX/Y /:

Now apply Lemma 4.4 to the case E D Xd , S0 D Res.W0/, f D det.IdCX/�n and
g D !n.X;Det.Id C X/Y /. The meromorphic function f does not depend on " and its
poles in E are exactly the resonances of W0. The function g is holomorphic on E, depends
on " and admits an expansion given by (4.12). The product h D fg is then meromorphic; by
(4.6) it is locally uniformly bounded on E and consequently it is holomorphic on E. Thus
!n.X; Y / admits an expansion in powers of " at order N and Theorem 5 follows. We will
compute the first few terms in §4.5 below.

The next sections are devoted to the proof of Lemma 4.3. We first simplify the expres-
sion Tr

�
T XY /

a
�
.

L 4.5. – For a 2 Œ1; N �, Tr..T XY /
a/ can be written modulo O."N / as a finite sum

of expressions of the form Tr.T XFn1 � � � T XFna/ where 1 � nj � 2N � 1 and

(4.13) Fn D

1X
mDp

˛m
X

`0C���C`nCnDm

K
`1
W0
KV] � � �K

`n�1
W0

KV]K
`n
W0
; ˛m D

1

mŠ

dm‰

dzm
.0/:

This holds uniformly locally on Xd .

Proof. – Fix 1 � a � N and define K V D hDiKV hDi
�1. Using the cyclicity of the

trace,

Tr
�
.T XY /

a
�
D Tr

�
.T X 0Y

0/a
�

X 0 D Det.IdC‰.KW0//.IdC‰.KW0//
�1; Y 0 D ‰.KV / �‰.KW0/:

Define

(4.14) E m;n D
X

`0C���C`nCnDm

K
`0
W0

KV] � � � K
`n�1
W0

KV] K
`n
W0
; F n D

1X
mDp

˛m E m;n:
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The index n has the following significance: E m;n is the sum of monomials in KW0 ,
KV] with exactly n factors equal to KV] . Using the power series expansion of ‰ and
Y 0 D ‰.KV / �‰.KW0/ we obtain

Y 0 D

1X
mDp

˛m.KW0 C KV]/
m
�

1X
mDp

˛m K
m
W0
D

1X
mDp

˛m . E m;1 C � � � C E m;m/ D

1X
nD1

F n:

We claim that

(4.15)

ˇ̌̌̌
ˇ 1X
nD2N

F n

ˇ̌̌̌
ˇ

L

D O."N /:

In order to prove this start by fixing `0; : : : ; `n with `0 C � � � C `n C n D m � p. Since
KV] appears exactly n times in the product K

`0
W0

KV] � � � K
`n�1
W0

KV] K
`n
W0

we have

(4.16) snj

�
K
`0
W0

KV] � � � K
`n�1
W0

KV] K
`n
W0

�
� sj .KV]/

n
jKW0 j

m�n
B :

We now prove some estimates on sj .KV]/. On one hand by the same argument as in (4.9)
we have

sj .KV]/ � jKV] jB � j hDiK� hDi jB � j hDi
�1 V] hDi

�1
jB � C"jW jZ1 :

On the other hand by arguments similar to (4.8) we have

sj .KV]/ � j hDiKV] jB � sj .� hDi
�1/ � C jW j1j

�1=d :

Interpolating both inequalities yields sj .KV]/ � C"1=2jW jZ1j
�1=.2d/. Coming back to

(4.16) we obtain

(4.17) smj

�
K
`0
W0

KV] � � � K
`n�1
W0

KV] K
`n
W0

�
� CmjW jm

Z1
"n=2j�n=.2d/:

Since n � 2N � 2d C 2 the RHS of (4.17) is summable. Summation over j leadsˇ̌̌
K
`0
W0

KV] � � � K
`n�1
W0

KV] K
`n
W0

ˇ̌̌
L
� m"n=2.C jW jZ1/

m

Consequently if E m;n is given by (4.14) then for n � 2N

(4.18) j E m;nj L � m

 
m

n

!
"N .C jW jZ1/

m:

The claim (4.15) follows then from (4.18) and the estimate (4.7) on ˛m:ˇ̌̌̌
ˇ 1X
nD2N

F n

ˇ̌̌̌
ˇ

L

D

ˇ̌̌̌
ˇ 1X
mDp

˛m . E m;2N C � � � C E m;m/

ˇ̌̌̌
ˇ

L

� "N
1X
mDp

mj˛mj.C jW jZ1/
m

  
m

2N

!
C � � � C

 
m

m

!!

� "N
1X
mDp

mj˛mj.2C jW jZ1/
m
D O."N /:
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It follows that we can write Y 0 as a the sum of a finite combination of the operators F n with
1 � n � m and a small error in L :

Y 0 D

1X
nD1

F n D

2N�1X
nD1

F n CO L ."
N /:

Therefore Tr..T X 0Y
0/a/ is modulo O."N / a finite sum of expressions of the form

Tr.T X 0 F n1
� � � T X 0 F na

/;

where 1 � nj � 2N � 1. Now as X D hDi�1X 0 hDi, Fn D hDi�1 F n hDi, and
Tr..T X 0Y

0/a/ D Tr..T XY /
a, this completes the proof of the lemma.

To sum up we have proved that Theorem 5 holds if Lemma 4.3 holds, that is if for
a 2 Œ1; N �, Tr..T XY /

a/ admits an expansion in powers of ". In addition Lemma 4.3 holds
if for all nj 2 Œ1; 2N � 1�, Tr.T XFn1 � � � T XFna/ admits an expansion in powers of ".

We write the operator Fn given in (4.13) in the following form:

(4.19) Fn D

1X
mDp

X
fk`g2S nm

˛m

 
mY
`D1

KWk`
eik`�="

!
;

where S n
m is the collection of sequences d -tuples .k1; : : : ; km/, with exactly n non-vanishing

terms. Because of the conclusion of Lemma 4.5 we can restrict our attention to operators Fn
with n � 2N �1. For n � 2N �1 andm � p the sequences of S n

m have much more vanishing
terms than non vanishing terms. This will allow us to use some arguments of combinatorial
nature. The expansion of Fn given by (4.19) leads to

aY
jD1

T XFnj D

1X
m1;:::;maDp

X
fk1
`
g2S

n1
m1
;:::; fka

`
g2S

na
ma

0@ aY
jD1

˛mj T X

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A
D Dn1;:::;na C Cn1;:::;na ;

where

Dn1;:::;na D

1X
m1;:::;maDp

X
fk1
`
g2S

n1
m1
; :::; fka

`
g2S

na
ma ;

k1
1
C���Ckama¤0

0@ aY
jD1

˛mj T X

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A ;

Cn1;:::;na D

1X
m1;:::;maDp

X
fk1
`
g2S

n1
m1
; :::; fka

`
g2S

na
ma ;

k1
1
C���CkamaD0

0@ aY
jD1

˛mj T X

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A :

(4.20)

In the next subsection we estimate the trace of the operator Dn1;:::;na .
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4.3. Destructive interaction

The main result of this part is the following:

L 4.6. – For 1 � a � N and n1; : : : ; na 2 Œ0; 2N �1� let Dn1;:::;na be the trace class
operator given by (4.20). Then locally uniformly on Xd ,

Tr
�

Dn1;:::;na

�
D O."N /:

We start with a few definitions. Let fk`g1�`�� a sequence of d -tuples in Zd of length �. We
say that fk`g1�`�� is constructive if it satisfies k1 C � � � C k� D 0 and destructive otherwise.

Roughly speaking, we will see in Lemma 4.10 below that the terms Tr
�Q�

`D1KWk`
eik`�="

�
associated with destructive sequences fk`g are negligible, i.e., are of order "N . This is
due to destructive interference between oscillatory terms eik`�=". Similarly, we will see in
Lemma 4.14 that if fkj g is constructive, the constructive interference between the oscillatory

terms eik`�=" produce an expansion of Tr
�Q�

`D1KWk`
eik`�="

�
in powers of ". These are

responsible for the terms aj "j in the expansion of DV .�/.
The treatment of terms associated with destructive sequences is difficult and requires

certain preliminaries of combinatorial nature. A sequence of d -tuples fk`g1�`�� is said to
be admissible if

(i) It is destructive.
(ii) It starts and ends with at least N vanishing terms.

A sequence fk`g1�`��0 with exactly  non-vanishing terms is said to be good if

(i) It is admissible.
(ii) �0 � N CN C 1.

A subsequence of consecutive d -tuples of an admissible sequence fk`g1�`�� is said to be good
if it takes the form fk`gqC1�`�qC�0 for some q; �0 and if the sequence fk`Cqg1�`��0 is good.

A cyclic permutation of fk`g1�`�� is a sequence equal to

.kLC1; : : : ; k� ; k1; : : : ; kL/

for some L � 0. We will use below the following version of the pigeonhole principle.
Let fk`g1�`�� a sequence with exactly  non-vanishing terms. If � � N. C 1/, there exists
a subsequence of fk`g1�`�� made of N consecutive vanishing d -tuples. The next lemma is a
combinatorial result allowing us to extract good subsequences of consecutive d -tuples out
of admissible subsequences.

L 4.7. – Every admissible sequence fk`g1�`�� admits a good subsequence of consec-
utive d -tuples.

Proof. – We prove this lemma by recursion on �. We can start with � D 2N C 1: there
are no admissible sequences of length less or equal than 2N . Any admissible sequence with
length 2N C 1 has at least one non-vanishing term and therefore it is a good sequence. We
now fix � � 2N C2 and we assume that all admissible sequences of length strictly less than �
admit a good subsequence of consecutive d -tuples. Let fk`g1�`�� be an admissible sequence
with  non-vanishing terms.
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If � � N C N C 1 then fk`g1�`�� is good. Therefore we assume that we have
� � N C N C 2. Consider the subsequence of minimal length of consecutive d -tuples
starting at k1, containing at least one non-zero term and ending with N zeros: .k1; : : : ; k�0/.
Let  0 be the number of non-zero terms in this subsequence. Since this sequence is of minimal
length the pigeonhole principle implies �0 � N C  0N C 1. Hence if k1C � � � C k�0 ¤ 0 then
this subsequence is good and therefore we are done.

Otherwise the sequence fk`g�0�NC1�`�� is admissible. Indeed it starts and ends with
N zeros and it is destructive since k1C� � �Ck�0 D 0 and k1C� � �Ck� ¤ 0. Therefore we can
apply the induction hypothesis: it admits a good subsequence of consecutive d -tuples. This
completes the recursion and the proof.

L 4.8. – Let fk`g1�`�� be an admissible sequence. Then locally uniformly on Xd ,

(4.21)

ˇ̌̌̌
ˇ �Y
`D1

KWk`
eik`�="

ˇ̌̌̌
ˇ

B

� C �
2

 
�Y
iD1

kWk`k2�

!
"N :

This lemma is the key to prove Lemma 4.6. Roughly speaking, to prove (4.21), we must
realize certain integration by parts at specifically chosen places. Each time we integrate by
parts, we win a factor " but we decrease the order of

Q�
`D1KWk`

eik`�=" by one (as a pseu-
dodifferential operator). Starting and ending with N zeroes ensures that after performing
N integrations by parts, the resulting operator will still be a pseudodifferential operator of
sufficiently small order. We start with a preliminary result:

L 4.9. – The operator IV;1.�/ D KV.�/ � KV.��/ is a smoothing operator. In
addition there exists a constant C such that uniformly in � 2 C n D.0; 1/,

(4.22)
ˇ̌̌
.D2
� �2/N IV;1.�/

ˇ̌̌
B
� C h�i2NCd e2Lj Im�j

jVj1:

Proof. – The operator IV;1.�/ is smoothing as the kernel of the operatorR0.�/ �R0.��/
is given by the smooth function

.x; y/ 7!
i

2

�d�2

.2�/d�1

Z
Sd�1

ei�hw;x�yid!;

see [15, Theorem 3.4]. In order to prove the estimate (4.22) we note that by the product rule
for derivatives the operator .D2 � �2/N IV;1.�/ is a finite sum of operators of the form

(4.23)
i

2

�d�2Ct

.2�/d�1
�D˛.R0.�/ �R0.��//V;

where t 2 Œ0; 2N �, ˛ is multi-integer with entries in Œ1; d � and of length j˛j � 2N � t and
� 2 fDˇ�; jˇj � 2N g. The operators of the form (4.23) have kernel given by

.x; y/ 7!
i

2

�d�2Ct

.2�/d�1
�.x/

�
D˛
x

Z
Sd�1

ei�hw;��yid!

