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Abstract

We consider the spatially inhomogeneous Landau equation with soft potentials. First, we establish the 

short-time existence of solutions, assuming the initial data has sufficient decay in the velocity variable 

and regularity (no decay assumptions are made in the spatial variable). Next, we show that the evolution 

instantaneously spreads mass throughout the domain. The resulting lower bounds are sub-Gaussian, which 

we show is optimal. The proof of mass-spreading is based on a stochastic process, and makes essential 

use of nonlocality. By combining this theorem with prior results, we derive two important applications: 

C∞-smoothing, even for initial data with vacuum regions, and a continuation criterion (the solution can be 

extended as long as the mass and energy densities stay bounded from above). This is the weakest condition 

known to prevent blow-up. In particular, it does not require a lower bound on the mass density or an upper 

bound on the entropy density.
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1. Introduction

1.1. The Landau equation

We are interested in the Landau equation from plasma physics, in three space dimensions:

∂tf + v · ∇xf = QL(f,f ) = tr
(

ā[f ]D2
vf

)

+ c̄[f ]f. (1.1)

For a constant γ > −3, the coefficients ā[f ](t, x, v) ∈ R3×3 and c̄[f ](t, x, v) ∈ R are defined by

ā[f ] := aγ

∫

R3

(

I − w

|w| ⊗ w

|w|

)

|w|γ+2f (t, x, v − w)dw, (1.2)

c̄[f ] := cγ

∫

R3

|w|γ f (t, x, v − w)dw, (1.3)

where aγ , cγ > 0 are constants and I is the identity matrix on R3. For γ = −3, the expression 

of ā[f ] is unchanged and the expression for c̄[f ] must be replaced by c3f for a fixed constant 

c3 > 0. We assume that initial data fin(x, v) ≥ 0 is given. The solution f (t, x, v) ≥ 0 to (1.1)

models the evolution of a particle density in phase space in a regime where grazing collisions 

predominate. When γ > −3, the Landau equation can be seen as an approximation to the non-

cutoff Boltzmann equation in this regime. See, for example, [8,33] for the physical background. 

We are interested in the case of soft potentials, i.e. γ ∈ [−3, 0). The case γ ∈ [−2, 0) is also 

called moderately soft potentials, γ ∈ [−3, −2) is called very soft potentials, and γ = −3 is 

called the Landau–Coulomb equation.

It is not currently known whether global-in-time classical solutions to (1.1) exist for general, 

non-perturbative initial data. In this paper, we establish the existence of a C∞ solution of the 

Cauchy problem for (1.1) on some time interval [0, T ], without a smallness assumption on the 

initial data, and give a continuation criterion in terms of physically relevant quantities. Define

M(t, x) =
∫

R3

f (t, x, v)dv, (mass density)

E(t, x) =
∫

R3

|v|2f (t, x, v)dv, (energy density)

H(t, x) =
∫

R3

f (t, x, v) logf (t, x, v)dv. (entropy density)

In the homogeneous setting, i.e. when there is no x dependence, the mass and energy of the 

solution are conserved and the entropy is decreasing, but these properties have not been shown 

for the full inhomogeneous equation. Several regularity results for weak solutions of (1.1) have 

been derived under the assumption that M(t, x), E(t, x), and H(t, x) are bounded above, and 

that M(t, x) is bounded away from zero, including [7,20,29]. (See the Related Work section 

below.) The present paper makes three contributions: first, to develop a local existence theory 
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that is compatible with these a priori results; second, to remove the assumptions that the mass of 

f is bounded from below and the entropy is bounded from above from the regularity criteria for 

our solution; third, to show that solutions may be continued so long as the mass and energy can 

be controlled from above when γ ∈ (−2, 0); when γ ∈ [−3, −2], we require, additionally, that a 

higher moment and the L∞ norm of f are controlled.

In both the Boltzmann and Landau equations, coercivity of the bilinear collision operator is 

a crucial ingredient in proving regularization theorems. For the Landau equation, the coercivity 

of QL(f, f ) comes from the ellipticity of the matrix ā[f ], and it is clear from (1.2) that the 

ellipticity may degenerate if M(t, x) = 0 at some (t, x). Our Theorem 1.3 implies that, under 

relatively weak assumptions, M(t, x) is necessarily positive for t > 0 and ā[f ] is uniformly 

elliptic. Our method also allows us to remove the entropy bound from our criteria for smoothness 

and continuation.

