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—— Abstract

The Boolean constraint satisfaction problem 3-SAT is arguably the canonical NP-complete prob-
lem. In contrast, 2-SAT can not only be decided in polynomial time, but in fact in deterministic
linear time. In 2006, Bravyi proposed a physically motivated generalization of k-SAT to the
quantum setting, defining the problem “quantum k-SAT”. He showed that quantum 2-SAT is

also solvable in polynomial time on a classical computer, in particular in deterministic time
O(n*), assuming unit-cost arithmetic over a field extension of the rational numbers, where n is
the number of variables. In this paper, we present an algorithm for quantum 2-SAT which runs
in linear time, i.e. deterministic time O(n 4+ m) for n and m the number of variables and clauses,
respectively. Our approach exploits the transfer matrix techniques of Laumann et al. [QIC,
2010] used in the study of phase transitions for random quantum 2-SAT, and bears similarities
with both the linear time 2-SAT algorithms of Even, Itai, and Shamir (based on backtracking)
[SICOMP, 1976] and Aspvall, Plass, and Tarjan (based on strongly connected components) [IPL,
1979].
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1 Introduction

Boolean constraint satisfaction problems lie at the heart of theoretical computer science.
Among the most fundamental of these is k-SAT, in which one is given a formula ¢ on n
variables, consisting of a conjunction ¢(z) = C1 ACa A---AC,, of m clauses, each of which is
a disjunction of k literals, e.g. (xp V Z; V x;) for 1 < h,4,j < n. The problem is to determine
whether there exists an assignment x € {0,1}" which simultaneously satisfies all of the
constraints C;, i.e. for which ¢(z) = 1. While 3-SAT is NP-complete [6, 22, 16], 2-SAT
admits a number of polynomial time algorithms (e.g. [7, 20, 10, 2, 23]), the fastest of which
require just linear time [10, 2].

In 2006, Bravyi [3] introduced k-QSAT, a problem which generalizes k-SAT, as follows.
In place of clauses C;, acting on k-bit substrings of n bit strings = € {0,1}", one considers
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orthogonal projectors II; which act on k-qubit subsystems of an n-qubit system |¢)) € HE",
where H := C2. (A sketch of how k-SAT can be embedded into k-QSAT is given in Section 2.)
These projectors extend to act on states |[¢)) by defining II; = II, ® I, so that II; acts as
the identity on all tensor factors apart from those qubits on which II; is defined. One then
considers [1) to “satisfy” the 2-QSAT instance if II; [1)) = 0 for all 4. This formulation may
be motivated, e.g., by problems in many-body physics [9, 4]. While 3-QSAT is complete
for QMA; [3, 13] (a quantum generalization! of NP), 2-QSAT is solvable in deterministic
polynomial time [3], using O(n*) field operations over C.

Given the existence of linear time algorithms for classical 2-SAT, this raises the natural
question: Can 2-QSAT also be solved in linear time? Our main result in this paper is as
follows.

» Theorem 1.1. There exists a deterministic algorithm SOLVEq which, given an instance

of 2-QSAT, outputs a representation of a satisfying assignment if one exists (presented as a

list of one- and two-qubit unit vectors to be taken as a tensor product), and rejects otherwise.
SOLVEq halts in time O(n +m) on inputs on n qubits with m projectors (assuming
unit-cost operations over C).
Furthermore, SOLVEq can produce its output using O((n+ m)M(n)) bit operations,
where M(n) is the asymptotic upper bound on the cost of multiplying two n bit numbers;
If the projectors are all product projectors, the algorithm SOLVEq requires only O(n+m)
bit operations regardless of what computable subfield F C C the projector coefficients range
over.

In particular, the setting of product constraints above includes classical 2-SAT: in this case

the bit-complexity of our algorithm matches optimal 2-SAT algorithms [10, 2].

» Remark. For general instances of 2-QSAT, the O((m + n)M (n)) bit-complexity of our
algorithm compares favourably with the complexity of extracting a satisfying assignment
using Bravyi’s 2-QSAT algorithm, which requires O(n*M (n)) bit operations if one uses
similar algebraic algorithms to ours. In “Significance and open questions” below, we discuss
the question of field-operation-complexity vs. bit-complexity, as well as whether our algorithm
is tight in terms of bit complexity.

Techniques employed

The origin of this work is the observation that Bravyi’s 2-QSAT algorithm can be thought
of as an analogue of Krom’s 2-SAT algorithm [20], which involves computing the transitive
closure of directed graphs. Krom’s algorithm repeatedly applies a fixed inference rule for
each pair of clauses sharing a variable. The repeated application of the inference rule leads
to an O(n?) time to determine satisfiability and an O(n?*) time to compute a satisfying
assignment. Bravyi’s algorithm has the same runtimes, measured in terms of the number of
field operations.

This work aims to develop a quantum analogue of Aspvall, Plass, and Tarjan’s (APT)
linear time 2-SAT algorithm [2], which reduces 2-SAT to computing the strongly connected
components of a directed graph. Note that classically (« Vv ) is equivalent to (& = () and
(B = ), for literals o and 5. APT constructs an implication graph G of a 2-SAT instance

! Here, Quantum Merlin Arthur (QMA) is the quantum analogue of Merlin-Arthur (MA) in which the
proof and verifier are quantum, and QMA 1 is QMA with perfect completeness. Unlike the classical
setting, in which MA is known to admit perfect completeness [27, 12], whether QMA=QMA remains
open (see e.g. [15]).
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&, with vertices labelled by literals x; and Z; for each 4, and edges @ — 8 and § — « for
each clause (a V ). Then, they show that ¢ is satisfiable if and only if z; and Z; are not
in the same strongly connected component of G for any i [2]. As the strongly connected
components of G can be computed in linear time [25], this yields a linear time algorithm for
2-SAT.

In the quantum setting, not all n-qubit states can be described by assignments to
individual qubits (e.g., entangled states). Fortunately, Chen et al. [4] show that we may
reduce any instance of 2-QSAT to an instance which is satisfiable if and only if there is a
satisfying state, in which qubits have separate assignments (see Section 2 for details). In
this setting, there is a natural analogue of the equivalence (z; V z;) = (z; = z;) A (Z; = ;)
in terms of so-called “transfer matrices” (e.g. [3, 21]). For any rank-1 quantum constraint
II;; € L ((C2 ® (CQ) on qubits ¢ and j, there exists a transfer matriz T;; € L ((CQ), such
that for any assignment |¢;) to qubit ¢ such that T;;[¢);) # 0, the state on qubit j for
which the constraint II;; is satisfied is given by Tj; [1;).2 (Conversely, for any T;; € L (C?),
there is a unique rank-1 orthogonal projector II;; € L ((C2 ® (CQ) whose nullspace is spanned
by [1;) ® Tij 1) for |4;) ranging over C2.) This suggests a quantum analogue G of an
implication graph: For each possible assignment [¢)) to a qubit i, we define a vertex (i, [¢)),
and include a directed edge (4, [¢)) — (j,|#)) if there is a transfer matrix T;; (corresponding
to some constraint II;;) such that T;; [¢)) = c|¢) for some ¢ # 0. We then ask if for each
qubit i, there is a vertex (i, [¢;)) which cannot reach any (i, |v})) where |1;) o [1}). If there
are such paths (4, [1;)) — -+ — (¢, [¢})) for all |¢;), this is analogous to x; and Z; being in a
common strong component in the APT algorithm.

As it stands, this approach has a shortcoming: In the quantum regime, each qubit has a
continuum of possible assignments (rather than two), which may generate unbounded orbits
in an APT-style algorithm. However, by applying techniques of Laumann et al. [21] from
the study of phase transitions in random 2-QSAT, we may in some cases reduce the set of
possible assignments for a qubit ¢ to one or two. Consider the interaction graph G’ of a
2-QSAT instance, in which vertices correspond to qubits, and two vertices are connected

by an (undirected) edge if the corresponding qubits ¢ and j are subject to a constraint IT;;.