�
.x/V.y/:

We have D˛
xe
i�hw;��yi.x/ D !˛�

j˛jei�h!;x�yi where !˛ is by definition !˛1 � � �!˛j˛j . Hence,

(4.24)

ˇ̌̌̌�
D˛
x

Z
Sd�1

ei�hw;��yid!

�
.x/

ˇ̌̌̌
� C h�ij˛j ej Im�jjx�yj
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uniformly on CnD.0; 1/. Since � and V are compactly supported the B-norm of operators
of the form (4.23) can be estimated by Schur’s lemma and the bound (4.24). Recalling that
t C j˛j � 2N it leads toˇ̌̌̌

ˇ i2 �d�2Ct.2�/d�1
�D˛.R0.�/ �R0.��//V

ˇ̌̌̌
ˇ

B

� C j�j1 h�i
2NCd e2Lj Im�j

jVj1:

To conclude it suffices to recall that the operator .D2 � �2/N IV;1.�/ is a finite sum of
operators of the form (4.23). This completes the proof of (4.22).

Proof of Lemma 4.8.. – We divide the proof in three main steps.
1. Fix M > 1. We first show that

(4.25)

ˇ̌̌̌
ˇ �Y
`D1

KWk`
eik`�="

ˇ̌̌̌
ˇ

B

� C �
2

h�i�

 
�Y
`D1

kWk`k2�

!
"N ; Im� 2 Œ1;M �;

uniformly on the set f� W Im� 2 Œ1;M �g. Let R.�; �/ D .�2 � �2/�1 and

A.k; �/ D R.D C k="; �/ D e�ik�="R0.�/e
ik�=":

Define �` D k` C � � � C k� . The commutation relation e�ik�="Deik�=" D D C k=" shows

KWk1 e
ik1�=" � � �KWk� e

ik��=" D �A.0; �/Wk1e
ik1�="A.0; �/Wk2e

ik2�=" � � �A.0; �/Wk�e
ik��="

D ei�1�="�A.�1; �/Wk1A.�2; �/Wk2 � � �A.�� ; �/Wk� :

Now define Tj�1 D A.�j ; �/ � � �A.�� ; �/ for j 2 Œ1; ��. Since we are working in the half plane
fIm� � 1g the operator Tj is well defined and bounded from H�2.��j / to L2. It admits a
bounded inverse T �1j from L2 to H�2.��j /. Thus, for j 2 Œ1; � � 1�, A.�j ; �/ D Tj�1T �1j as
an operator on L2. This yields

KWk1 e
ik1�=" � � �KWk� e

ik��=" D ei�1�="�T0
�
T �11 Wk1T1

�
� � �
�
T �1��1Wk��1T��1

�
Wk�

D ei�1�="�T0

0@��1Y
jD1

T �1j Wkj Tj

1AWk� :(4.26)

The estimate (4.21) for Im� 2 Œ1;M � follows then from a bound on jT �1j Wkj Tj jB and a
bound on jT0jB. We start with the bound on jT0jB. Since this operator is a Fourier multiplier
we have

jT0jB D sup
�2Rd

ˇ̌̌̌
ˇ̌ �Y
jD1

R.� C �j ="; �/

ˇ̌̌̌
ˇ̌ :

We reduce this estimate for Im� 2 Œ1;M � to an estimate for � D i . For � 2 Rd and
Im� 2 Œ1;M � we have

ˇ̌
.�2 C 1/=.�2 � �2/

ˇ̌
� C h�i. It implies

sup
�2Rd

ˇ̌̌̌
ˇ̌ �Y
jD1

R.� C �j ="; �/

ˇ̌̌̌
ˇ̌ D sup

�2Rd

�Y
jD1

ˇ̌
R.� C �j ="; i/

ˇ̌
�

ˇ̌̌̌
.� C �j ="/

2 C 1

.� C �j ="/2 � �2

ˇ̌̌̌

� .C h�i/� sup
�2Rd

ˇ̌̌̌
ˇ̌ �Y
jD1

˝
� C �j ="

˛�2 ˇ̌̌̌ˇ̌ :
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Since the sequence fk`g1�`�� is admissible we have �1 D � � � D �N ¤ 0 and ���NC1 D � � � D
�� D 0. Thus the sequence f�`g1�`���1 starts with N equal non-vanishing terms and ends
with N vanishing terms. Peetre’s inequality (see Equation (2.4)) implies

sup
�2Rd

ˇ̌̌̌
ˇ̌ �Y
jD1

˝
� C �j ="

˛�2 ˇ̌̌̌ˇ̌ � sup
�2Rd

ˇ̌̌
h� C �1="i

�2N
h�i�2N

ˇ̌̌
� C �"2N :

It follows that for � 2 Œ1;M �, jT0jB � C � h�i
� "N .

We next estimate jT �1j WkTj jB, for any k 2 Zd and j 2 Œ0; � � 1�. We show that

(4.27) jT �1j WkTj jB � C
��j
kWkk2.��j /

using a descendent recursion on j . If j D � � 1 then Tj D A.�/ for some � 2 Zd . Thus

A.�/�1WkA.�/ D Wk C ŒWk ; .D C �="/
2
� �2�A.�/

D Wk C .D
2Wk/A.�/C 2.DWk/ � .D C �="/A.�/:

The operator A.�/ D e�i��="R0.�/e
i��=" is bounded on L2 with uniform bound when

Im� � 1. The operator .D C �="/A.�/ D e�i��="DR0.�/e
i�=" is also bounded on L2 with

uniform bound when Im� � 1 asDR0.�/ is bounded onL2 with uniform bound. Therefore,
for a constant C that depends only on d ,

(4.28) jA.�/�1WkA.�/jB � CkWkk2:

We can assume without loss of generality that

(4.29) C � 1C jA.�/jB C 2j.D C �="/A.�/jB:

The bound (4.28) proves the case j D ��1 of (4.27). Now assume that (4.27) holds for some
j 2 Œ1; � � 1� and let us prove that it also holds for j � 1. Write Tj�1 D A.�/Tj for some �
so that

T �1j�1WkTj�1 D T
�1
j A.�/�1WkA.�/Tj

D T �1j
�
Wk C .D

2Wk/A.�/C 2.DWk/ � .D C �="/A.�/
�
Tj

D
�
T �1j WkTj

�
C 2

�
T �1j .DWk/Tj

�
� .D C �="/A.�/C

�
T �1j .D2Wk/Tj

�
A.�/:

Therefore the bounds follows from the recursion hypothesis applied to the operators
T �1j WkTj , T �1j .D2Wk/Tj and T �1j .DWk/Tj : we getˇ̌

T �1j�1WkTj�1
ˇ̌

B
� C ��j kWkk2.��j / C 2C

��j
kDWkk2.��j / � j.D C �="/A.�/jB

C C ��j kD2Wkk2.��j /jA.�/jB

� C ��jC1kWkk2.��jC1/:

In the last line we specifically used (4.29). This ends the recursion and thus the proof of (4.27).
The estimate (4.25) follows then from the identity (4.26), and the bounds on jT �1j WkTj jB,
jT0jB.

2. We show that an estimate similar to (4.25) holds for Im� 2 Œ�M;�1�. Write KV.�/ D

IV;0.�/ C IV;1.�/ where IV;0.�/ D KV.��/ and IV;1.�/ was defined in Lemma 4.9. This
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yields
�Y
`D1

KWk`
eik`�=" D

X
�1;:::;��2f0;1g�

�Y
`D1

IWk` ;�`
.�/eik`�=":

Fix a sequence �1; : : : ; �� 2 f0; 1g� . If all the �j vanish, then
�Y
`D1

IWk` ;�`
.�/eik`�=" D

�Y
`D1

KWk`
.��/eik`�=":

As Im.��/ 2 Œ1;M �we can bound the norm of this operator by directly applying (4.25). Now
assume that at least one of the �` is equal to 1. The indexes `1; : : : ; `s with �`1 D � � � D �`s D 1
split the sequence k1; : : : ; k� in s C 1 subsequences of consecutive d -tuples, of the form

(4.30) .k1; : : : ; k`1�1/; .k`1 ; : : : ; k`2�1/; : : : ; .k`s ; : : : ; k�/:

At least one of these subsequences is destructive. Let us assume that it is the first one.
Then .k1; : : : ; k`1�1/ is destructive and starts with N zeros. It does not necessarily end with
N zeros. Write

(4.31)

ˇ̌̌̌
ˇ �Y
`D1

IWk` ;�`
.�/eik`�="

ˇ̌̌̌
ˇ

B

D

ˇ̌̌̌
ˇ̌
0@`1�1Y
`D1

KWk`
.��/eik`�="

1A IWk`1 ;1.�/eik`1�="
ˇ̌̌̌
ˇ̌

B

ˇ̌̌̌
ˇ̌ �Y
`D`1C1

IWk` ;�`
.�/eik`�="

ˇ̌̌̌
ˇ̌

B

:

The second factor of the RHS of (4.31) can be controlled by the estimates of Lemma 2.1:ˇ̌̌̌
ˇ̌ �Y
`D`1C1

IWk` ;�`
.�/eik`�="

ˇ̌̌̌
ˇ̌

B

�

�Y
`D`1C1

CM jWk` j1

for a constant CM depending on M . We deal next with the first factor in the RHS of (4.31).
Let � 2 C10 .Bd .0; L// be equal to 1 on supp.�/ and define QK�.�/ D �R0.�/�. Since
Im� � �1, QK�.��/N .D2 � �2/N� D Id. It follows thatˇ̌̌̌

ˇ̌
0@`1�1Y
`D1

KWk`
.��/eik`�="

1A IWk`1 ;1.�/eik`1�="
ˇ̌̌̌
ˇ̌

B

D

ˇ̌̌̌
ˇ̌
0@`1�1Y
`D1

KWk`
.��/eik`�="

1A QK�.��/N .D2
� �2/N�IWk`1

;1.�/

ˇ̌̌̌
ˇ̌

B

�

ˇ̌̌̌
ˇ̌
0@`1�1Y
`D1

KWk`
.��/eik`�="

1A QK�.��/N
ˇ̌̌̌
ˇ̌

B

ˇ̌̌
.D2
� �2/N IWk`1

;1.�/
ˇ̌̌

B
:

(4.32)

The same arguments used to show (4.25) yield that for Im� 2 Œ1;M �,ˇ̌̌̌
ˇ̌
0@`1�1Y
`D1

KWk`
.��/eik`�="

1A QK�.��/N
ˇ̌̌̌
ˇ̌

B

� C `
2
1 h�i`1

0@`1�1Y
`D1

kWk`k2�

1A "N :
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By Lemma 4.9,
ˇ̌̌
.D2 � �2/N IWk`1

;1.�/
ˇ̌̌

B
� h�i2NCd e2Lj Im�jjWk`1

j1 for Im� 2 Œ�1;�M�.