1.2. Main results

Before stating our results, we define the uniformly local weighted Sobolev spaces we use. 

Uniformly local spaces (first introduced by Kato in [31]) do not specify any decay as |x| → ∞. 

Let 〈v〉 = (1 + |v|2)1/2. For integers k, � ≥ 0, define

‖g‖
H

k,�
ul (R6)

=
∑

|α|+|β|≤k

sup
a∈R3

∫

R6

|φ(x − a)〈v〉�∂α
x ∂β

v g(x, v)|2 dx dv,

where φ ∈ C∞
0 (R3) is a cutoff satisfying 0 ≤ φ ≤ 1, φ ≡ 1 in B1, and φ ≡ 0 in R3 \ B2. Here, 

for α, β ∈ (N ∪ {0})3, ∂α
x = ∂

α1
x1

∂
α2
x2

∂
α3
x3

. We define ∂
β
v similarly. Then, our uniformly local spaces 

are:

H
k,�
ul (R6) = {g : ‖g‖

H
k,�
ul (R6)

< ∞}. (1.4)

We often write H
k,�
ul = H

k,�
ul (R6). Let H k

ul = H
k,0
ul , L

2,�
ul = H

0,�
ul , and L2

ul = L
2,0
ul . Our main time-

dependent spaces will be

Y k
T := L∞([0, T ],H k

ul(R
6)) ∩ L2([0, T ],H k,1

ul (R6)). (1.5)

Our first main result is the local well-posedness of (1.1):

Theorem 1.1. Let fin(x, v) : R3 × R3 → R+ be such that eρ0〈v〉2
fin(x, v) ∈ H k

ul(R
6) for some 

ρ0 > 0 and some k ≥ 4. Then for some T > 0, depending only on γ , ρ0, k, and ‖eρ0〈v〉2
fin‖H k

ul
, 

there is a unique solution f ≥ 0 to (1.1) with f (0, x, v) = fin(x, v) and eρ0〈v〉2/2f ∈ Y k
T ∩

C0([0, T ], H k
ul(R

6)).

While the proof of Theorem 1.1 involves mostly classical techniques, a local existence result 

for the Landau equation was previously missing from the literature (except in the case γ = −3, 

see [28]), and we believe it is important to fill this gap. Our existence theorem also provides a 

convenient framework for our other results.
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Note that, in light of the definition of H
k,l
ul , Theorem 1.1 makes no assumption on the behavior 

of fin as |x| → ∞. The requirement that fin have four Sobolev derivatives is an improvement 

over [28], and matches the current state of the art for results on the Boltzmann equation [3–5]. 

At this time, it is unclear whether this hypothesis can be relaxed further.

Next, by relating equation (1.1) to a certain stochastic process, we prove that the mass density 

M(t, x) instantly becomes positive, and moreover stays uniformly positive on compact sets away 

from t = 0. Before stating this theorem, we define well-distributed initial data, a hypothesis under 

which we can strengthen our results.

Definition 1.2. We say that a function g : R3 × R3 → [0, ∞) is well-distributed with param-

eters R, δ, r > 0 if, for every x ∈ R3, there exists xm ∈ BR(x) and vm ∈ BR(0) such that 

g ≥ δ1Br (xm)×Br (vm).

Heuristically, a function is well-distributed if for every x ∈R3, there is some uniform amount 

of mass nearby at relatively low velocities. For a simple example of well-distributed initial data 

consider the following: if χ0 and χper are continuous, non-negative, non-zero functions, with χper

periodic, then any f0(x, v) ≥ χ0(v)χper(x) is well-distributed.

Now we state our mass-pushing theorem, which will be crucial in obtaining the smoothness 

of solutions to the Landau equation. For technical reasons, we work with solutions of the type 

constructed in Theorem 1.1, but a similar property should be expected to hold for solutions with 

weaker decay and regularity.

Theorem 1.3. Suppose 0 < T ≤ T ≤ T and that f is a solution of (1.1) on [0, T ] such that 

eρ〈v〉2
f ∈ Y 4

T for some ρ > 0, and such that f is non-negative and not uniformly equal to zero.