Suppose C = (vy,...,v,v1) is a cycle in G, with transfer matrices T,, arising from each

Vit1
and compute T¢o (= Ty,0; - Togus Tows: If Te ha+s a non-degenerate
spectrum, then the only possible satisfying assignments for v; are eigenvectors of T¢ [21]
(see also Lemma 2.2). In effect, computing T¢ “simulates” uncountably many (!) traversals
(i, |a)) = -+ — (4,]8)) in Gj restricting to the eigenvectors of T corresponds to ignoring
vertices in G which are infinitely far from the top of any topological order of G. If we hence
describe cycles C' with non-degenerate T¢ as discretizing, this suggests the approach of
finding a discretizing cycle at each qubit 4, and using it to reduce the number of possible

states on ¢ to one or two. This simple principle is the starting point of our work.

constraint I, ,

Despite this simplicity, some obstacles must be addressed to obtain a linear-time algorithm.

In the setting of random 2-QSAT [21], every cycle C is a discretising cycle with probability
one, as there is zero probability that either a transfer matrix is singular, or that a product of
them has a degenerate spectrum. This allows one to quickly reduce the space of assignments
possible for a qubit. In contrast, in our setting (7.e., worst case analysis), we cannot assume

2 The usual convention is to describe quantum states by unit vectors in C2, albeit up to equivalence
under multiplication by z € C for |z| = 1. However, vectors produced via transfer matrices might not
be normalised. As we are not explicitly concerned with the probabilities of any measurement outcomes
obtained from quantum processes, we represent quantum states by vectors which are equivalent up to
multiplication by arbitrary (non-zero) scalar factors.
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such a distribution of transfer matrices arising from a 2-QSAT instance. For instance, any
constraint II;; corresponding to a product operator (e.g., a classical 2-SAT constraint) has
a singular transfer matrix, which when multiplied with other singular matrices may give
rise to a singular cycle matrix. Even if a discretising cycle C' does exist using some of the
edges jk, k¢, ..., we may have to traverse those edges multiple times to discover C, which is
worrisome for a linear-time algorithm. Furthermore, we must address the case in which there
are no discretising cycles at all to get a discrete algorithm started. In order to demonstrate a
linear-time algorithm for 2-QSAT in the spirit of APT, these problems must be carefully
addressed.

Our approach to resolve these issues is as follows. In an instance of 2-QSAT in which
all transfer matrices are non-singular, we show that discretising cycles are easy to find if
they exist, and that the absence of discretising cycles allows one to easily obtain a satisfying
state. If, on the other hand, singular transfer matrices are present, the corresponding product
constraints II;; = |a){al; ® [B)(B]; themselves impose a different discretising influence: If
lat) and |8+) are states orthogonal to |a) and |3) respectively, then at least one of the
assignments (i, |at)) or (4,|3+)) is required for a satisfying assignment. This leads us to
adopt an approach of “trial assignments” which is highly reminiscent of another linear-time
2-SAT algorithm due to Even-Itai-Shamir [10], which attempts to reduce to an instance
of 2-QSAT with fewer product constraints by determining partial assignments satisfying
II;;. (For simplicity, we also adopt the approach of trial assignments for qubits whose state-
space have been reduced by discretizing cycles.) This leads us to our algorithm SOLVEq
(Figure 1, in Section 4), which combines elements of both the Even-Itai-Shamir [10] and
Apsvall-Plass-Tarjan [2] linear-time 2-SAT algorithms as described above.

Our approach can be summarised as follows. Following Chen et al. [4], we first preprocess
our input instance IT and either determine that II is unsatisfiable, or obtain a new 2-QSAT
instance I’ which is satisfiable by a product state if II is satisfiable at all. From this point
on, our algorithm uses the central notion of a chain reaction (CR) (see Section 3): this
roughly models the idea that given an assignment |¢;) to qubit ¢, following a sequence
of transfer operators according to the implication graph of II' deterministically results in
assignments to a subset of other qubits in the instance. In particular, what we are interested
in is finding conflict-free CRs, which are CRs that terminate without reassigning a value to
a qubit j which conflicts with a previous assignment for j. To exploit conflict-free CRs, we
first show a Set-and-Forget Theorem (Theorem 3.6), which essentially says the following:
if IT" is satisfiable, then any choice of assignments to a subset S which is prescribed by a
conflict-free CR, is also consistent with a global satisfying assignment. Thus, given such a
conflict-free CR, we can remove the qubits in S and all constraints acting on it from IT’,
reducing to a smaller 2-QSAT instance IT"” which is satisfiable if and only if II’ is. Hence,
the problem of deciding II is reduced to the task of repeatedly finding conflict-free CRs. To
show that the discovery of conflict-free CRs may be done in linear time, we use three key
ideas. First, for any product constraint in the graph, there are two associated CRs C; and
C5; we show that at least one of these must be conflict-free, or II is not satisfiable. Second,
once all product constraints have been exhausted, our next source of conflict-free CRs is the
notion of discretizing cycles. In general, it is not true that running a depth-first search in the
constraint graph of IT” will yield a discretizing cycle, even if such a cycle exists! However,
we show that if all constraints are entangled, then a single depth-first search (per connected
component of the interaction graph) indeed suffices to find the discretizing cycle. Third and
finally, if no discretizing cycles exist in IT”, then we show that it is easy to find a conflict-free
CR. The resulting algorithm, SOLVEq, is presented in Figure 1.
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Previous work

There is a long history of polynomial time solutions for classical 2-SAT [24, 7, 20, 10, 2, 23],
ranging from time O(n*) to O(n +m). As we mention above, the most relevant of these to
our setting are the algorithms of Even, Itai, and Shamir [10] (based on limited backtracking)
and Aspvall, Plass, Tarjan [2] (based on strongly connected component detection).

In contrast, little work has been performed in the quantum setting. Until recently, Bravyi’s
algorithm was the only explicitly articulated algorithm for 2-QSAT, and requires O(n?) field
operations and O(n*M(n)) bit operations. Other work on 2-QSAT instead concerns either
the structure of the solution space of instances of 2-QSAT [21, 9, 4], or bounds on counting
complexity [14, 8].

Propagation of assignments using transfer matrices is present already in Bravyi [3], and
the results of Laumann et al. [21] allow us to restrict the possibly satisfying states on single
qubits by finding discretising cycles. We incorporate these into efficient discrete algorithms
for testing possible assignments, and provide a cost analysis in terms of field operations and
bit operations. In contrast to the random 2-QSAT setting of [21], we do not assume any
particular distribution on constraints.

Note: Very recently, Arad et al. [1] independently and concurrently presented an algorithm
for 2-QSAT, which also runs in O(n + m) time using unit-cost field operations. The overall
structure of our algorithm appears similar to theirs, though our treatment of the key issue of
2-QSAT instances with only entangled constraints appears to use different techniques (in
particular, Ref. [1] appears to be based on results of Ji, Wei, Zeng [14] which modify the
instance itself, whereas we use ideas of [21] to tackle the existing instance via the concept
of discretizing cycles). As well as obtaining an upper bound on field operations matching
Ref. [1], we also include an analysis of the bit complexity of our algorithm SOLVEq, and in
particular indicate how our algorithm matches the asymptotic bit complexity of the best
algorithms on classical instances of 2-SAT.