Coming back to (4.32) and putting these bounds together we obtainˇ̌̌̌
ˇ̌
0@`1�1Y
`D1

KWk`
.��/eik`�="

1A IWk`1 ;1.�/eik`1�="
ˇ̌̌̌
ˇ̌

B

� C `
2
1 h�i`1C2NCd e2Lj Im�j

0@ `1Y
`D1

kWk`k2�

1A "N :
By (4.31) we conclude that if the first sequence among (4.30) is destructive we haveˇ̌̌̌

ˇ �Y
`D1

IWk` ;�`
.�/eik`�="

ˇ̌̌̌
ˇ

B

� C �
2

M h�i
�C2NCd e2Lj Im�j

0@ `1Y
`D1

kWk`k2�

1A "N
uniformly for � with Im� 2 Œ�1;�M�. In the case where the first subsequence among
(4.30) is not destructive we know that at least one of the subsequence in (4.30) is destructive.
This subsequence might not start nor end with N vanishing term. Here again using that the
operator IV;1.�/ is smoothing we can overcome this difficulty. We skip the additional details.
It leads to the boundˇ̌̌̌

ˇ �Y
`D1

IWk` ;�`
.�/eik`�="

ˇ̌̌̌
ˇ

B

� C �
2

M h�i
�C4NC2d e4Lj Im�j

0@ `1Y
`D1

kWk`k2�

1A "N :(4.33)

Sum the bound (4.33) over �1; : : : ; �� 2 f0; 1g� to get that when Im� 2 Œ�1;�M�,ˇ̌̌̌
ˇ �Y
`D1

KWk`
eik`�="

ˇ̌̌̌
ˇ

B

� C �
2

M h�i
�C4NC2d e4Lj Im�j

 
�Y
`D1

kWk`k2�

!
"N :(4.34)

3. We conclude the proof by a complex analysis argument. The estimates (4.25) and (4.34)
show that (4.21) holds locally for j Im�j � 1. Thus it remains to show that it holds locally
for j Im�j � 1. Fix u; v 2 L2 and consider

f .�/ D
��

.�C 2i/2�C4NC2d

*
�Y
`D1

KWk`
eik`�="u; v

+
:

This function is holomorphic and uniformly bounded for j Im�j � 1: by Lemma 2.1,

j Im�j � 1 ) jf .�/j � C �

 
�Y
`D1

jWk` j1

!
juj2jvj2:

In addition, (4.25) and (4.34) are uniform estimates on the edge of the strip:

(4.35) j Im�j D 1 ) jf .�/j � C �
2

 
�Y
`D1

kWk`k2�

!
"N juj2jvj2:

Therefore by the three lines theorem the function f satisfies (4.35) for all � with j Im�j � 1.
Taking the supremum over u; v 2 L2 shows that (4.21) holds for j Im�j � 1. This ends the
proof of the lemma.

Lemma 4.8 is somehow unsatisfying. The bound (4.21) involves a constant C �
2

and the
norm kWkk2� . Both C �

2
and kWkk2� grow too fast as � ! 1. The proof of the next

result, which refines Lemma 4.8, specifically uses the relation between good and admissible
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sequences given in Lemma 4.7: every admissible sequence admits a good subsequence of
consecutive d -tuples.

L 4.10. – Let fk`g1�`�� be a destructive sequence with exactly  non-vanishing
terms. Let s D 2.N C N C 1/. If � � .2N C 2d/. C 1/ then locally uniformly on Xdˇ̌̌̌

ˇTr

 
�Y
`D1

KWk`
eik`�="

!ˇ̌̌̌
ˇ � C �Cs2"N : �Y

`D1

kWk`ks :

If moreover the sequence fk`g1�`�� starts and ends with N C d zeros then locally uniformly
on Xd

(4.36)

ˇ̌̌̌
ˇ �Y
`D1

KWk`
eik`�="

ˇ̌̌̌
ˇ

L

� C �Cs
2

"N
�Y
`D1

kWk`ks :

We recall that N is fixed. Because of Lemma 4.5, we will only care about sequences fkj g
with at most 2N�1 non-vanishing term. Hence, we will apply Lemma 4.10 with a parameter s
of the lemma at most 2.N C .2N � 1/N C 1/. It follows that, in practice, the constant
C s

2Q�
`D1 kWk`ks in the LHS of (4.36) will not be growing too fast.

Proof. – First note that since � � .2N C 2d/. C 1/ by the pigeonhole principle there
exists a cyclic permutation (in the sense described above) of fk`g that starts and ends withNC
d zeros. Using the cyclicity of the trace we can assume that the sequence fk`g starts and ends
withNCd zeros. In particular we are reduced to prove (4.36). Since the sequence fk`g is now
admissible it admits a good subsequence of consecutive d -tuples fk`gqC1�`��0Cq . Without
loss of generality q � d . Writeˇ̌̌̌

ˇ �Y
`D1

KWk`
eik`�="

ˇ̌̌̌
ˇ

L

�

ˇ̌̌̌
ˇ dY
`D1

KWk`
eik`�="

ˇ̌̌̌
ˇ

L

ˇ̌̌̌
ˇ̌ qY
`DdC1

KWk`
eik`�="

ˇ̌̌̌
ˇ̌

B

�

ˇ̌̌̌
ˇ̌ �0CqY
`DqC1

KWk`
eik`�="

ˇ̌̌̌
ˇ̌

B

ˇ̌̌̌
ˇ̌ �Y
`D�0CqC1

KWk`
eik`�="

ˇ̌̌̌
ˇ̌

B

:

For � in compact subsets of Xd the first, second and fourth factor are estimated by
Lemma 2.1. The third factor is controlled by (4.21). It leads toˇ̌̌̌

ˇ �Y
`D1

KWk`
eik`�="

ˇ̌̌̌
ˇ

L

� C �C�
02

"N

0@ Y
`�q; `��0CqC1

jWk` j1

1A0@ �0CqY
`DqC1

kWk`k2�

1A
� C �Cs

2

"N
�Y
`D1

kWk`ks :

This completes the proof of the lemma.

With this refinement in mind we are now ready for the proof of Lemma 4.6.
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Proof of Lemma 4.6. – We divide the proof in 5 main steps.

1. Let a 2 Œ1; N � and n1; : : : ; na 2 Œ1; 2N � 1�. The function z 7! .1 C ‰.z//�1 is
meromorphic with a simple pole at z D �1. Write a Taylor expansion of z 7! .1C‰.z//�1

at z D 0:

.IdC‰.z//�1 D PN .z/C z2NC2d�N .z/:

HerePN is a polynomial of degree 2NC2d�1 and �N is a holomorphic function onCnf�1g.
The pole at �1 is of multiplicity one. Away from resonances of W0,

.IdC‰.KW0//
�1
D PN .KW0/CK

NCd
W0

�N .KW0/K
NCd
W0

:

The operator BW0 D Det.IdC‰.KW0//�N .KW0/, well defined on C nRes.KW0/, extends to
an entire family of operators by Appendix A. Let us write T X D P0 C P1, where

(4.37) P0 D Det.IdC‰.KW0// � PN .KW0/; P1 D K
NCd
W0

� BW0 �K
NCd
W0

:

Fixm1; : : : ; ma � p and for each 1 � j � a a sequence fkj
`
g 2 S

nj
mj , with k11C� � �Ck

a
ma
¤ 0.

We define  D n1 C � � � C na and � D m1 C � � � Cma. Using T X D P0 C P1 we get

Tr

0@ aY
jD1

T X

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A D X
�1;:::�a2f0;1ga

Tr

0@ aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A :
In the following steps we study separately the terms of the RHS sum, depeding on the value
of �1; : : : ; �a 2 f0; 1ga.

2. Assume that �1 D � � � D �a D 0. Then

Tr

0@ aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A D Tr

0@ aY
jD1

P0

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A :
The sequence fkj

`
g is destructive, � � pa � 2.N C d/ � 2Na and 2Na �  C 1. This implies

� � 2.N C d/. C 1/. Hence for s D 2.N C 2N 3 C 1/ we have s � 2.N C N C 1/. The
assumptions of Lemma 4.10 are satisfied thusˇ̌̌̌

ˇ̌Tr

0@ aY
jD1

P0

mjY
`D1

KW
k
j
`

eik
j

`
�="

1Aˇ̌̌̌ˇ̌ � C �"N �Y
`D1

kWk`ks

for a constant C depending only on N; d and jW0j1.

3. Assume that exactly one of the �1; : : : ; �a 2 f0; 1ga is equal to 1. Using the cyclicity of
the trace we can assume without loss of generality that �1 D 1. Hence

Tr

0@ aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A
D Tr

0@BW0KNCdW0

 
m1Y
`D1

KW
k1
`

eik
1
`
�="

!0@ aY
jD2

P0

mjY
`D1

KW
k
j
`

eik
j

`
�="

1AKNCdW0

1A :
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Using (4.36) we obtain againˇ̌̌̌
ˇ̌Tr

0@ aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

1Aˇ̌̌̌ˇ̌
� jBW0 jB �

ˇ̌̌̌
ˇ̌KNCdW0

 
m1Y
`D1

KW
k1
`

eik
1
`
�="

!0@ aY
jD2

P0

mjY
`D1

KW
k
j
`

eik
j

`
�="

1AKNCdW0

ˇ̌̌̌
ˇ̌

L

:

The second factor in the second line is a finite sum of terms studied in Lemma 4.10. Conse-
quently we obtain the boundˇ̌̌̌

ˇ̌Tr

0@ aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

1Aˇ̌̌̌ˇ̌ � C �"N jBW0 jB �Y
`D1

kWk`ks :

4. Assume that 2 or more terms among �1; : : : ; �a 2 f0; 1ga are equal to 1. Using a circular
permutation we can assume without loss of generality that �1 D 1. Let us prove the following
statement: there exists two indexes j1; j2 2 Œ1; a� such that

(i) the sequence fkj
`
g
j1�j<j2
1�`�mj

is destructive;
(ii) �j D 0 for all j in the interval .j1; j2/.

We process by recursion on a. If a D 2 this is obvious: either the sequence fk1
`
g1�`�m1 or

the sequence fk2
`
g1�`�m2 is destructive. Now assume that the statement holds true for all

a0 � a � 1. Let us prove it for a. Let j0 be the smallest index with �j0 D 1 and j0 > 1. Then
either the sequence fkj

`
g
1�j<j0
1�`�mj

is destructive and we are done, or it is constructive. But then

the sequence fkj
`
g
j0�j�a

1�`�mj
is destructive and so we can apply the recursion hypothesis to it.

This proves the above claim.