(i) Then, for any (t, x) ∈ [T , T ] × R3, there exists νT ,x, ρT ,x > 0 depending only on T , T , K , 

the initial data, and the quantities

⎧

⎪

⎨

⎪

⎩

sup
x∈R3,t∈[0,T ]

(M(t, x) + E(t, x)) , if γ ∈ (−2,0), or

sup
x∈R3,t∈[0,T ]

(

M(t, x) + E(t, x) + P(t, x) + ‖f (t, x, ·)‖L∞(R6)

)

, if γ ∈ [−3,−2],

(1.6)

such that, for all v ∈ R3,

f (t, x, v) ≥ νT ,x exp
{

−ρT ,x |v|max{3−γ,4}
}

.

Here, P(t, x) =
∫

R3 |v|pf (t, x, v) dv with p > 3|γ |/(5 + γ ).

(ii) If, in addition, f (0, ·, ·) is well-distributed for some parameters R, δ, r , then, we find 

νT , ρ > 0 depending on R, δ, r , T , K , and the quantities (1.6), with νT depending addi-

tionally on T , such that, for all (t, x, v) ∈ [T , T ] ×R3 ×R3

f (t, x, v) ≥ νT exp
{

−ρ|v|2−γ
}

. (1.7)
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The significance of T in the previous theorem is as follows: we wish to apply Theorem 1.3

iteratively (in combination with Theorem 1.1 and Theorem 1.4) to show continuation of solutions 

past any T such that (1.6) is finite. The time of extension may go to zero as T approaches some 

finite value, but the key point is that this can only happen if (1.6) blows up, not as a result of the 

dependence of the estimates on T .

In the well-distributed case of (1.7), one might expect a lower bound like e−ρ|v|2 , as these 

“Maxwellians” are the steady state solutions of the Landau equation. The above result, however, 

is sharp for well-distributed initial data, as we demonstrate in Proposition 4.4. In light of results 

that show convergence to Maxwellians for a priori global solutions such as [14], or for solutions 

starting close to equilibrium such as [36,39], we infer that the comparatively fatter tails of the 

Maxwellians form as t → ∞. For non-well-distributed initial data, it is not clear whether the 

lower bounds in Theorem 1.3(i) are optimal. We leave this question for future work.

The proof of Theorem 1.3 relies on probabilistic methods to show that a positive amount of 

mass anywhere in space and velocity can spread (at least a small amount) to any other loca-

tion and velocity instantaneously. Given the kinetic setting, which naturally involves following 

“random” trajectories, probabilistic methods seem well-adapted to the problem, and there is a 

somewhat rich history of using stochastic processes to study kinetic equations (see Section 1.4

below).

Theorem 1.3 implies in particular that M(t, x) =
∫

R3 f (t, x, v) dv > 0 for every t and x, that 

the positive lower bound is uniform locally in t > 0 and x ∈ R3, and that it is uniform in x, 

for fixed t , when the initial data is well-distributed. Theorem 1.3 also implies ā[f ] is uniformly 

elliptic. An almost immediate consequence of this, along with the Schauder estimates of [29], is 

the smoothness of f , as stated in the following:

Theorem 1.4. Suppose 0 < T ≤ T ≤ T and that f solves (1.1) with eρ〈v〉2
f ∈ Y 4

T for some 

ρ > 0. Then f ∈ C∞((0, T ] × R3 × R3). Moreover, suppose that ‖eρ〈v〉2
f ‖Y 4

T
≤ � for some 

� > 0 and fix ρ̃ ∈ (0, ρ). For every compact set K ⊂ R3 and for every (t, x) ∈ [T , T ] × K , we 

have ‖eρ̃〈v〉2
f (t, x, ·)‖H k(R3) ≤ Ck,K for all integers k ≥ 0. If the initial data is well-distributed, 

then ‖eρ̃〈v〉2
f ‖L∞([T ,T ],H k

ul(R
6)) ≤ Ck for all integers k ≥ 0. The constants depend on the sub-

scripted quantities along with �, T , T , ρ̃, ρ, and, in the well-distributed case, those constants 

in Definition 1.2.