Significance and open questions

From a complexity theoretic perspective, just as k-SAT and MAX-k-SAT are canonical
NP-complete problems, Quantum k-SAT and its optimization variant, k-LOCAL HAMIL-
TONIAN [19], are canonical QMA;- and QMA-complete problems for k > 3 and k > 2
respectively [3, 13, 19, 17], thus making their study central to quantum complexity theory.
From a many-body physics perspective, quantum k-SAT deals with the study of ground states
of frustration-free local Hamiltonian systems. Such systems include Kitaev’s well-known
Toric code Hamiltonian [18] (which is 4-local), whose ground space encodes logical qubits of
a topological quantum error correcting code. Our work can hence be viewed as aiming to
understand which classical techniques for k-SAT can be generalized to explore the ground
spaces of such frustration-free systems.

Bit complexity. We now discuss the number of field operations used by our algorithm,
O(m + n), versus the number of bit operations, O((m + n)M(n)), in Theorem 1.1. There is
no such distinction in the complexity of existing 2-SAT algorithms: As bits have only a finite
range of values, traversing a chain of implications in the implication graph poses no precision
issues. In the quantum setting, however, such a traversal involves computing products of O(n)
transfer matrices over some field extension of the rationals. Trial assignments resulting from
these products may require O(n) bits per entry to represent; testing whether two possible
assignments are equivalent may involve multiplying pairs of n-bit integers. This is the source
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of the M(n) term in the bit complexity estimate of Theorem 1.1. To compare, similar
considerations applied to Bravyi’s 2-QSAT algorithm gives an upper bound of O(n*M (n))
bit operations.

It is not obvious that a faster runtime in terms of bit complexity should be possible in
general. As we show in Section 6, it is simple to construct a 2-QSAT instance with m € O(n)
and whose unique product state solution requires ©(n?) bits to write down. Thus, among
algorithms which explicitly output the entire solution, our algorithm is optimal up to log
factors, taking time O(nM(n)) € O(n?) for M (n) € O(nlog(n)2°Ues" (")) [11]. Furthermore,
as we also show in Section 6, for any algorithm A for 2-QSAT which produces the marginal of
a satisfying solution (if one exists) on a single qubit in reduced terms?, there is a linear-time
reduction from multiplication of n bit integers to the problem solved by A. It follows that
such an algorithm A must run in time Q(M(n)). As discussed in Section 6, this implies that
unless M (n) € O(n), there is no general algorithm for 2-QSAT with linear bit complexity if
the output is required to be in reduced form.

Linear bit complexity. Theorem 1.1 gives a setting in which our algorithm does have linear
bit complexity — when all constraints are product operators. This special case still has
essentially quantum features, such as satisfiable instances requiring two-qubit entanglement
(which our algorithm treats using techniques described in Section 2), and phase-transitions
for satisfiability and counting complexity in randomly sampled instances which match those
of 2-QSAT rather than classical 2-SAT [8]. It also includes the classical 2-SAT instances, for
which our algorithm has optimal bit-complexity.

Open questions. Our algorithm uses results of Chen et al. [4], which shows that any
satisfiable instance of 2-QSAT has a solution which is “almost” a product state (our algorithm
finds such solutions). In the degenerate case, however, there may also exist satisfying states
with long-range entanglement, which may also be of interest to find. As our aim here is to
study the optimal computational complexity of 2-QSAT, as opposed to seeking particular
types of solutions, we leave this as an open question. We also ask: Is the bit-complexity of
O((n +m)M(n)) for producing explicit assignments optimal? Is there an O(M (n)) upper
bound for producing representations of marginals of satisfying assignments?

Organization of this paper

In Section 2, we give notation, definitions, and the basic framework for our analysis (including
transfer matrices). Section 3 presents a series of lemmas and theorems to demonstrate how to
overcome the obstacles presented in this introduction, and which form the basis of a proof of
correctness for our algorithm SOLVEq. Section 4 states SOLVEqg. Section 5 sketches bounds
on the runtime of SOLVEq in terms of the field operations and bit operations. Additional
technical details are deferred to the full version of this paper. Section 6 discusses lower
bounds on the bit complexity of 2-QSAT.

2  Preliminaries
We begin by setting notation, stating definitions, and laying down the basic framework for

our algorithm, including details on transfer matrices.

3 N.B. Our algorithm SOLVEq is not such an algorithm, as the output may include cancellable factors in
its representation.
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Notation

The notation := denotes a definition and [n] := {1,...,n}. The vector space of (possibly
non-normalised) single-qubit pure states is denoted H := C2. For a string x = 129 -2, €
{0,1}", we write |z) := |21) ® - -+ ® |x,,). For a vector space X over C, we write L (X) for

the set of linear operators on X. The nullspace of an operator A is denoted ker(A). For
vectors |¢) and |@), we write 1) o |¢) if |v) = c|w) for non-zero ¢ € C; if we wish to also
allow ¢ = 0, we write 1)) «* |¢) instead. The latter two definitions extend straightforwardly
to matrices. Given |¢) € H, we write 1)) for the unique vector (up to scalar factors) which
is orthogonal to |¢)).

2.1 Quantum 2-SAT

We now present a formal definition of quantum k-SAT (or k-QSAT).

» Definition 2.1 (Quantum k-SAT [3]). Let n > k be an integer, and {I;};", C L (H®*) be
a set of k-local orthogonal projection operators (¢.e., of the form I ® IT; for k-qubit projectors
I1;) with coefficients over some number field F.

Decision problem. Does there exist a state |¢) € H®™ such that II; [¢)) = 0 for all i € [m]?

Search problem. Produce a description of such a state |¢) if it exists.

For precision reasons, we require in particular that the coefficients are drawn from a
number field (a finite-degree field extension F = Q[w]). We suppose that F is also specified as
part of the input by means of a minimal polynomial p € Q[z] for which F = Q[z]/p, together
with a specification of how F embeds into C [5]. (More details are given in the full version,
where the runtime of the algorithm is carefully analyzed.) In the literature for 2-QSAT, one
is usually more interested in how the structure of the placement of the projectors II; affects

the solution space, rather than the complexity of the specification of F or the coefficients.

We therefore suppose that there is some constant K which bounds from above the size of
the specification of IF, and of the coeflicients of the operators II;.

We next sketch how a 2-SAT instance ¢ can be embedded into 2-QSAT (cases k > 2 are
similar). For each clause C' on boolean variables (z4, ), we define an operator Il € L (H®?)
of the form Il¢ := |cy){ca| ® |cb){cs|, where ¢, = 1 if the variable z, is negated in C, and
ca = 0 otherwise; we fix ¢, similarly. Then Il is satisfied by |r,x;) € H®? if and only
if C is satisfied by x,7, € {0,1}2. We extend Il to an operator on H®™" by taking its
tensor product with I € L (H®"~2) on all tensor factors i apart from a,b € [n]. Performing
this for all clauses yields an instance of 2-QSAT, {Il-}, in which all of the projectors are
product operators (as mentioned in Section 1), and which imposes the same constraints on
standard-basis vectors |z) as the clauses C' impose on z € {0,1}". Furthermore, as each Il¢
is positive semidefinite and diagonal, any [i) for which Il |¢) = 0 for all clauses C' must
be a linear combination of vectors |z) which also satisfy Il |x) = 0 for all C. Thus this
instance of 2-QSAT is satisfiable if and only if the original instance of 2-SAT is, in which
case there is a bijection between the solution space of the 2-SAT instance and a basis for the
solution-space of the 2-QSAT instance.