Again using a circular permutation we can assume that j1 D 1. Henceˇ̌̌̌
ˇ̌Tr

0@ aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

1Aˇ̌̌̌ˇ̌
� jBW0 jB

ˇ̌̌̌
ˇ̌K2.NCd/W0

 
m1Y
`D1

KW
k
j
`

eik
j

`
�="

!0@j2�1Y
jD2

P0

mjY
`D1

KW
k
j
`

eik
j

`
�="

1AK2.NCd/W0

ˇ̌̌̌
ˇ̌

L

jBW0 jB

�

ˇ̌̌̌
ˇ̌
0@mj2Y
`D1

KW
k
j
`

eik
j

`
�="

1A0@ aY
jDj2C2

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

1Aˇ̌̌̌ˇ̌
B

:

The first line is a finite sum of terms estimated by Lemma 4.10. The second line is controlled
by the standards bounds of Lemma 2.1. It leads to

(4.38)

ˇ̌̌̌
ˇ̌Tr

0@ aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

1Aˇ̌̌̌ˇ̌ � C �"N �Y
`D1

kWk`ks :
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5. Points 2; 3; 4 show that (4.38) holds for all sequences �1; : : : ; �a 2 f0; 1ga. Summing this
estimate over all possible �1; : : : ; �a to get

(4.39)

ˇ̌̌̌
ˇ̌Tr

0@ aY
jD1

T X

mjY
`D1

KW
k
j
`

eik
j

`
�="

1Aˇ̌̌̌ˇ̌ � C �"N �Y
`D1

kWk`ks :

The last step of the proof is to sum the bound (4.39). Recall that

Dn1;:::;na D

1X
m1;:::;maDp

X
fk1
`
g2S

n1
m1
; :::; fka

`
g2S

na
ma ;

k1
1
C���Ckama¤0

0@ aY
jD1

˛mj T X

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A ;
where S n

m is the set of sequences of length m with n non-vanishing terms. Henceˇ̌
Tr
�

Dn1;:::;na

�ˇ̌
�

1X
m1;:::;maDp

X
fk1
`
g2S

n1
m1
; :::; fka

`
g2S

na
ma ;

k1
1
C���Ckama¤0

j˛m1 � � �˛ma j

ˇ̌̌̌
ˇ̌Tr

0@ aY
jD1

T X

mjY
`D1

KW
k
j
`

eik
j

`
�="

1Aˇ̌̌̌ˇ̌
� "N

1X
m1;:::;maDp

j˛m1 � � �˛ma jC
m1C���Cma

X
fk1
`
g2S

n1
m1
; :::; fka

`
g2S

na
ma ;

k1
1
C���Ckama¤0

m1C���CmaY
`D1

kWk`ks

� "N
1X

m1;:::;maDp

j˛m1 � � �˛ma jC
m1C���Cma jW j

m1C���Cma
Zs D "N .ˆ.C jW jZs //

a ;

where we recall that jW jZs D
P
k2Zd kWkks and ˆ is defined with ˆ.z/ D

P1
mDp j˛mjz

m.
Since ˆ is entire, ˆ.C jW jZs / < 1. Hence Tr.Dn1;:::;na/ D O."N / which completes the
proof.

4.4. Constructive interaction

In this paragraph we prove the following lemma:

L 4.11. – For 1 � a � N and n1; : : : ; na 2 Œ1; 2N �1� let Cn1;:::;na be the trace class
operator given by (4.20). There exist '0; : : : ; 'N�1 holomorphic functions on Xd such that

Tr
�

Cn1;:::;na
�
D '0.�/C "'1.�/C � � � C "

N�1'N�1.�/CO."
N /

locally uniformly on Xd .

As we will see, the terms "j'j .�/ arise from constructive interference between the terms
eikj � =". The first step in the proof of Lemma 4.11 is an operator valued expansion
for e�ik�="KWke

ik�=":

L 4.12. – For every n � 0 there exists some operators A0; : : : ; An�1;Rn with

(4.40) e�ik�="KWke
ik�="

D A0 C � � � C "
n�1An�1 C "

nRn;

depending on k, and such that :
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(i) Aj is a pseudodifferential operator of order j � 2 that maps locally supported functions
to compactly supported functions. It does not depend on " and there exists C such that

s C j � N; k 2 Zd ) jAj jB.H sCj ;H s/ � CkWkkN :

(ii) Rn is a pseudodifferential operator of order n � 1 and maps locally supported functions
to compactly supported functions. It depends on " and uniformly in " near 0 and there
exists C such that

s C nC 1 � N; k 2 Zd ) jRnjB.H sCnC1;H s/ � CkWkkN :

Proof. – For k D 0 there is nothing to prove. Thus we assume k ¤ 0. In Appendix B we
prove that if R.�; �/ D .�2 � �2/�1 then
(4.41)

R.�Ck="; �/ D

0@n�1X
jD2

"jpj�2.�; �/

1AC"npn�2.�; �/C"nC1pn�1.�; �/C"n rn.�; �; "/

.�2 � k="/2 � �2
:

Here the pj .�; �/ are polynomials in � and � of degree at most j in �, depending uniformly
on k=jkj2; and rn.�; �; "/ is a polynomial in � and � of degree at most n C 1 in � and
whose coefficients depend smoothly of ". Since the dependence in k is uniform in k=jkj2, it
is uniform for k 2 Zd n 0. It follows that

(4.42) sup
k2Zd n0

sup
�2Rd

ˇ̌̌̌
rn.�; �; "/

h�inC1

ˇ̌̌̌
D O.1/ uniformly as "! 0; k 2 Zd :

Since e�ik�="Deik�=" D D C k=" we have for Im� > 0,

e�ik�="R0.�/e
ik�="

D
�
.D C k="/2 � �2

��1
:

Therefore the expansion (4.41) implies that for Im� > 0,

e�ik�="R0.�/e
ik�="

D

0@n�1X
jD2

"j

jkj2
pj�2.D/

1AC "n .pn�2.D/C "pn�1.D/CR0.�/rn.D; "// :
This identity extends analytically to Xd and yields

e�ik�="KWke
ik�="

D A0 C � � � C "
n�1An�1 C "

nRn;

A0 D A1 D 0; Aj D
1

jkj2
�pj�2.D/Wk for j 2 Œ2; n � 1�;

Rn D � .pn�2.D/C "pn�1.D/CR0.�/rn.D; "//Wk :

The operators Aj are pseudodifferential of order j � 2 and map locally supported functions
to compactly supported functions. For Im� > 0 the operator KWk .�/ is pseudodifferential;
the operator KWk .�/ � KWk .��/ is smoothing. Hence KWk .�/ is pseudodifferential for all
� 2 Xd . As

Rn D
e�ik�="KWke

ik�=" � A0 � � � � � "
n�1An�1

"n

and the RHS is pseudodifferentialRn must also be pseudodifferential. To evaluate its order
we note that pn�2.D/ (resp. pn�1.D/) is a differential operator of order n � 4 (resp. n � 3)
and that rn.D/ is a differential operator of order nC1. ThusR0.�/rn.D/mapsHnC1 toH 2

and Rn must be of order n � 1. To prove the required bounds, we note that for s � N , the
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multiplication operator u 7! Wku fromH s to itself has norm bounded by kWkkN . Therefore
for s C j � N ,

jAj jB.H sCj ;H s/ � C jpj�2.D/jB.H sCj ;H s/jWkjB.H sCj ;H sCj / � CkWkkN :

Again, the constant is uniform in k 2 Zd n 0 because pj .�; �/ depends uniformly on k=jkj2.
This proves (i). Now we prove (ii). For s C n C 1 � N the bound (4.42) implies that the
operator rn.D; "/ (which is a differential operator) satisfies the bound

jrn.D; "/jB.H sCnC1;H s/ D O.1/ uniformly as "! 0:

Let � 2 C10 .Bd .0; L// with � D 1 on supp.�/. The operator �R0.�/� maps H s to itself.
Consequently, uniformly as "! 0

j�R0.�/rn.D; "/WkjB.H sCnC1;H s/

� j�R0.�/�jB.H s ;H s/jrn.D; "/WkjB.H sCnC1;H s/ D O.kWkkN /:

The operators �pn�2.D/Wk and �pn�1.D/Wk do not depend on " and are bounded
from H sCnC1 to H s . This shows (ii) and completes the proof of the lemma.

Now we prove the same kind of expansion for product of operators of the form (4.40).

L 4.13. – Let fk`g1�`�� be a sequence of d -tuples in Zd . There exist some operators
A 0; : : : ; AN�1; RN with

(4.43) e�i�1�="

 
�Y
`D1

KWk`
eik`�="

!
D A 0 C � � � C "

N�1 AN�1 C "
N RN ;

where �1 D k1 C � � � C k� and

(i) Aj is a pseudodifferential operator of order j � 2 and maps locally supported functions
to compactly supported functions. It does not depend on " and

s C j � N ) jAj jB.H sCj ;H s/ � C
�

�Y
`D1

kWk`kN ;

(ii) RN is a pseudodifferential operator of orderN � 1mapping locally supported functions
to compactly supported functions. It depends on " and uniformly in " near 0,

s � �1 ) jRN jB.H sCNC1;H s/ � C
�

�Y
`D1

kWk`kN :

This lemma is important when �1 D 0—in this case, the sequence fk`g is constructive. It
produces an operator-valued expansion of

Q�
`D1KWk`

eik`�=". In Lemma 4.14 below, we will
explain how to pass to the trace in (4.43). This will generate terms of order "j , j > N , that
will appear later in the expansion ofDV .�/ in powers of ". We refer to §4.5 for the instructive
computation of the first few terms.
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Proof. – We prove this lemma by recursion. For � D 1 it is the result of Lemma 4.12. Now
assume that Lemma 4.13 holds true for all sequences fkj g of length less or equal to � � 1.
Let fkj g be a sequence of length �. Define �2 D k2 C � � � C k� so that

e�i�1�="
�Y
`D1

KWk`
eik`�=" D

�
e�i�1�="KWk1 e

i�1�="
�
�

 
e�i�2�="

�Y
`D2

KWk`
eik`�="

!
:

Using the recursion hypothesis we have�
e�i�1�="KWk1 e

i�1�="
�
�

 
e�i�2�="

�Y
`D2

KWk`
eik`�="

!
D

�
e�i�1�="KWk1 e

i�1�="
�

A 0 C � � � C "
N�1

�
e�i�1�="KWk1 e

i�1�="
�

AN�1

C "N
�
e�i�1�="KWk1 e

i�1�="
�

RN :

We expand below e�i�1�="KWk1 e
i�1�=" at order N � j as given by Lemma 4.12:

(4.44) e�i�1�="KWk1 e
i�1�=" D A0 C "A1 C � � � C "

N�j�1AN�j�1 C "
N�jRN�j :

It leads to

"j
�
e�i�1�="KWk1 e

i�1�="
�

Aj D "
jA0 Aj C � � � C "

N�1AN�1�j Aj C "
NRN�j Aj :

The operator Aj 0 Aj has order j 0 � 2C j � 2 D j 0 C j � 4 � j 0 C j � 2 and in the above
expression it is weighted with a term "j

0Cj . Moreover if s C j 0 C j � N then

jAj 0 Aj jB.H sCj 0Cj ;H s/ � jAj 0 jB.H sCj 0 ;H s/jAj jB.H sCj 0Cj ;H sCj 0 / � C
�

�Y
`D1

kWk`kN :

The remainder RN�j Aj has order N � j � 1C j � 2 D N � 3 � N � 1 and satisfies

jRN�j Aj jB.HNC1Cs ;H s/ � jRN�j jB.H sCN�jC1;H s/jAj jB.HNC1Cs ;HNC1Cs�j /

� C �
�Y
`D1

kWk`kN :

The term e�i�1�="KWk1 e
i�1�=" RN is of order N � 3 � N � 1 and satisfiesˇ̌̌

e�i�1�="KWk1 e
i�1�=" RN

ˇ̌̌
B.H sCNC1;H s/

�

ˇ̌̌
e�i�1�="KWk1 e

i�1�="
ˇ̌̌

B.H s ;H s/
jRN jB.H sCNC1;H s/

� C �
�Y
`D1

kWk`kN :

This proves that the lemma holds for all sequences of length �. This completes the recursion
and ends the proof.