Theorem 1.4 applies in particular to the solution constructed in Theorem 1.1. To our knowl-

edge, this is the first C∞ solution to the Cauchy problem for (1.1) that does not require pertur-

bative initial data. Also, note that the initial data of our solution may contain vacuum regions. 

When the initial data is well-distributed, the dependence of the constant on f can be weakened; 

we refer the reader to Theorems 1.5 and 5.1.

Finally, we show that our solution can be extended as long as the physical quantities remain 

bounded above. In particular, this implies that any blow-up of solutions to the Landau equation 

with suitable initial data must occur at the level of the quantities (1.6). We state this roughly at 

present, for the ease of the reader (see Theorem 5.1 for a more detailed statement).

Theorem 1.5. If the initial data fin is well-distributed and eρ0〈v〉2
fin ∈ H 4

ul for some ρ0 > 0, 

then a unique solution to (1.1) exists for as long as the quantity (1.6) remains finite.
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In the case γ ∈ (−2, 0), Theorem 1.5 gives a physically meaningful continuation criterion. 

Namely, that blow-up can be prevented, and the solution extended, by obtaining upper bounds 

on the mass and energy. When γ ∈ [−3, −2], one must control also the higher moment P and 

the L∞ norm of f . The additional restrictions in Theorems 1.3 and 1.5 in the case γ ∈ [−3, −2]
(see (1.6)) are inherited from [29]. This is related to the challenging issue of finding an a priori

L∞ bound for f when γ ≤ −2, which is open even in the spatially homogeneous case.

The requirement that the quantities (1.6) remain finite is the weakest known condition for 

global existence of solutions to the inhomogeneous Landau equation. We emphasize that we do 

not require an a priori positive lower bound on the mass density M(t, x) =
∫

R3 f (t, x, v) dv, as is 

required in [7,20,29,38]. While earlier regularity results for the Landau equation such as [20,29]

were based on adapting the corresponding theory for local equations, our proof of Theorem 1.3

makes essential use of nonlocality, since the spreading of mass from (t0, x0, v0) to (t1, x1, v1)

relies on velocities that are in general far from v0 or v1.

1.3. Related work

So far, global-in-time classical solutions to (1.1) have only been constructed for initial data 

close to an equilibrium state: see the work of Guo [26] in the x-periodic case and Mouhot–

Neumann [36] with x ∈ R3. For general initial data, Villani [42] showed the existence of renor-

malized solutions with defect measure. Existence or non-existence of classical global-in-time 

solutions for general initial data remains a challenging open problem. Regarding short-time ex-

istence, spatially periodic classical solutions were found by He–Yang [28] in the Coulomb case 

(γ = −3) by taking the grazing collisions limit in their estimates on the Boltzmann collision 

operator. They take initial data in a weighted H 7
x,v space, with mass density bounded away from 

zero. Compared to [28], the present paper makes a stronger decay assumption on fin in v, but 

improves on the required number of derivatives, covers both the cases γ = −3 and γ ∈ (−3, 0), 

and allows fin to have vacuum regions, which is more satisfactory on physical grounds.

There is a previous “mass pushing” result for the Boltzmann equation, due to Briant [6], 

which is obtained on T3 × R3 or 
 × R3, where 
 is a smooth, convex domain. It is shown 

that vacuum regions are immediately filled and the solution obeys a lower bound of the form 

f (t, x, v) � exp{−|v|K/C} for some C and some explicit K . However, the methods of [6] lever-

age the fact that the differential operator in the Boltzmann equation is an integral operator; this 

is advantageous for obtaining pointwise bounds, but is unavailable for the Landau equation. Fur-

ther, the lower bound of [6] depends on stronger norms of f and the constant K tends to infinity 

in the grazing collisions limit that recovers Landau from Boltzmann. As such, our proof is com-

pletely independent of that in [6]. We mention also the earlier work of [35,37], on which [6] is 

based. We note the relative simplicity of our proof when compared to that of [6].