Finally, for a given 2-QSAT instance, we denote by G its (potentially infinite) implication
graph (defined in Section 1), and by G’ its interaction graph, whose vertices are labelled by
qubits, and with a distinct edge between vertices 4, j for each projector acting on them.
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Reduction to cases satisfied by product states

We mainly consider product-state solutions to instances of 2-QSAT, in spite of instances
(such as those described in “Significance and open questions” in Section 1) in which no
product state can be a solution. A paradigmatic example is given by a single constraint
I, = Iy — &~ ){(¥~|, where |[I~) := (|01) — |10))/+/2; the unique satisfying assignment is
the entangled state |[¥~). Chen et al. [4] nevertheless show that all instances of 2-QSAT are
“almost” product-satisfiable in the following sense: The only pairs of qubits (i, j) which are
entangled for all satisfying states are those for which the sum of all constraints on (i, ) is
an operator S;; of rank 3 (as with II, above). We may treat such pairs by imposing the
unique assignment [¢;;) € ker(.5;;), and considering what restrictions this imposes on other
qubits k as a result of constraints on (¢, k) or (j, k). If we find no conflicts as a result of all
such assignments, we obtain a sub-problem which is either unsatisfiable, or satisfiable by a
product state. (We describe this reduction in more detail in Section 4.)

Reduction to rank-1 instances

We may require that all constraints have rank 1 (but possibly with multiple constraints
on pairs of qubits), by decomposing projectors II;; of higher rank into rank-1 projectors
ILj1, 59, ..., for which IT;; = >, TI;; . By the preceding reduction to product-satisfiable
constraints, there will then be at most two independent constraints acting on any pair (7, j).

2.2 Transfer matrices

A central tool in this work is the transfer matriz, which for product states generalizes
the equivalence between (z; V z;) and (z; = x;) A (Z; = ;) for bits. Consider a rank-1
constraint II;; = [¢)(¢| on qubits ¢ and j, where |¢) has Schmidt decomposition |¢) =
alao) |bo) + B la1) |b1). Then, the transfer matrices Ty ;j, To ;i € L (C?) from i to j and from
J to ¢ are respectively given by:

Tg.ij = Bbo)(ar| — a|bi)(aol, To.ji = Blao)(bi] — alaz)(bol - (1)

(When the state |¢) is clear from context, we simply write T;; and T;;.) Given any assignment
|4;) € C? on qubit 4, the transfer matrix T, ;; prescribes which single-qubit states |1);) on j
are required to satisfy II,;, via the constraint |¢;) oc* Ty i; |s) . If Ty 45 (1) # 0, then |¢;)
is uniquely determined (up to equivalence by a scalar factor). This is guaranteed when |¢)
has Schmidt rank 2, as T4 ;; then has full rank. On the other hand, if T ; [¢;) = 0, then
I1;; is satisfied for any assignment on j, so that j remains unconstrained. This situation may
only occur if |¢) is a product constraint, so that Ty ;; has a nullspace of dimension 1. This
generalises the effect in the classical setting, that assigning x; := 1 satisfies the constraint
C = (z; V xj), regardless of the value of ;: the corresponding constraint and transfer matrix
are |¢) = |00) and T4 ,; = — [1)(0], respectively.

Walk and cycle matrices

We take the closure of the transfer matrices, under composition along walks in the graph.
For any walk W = (vy,va,...v%) in a graph G = (V, E), multiplying the transfer matrices
TUk—lvk '
(or path matriz, if W is a path). For such a walk W, define WR := (v, vp_1,...,v0,v1). If a
transfer matrix Ty has singular value decomposition Ty = sg [£o){ro| + s1 [¢1)(r1], one may

-+ Tygus Toyv, yields a new transfer matrix Ty, which we call the walk matriz of W
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show by induction on the length of W that

Tyr = £ (s0 [r1) (€| + s1]r0) (Col), (2)

where the sign depends on whether W has odd or even length. In particular, this implies that
Tw Twr = £sgs11. Thus Ty Tyr oc* I for all walks W, with a proportionality factor of zero
if and only if Ty is singular. In particular, walk operators can sometimes be composed to
represent “cancellation” of edges: For walks U; = W/W and Uy = WRW” | if Ty is invertible,
we have Ty rwr o Twr» TyrTwTw = Ty v,, representing a form of composition of walks
in which repeated edges (ij)(ji) cancel.

For C = (v,uy,us,...,ug,v) a cycle in G, the cycle matriz of C at v is just the walk
operator T arising from the walk from v to itself along C'. We consider the cycles C' and
(e.g.) C" = (u1,ug,...,ur,v,u1) to be distinct as walks; in particular, C' and C’ may give
rise to distinct cycle matrices T¢gr ¢ T, which in any case represent operators on the
state-spaces of distinct qubits.

Walk operators (and cycle operators in particular) allow us to more easily express
long-range constraints implicit in the original projectors IL;; (as one may show by induction):

» Lemma 2.2 (Inconsistency Lemma). Let W = (v,v1,v9,...,05,w) be a walk in G’ with
walk operator Ty, and let |¥) € HE™ be a product of single-qubit states |b,) for each v € [n].
If ) &* Tw |tby), then at least one constraint IL;; corresponding to an edge in W is not
satisfied by |V).

3 Efficient reductions via trial assignments in 2-QSAT

As outlined in Section 2, we consider rank-1 instances of 2-QSAT which either have a product
solution or are unsatisfiable. In this section, we describe a means to incorporate transfer
matrices into an efficient algorithm for 2-QSAT via the notion of a chain reaction: An
EIS-style subroutine for trial assignments.

As in Section 1, we define the implication graph of a 2-QSAT instance to be an (infinite)
directed graph G = (V, E), where V is the set of pairs (i,]¢)) for qubits ¢ and (distinct)
states |¢)) € H. There is a directed edge (4, |1))) — (4, |¢)) if and only if there is a constraint
IT;; with transfer matrix T,; such that T;;[¢) o< |¢). A “chain reaction” is a depth-first
exploration of the nodes of G:

» Definition 3.1 (Chain reaction (CR)). For a qubit 7 and state |¢;) € H, to induce a chain
reaction (CR) at i with |1);) means to “partially traverse” G, starting from (i, |1;)) and keeping
a record of the vertices (u, [t),,)) seen for each u. This traversal is governed by a depth-first
search (DFS) in the interaction graph G’, as follows. For each vertex (u, [t¢,)) visited and
each edge {u,v} in G', compute Ty, |b,). If this vector is non-zero, let |1),) := Tuyy [tu),
and traverse to (v, |¢,)) in G. For any vertex (v, |t,)) visited by the CR, we say that the
CR assigns |1,) to v. In the sequence of vertices in G visited by the CR, we may refer to
instances of vertices (v, [1)) for a given v € V as the first assignment, the second assignment,
etc. made to v by the CR.

Edges of G’ (and walks in G’) which are traversed by the depth-first search (DFS) governing
a chain reaction, are also said to be traversed by the chain reaction (CR) itself.

The role of CRs in our analysis is to reveal constraints imposed by transfer matrices in
an efficient manner. Specifically, if the DFS in G’ which governs the CR encounters a cycle,
it will visit a vertex v in G’ twice, and so makes “assignments” to v more than once. If these
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assignments do not match, we say the CR has a conflict. If no such conflicts occur, the CR
is called conflict-free. (In either case, it does not continue the traversal of the CR from the
second, third, etc. assignments.) We formalise the intuitive significance of conflicts as follows:

» Lemma 3.2 (Conflict Lemma). If a CR induced at v with |1p,) € H has a conflict, then no
product state |¥) € H®™ for which the state of v is |1,) is a satisfying assignment.

Proof. A conflict in the CR indicates the presence of two walks W and W5 in the interaction
graph G’, from v to some vertex w, for which Tw, |1,) &* Tw, |tby). It follows from the
Inconsistency Lemma (Lemma 2.2) that any product state in which v takes the state |¢,) is
not satisfying. <

With the concept of CRs in hand, we can present the key ideas used by our algorithm.
First, conflict-free CRs yield partial assignments, which preserve the satisfiability of the
instance defined on the remaining unassigned qubits. Second, if a 2-QSAT instance is
satisfiable, then a conflict-free CR can be found efficiently. Our algorithm (presented in
Figure 1) essentially operates by repeatedly finding conflict-free CRs, and removing the
qubits given assignments by each CR, until either a conflict is detected (in which case we
reject), or no unassigned qubits remain (in which case we accept).