The expansion of Lemma 4.13 implies a trace expansion as follows:
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L 4.14. – Let fk`g1�`�� be a constructive sequence with  non-vanishing terms.
Assume that � � N. C 1/: Then there exists a0; a1; : : : ; aN�1 holomorphic functions on Xd
such that locally uniformly on Xd , jaj .�/j � C �

Q�
`D1 kWk`kN andˇ̌̌̌

ˇTr

 
�Y
`D1

KWk`
eik`�="

!
� a0.�/ � "a1.�/C � � � � "

N�1aN�1.�/

ˇ̌̌̌
ˇ � "NC � �Y

`D1

kWk`kN :

Proof. – Since � � N.C1/, there exists a subsequence of fk`g1�`�� made ofN consec-
utive vanishing d -tuples. Using the cyclicity of the trace we can assume that k��NC1 D � � � D
k� D 0. The sequence k1; : : : ; k��N is constructive. Therefore we can apply Lemma 4.13 to
obtain the expansion

��NY
`D1

KWk`
eik`�=" D A 0 C � � � C "

N�1 AN�1 C "
N RN :

Here Aj is pseudodifferential of order j � 2 and does not depend on " and RN is pseu-
dodifferential of order N � 1 and satisfies the bound

jRN jB.HNC1;L2/ � C
�

�Y
`D1

kWk`kN :

All these operators map locally supported functions to compactly supported functions.
As k��NC1 D � � � D k� D 0 we obtain

(4.45)
�Y
`D1

KWk`
eik`�=" D A 0K

N
W0
C � � � C "N�1 AN�1K

N
W0
C "N RNK

N
W0
:

We recall that N � d . The operators AjK
N
W0

have order j � 2 � 2N � �2 � N � �2 � d
therefore they are trace class. The operator RNK

N
W0

has order�N �1 � �d hence it is also
trace class. It satisfies the bound

jRNK
N
W0
jB.H1�N ;L2/ � jRN jB.HNC1;L2/jK

N
W0
jB.H1�N ;HNC1/ � C

�

�Y
`D1

kWk`kN :

By [15, Equation (B.3.9)] this implies

jRNK
N
W0
j L � jRNK

N
W0
jB.H1�N ;L2/ � C

�

�Y
`D1

kWk`kN :

Taking the trace of both sides of (4.45) yieldsˇ̌̌̌
ˇTr

 
�Y
`D1

KWk`
eik`�="

!
� Tr

�
A 0K

N
W0

�
� � � � � "N�1Tr

�
AN�1K

N
W0

�ˇ̌̌̌ˇ � "NC � �Y
`D1

kWk`kN :

This gives the required expansion. We now need to prove the estimate on the coefficients
a0; : : : ; aN�1 appearing in the expansion. By [15, Equation (B.3.9)] and the estimate (i) of
Lemma 4.13,

jTr.AjK
N
W0
/j � jAjK

N
W0
j L � C jAjK

N
W0
jB.H�N ;L2/

� C jAj jB.HN ;L2/jK
N
W0
jB.H�N ;HN / � C

�

�Y
`D1

kWk`kN :
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This completes the proof.

Fix a 2 Œ1; N � and n1; : : : ; na 2 Œ1; 2N � 1�. The operator Cn1;:::;na defined by (4.20) is a
linear combination of operators of the form

(4.46) LŒk
j

`
� D

aY
jD1

T X

mjY
`D1

KW
k
j
`

eik
j

`
�=";

where

(i) For every j 2 Œ1; a�, mj � p.
(ii) The sequence fkj

`
g
1�j�a

1�`�mj
is constructive.

(iii) For every j 2 Œ1; a�, the sequence fkj
`
g1�`�mj has nj non-vanishing terms.

In order to prove Lemma 4.11 we prove an expansion for operators of the form (4.46) where
fk
j

`
g satisfies (i), (ii), and (iii). We fix s D 2.N C 2N 2 C 1/.

L 4.15. – Let LŒkj
`
� be an operator of the form (4.46) where fkj

`
g satisfies (i), (ii),

and (iii) above. Then there exist b0Œk
j

`
�; : : : ; bN�1Œk

j

`
� holomorphic functions on Xd such that

locally uniformly on Xd we have jbi Œk
j

`
�j � C �

Q�
`D1 kWk`ks and

(4.47)
ˇ̌̌
Tr
�
LŒk

j

`
�
�
� b0Œk

j

`
�C � � � � bN�1Œk

j

`
�"N�1

ˇ̌̌
� "NC �

aY
jD1

mjY
`D1

kW
k
j

`

ks :

Proof of Lemma 4.11. – Fix a 2 Œ1; N �, n1; : : : ; na 2 Œ1; 2N �1� and kj
`

satisfying (i), (ii),
and (iii) above. Let  D n1 C � � � C na be the number of non-vanishing terms of fkj

`
g. We

divide the proof below in 5 main steps.

1. Write T X D P0 C P1 where P0; P1 were given in (4.37). Then

Tr
�
LŒk

j

`
�
�
D Tr

0@ aY
jD1

T X

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A D X
�1;:::�a2f0;1ga

Tr

0@ aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A :
We recall that since fkj

`
g has  � .2N �1/a non-vanishing terms and length � � pa we have

� � N. C 1/. Fix a sequence �j 2 f0; 1ga. In order to prove the lemma it suffices to prove
that the term

(4.48) Tr

0@ aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

1A
admits an expansion in powers of " at order N .

2. Assume that �1 D � � � D �a D 0. Recall that P0 is the product of the scalar
det.IdC ‰.KW0/ with the operator PN .KW0/—which is polynomial in KW0 . Hence, in the
case �1 D � � � D �a D 0, (4.48) is a finite sum of terms studied in Lemma 4.14. These all
admit an expansion in powers of " and thus so does (4.48).
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3. Assume that �j has at least one non-zero term. Without loss of generality �1 D 1. The
indexes j1; : : : ; jr such that �j D 1 split the sequence .k11 ; : : : ; k

1
m1
; k21 ; : : : ; k

a
ma
/ into r C 1

subsequences of consecutive d -tuples

(4.49) .k11 ; : : : ; k
j1

mj1
/; : : : ; .k

jr
1 ; : : : ; k

a
ma
/:

Assume that each of the subsequences in (4.49) is constructive.

Then since P1 D KNCdW0
BW0K

NCd
W0

we can write (4.48) as the trace of a product of
operators of the form

(4.50) BW0K
NCd
W0

jtC1�1Y
jDjt

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="KNCdW0

:

By Lemma 4.13, the operator

KNCdW0

jtC1�1Y
jDjt

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="KNCdW0

admits an operator-valued expansion in powers of ". Thus so does the operator (4.50).
Multiplying these expansions over t D 1; : : : ; r leads to an operator-valued expansion for
the operator

aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�=";

in the spirit of Lemma 4.13. Taking the trace and adapting the proof of Lemma 4.14 shows
that (4.48) admits an expansion in powers of ".

4. Assume that at least one of the sequences in (4.49) is destructive. Without loss of
generality .k11 ; : : : ; k

mj1
j1

/ is destructive. Since P1 D K
NCd
W0

BW0K
NCd
W0

the operator

(4.51) KNCdW0

0@ j1Y
jD1

P0

mjY
`D1

KW
k
j
`

eik
j

`
�="

1AKNCdW0

appears as one of the factors in the product

aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�=":

In addition since P0 is the product of the scalar det.IdC‰.KW0// with PN .KW0/—which
is polynomial onKW0—it is associated with a destructive sequence, that starts and ends with
N C d zeros. Consequently Lemma 4.10 applies and yieldsˇ̌̌̌

ˇ̌KNCdW0

0@ j1Y
jD1

P0

mjY
`D1

KW
k
j
`

eik
j

`
�="

1AKNCdW0

ˇ̌̌̌
ˇ̌

L

� C �Cs
2

"N
j1Y
jD1

mjY
`D1

kW
k
j

`

ks :
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This yields the estimate:

Tr

0@ aY
jD1

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

!

�

ˇ̌̌
KNCdW0

BW0

ˇ̌̌
B

ˇ̌̌̌
ˇ̌KNCdW0

0@ j1Y
jD1

P0

mjY
`D1

KW
k
j
`

eik
j

`
�="

1AKNCdW0

ˇ̌̌̌
ˇ̌

L

�

ˇ̌̌
BW0K

NCd
W0

ˇ̌̌
B

ˇ̌̌̌
ˇ̌mj1C1Y
`D1

KW
k
j1C1

`

eik
j1C1

`
�="

ˇ̌̌̌
ˇ̌

B

ˇ̌̌̌
ˇ̌ aY
jDj1C2

C�j

mjY
`D1

KW
k
j
`

eik
j

`
�="

ˇ̌̌̌
ˇ̌

B

� C �Cs
2

"N
aY

jD1

mjY
`D1

kW
k
j

`

ks :

This shows that such sequences �1; : : : ; �a induce negligible contributions.

5. Points 2; 3; 4 include all the possible values of �1; : : : ; �a. The expansion (4.47) follows
now from a summation over �1; : : : ; �a 2 f0; 1ga of the expansions obtained in Points 2,3.
This ends the proof.

We are now ready to prove Lemma 4.11.

Proof of Lemma 4.11. – Let us recall that for a 2 Œ1; N � and n1; : : : na 2 Œ1; 2N � 1� the
operator Cn1;:::;na is defined by

Cn1;:::;na D

1X
m1;:::;maDp

˛m1 � � �˛ma

X
fk1
`
g2S

n1
m1
; :::; fka

`
g2S

na
ma ;

k1
1
C���CkamaD0

LŒk
j

`
�:

Here LŒkj
`
� is given by (4.46), S n

m is the set of sequences of length m with n non-vanishing
terms and ˛m D ‰.m/.0/=mŠ. The proof consist in showing that the sum of the expansions
of Tr.LŒkj

`
�/ provided by Lemma 4.15 is convergent. By Lemma 4.15,

1X
m1;:::;maDp

j˛m1 � � �˛ma j
X

fk1
`
g2S

n1
m1
; :::; fka

`
g2S

na
ma ;

k1
1
C���CkamaD0

ˇ̌̌
Tr
�
LŒk

j

`
�
�
� b0Œk

j

`
�C � � � � bN�1Œk

j

`
�"N�1

ˇ̌̌

� "N
1X

m1;:::;maDp

j˛m1 � � �˛ma j
X

fk1
`
g2S

n1
m1
; :::; fka

`
g2S

na
ma ;

k1
1
C���CkamaD0

Cm1C���Cma
aY

jD1

mjY
`D1

kWk`ks

� "N
1X

m1;:::;maDp

j˛m1 � � �˛ma jC
m1C���Cma jW j

m1C���Cma
Xs D "N .ˆ.C jW jZs //

a;
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where we recall that jW jZs D
P
k2Zd kWkks and ˆ.z/ D

P1
mDp j˛mjz

m. It follows that
Tr. Cn1;:::;na/ has an expansion given by

Tr. Cn1;:::;na/ D O."
N /C

1X
m1;:::;maDp

˛m1 � � �˛ma

X
fk1
`
g2S

n1
m1
; :::; fka

`
g2S

na
ma ;

k1
1
C���CkamaD0

b0Œk
j

`
�C � � � C bN�1Œk

j

`
�"N�1

D '0 C � � � C "
N�1'N�1 CO."