Our regularity results make use of prior work from the last few years on weak solutions of 

(1.1) with M(t, x), E(t, x), and H(t, x) bounded above, and M(t, x) bounded below. In that 

context, Golse–Imbert–Mouhot–Vasseur [20] showed local Hölder continuity (see also Wang–

Zhang [44]), Cameron–Silvestre–Snelson [7] showed global Hölder continuity and propagation 

of Gaussian bounds (in the case γ ∈ (−2, 0)), and Henderson–Snelson [29] established C∞ reg-

ularity for γ < 0, with stronger assumptions on f in the case γ ≤ −2. At least for solutions in 

the class we consider, Theorem 1.3 allows us to improve this regularity criterion. Earlier smooth-

ing results for (1.1) such as [9,34] that make much stronger assumptions on f (infinitely many 

moments in v bounded in H 8
x,v) also include a condition about f having mass bounded below, 
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either explicitly or as part of the assumption that f is close to a Maxwellian equilibrium. The 

same is true of many smoothing results for the Boltzmann equation such as [2,3,10].

There has also been a great deal of work on existence and regularity for the spatially homo-

geneous Landau equation, which results from taking f independent of x in (1.1). We refer to 

[1,12,13,22,21,38,43,45] and the references therein.

1.4. Probabilistic approaches to kinetic equations

Early work related the homogeneous Boltzmann and Landau equation to a fully nonlin-

ear stochastic process which, through Malliavin calculus or Martingale theory, could recover 

weak solutions to the equations (see [40,19]). By relating these processes to certain Wasserstein 

distances, the weak function-solutions could be shown to be unique (see [41,17,18,16] and ref-

erences therein); i.e., the distance between two weak function-solutions is nonincreasing along 

the flow generated by the equation. The techniques have since been adapted to show higher reg-

ularity (with some a priori assumptions) for solutions to the homogeneous equations for the case 

of Maxwell molecules (see for instance [23,25,15,11]), though the techniques can also apply to 

moderately soft potentials [24]. These approaches are limited to the homogeneous (and largely 

measure-valued) setting because they relate the equations to a fully nonlinear stochastic process, 

which is then used to build the solutions. To the best of our knowledge, Theorem 1.3 is the 

first application of ideas in probability to the mass distribution for the inhomogeneous Landau 

equation. The crucial difference is that we know, from Theorem 1.1, that a unique solution f

already exists; and, moreover, that it is Hölder continuous. For the proof of Theorem 1.3, we 

only need to relate the linearized Landau equation to a much simpler process (see Lemma 4.2). 

Powerful pre-existing techniques are then applied to obtain a much shorter (and more precise) 

proof.

1.5. Proof ideas

The strategy of our proof of Theorem 1.1 is as follows. First, we divide f by a Gaussian with 

time-dependent decay. The equation (2.1) for the resulting function g is approximated in multi-

ple steps: we first solve a linearized version of the equation on a bounded domain with an extra 

diffusive term (Lemma 3.1). By deriving appropriate uniform estimates, we use a compactness 

argument to take the limit as the size of the domain increases and the added diffusion goes to 

zero to find a solution of the linearized Landau equation on the whole space (Lemma 3.2). Fi-

nally, we solve (2.1) by iteration, making use of our estimates for the linearized problem. This 

method is in some ways inspired by previous work on local well-posedness for the non-cutoff 

Boltzmann equation by the AMUXY group (Alexandre, Morimoto, Ukai, Xu and Yang), see 

[3–5]. Those papers use an approximation scheme based on cutting off the angular singularity 

in the Boltzmann collision kernel. Such an approximation is not available for the Landau equa-

tion because the Landau equation results from focusing on grazing collisions in the Boltzmann 

equation, i.e. taking the limit where the angular singularity essentially becomes a derivative in v. 

We point out that our proof covers all cases γ ∈ [−3, 0), which requires extra care, while [4,5]

make the restriction that γ > −3/2, and [3] replaces the factor |v − w|γ in the Boltzmann colli-

sion kernel with (1 + |v − w|2)γ /2, which also sidesteps the difficulties associated with very soft 

potentials.