3.1 Using conflict-free chain reactions to remove qubits

The main result in this Section is Theorem 3.6 (Set-and-Forget Theorem), which is essentially
the converse of Lemma 3.2, and allows us to reduce instances of 2-QSAT by providing partial
solutions obtained from a CR induced on a single qubit.

We begin by proving a correspondence between CRs and walk operators, in the sense
that if there is a walk W = (v, v1,v9,...,w) in G, and if |¢,) ¢ ker(Tw ), a CR induced at
v with a state |t,) should assign Ty [¢,) to w. The obstacle here is that the CR might not
traverse any of the edges of W before assigning a state to w; we must then relate W to other
walks in G’. We do so as follows.

» Lemma 3.3 (Unique Assignment Lemma). Suppose there exists a state |1) and a walk W
in G from v to w such that Ty |[¢) < |@). Then, for any conflict-free CR induced on v with
[), w is assigned |).

Proof. We show that there is a walk W in G’ which is followed by the CR, for which
Ty |¥) o |¢). Suppose W = (v, ug, ..., u1,ug) for ug := w. For each i > 0, let W; denote
the segment (v, uy, ..., u;) of the walk W. Let m be the smallest integer such that the CR
traverses W,. If m = 0, then we may take W = W is the walk followed by the CR from v
to w. Otherwise, we show a reduction to “deform” W, to obtain walks W', W” ... and
a decreasing sequence m > m’ > m’” > .-, for which the CR follows the walks W,,, W/ ,,
W, etc.. These walks have successively shorter “tails” of edges which are not followed by
the CR: the final such walk W is then one which is completely followed by the CR.

Given that m > 0, let |¢,,) = Tw,, |¢). By hypothesis, the CR does not traverse
the edge (Um,Um—1), either because T, .., [¥m) = 0, or because of an assignment on
Upm—1. The former implies Ty |) = 0 & |¢), contrary to hypothesis. Then there is a walk

o
m—1 =
Um—1. (Note that the assignments to u,,—1 made by both W and W/ _; are proportional to

(vyul, -+ ,ul., um—1) in G', which is followed by the CR to make the assignment to

one another, as otherwise the CR would have detected a conflict when attempting to traverse
edge (Um,Um—1) during its breadth-first search.) We extend the walk W) _; to a walk
W' = (v,ul,...,ul,  Um—1,...,u1,w). The CR has traversed W’ at least as far as the vertex
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Um_1, Missing out fewer edges at the end than it does for W. Furthermore, as the CR is
conflict-free, we have Toyw Tuguy =+ Tup w1 [Wm) < T [10), so that |@) o< Ty 1) o< Ty |40)
by construction.

Repeating the reduction above yields a walk W in G’ which is completely followed by
the CR, for which Ty, |¥) o |¢) by induction. Then |¢) is the assignment made to w by the
CR. |

Note that the above result holds regardless of which walk W we consider from v to w, so
long as Ty |[¢) # 0. Thus a conflict-free CR induced at v depends on a consistency between
all walk operators, from v to any other given w, relative to the initial assignment |¢,). For
the case w = v, we then have:

» Lemma 3.4 (Circuit Lemma). Let W be a closed walk starting and ending at v. If |1,) is
not an eigenvector of Ty, then inducing a CR at v with |1v,) yields a conflict.

Proof. By definition, the CR assigns [¢,) to v. If the CR is conflict-free, then either
Tw |¢w) =0 or Ty |1y) o [1),), by Unique Assignment (Lemma 3.3). Thus, if |1,) is not an
eigenvector of Ty, such a CR will have a conflict. |

Lemma 3.3 also allows us to decouple the set of vertices given assignments by a CR, from
the rest:

» Lemma 3.5 (Unilateral Lemma). For any state |¢)) and vertex v, suppose that a CR Cy
induced at v with |¢) is conflict-free. Let A denote the set of vertices given an assignment by

C1, and |¥g) denote the assignment made by C' at a given a € A. Then, for any constraint
I, fora€ A and b eV \ A and for any |¢) € H, oy (|1ba) ® |¢)) = 0.

Proof. For a € A, the CR C; must discover a walk W = (v,v1,v2,...,v) for vy := a,
such that for any sub-walk W; = (v,vq,...,v;) for 1 <4 < ¢, we have Ty, |[¢) # 0. The
assignment made to a by Cj is then |¢,) := Ty |[¢) by construction. Conversely, as b ¢ A, it
follows by the Unique Assignment (Lemma 3.3) that all walks W, in G’ from v to w satisfy
Tw, [¢) = 0: this holds in particular for the walk W' = (v,v1,...,a,b). Then T [1),) = 0,
which is to say that Is,(|ve) @ [¢)) = 0 for all |¢). <

The Unilateral Lemma allows us to treat conflict-free CRs as “set-and-forget” subroutines,
in which we establish partial assignments on a set of qubits which we may remove from

an instance P = {IL;; };;ep of 2-QSAT, obtaining a simpler, equivalent instance P’ C P.

Formally, we have the following.

» Theorem 3.6 (Set-and-Forget Theorem). Let P = {I1;; }ijcr be an instance of 2-QSAT with
interaction graph G' = (V, E). Suppose that C is a conflict-free CR induced at v € V with
|ty € H, and let A denote the set of vertices given assignments by C. Let P’ be a 2-QSAT
instance obtained from P by removing all constraints acting on A. Then P is satisfiable by
product states if and only if P’ is.

Proof. For a given a € A, let |1),) denote the assignment made by C to a. By construction,
the states |¢,) jointly satisfy all constraints between vertices in a; and by the Unilateral
Lemma (Lemma 3.5), the states |1, ) also unilaterally satisfy constraints between vertices
in A and vertices in V' '\ A. If P’ is satisfiable by a state [®) = @,c\ 4 [$a), then P is
satisfiable by [V) = [®,c 4 [ta)] @ |®). For the converse, suppose that P is satisfiable by
some state [¥') = &),y |1;,) (Which may not agree with the assignments made by C'). Define
0) = [Quea [ta)] ® [®v€V\A [v,)]. Again, |¥) satisfies all constraints acting on vertices
a € A, and by construction it also satisfies all constraints internal to V' \ A. Then |¥) also
satisfies P, and its restriction to V' \ A satisfies P'. <
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3.2 How to find conflict-free chain reactions efficiently

The Set-and-Forget Theorem (Theorem 3.6) provides us with the following approach to find
a product assignment for an instance P of 2-QSAT: (7) pick an unassigned vertex v, (i) find
|t} such that the CR induced at v with |t),) is conflict-free, and (éii) use this CR to produce
a partial assignment, reducing to an instance P’ with fewer qubits. It remains to attempt to
find such a state |1,), or determine that none exist, from the continuum # of single-qubit
states.

As we describe in Section 1, and as shown by the Circuit Lemma (Lemma 3.4), it suffices
for us to restrict our search for |¢) to the eigenvectors of Ty, for a closed walk W, e.g. a
cycle. Define a discretizing cycle as a directed cycle C' (starting and ending at some vertex
v) with cycle matrix T «* I. For such cycles, the Circuit Lemma allows us to narrow down
our search for |1),) to the eigenvectors of T¢, of which there are at most two. This raises two
questions: (1) How to find discretizing cycles efficiently, and (2) how to deal with variables
which are not on any discretizing cycle.