N /;

where

'i D

1X
m1;:::;maDp

˛m1 � � �˛ma

X
fk1
`
g2S

n1
m1
; :::; fka

`
g2S

na
ma ;

k1
1
C���CkamaD0

bi Œk
j

`
�:

This ends the proof.

Since
aY

jD1

T XFnj D Cn1;:::;na C Dn1;:::;na ;

the combination of Lemma 4.5, Lemma 4.6 and Lemma 4.11 proves Lemma 4.3. This in turn
shows that DV .�/ admits an expansion in powers of ". In the next section we conclude the
proof of Theorem 5 by computing explicitly the first few coefficients in the expansion.

4.5. Computation of coefficients in the expansion

Here we compute the expansion of DV up to order O."4/. The coefficients that appear
are holomorphic functions of �. Hence it suffices to compute them for Im� � 1 and to
extend the obtained expression to C by the unique continuation principle. Let N � d C 4

and p D 4N.d CN/. If Im� is large enough then jKpV j L < 1. In this case the series

ln.1C‰.KV // D �
1X
mDp

.�KV /
m

m

converges in L . This implies that for Im�� 1

(4.52) DV .�/ D exp

 
�

1X
mDp

.�1/m
Tr
�
KmV

�
m

!
:

Hence, to obtain an explicit expansion ofDV .�/ at order "4, it suffices to obtain an expansion
of Tr

�
KmV

�
at order "4, for Im�� 1.

Let us expand Tr.KmV / in the different modes kj :

(4.53) Tr.KmV / D
X

k1;:::;km

T Œk1; : : : ; km�; T Œk1; : : : ; km� D Tr

0@ mY
jD1

KWkj
eikj �="

1A :
We now fix a sequence fkj g with length m � p and we aim to obtain an explicit expan-

sion of T Œk1; : : : ; km� at order "4. Because of the conclusion of Lemma 4.5, T Œk1; : : : ; km�
contribute toO."4/ in the sum (4.53) unless the sequence fkj g has  � 2N �1 non-vanishing
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terms. We note that m � 2.N C N C 1/. Hence, if k1 C � � � C km ¤ 0, the sequence fkj g is
admissible, and Lemma 4.10 shows that

jT Œk1; : : : ; km�j D

ˇ̌̌̌
ˇ̌Tr

0@ mY
jD1

KWkj
eikj �="

1Aˇ̌̌̌ˇ̌
� CmCs

2

"N
mY
jD1

kWkj ks; s D 2.N C N C 1/ � 8N 2:

Hence, terms T Œk1; : : : ; km� with k1 C � � � C km ¤ 0 or more than 2N � 1 non-vanishing kj
contribute to O."4/ in (4.53).

We now focus on constructive sequences fkj gwith at most 2N�1 non-vanishing terms. We

follow the construction of the expansion of Tr
�Qm

jD1KWkj
eikj �="

�
, as explicitly mentioned

in the proof of Lemma 4.14. We first perform a cyclic permutation of fkj g so that the resulting
sequence ends with N vanishing d -tuples. The next step in the construction of Lemma 4.14
is an expansion of

Qm
jD1KWkj

eikj �=", as realized in Lemma 4.13. We first write

(4.54)
mY
jD1

KWkj
eikj �=" D

mY
jD1

�R.D C �j ="/Wkj ;

where R.�; �/ D .�2 � �2/�1. The expansion of R.� C �="; �/ given in Appendix B induces

(4.55) �R.D C �j ="/Wkj D "
2
Wkj

j�j j2
COB.H sC4;H s/."

3/ D "2 Oj

for an operator Oj W H
sC4 ! H s whose norm is uniformly bounded in ", � in compact sets

and � ¤ 0. Assume first that 2 or more of the �j are non-zero, say �j1 ; �j2 with j1 � j2
maximal—in particular �j D 0 for j1 < j < j2. Since fkj g ends with N zeroes, we can
assume j2 � m�N . We perform the expansion (4.55) for the operators �R.DC �j1="/Wkj1
and �R.D C �j2="/Wkj2 in the product (4.54):

mY
jD1

KWkj
eikj �=" D "4

0@j1�1Y
jD1

�R.D C �j ="/Wkj

1A � Oj1 �

0@ j2�1Y
jDj1C1

KWkj

1A � Oj2 �K
m�j2
W0

:

We can now bound the trace with the trace-class norm, itself controlled by the H�d ! L2

norm:

jT Œk1; : : : ; km�j D

ˇ̌̌̌
ˇ̌Tr

0@ mY
jD1

KWkj
eikj �="

1Aˇ̌̌̌ˇ̌ �
ˇ̌̌̌
ˇ̌ mY
jD1

KWkj
eikj �="

ˇ̌̌̌
ˇ̌

B.H�d ;L2/

� "4

ˇ̌̌̌
ˇ̌
0@j1�1Y
jD1

�R.D C �j ="/Wkj

1A � Oj1 �

0@ j2�1Y
jDj1C1

KWkj

1A � Oj2

ˇ̌̌̌
ˇ̌

B.H8;L2/

�

ˇ̌̌
K
m�j2
W0

ˇ̌̌
B.H�d ;H8/

:

The first factor is uniformly controlled bounded because of the properties of the Oj and
because the R.D C �j ="/ are uniformly bounded on L2; and the second factor is bounded
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because Km�j2W0
is a pseudodifferential operator of order �2.m � j2/ � �2N � �d � 8.

Hence, when two or more of the �j are non-zero and fkj g ends with N zeroes,

Tr

0@ mY
jD1

KWkj
eikj �="

1A D O."4/:
It remains to consider sequences fkj g that ends with N zeroes and that have at most one

non-vanishing �j . Such sequences must be cyclic perturbations of .�k; k; 0; : : : ; 0/. Hence,
without loss of generalities, we can assume that fkj g is the sequence .�k; k; 0; : : : ; 0/ for some
k ¤ 0 and get

T Œk1; : : : ; km� D Tr

0@ mY
jD1

KWkj
eikj �="

1A D Tr
�
KW�kR.D C k="/WkK

m�2
W0

�
:

Because of Appendix B, we know that

(4.56) �R.D C k="/Wk D "
2 Wk

jkj2
� 2"3

.k �D/Wk

jkj4
COB.H sC5;H s/."

4/:

It suffices to use the same techinque as earlier to obtain

T Œk1; : : : ; km� D
"2

jkj2
Tr
�
Km�2W0

KW�kWk
�
� 2

"3

jkj4
Tr
�
Km�2W0

KW�k .k �D/Wk
�
CO."4/:

Summing over k and counting the multiplicity m of sequences of the form .�k; k; 0; : : : ; 0/

due to cyclicity, we conclude that

Tr.KmV / D Tr.KmW0/Cm
X
k¤0

"2

jkj2
Tr
�
Km�2W0

KW�kWk
�

� 2m
X
k¤0

"3

jkj4
Tr
�
Km�2W0

KW�k .k �D/Wk
�
CO."4/:

This yields the value of the first four coefficients in the expansion of DV .�/. It is in practice
possible to use this method to compute all the other coefficients a4; : : : ; aN�1 given by
Theorem 5.

4.6. The case �0 D 0 in dimension one

In this part we prove Lemma 3.1. Thus we assume d D 1. For � ¤ 0 the operator KV is
trace class. This allows us to define dV.�/ D Det.Id C KV/. By [15, Theorem 2.6], the
function � 7! �dV.�/ is entire. It is related to the modified Fredholm determinant DV by
the identity

(4.57) � exp

 
�

p�1X
mD1

.�1/m
Tr.KmV/

m

!
DV.�/ D �dV.�/:

If ' is a meromorphic function with a pole at 0 we write ' D
P
m2Z ˇmz

m and we define
sing.'/ the meromorphic function sing.'/.z/ D

P
m<0 ˇmz

m. We recall that ƒ is the
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potential given by

(4.58) ƒ D "2ƒ0 C "
3ƒ1 D "

2
X
k¤0

WkW�k

k2
� 2"3

X
k¤0

Wk.DW�k/

k3
:

L 4.16. – Let d D 1 andN � 4. For everym � 2 there exists a holomorphic function
tm W C n f0g ! C with the following:

(i) sing.tm/ D sing.Tr.KmV //.
(ii) Locally uniformly on C n f0g,

tm.�/ D Tr.KmW0/CmTr.Km�2W0
Kƒ/C � � � CO."

N /:

Proof of Lemma 3.1 assuming Lemma 4.16. – Let p D 4N.N C 1/ and set

hV .�/ D � exp

 
�

p�1X
mD1

.�1/m
tm.�/

m

!
DV .�/;

where DV.�/ is the determinant defined in (1.7). Equation (4.57) implies that

�dV .�/ D hV .�/ exp

 
p�1X
mD1

.�1/m
tm.�/ � Tr.KmV /

m

!
:

The function
p�1X
mD1

.�1/m
tm.�/ � Tr.KmV /

m

is entire thanks to point (i) of Lemma 4.16. Consequently resonances of V (counted with
multiplicity) are exactly zeros of hV (counted with multiplicity).

We next show that the function hV has an expansion in powers of " on all of C. For that
we use Lemma 4.4 with S0 D f0g, E D C,

f .�; "/ D � exp

 
�

p�1X
mD1

.�1/m
tm.�/

m

!
; g.�; "/ D DV .�/:

Both f; g are meromorphic on C and their only pole is at 0. They both admit an expansion
away from f0g by Lemma 4.16 for f and by Theorem 5 for g. Their product hV D fg is
entire. Consequently hV admits an expansion of the form

hV .�/ D h0.�/C "h1.�/C � � � C "
N�1hN�1.�/CO."

N /

that holds locally uniformly for � in C. We next compute the first few terms in this expansion.
Because of (ii) in Lemma 4.16 and of Theorem 5 we have

hV .�/ D � exp

 
�

p�1X
mD1

.�1/m
tm.�/

m

!
DV .�/

D �dW0.�/ exp

 
�

p�3X
mD0

.�1/mTr.KmW0Kƒ/

!�
1 � Tr..IdCKW0/

�1K
p�2
W0

Kƒ/
�
CO."4/

D �dW0.�/
�
1 � Tr..IdCKW0/

�1Kƒ/
�
CO."4/:

This ends the proof of Lemma 3.1.

We next prove Lemma 4.16. We start with a preliminary lemma:
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L 4.17. – Let k 2 Znf0g and ' W R! C be a smooth compactly supported function.
Let pN be the polynomial defined by

pN .X/ D �2
�
1C 2X C 3X2 C � � � C .N C 1/XN

�
:

Then for every N � 2,

(4.59)

ˇ̌̌̌Z
R
'.x/eikx="jxjdx � "2 .pN�3."D=k/'/ .0/

ˇ̌̌̌
� CN

� "
k

�N
k'kNC1;

where the constant C depends only on the support of '.