Roughly speaking, mass spreading (Theorem 1.3) holds because nonzero initial data fin must 

have a “core” of positive mass near some point (x0, v0), which spreads out instantaneously in v
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because of the diffusive property of the equation, and some small amount of this mass is in turn 

spread out to any point x at any time t because of the pure advective term. By relating the value 

of f to the expectation of a random variable (Lemma 4.2), we show these properties by analyzing 

the associated stochastic process. Here it is important to understand the trajectories along which 

the equation propagates information. This allows us to roughly estimate how the process spreads 

mass from one point to another in R3 × R3. This mass-spreading leads almost immediately to 

Theorem 1.4, as mentioned above.

To prove Theorem 1.5, we need to apply the main theorem of [29], which states that weak 

solutions of (1.1) with Gaussian-decaying initial data are smooth for all t > 0 provided M(t, x), 

E(t, x), and H(t, x) are bounded above, and M(t, x) is bounded below. With Lemma 4.3, we can 

derive lower ellipticity constants for f directly from the lower bounds of Theorem 1.3, which 

allows us to side-step the conditions that M(t, x) is bounded below and H(t, x) is bounded 

above. Combining the estimates from [29] with the results in [7], we obtain a Gaussian bound on 

f at time T . Applying Theorem 1.1 with initial data f (T , ·, ·) provides the extension. Here it is 

crucial that the bounds obtained in Theorem 1.3 depend only on those quantities in (1.6).

1.6. Organization of the paper

In Section 2, we establish various estimates on the coefficients of the equation that will be 

needed in the proof of existence. In Section 3, we prove local-in-time existence for f (Theo-

rem 1.1), and in Section 4, we establish the mass-spreading property of the equation along with 

the sub-Gaussian bounds (Theorem 1.3). In Section 5, we apply Theorem 1.3 to show that our 

solution to (1.1) is C∞ (Theorem 1.4) and that the solution can be extended for as long as the 

quantities (1.6) remain bounded (Theorem 1.5).

2. Preliminaries

First, we introduce the following modified Cauchy problem: for ρ0, κ > 0, let Tρ0,κ =
ρ0/(2κ), μ(t, v) = e−(ρ0−κt)〈v〉2

and g(t, x, v) = μ(t, v)−1f (t, x, v). From (1.1), the equation 

for g is

∂tg + v · ∇xg + κ〈v〉2g = μ−1QL(μg,μg)

= μ−1tr
(

ā[μg](μD2
vg + gD2

vμ + ∇μ ⊗ ∇g + ∇g ⊗ ∇μ)
)

+ c̄[μg]g

= tr(A[g]D2
vg) + B[g] · ∇vg + C[g]g, (2.1)

with

Aij [g] = āij [μg], (2.2)

Bj [g] = 2āij [μg]∂vi
μ

μ
, (2.3)

C[g] = c̄[μg] + āij [μg]
∂2
vivj

μ

μ
, (2.4)
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where, in general, we sum over repeated indices. Explicitly,

∂vi
μ

μ
= −2(ρ0 − κt)vi,

∂2
vivj

μ

μ
= −2(ρ0 − κt)δij + 4(ρ0 − κt)2vivj .

(2.5)

The main purpose of this section is to derive the estimates on the coefficients A, B , and C

defined in (2.2)–(2.4), as well as ā and c̄ defined in (1.2)–(1.3), that will be needed in Section 3.

Lemma 2.1. Let γ ∈ [−3, 0), let p ∈ [2, ∞], let α and β be multi-indices, let g be a function 

on R6 such that ∂α
x g(x, ·) ∈ W

|β|,p
v (R3) for all x ∈ R3, and let μ(v) = e−λ|v|2 for some λ > 0.

(a) For any unit vector e ∈ S2,

|∂α
x ∂β

v (āij [μg]eiej )(x, v)| � ‖∂α
x g(x, ·)‖

W
|β|,p
v (R3)

〈v〉γ+2.

In addition, we have the following improved bounds in the v direction:

|∂α
x ∂β

v (āij [μg]vivj )(x, v)| � ‖∂α
x g(x, ·)‖

W
|β|,p
v (R3)

〈v〉γ+2,

|∂α
x ∂β

v (āij [μg]vj )(x, v)| � ‖∂α
x g(x, ·)‖

W
|β|,p
v (R3)

〈v〉γ+2.

(b) For p = ∞, one has

|∂α
x ∂β

v c̄[μg](x, v)| � ‖∂α
x g(x, ·)‖

W
|β|,∞
v (R3)

〈v〉γ .