As noted in Section 1, product operators complicate the task of detecting discretising
cycles, but also provide a second way to narrow the search for assignments [|¢,) leading to
conflict-free CRs.

» Lemma 3.7 (Product Constraint Lemma). In a product-satisfiable instance of 2-QSAT with
a rank-1 product constraint projecting onto a state |puy) = |Yu) ® |10), at least one of the
CRs at vertex u or v with states |y.-) or |y-), respectively, is conflict-free.

Proof. Suppose that the instance is product satisfiable, but that a CR starting at qubit
u with state |y) has a conflict. Then by the Conflict Lemma (Lemma 3.2), for any
satisfying product state |1)) = @,y [¢), we have [1,) o |y;). By construction, we have
[90) X Tuw [tu) = |7;-) # 0. Thus a CR induced at v with |y;-) will be conflict-free (as
otherwise |1)) cannot be a satisfying assignment, again by the Conflict Lemma). <

Using Lemma 3.7 together with the Set-And-Forget Theorem (Theorem 3.6), we may find
a partial assignment satisfying any given product constraint; repeating this for all product
constraints will either (¢) reveal that the original 2-QSAT instance is unsatisfiable, (i) yield
a satisfying assignment for the entire instance, or (ii) yield an equivalent instance of 2-QSAT
in which all constraints are projectors onto entangled states.

Let us call an instance of 2-QSAT idrreducible if it has a connected interaction graph G/,
and all of its constraints are rank-1 projectors onto entangled states. In such an instance of
2-QSAT, all transfer matrices are invertible. A conflict-free CR induced at any vertex will
yield assignments for every other vertex; thus, a single discretizing cycle suffices to determine
whether or not the instance is satisfiable. We show that when a discretising cycle is present
in such an instance of 2-QSAT, it is easily found:

» Lemma 3.8. Suppose G’ is an interaction graph of an irreducible instance of 2-QSAT,
which contains a discretizing cycle C. Let T C G’ be a tree which contains all of the vertices
of C. Then there is at least one edge e in C, such that the (unique) cycle in the graph T U{e}
s a discretizing cycle.

Proof. In the tree T, there is a unique path P,, from any given vertex v € V to any
other connected vertex w. Furthermore, by the irreducibility of the 2-QSAT instance,
Tp,,

cycle in the implication graph G. Consider the closed walk from vy to itself in T, given
by W = Py vy Poyus * -+ Poyuvy - By induction, we may show that the truncated walk W’ =

is non-singular in each case. Suppose that C = (vi,vs,...,vg,v1) is a discretizing
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Py vy Pogvs -+ Po,_,v, satisfies Ty Tpm x Tp 1 o for each ¢: thus Ty o I. However,
Te = Tuwy - Togos Togwe & I by hypothesis. Then there is an edge vw in C for which
Tow ¢ Tp,,. Then the unique cycle C’ in T'U {vw} contains the path P, from v to w, as

well as the edge vw, and has cycle matrix Tor = Ty Tp,, < T Tp,. ok 1. <

» Theorem 3.9 (Cycle Discovery Theorem). Suppose G’ is the interaction graph of an
irreducible instance of 2-QSAT, and contains a discretizing cycle C. Then a depth-first search
from any vertex v € V', in which each edge is traversed at most once, suffices to discover a
discretizing cycle C”.

Proof. Consider a DFS starting from any vertex v € V. Define a tree T C G, in which each
edge e traversed by the DFS is included if and only if e is traversed for the first time some
vertex is visited. As the DF'S reaches each vertex w, it also computes the path operator Tp,,
for the path taken from v to w. Each time the DFS traverses an edge uw from some vertex
u to a vertex w which it has previously visited, it tests whether Tp,, o Ty Tp,, . If so, it
continues the DFS from w. Otherwise the cycle C’ consisting of P}, P,,, followed by wu is
discretizing, as T¢er o TuprwT;vlw «* I. Conversely by Lemma 3.8, if G has a discretizing
cycle, the DFS must eventually traverse such an edge. <

Implicit in Theorem 3.9 is a linear-time algorithm for finding discretising cycles in an
irreducible instance of 2-QSAT, when one is present. It remains to describe how to treat
irreducible instances which have no discretizing cycles. The absence of any means of
discretising the state-space of any qubit in such an instance actually represents freedom of
choice in this case; while this is implicit in Refs. [3, 21, 9], we prove it here for the sake of
completeness.

» Lemma 3.10 (Free Choice Lemma). In an irreducible instance of 2-QSAT with no dis-
cretizing cycles, any choice of single-qubit state |1,) for some v in the component gives rise
to a conflict-free CR.

Proof. Let G’ be the interaction graph. Consider a CR induced at v with |4,), and consider
the paths P, to each vertex w, by which the CR makes its first assignment |¢,,) := Tp,,, |[¢v)
to w. If P/ is another walk from v to w, we have Tpr Tpy o< I, from the hypothesis
that there are no discretising cycles; then Tp, o< Tp,,. Thus, regardless of the choice of

|,), & consistent assignment Tp, [1h,) is computed every time the CR traverses an edge to
visit w. <

4 A linear-time 2-QSAT algorithm

We finally present our 2-QSAT algorithm in Figure 1, whose correctness follows immediately
by combining the results of Section 3. Following [10], we implement CRs (corresponding to
their trial assignments) in parallel to ensure a linear bound on run-time; this is expanded
upon in Section 5.

Preprocessing stage to impose input constraints

For conciseness, we present SOLVEq in Figure 1 with restrictions on the inputs it takes.
As we indicate in Section 2, following Chen et al. [4], these restrictions ensure that the
instance presented to SOLVEq is either satisfiable by a product state or unsatisfiable. These
restrictions can be imposed through a pre-processing phase, as follows. For each pair {u,v}
subject to multiple constraints, sum the projectors to obtain positive semidefinite operator
Suv- Then perform the following:
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Input: An instance of 2-QSAT consisting of rank-1 projectors P = {II;; } with

Output: “UNSAT”, or unit vectors |1),) € H for each v € V which jointly satisfy P.

interaction graph G’ = (V| E), with at most two parallel edges (u,v) per
distinet {u,v} C V.

1. Discretize on product constraints — While there exists a projector II;; = |¢;;){i;]
such that |@;;) = |v:) ® |y;) is a product state: simulate CRs at each v € {i,j} with
|’yj>, in parallel.

a. If conflicts arise in both CRs, halt and output “UNSAT”.
b. Fix the assignments for the first conflict-free CR that terminates, remove the set
A of vertices that it visited from G’, and go to Step 1.

2. Discretize on cycles — While there exists v € V: search for a discretizing cycle C C G’
in the same connected component of v.

If such a cycle C is found at a vertex u: Let T¢ be its cycle matrix, and S denote

the set of eigenvectors of T¢. Simulate CRs at u with each |¢,) € S, in parallel.

a. If conflicts arise in both CRs, halt and output “UNSAT”.

b. Fix the assignments for the first conflict-free CR that terminates, remove the
set A of vertices that it visited from G’, and go to Step 2.

If no such cycle is found: Induce a CR at v with [¢,) := |0). Fix assignments
made by the CR, remove the set A of vertices that it visits from G’, and go to
Step 2.

3. Normalize — For each qubit v, compute whether the assignment |¢,) is normalised:

if not, compute a normalised version [1h,) := |1y} /1/(¥y [1h) .

Figure 1 An algorithm for 2-QSAT, denoted SOLVEq.