Proof. – By rescaling " to "=k we see that it suffices to prove the lemma in the case k D 1.
Define

I Œ'� D

Z
R
eix="'.x/jxjdx; J Œ'� D

1

i

Z
R
eix="'.x/sgn.x/dx:

By an integration by parts

I Œ'� D �" .J Œ'�C I ŒD'�/ ;

J Œ'� D " .2'.0/ � J ŒD'�/ :

Consequently,

(4.60) I Œ'� D "2
�
�2'.0/C 2J ŒD'�C I ŒD2'�

�
:

We prove by recursion: for every n � 0

(4.61) I Œ'� D "2.pn.�"D/'/.0/C "
nC2I Œ.�D/nC2'� � "nC2.nC 2/J Œ.�D/nC1'�;

where pn D �2.1C 2X C 3X2C � � � C .nC 1/Xn/. For n D 2 this holds by Equation (4.60).
Now assume (4.61) holds for some n. Then

I Œ'� D "2Œpn.�"D/'�.0/C "
nC3

�
�J Œ.�D/nC2'�C I Œ.�D/nC3'�

�
� "nC3.nC 2/

�
2Œ.�D/nC1'�.0/C J Œ.�D/nC2'�

�
D "2ŒpnC1.�"D/'�.0/C "

nC3I Œ.�D/nC3'� � "nC3.nC 3/J Œ.�D/nC2'�;

where pnC1 D pn � 2.n C 2/x
nC1. This ends the recursion. Equation (4.59) follows from

(4.61) and the estimate jI ŒDN'�j � C"k'kNC1, jJ ŒDN'�j � C"k'kNC1.

Proof of Lemma 4.16. – In dimension one the kernel of the free resolvent R0.�/ is given
by R0.�; x; y/ D iei�jx�yj=.2�/. We decompose it as follows:

R0.�; x; y/ D
f0.�; x � y/

�
C f1.�; x � y/jx � yj;

f0.�; x � y/ D
i

2
cos.�jx � yj/; f1.�; x � y/ D �

sin.�jx � yj/
2�jx � yj

:

The functions f0 and f1 are both smooth on C�R. This induces a decomposition ofKV.�/

given by

KV.�/ D EV;0.�/CEV;1.�/;

EV;�.�; x; y/ D �.x/
f0.�; x � y/

�
V.y/; EV;1.�; x; y/ D �.x/f1.�; x � y/jx � yjV.y/:
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Thus KV.�/ is the sum of a smoothing operator EV;0.�/ with a pole at � D 0 and of an
operator EV;1.�/ which is not smoothing but has no pole. We now define

(4.62) tm.�/ D

(
Tr.KmV / � Tr.EmV;1/C Tr.EmW0;1/CmTr.Em�2W0;1

Eƒ;1/ if m � 3;

Tr.K2V /C Tr.E2W0;1/ � Tr.E2V;1/ if m D 2;

whereƒ is the potential given by (4.58). Since Tr.EmW0;1/�Tr.EmV;1/CmTr.Em�2W0;1
Eƒ;1/ and

Tr.E2W0;1/ � Tr.E2V;1/ are both entire function of � we have sing.tm/ D sing.Tr.KmV //. It
remains to show that the function tm satisfies the expansion given by (ii). Write

Tr.KmV / D
X

�1;:::;�m2f0;1gm

Tr

0@ mY
jD1

EV;�j

1A
D Tr

�
EmV;1

�
C

X
k1;:::;km

X
�1:::;�m2f0;1g

m

�1������mD0

Tr

0@ mY
jD1

EWkj ;�j
eikj �="

1A :
We first claim that for every N and locally uniformly on C n f0g,

(4.63)
X

k1C���Ckm¤0

X
�1:::;�m2f0;1g

m

�1������mD0

Tr

0@ mY
jD1

EWkj ;�j
eikj �="

1A � C"N kW km
ZN
:

Fix a sequence �1; : : : ; �m 2 f0; 1gm with �1 � � � � � �m D 0 and k1; : : : ; km 2 Z with
k1 C � � � C km ¤ 0. There exists j0 with �j0 D 0. Using the cyclicity of the trace we can
assume without loss of generality that j0 D 1. Let n D m� �1 � � � � � �m. Using the explicit
expression of the kernel of the operators EV;� we have

Tr

0@ mY
jD1

EWkj ;�j
eikj �="

1A D ��n Z
Rm

0@ mY
jD1

f�j .xj � xj�1/jxj � xj�1j
�jWkj .xj /e

ikj xj ="dxj

1A dx1;
where by convention x0 D xm. The substitution xj D y1 C � � � C yj , j 2 Œ1;m� and the
explicit expression of the kernels of EV;0 and EV;1 yield

Tr

0@0@ mY
jD1

EWkj ;�j
eikj �="

1A1A D ��n Z
R
ei�1y1="I.y1/dy1;

where �j D kj C � � � C km, z D y2 C � � � C ym�1 and

I.y1/ D Wk1.y1/

Z
Rm�1

f0.z C ym/

mY
jD2

f�j .yj /jyj j
�jWkj .y1 C � � � C yj /e

i�j yj ="dyj :

The function y1 7! I.y1/ is smooth and compactly supported. Since �1 ¤ 0 N integrations
by parts give the estimateˇ̌̌̌Z

R
ei�1y1="I.y1/dx1

ˇ̌̌̌
� C"N kIkN � C"

N

mY
jD1

kWkj kN :
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Thereforeˇ̌̌̌
ˇ̌̌̌ X
k1C���Ckm¤0

X
�1:::;�m2f0;1g

m

�1������mD0

Tr

0@ mY
jD1

EWkj ;�j
eikj �="

1A
ˇ̌̌̌
ˇ̌̌̌

� C"N
X

k1;:::;km

mY
jD1

kWkj kN � C"
N
kW km

ZN
;

where we recall that jW jZN D
P
k2Zd kWkks . This proves (4.63).

We next show that the functionX
k1C���CkmD0

X
�1:::;�m2f0;1g

m

�1������mD0

Tr

0@ mY
jD1

EWkj ;�j
eikj �="

1A
admits an expansion in powers of ". It suffices to prove that for any fixed sequence f�j g with
�1 D 0 the function

(4.64)
X

k1C���CkmD0

Tr

0@ mY
jD1

EWkj ;�j
eikj �="

1A
admits an expansion in powers of ". Fix k1; : : : ; km with k1C � � � C km D 0. We define Fm�1
and Fs; s 2 Œ1;m � 2� recursively as follows:(
Fm�1.y1; : : : ; ym�1/ D

R
R f0.z C ym/f�m.ym/Wkm.y1 C � � � C ym/e

i�mym="jymj
�mdym

Fs�1.y1; : : : ; ys�1/ D
R
R f�s .ys/Wks .y1 C � � � C ys/Fs.y1; : : : ; ys/e

i�sys="jysj
�sdys;

where z D y2 C � � � C ym�1. Let F0.�/ be given by

F0.�/ D Tr

0@ mY
jD1

EWkj ;�j
eikj �="

1A D ��n Z
R
Wk1.y1/F1.y1/dy1:

We prove recursively that Fm�1; Fm�2; : : : ; F1; F0 admit an expansion in powers of ". The
fact that Fm�1 admits an expansion in powers of " is a consequence of Lemma 4.17. The
coefficients are smooth functions of y1; : : : ; ym�1. The recursive formula defining Fm�2
shows that Fm�2 also admits an expansion in powers of " whose coefficients are smooth
functions of y1; : : : ; ym�2. The same recursive scheme shows that Fm�3; : : : ; F0 admit an
expansion in powers of ". The sum over k1; : : : ; km with k1C� � �Ckm D 0 of the coefficients
converge (we skip the details) and we conclude that (4.64) admits an expansion in powers of ".
Finally we sum over all sequences f�j g with at least one vanishing term and we use (4.63) to
deduce that

tm.�/ D Tr.KmV /C Tr.EmW0;1/ � Tr.EmV;1/C ım¤2mTr.Em�2W0;1
Eƒ;1/

D

X
�1;:::;�m2f0;1g

m;
�1������mD0

Tr

0@ mY
jD1

EV;�j

1AC ım¤2mTr.Em�2W0;1
Eƒ;1/C Tr.EmW0;1/

admits an expansion in powers of ".
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To end the proof we must compute the first terms in the expansion of the function tm. We
fixN D 4 and work moduloO."4/. The only sequence fkj g that can generate non-negligible
terms is .0; : : : ; 0;�k; k/ up to cyclic permutation—see §4.5. We fix f�j g and we estimate

X
k¤0

Tr

0@0@m�2Y
jD1

EW0;�j

1AEW�k ;�m�1e�ik�="EWk ;�meik�="
1A :

Assume that m � 3 and define G by

G.�; y1; : : : ; ym�1/

D

X
k¤0

W�k.y1 C z/

Z
R
f0.z C ym/f�m.ym/Wk.y1 C z C ym/e

ikym="jymj
�mdym;

where we recall that z D y2 C � � � C ym�1. We first deal with the case �m D 1. This implies
f�m.0/ D f1.0/ D �1=2. Apply Lemma 4.17 to obtain the asymptotic

G.�; y1; : : : ; ym�1/ D
X
k¤0

� "
k

�2
f0.z/W�k.y1 C z/Wk.y1 C z/

� 2
X
k¤0

� "
k

�3
f0.z/W�k.y1 C z/.DWk/.y1 C z/

� 2
X
k¤0

� "
k

�3
.Df0/.z/W�k.y1 C z/Wk.y1 C z/CO."

4/:

Since
P
k¤0W�kWk=k

3 D 0 we can remove the last term that appears in the expansion ofG
and writeG.�; y1; : : : ; ym�1/ D f0.z/ƒ.y1Cz/CO."4/. This expansion combined with the
inverse substitution y 7! x variables yields

X
k¤0

Tr

0@0@m�2Y
jD1

EW0;�j

1AEW�k ;�m�1e�ik�="EWk ;1eik�="
1ACO."4/

D

X
k¤0

��n
Z
Rm�1

f0.z/W0.y1/

0@m�2Y
jD2

f�j .yj /jyj j
�jW0.y1 C � � � C yj /dyj

1A
� f�m�1.ym�1/ƒ.z/dy1dym�1

D

X
k¤0

��n
Z
Rm�1

0@m�2Y
jD1

f�j .yj � yj�1/jxj � xj�1j
�jW0.xj /dxj

1A
� f�m�1.xm�1 � xm�2/ƒ.xm�1/dx1dxm�1

D Tr

0@0@m�2Y
jD1

EW0;�j

1AEƒ;�m�1
1A :

This gives an estimate of G in the case �m D 1. In the case �m D 0 the kernel of EWk ;0 is
smooth and we can integrate by parts by parts to obtain G.�; y1; : : : ; ym�1/ D O."4/.
Summing these estimates of G over all possible values of �1; : : : ; �m�1; �m and using the
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cyclicity of the trace yield

X
�1;:::;�m2f0;1g

m

�1������mD0

Tr

0@ mY
jD1

EV;�j

1A � X
�1;:::;�m2f0;1g

m

�1������mD0

Tr

0@ mY
jD1

EW0;�j

1A
D m

X
�1;:::;�m2f0;1g

m

�1������mD0

X
k¤0

Tr

0@0@m�2Y
jD1

EW0;�j

1AEW�k ;�m�1e�ik�="EWk ;�meik�="
1ACO."4/

D m
X

�1;:::;�m2f0;1g
m

�1������mD0; �mD1

Tr

0@0@m�2Y
jD1

EW0;�j

1AEƒ;�m�1
1ACO."4/:

Recall that tm.�/ is given by (4.62) to conclude that

tm.�/ D
X

�1;:::;�m2f0;1g
m

�1������mD0

Tr

0@ mY
jD1

EW0;�j

1AC Tr.EmW0;1/

C

X
�1;:::;�m2f0;1g

m

�1������mD0

Tr

0@ mY
jD1

EV;�j

1ACmTr.Em�2W0;1
Eƒ;1/

D Tr.KmW0/Cm
X

�1;:::;�m2f0;1g
m

�1������mD0; �mD1

Tr

0@0@m�2Y
jD1

EW0;�j

1AEƒ;�m�1
1ACO."4/

D Tr.KmW0/CmTr
�
Km�2W0

Kƒ
�
CO."4/:

We finally deal with the case m D 2. If �1; �2 2 f0; 1g then

Tr
�
EW�k ;�m�1e

�ik�="EWk ;�me
ik�="

�
D ��1C�2�2

Z
R
f�1.y2/f�2.y2/W�k.y1/Wk.y1 C y2/jy2j

�1C�2eiky2="dy1dy2:

If �1C�2 is even then one can integrate by parts many times iny2 and obtainO."4/. Otherwise
�1 C �2 D 1 and f�1f�2 D f0f1. In particular f0f1.0/ D 1=.4i/ and .f0f1/0.0/ D 0. This
yields X

�1;�2; �1�2D0

X
k¤0

Tr.EW�k ;�m�1e
�ik�="EWk ;�me

ik�="/

D 2��1
X
k¤0

Z
R
W�k.y1/

Z
R
f0.y2/f1.y2/Wk.y1 C y2/jy2je

iky2="dy2dy1

D 2
X
k¤0

i

2�

Z
R
W�k.y1/

�� "
k

�2
Wk.y1/ � 2

� "
k

�3
DWk.y1/

�
dy1 CO."