If any pair {u,v} has rank(S,,) = 4, halt with output UNSAT (as ker(S,,) contains no
states).
For each pair {u, v} with rank(S,,) = 2, replace the constraints on {u,v} with II,, ; =
[71)(m| and IL,y 2 = |n2) (12|, for linearly independent columns |n;), |n2) of Sys.
For each pair {u,v} with rank(Sy,) = 3, record the unique state |1),,) which spans
ker(Syy) as a joint assignment to (u,v), and remove the constraints on {u,v}. If |¢hy,) =
[thy) & |0y), record |t0,,) and |v,) as assignments to u and v respectively. (If any qubit is
subject to conflicting assignments, halt with output UNSAT.)
For each pair {u, v} given an assignment |1),,) in the preceding step:
If |thup) = |¥u) ® |10y), induce CRs (sequentially) at v with |, ) and at v with |1,).
If not, and there are non-product constraints II;,, or Il;, for any 4, halt with output UN-
SAT (as any state of ¢ is compatible only with product states on {u,v}). Otherwise, for
each Iy, = [7i) (V| @ |[7a) (yul or Wi = |73 (0] @ |70 ) (70|, induce a CR (sequentially)
at i with 7).
For any CR induced, halt (with output UNSAT) either if the CR has a conflict, or if it
makes an assignment to some other qubit w which has been given a different assignment
as a result of a rank-3 constraint. If no conflict is detected, record the assignments, and
remove the set A of qubits given assignments from G’.

This preprocessing phase involves much the same subroutines as SOLVEq itself, and does
not contribute to the asymptotic run-time. (We include these steps in our detailed runtime
analysis in the full version.)
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5 Runtime analysis

We briefly sketch the runtime analyses for SOLVEq in terms of field operations over C and
bit operations, and discuss an optimization for the setting of product state constraints. A
more in-depth treatment is given in the full version. We assume a random-access machine, so
that memory access takes unit time. The constraints II; are specified as 4 x 4 matrices with
coefficients from a finite-degree field extension F:(Q, whose specification is also part of the
input; arithmetic operations over such number fields can be performed efficiently [5]. From
this representation we extract the basis vectors |n;) for the image of II; by taking columns
of II;, and omit normalisation: SOLVEq then uses |7;) to represent II;. Vectors are only
normalised as the final step of the algorithm.

Field operations

SOLVEq requires O(n + m) operations over C, for n and m the number of variables and
clauses, respectively. As each vector |n;) is in C*, operations on them (such as determining if
|n;) is a product constraint in Step 1) require O(1) field operations. Following EIS [10], we
simulate CRs in parallel by interleaving their steps, terminating both simulations as soon
as one of them is found to be conflict-free. In the preprocessing phase and in Step 1b, this
ensures that the number of vertices and edges removed (upon completion of a conflict-free
CR) is proportional to the number of vertices and edges visited during the parallel CRs.
Hence, the total number of edge-traversals of SOLVEq is O(m). Finally, by Step 2, the
instance has been simplified to a disjoint union of irreducible instances. Theorem 3.9 ensures
that if a discretizing cycle exists in any of the components, it can be found by a depth-first
search; moreover, a single conflict-free CR suffices to assign satisfying states to all vertices in
each component.

Bit operations

The bit-complexity of SOLVEq differs from the field-operation complexity, for the simple
reason that multiplying k transfer matrices yields a path matrix with O(k)-bit entries. Thus,
operations such as determining the eigenvectors of such matrices, or whether [1) o |¢) for
vectors in the image of these matrices, can take time O(M(k)), where M (k) is the time
to multiply two k-bit integers. This follows from the fact that computing VD € Z for
a perfect square D € Z can be performed in O(M(n)) time using Newton’s method (see
e.g. Theorem 9.28 of Ref. [26]); and that equality testing over Q is bounded by O(M (n)),
for rationals r,s € Q with n bit representations as ratios. (To test whether § and § are
equal, one tests whether ad — bc = 0.) Since the number of times we might need to compute
eigenvectors or decide proportionality may scale as m + n, the runtime of O((m + n)M (n))
follows.

It may be necessary for SOLVEq to represent its output using further field extensions
E:TF, for instance, when solving the characteristic polynomial det(A — T¢) of a cycle matrix
Te, if the discriminant D = (Tr T¢)? + 4(det T¢) is not a perfect square in F. However, by
the Set and Forget Theorem 3.6, any extension required by a CR will be independent of the
CRs involved in the assignments made by other CRs; furthermore, the extensions involved in
each CR is only quadratic, and specifically by a square root v/D of an element D € F.

The approach taken to the quadratic extensions by SOLVEq is unconventional. Specif-
ically, unless D € Q, we do not evaluate whether or not v/D is in F before defining the
(possibly trivial) “extension” E = F[v/D]. That is, we allow representations of number fields
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Fi := Qwi, w2, . . .,wg] in which wj = /q; for some «a; € F;_; (possibly including the case
wy = +/s for s € Q), and where it may come to pass that w; € F;_;. This prevents us from
easily presenting coefficients in a normal form: crucially however, it is still possible for us
to perform equality tests and arithmetic operations in time O(M (n)), for « € Fy, expressed
as %f(wl, ... wi) for u € Z and f € Z[x] with coefficients of size O(n), provided that k is
bounded by a constant. (In the case of SOLVEq, we bound k < 3.)

Thus while the output of SOLVEq may not be reduced, it nevertheless presents exact,
normalised, satisfying states by means of tensor factors. Complete details are to be found in
the full version.

Reduced complexity of 2-QSAT for product constraints

Using a simple optimization which exploits product constraints, SOLVEq can in fact accept
inputs over any field extension F:Q (algebraic or otherwise), and solve them with O(n 4+ m)
bit operations provided that all projectors are product operators. This requires only that
arithmetic operations and equality testing against 0 can be performed in F in O(1) time
on inputs with representations of size O(1). Specifically: the transfer matrix of a product
constraint My, = |[Yu) (Vu| @ [70) (Yol 18 Tuw o |75 ) (7|, whose image is spanned by |y;-). For
any assignment [¢,,) to u, if Ty, [14) # 0, we can set v to |y;-) (which by assumption on the
input requires O(1) bits), as opposed to the potentially more complex vector T, , |1) X [7i)-
Thus, in Step 1, the complexity of the assignments made by a CR are no more complex
than the vectors of the projectors II,, in the input, so that all algebraic operations may
be performed in ©(1) time rather than O(M(n)) time. In particular, for classical 2-SAT
instances, we recover an O(m +n) upper bound on the bit-complexity of SOLVEq, matching
the asymptotic performance of the APT and EIS algorithms [2, 10].

6 On lower bounds for bit complexity

Most investigations into 2-QSAT are presented in terms of unit-cost operations over some
algebraic number field F. As a result, no restrictions are usually put on how the output of a
classical solution to 2-QSAT is represented. To consider lower bounds on the bit-complexity
of presenting a solution to 2-QSAT, it becomes necessary to consider what restrictions to
impose on the output, as without such restrictions the notion of what form the output may
take becomes ill-defined. We impose the restriction of outputs which are rationalised, as
follows. Let F = Q[w] be an algebraic number field, so that w is an algebraic number whose
minimal polynomial p is a monic polynomial over Z. An element o« € F is presented in
rationalised form by an expression of the form f(w)/D = «, where D > 0 is an integer
and f € Z[z] is an polynomial such that deg(f) < deg(p). Despite the unconventional
representation described in Section 5, this is one constraint which the output of SOLVEq
respects.

There are further restrictions which one might consider, such as the output state vectors
being normalised (which SOLVEq satisfies), and that they be reduced: that the coefficients
a = f(w)/D satisty ged(f, D) = 1. Consider, for instance, an algorithm which produces its
output in minimal form: each state that it outputs is normalised, in reduced rationalised form,
and involves the minimal field extension F:Q necessary to do so, represented as F = Q[w]
where the minimal polynomial of w is a monic polynomial over the integers. While SOLVEq
does not compute outputs in minimal form (e.g., it may fail to produce outputs in reduced
form), we show that the multiplication time O(M (n)) for n bit integers is a relevant lower
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bound for algorithms which do, suggesting that the role of M(n) in the upper bound of
SOLVEq is not merely accidental.

» Lemma 6.1. There exist instances of 2-QSAT on n vertices and m € O(n) clauses, such
that exhibiting a requested tensor factor of a satisfying solution, in minimal form, requires
Q(M(n)) bit operations in in the worst case.

Proof. Let M and N be positive, odd n-bit integers, with binary expansions M = Z?:_ol 2t M,
and N = Zl:ol 2Ny, where M;, N; € {0,1} for each 0 < i < n. We construct an instance of
2-QSAT whose unique product state solution is one in which one of the qubits ¢ is assigned

a state

M 2" +MN . MVD (2" + MN)V/D
EIOH NG} = —7-10+—F

where D = M? + (2" + M N)?2. Either the middle or the right-hand expression in Eqn. (3) is
in rationalised and normalised form, depending on whether D is a perfect square. As M,
2" + MN, and D are coprime, that rationalised expression is in reduced form, if F = Q[v/D].
If D is neither a perfect square nor square-free, it may be that v/D is represented as
5v/D' € Q[V/D'], where D = D'6%. In this case, by hypothesis, a representation of |thg) in
reduced form would be identical (up to signs) to

) = MV gy QA MOVD (@)

Yq) = ), (3)

In any case, the minimal form representation would provide a specification of the extension
element /D’ the denominators D’d, and the numerators A = M and B = 2" + MN (or
A= —M and B = —2" — M N, which yields an equivalent vector in Q[v/D’]). From such a
representation, one could compute M N simply as B — 2" (or —B — 2" respectively), which
requires time O(n).

The instance we construct is on a chain of 2n + 2 qubits, labelled v € {0,1,2,...,2n+1},
as follows. For 1 < i < n, we define matrices

1 0 1 0
Ticii= (Mn—i 2) , Thtintiti = (Nn—i 2) ; (5)

. ;o
and also two matrices T, 41 and T0,1~

0 1 0 1
Trintt = (1 0) ’ Tou = (0 M, 1) ' )

For each i € {0,1,2,...,2n}, we include a constraint II; ;41 between qubits ¢ and i + 1, with
transfer matrix T;;41; and we also include a second constraint Hg’l between 0 and 1, with
transfer matrix Tf ;. The resulting instance of 2-QSAT has two rank-1 constraints between
qubits 0 and 1, and one rank-1 constraint between all other consecutive pairs of qubits. By
Chen et al. [4], this instance is then satisfiable by a product state if it is satisfiable at all. It
is easy to show that all of the projectors have rational coefficients in this case, so we take the
field of the representation to be Q itself.

We show that there is a unique product state which satisfies the above instance of 2-QSAT.

It is easy to show that the opposite transfer operator to T671 is

—M,—1 1
T/ n
1,0 X ( 0 0) (7)
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so that T} ;To,1 o [0)(1]. The only eigenvector of this operator is [0), which is therefore the
only single-qubit state on qubit 0 which is consistent with a satisfying solution. As all other
transfer operators are non-singular, this determines a unique assignment for all other qubits ¢
in the chain, determined by the first column of the walk operator T, == Ti—1:---T12To0,1-
It is easy to show for 1 < i < n that

1 0

T = S M2t 2| (8)
1<6<i

and that in particular

1 0
Tow = (37 51): o

from this we easily obtain

Moo
Tiomt) = < L O) ; (10)

from which point we may prove by induction for 1 < i < n that

M 2TL
T[O,n+1+i] = |2+ MZNn_tQi—t on ZNn_tQi—t ; (11)
1<<i 1<t<i
so that
M 2m
Tho2men) = <2n +MN 2"N) ' (12)

Let ¢ be qubit 2n + 1. The only assignment to this qubit which is consistent with a
satisfying assignment is then the state given by the first column of Tg 2y,41j, which is
M |0) + (2" + M N) |1); the vector given by Eqn. (3) is the normalised version of this vector.

Using the techniques of Laumann et al. [21], we may show that the space of satisfying
assignments of this instance has dimension 2, spanned by the product solution above, and an
entangled solution on all of the qubits. Considering all projectors except for Hf),l, there is an
invertible (non-unitary) local transformation mapping all projectors IT;_; ; to [¥~)(¥ |, the
two-qubit antisymmetric projector. Thus the satisfying states for these projectors are the
symmetric subspace on S = 2n + 2 qubits, which is spanned by any collection of states of
@202 for § 41 = 2n + 3 distinct states |a;). Any state in this space which
is not a product state, is entangled across the entire chain of qubits. Undoing this change
of local co-ordinates, it follows that any state which satisfies the above instance of 2-QSAT
which is not a product state, is also entangled across the entire chain of qubits (i.e., it cannot

the form |o;)

be factorized across any cut). Since we require each factor to be explicitly written in the
standard basis, such a solution would then require explicitly writing out the standard basis
elements of a vector of dimension 22"*2; such solutions would require vectors of dimension
22n+2 to represent. Any algorithm which in polynomial time exhibits one of the tensor
factors of the solution, must therefore exhibit factors of the product solution. In particular,
it must compute |1, if this is the required tensor factor. As we have already shown an O(n)
reduction from computing the product M N to computing the minimal representation of [¢,),

it follows that there is an Q(M(n)) lower bound for such an algorithm in the worst case. <
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» Corollary 6.2. If there does not exist a ©(n)-time algorithm for multiplying two n-bit
integers, then there does not exist an O(m+n)-time algorithm to present single-qubit marginals
of satisfying solutions to instances of 2-QSAT.

We would also like to show lower bounds for algorithms such as SOLVEq, which do not
necessarily compute its output in reduced form, but which does compute an explicit output,
in the sense of presenting a complete description of a satisfying solution via tensor factors.
We may obtain such lower bounds even for algorithms which produce non-normalised outputs,
as follows.

» Lemma 6.3. There exist instances of 2-QSAT on n vertices and m € O(n) clauses, such
that an explicit rationalised (but not necessarily normalised) assignment for a satisfying state
requires §2(n?) bits.

Proof. We may simplify the construction of Lemma 6.1 by omitting the qubits n 4+ 1, ...,
2n 4+ 1 and the projectors which act on them. This yields an instance in which there is a
unique product solution (with all other solutions requiring a vector of dimension 2"*! to
represent). In this product state, the qubit n is in a state |i,) o< |0) + M |1). More generally,
each qubit 1 <7 < n is in a state

i) oc [0) + M@ 1) (13)

where M) = Zi:l M, 27t As M, _1M,,_5---MyM; € {0,1}"~! may be an arbitrary
n — 1 bit string, and as we require the tensor factors on the qubits i to be presented
independently of one another, the integers M () cannot be represented any more succinctly in
the worst case; at best, by applying arbitrary scalar factors, we may consider representations
[i) = ai 0) + MTL) |1}, in which the representation of the |1) component of |i;) may be
reduced if o; divides M, but at the cost of increasing the size of the representation of
the |0) component. (More formally, if the pair (1/a;, M® /a;) has asymptotically smaller
Kolmogorov complexity than the pair (1, M (i)), we would have a contradiction, since the
former allows us to extract M (9 — thus, we would have a shorter description of M) than its
Kolmogorov complexity allows.) Thus, for any constant 0 < o < 1, the qubits |an| <i<n
all require 2(n) bits to represent, yielding a total lower bound of Q(n?). <

» Corollary 6.4. Up to Q(log(n)' M) factors, SOLVEq is optimal among algorithms which
present explicit expressions for satisfying assignments.
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