4/

D 2Tr.Kƒ/CO."4/:
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Together with (4.63) this gives t2.�/ D Tr.K2W0/ C 2Tr.Kƒ/ C O."4/. This completes the
proof of the lemma.

Appendix A

Analytic continuation of some Fredholm operators

Let T .�/ be a holomorphic family of trace-class operators on a Hilbert space. In finite
dimension, the operator det.Id C T .�//.Id C T .�//�1, defined away from the poles of
.IdC T .�//�1, extends to an entire family of operators known as the comatrix of IdCT .�/.
In infinite dimension a similar statement holds:

L A.1. – Consider H a Hilbert space, U an open connected subset of C and T .�/
a holomorphic family of trace class operators for � 2 U . Assume that IdC T .�0/ is invertible
for some �0 2 U . Then the family of operators

T .�/ D Det.IdC T .�//.IdC T .�//�1

initially defined for � away from the poles of .IdCT .�//�1 extends to a holomorphic family of
operators on U . Moreover,

(A.1) jT .�/jB.H/ � Det
�

IdC
�
T .�/�T .�/

�1=2�
� e2jT.�/j L :

Proof. – The proof uses the Gohberg-Sigal theory of residues—see [15, Appendix C.4].
By analytic Fredholm theory, .IdCT .�//�1 defines a meromorphic family of operators with
poles of finite rank. Fix � 2 U a pole of .IdC T .�//�1 and � in a punctured neighborhood
of �. We can write

IdC T .�/ D U1.�/

 
…0 C

NX
mD1

.� � �/�m…m

!
U2.�/;

where U1.�/; U2.�/ are holomorphic families of invertible operators, �m � 1,…m has rank 1
for m > 0, …m…m0 D ımm0…m, rank.Id �…0/ <1. Therefore

.IdC T .�//�1 D U2.�/�1
 
…0 C

NX
mD1

.� � �/��m…m

!
U1.�/

�1:

The holomorphic function � 7! Det.IdC T .�// has a zero at �, of multiplicity
PN
mD1 �m—

see [15, equation .C:4:7/]. It follows that the operator T .�/ can indeed be analytically
continued at � D � with

T .�/ D

8<: 0 if N > 1

Det.IdC T .�//
.� � �/�1

j�D�
U2.�/

�1…1U1.�/
�1 if N D 1:

The first bound in (A.1) follows from [15], (B.4.7). For the second one, note first that

Det
�

IdC
�
T .�/�T .�/

�1=2�
� exp

�ˇ̌̌�
T .�/�T .�/

�1=2 ˇ̌̌
L

�
:
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Finally we note that

s2j

��
T .�/�T .�/

�1=2�
� sj

�
T .�/�

�1=2
sj .T .�//

1=2
� sj .T .�// ;ˇ̌̌�

T .�/�T .�/
�1=2 ˇ̌̌

L
� 2

1X
jD0

s2j

��
T .�/�T .�/

�1=2�
� 2

1X
jD0

sj .T .�// � 2jT .�/j L :

This concludes the proof.

Appendix B

Expansion of R.�; � C k="/

In this appendix we study the Taylor development of rational functions of the form
F."/ D .1 C a" C b"2/�1. Such functions are analytic for small values of " and therefore
there exists uk 2 C with F."/ D

P
j�0 uj "

j . Since F."/.1 C a" C b"2/ D 1, the uk must
satisfy the recursion relation 8̂̂<̂

:̂
u0 D 1;

u1 D �a;

uj D �auj�1 � buj�2:

For " small enough the Taylor development of F takes the form

F."/ D

J�1X
jD0

uj "
j
C rJ ."/; rJ ."/ D

1X
jDJ

uj "
j :

We have moreover

.1C a"C b"2/rJ ."/ D .1C a"C b"
2/

1X
jDJ

uj "
j

D uJ "
J
C uJC1"

JC1
C auJ "

JC1
C

1X
jDJC2

.uj C auj�1 C buj�2/"
j

D uJ "
J
C uJC1"

JC1
C auJ "

JC1:

Consequently for small values of ",

F."/ D

0@J�1X
jD0

uj "
j

1AC uJ C uJC1"C auJ "

1C a"C b"2
"J

and this identity extends meromorphically to all of C. If a and b are polynomial of respective
degree 1 and 2 in a parameter � then by an immediate recursion uj is a polynomial of degree
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at most j in �. In particular, (4.41) holds:

R.� C k="/ D
"2

jkj2
1

1C "k � �=jkj2 C "2.�2 � �2/=jkj2

D
"2

jkj2

0@0@J�1X
jD0

uj "
j

1AC uJ C uJC1"C auJ "

1 � 2"k � �=jkj2 C "2.�2 � �2/=jkj2
"J

1A
D

0@J�1X
jD2

uj�2

jkj2
"j

1AC uJ�1

jkj2
"J C

uJ�1

jkj2
"JC1 C

uJ C uJC1"C auJ "

.� � k="/2 � �2
"J :

Because of the recursion formula defining the uj , their dependence in k depends uniformly
on k=jkj2 and jkj�2—hence uniformly on k=jkj2 only. The first terms in this expansion are
given by

R.� C k="/ D
"2

jkj2
� 2"3

k � �

jkj4
� "4

�2 � �2

jkj4
C 4"4

.k � �/2

jkj6
CO."5/:

BIBLIOGRAPHY

[1] S. B, F. C, On the convergence and optimization of the Baker-Campbell-
Hausdorff formula, Linear Algebra Appl. 378 (2004), 135–158.

[2] D. I. B, On the spectrum of the Schrödinger operator perturbed by a rapidly
oscillating potential, J. Math. Sci. (N.Y.) 139 (2006), 6243–6322.

[3] D. I. B, On some singular perturbations of periodic operators, Teoret. Mat. Fiz.
151 (2007), 207–218.

[4] D. I. B, R. R. G0, On the spectrum of the Schrödinger operator with
a rapidly oscillating compactly supported potential, Teoret. Mat. Fiz. 147 (2006),
58–63.

[5] T. C, Schrödinger operators with complex-valued potentials and no reso-
nances, Duke Math. J. 133 (2006), 313–323.

[6] R. M. C, G. H. G, D. E. G. H, D. J. J, D. E. K, On
the Lambert W function, Adv. Comput. Math. 5 (1996), 329–359.

[7] M. D, Semi-classical asymptotics for the Schrödinger operator with oscillating
decaying potential, Canad. Math. Bull. 59 (2016), 734–747.

[8] M. D, A. T. D, Scattering and semi-classical asymptotics for periodic
Schrödinger operators with oscillating decaying potential, Math. J. Okayama Univ.
59 (2017), 149–174.

[9] A. D, Bound states for highly oscillatory potentials in dimension 2, SIAM J.
Math. Anal. 50 (2018), 1471–1484.

[10] A. D, Resonances for random highly oscillatory potentials, preprint
arXiv:1703.08140.

[11] V. D, N. R, Spectral asymptotics for the Schrödinger operator on the
line with spreading and oscillating potentials, preprint arXiv:1609.01990.

4 e SÉRIE – TOME 51 – 2018 – No 4

http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#1
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#4
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#5
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#6
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#7
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#8
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#9
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#10
http://arxiv.org/abs/1703.08140
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#11
http://arxiv.org/abs/1609.01990


SCATTERING RESONANCES FOR HIGHLY OSCILLATORY POTENTIALS 925

[12] V. D, I. V  , M. I. W, Scattering and localization proper-
ties of highly oscillatory potentials, Comm. Pure Appl. Math. 67 (2014), 83–128.

[13] V. D, I. V  , M. I. W, Homogenized description of defect
modes in periodic structures with localized defects, Commun. Math. Sci. 13 (2015),
777–823.

[14] V. D, M. I. W, Scattering, homogenization, and interface effects for
oscillatory potentials with strong singularities, Multiscale Model. Simul. 9 (2011),
1017–1063.

[15] S. D, M. Z, Mathematical theory of scattering resonances, lecture
notes http://math.mit.edu/~dyatlov/res/res_20180406.pdf, 2018.

[16] F. G, Y. L, M. M, M. Z, Nonselfadjoint opera-
tors, infinite determinants, and some applications, Russ. J. Math. Phys. 12 (2005),
443–471.

[17] S. E. G, M. I. W, Scattering resonances of microstructures and
homogenization theory, Multiscale Model. Simul. 3 (2005), 477–521.

[18] F. K, Resonances for “large” ergodic systems in one dimension: a review, in Spec-
tral analysis of quantum Hamiltonians, Oper. Theory Adv. Appl. 224, Birkhäuser,
2012, 171–182.

[19] F. K, Resonances for large one-dimensional “ergodic” systems, Anal. PDE 9
(2016), 259–352.

[20] T. T. P, Resonances for 1D half-line periodic operators: I. Generic case, preprint
arXiv:1509.03788.

[21] T. T. P, Resonances for 1D half-line periodic operators: II. Special case, preprint
arXiv:1509.06133.

[22] A. S B, M. Z, Existence of resonances in potential scattering,
Comm. Pure Appl. Math. 49 (1996), 1271–1280.

[23] B. S, Notes on infinite determinants of Hilbert space operators, Advances in Math.
24 (1977), 244–273.

[24] H. F. S, M. Z, Heat traces and existence of scattering resonances for
bounded potentials, Ann. Inst. Fourier (Grenoble) 66 (2016), 455–475.

[25] E. C. T, The theory of functions, second ed., Oxford Univ. Press, Oxford,
1939.

(Manuscrit reçu le 15 avril 2016 ;
accepté, après révision, le 8 mars 2017.)

Alexis D

Department of Mathematics, UC Berkeley
970 Evans Hall, Berkeley, CA 94720, USA

E-mail: alexis.drouot@gmail.com

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#12
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#13
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#14
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#15
http://math.mit.edu/~dyatlov/res/res_20180406.pdf
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#16
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#17
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#18
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#19
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#20
http://arxiv.org/abs/1509.03788
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#21
http://arxiv.org/abs/1509.06133
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#22
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#23
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#24
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#25



	1. Introduction
	2. Resonance escaping in the case W_0 0
	3. Applications of Theorem 5
	4. Proof of Theorem 5
	Appendix A. Analytic continuation of some Fredholm operators
	Appendix B. Expansion of R(,+k/)
	Bibliography