(c) If p ≥ 2 and θ > 3 + pγ , one has

∫

R3

〈v〉−θ |∂α
x ∂β

v c̄[μg](x, v)|p dv � ‖∂α
x g(x, ·)‖p

W
|β|,p
v (R3)

.

The implied constants depend only on α, β , γ , λ, and, where appropriate, θ and p.

Proof. Note that for any α and β , one has ∂α
x ∂

β
v āij [μg] = āij [∂α

x ∂
β
v (μg)] and ∂α

x ∂
β
v c̄[μg] =

c̄[∂α
x ∂

β
v (μg)]. Also note that

|∂α
x ∂β

v (μg)|�
∑

|β ′|≤|β|
|√μ∂α

x ∂β ′
v g|. (2.6)

With p′ ∈ [1, 2] such that 1/p + 1/p′ = 1, we have from (1.2) and (2.6) that

|∂α
x ∂β

v āij [μg](v)| �
∑

|β ′|≤|β|

∫

R3

|w|γ+2|∂α
x ∂β ′

v g(v − w)|
√

μ(v − w)dw
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� ‖∂α
x g‖

W
|β|,p
v (R3)

⎛

⎜

⎝

∫

R3

μp′/2(v − w)|w|p′(γ+2) dw

⎞

⎟

⎠

1/p′

� ‖∂α
x g‖

W
|β|,p
v (R3)

〈v〉γ+2,

where we use that |w|p′(γ+2) is integrable near the origin since p′(γ + 2) > −3.

Next, we show that the quadratic form e · (∂α
x ∂

β
v āe) has improved upper bounds in the v

direction. First, suppose |α| + |β| = 0. Following the calculations of [7], we have for w = v −
z ∈ R3,

v ·
(

I − w

|w| ⊗ w

|w|

)

v |w|γ+2 = |v|2
(

1 −
(

(v − z) · e
|v − z|

)2
)

|v − z|γ+2

= |v|2
(

|v − z|2 − (|v| − z · e)2
)

|v − z|γ

= |v|2
(

|z|2 − (z · e)2
)

|v − z|γ = |v|2|z|2 sin2 ϕ|v − z|γ ,

where ϕ is the angle between v and z. Let R = |v|/2. If z ∈ BR(v), then | sinϕ| ≤ |v − z|/|v|, 
and

∫

BR(v)

|v|2|z|2 sin2 ϕ|v − z|γ μg(z)dz ≤
∫

BR(v)

|z|2|v − z|γ+2μg dz

� 〈v〉γ+2

⎛

⎜

⎝

∫

BR(v)

μp/2gp dz

⎞

⎟

⎠

1/p

� ‖g‖L
p
v (R3)〈v〉γ+2.

On the other hand, if z /∈ BR(v), i.e. |v − z| ≥ R = |v|/2, then |v − z|γ � |v|γ , and we have

∫

Rd\BR(v)

|v|2|z|2 sin2 ϕ|v − z|γ μg(z)dz � ‖g‖L
p
v (R3)〈v〉γ+2.

Still under the assumption that |α| + |β| = 0, we now show the improved bound on āijvi . Let 

{v/|v|, e2, e3} be an orthonormal basis for R3 and write

ā[μg]v = β1
v

|v| + β2e2 + β3e3.

The above bound on v · (āv) implies β1 = (v/|v|) · (ā[μg]v) � ‖g‖L
p
v (R3)〈v〉γ+1. Since āij [μg]

is positive-definite, we have

β2 = e2 · (ā[μg]v) ≤ 1

2
v · (ā[μg]v) + 1

2
e2 · (ā[μg]e2)� ‖g‖L

p
v (R3)〈v〉γ+2.

Similarly, β3 � ‖g‖L
p
v (R3)〈v〉γ+2. We conclude āijvi � ‖g‖L

p
v (R3)〈v〉γ+2.
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For |α| + |β| > 0, we write

∂α
x ∂β

v (ā[μg]v) =
∑

β ′+β ′′+β ′′′=β

Cβ ′,β ′′,β ′′′ ā[∂β ′
v μ∂β ′′

v ∂α
x g]∂β ′′′

v v. (2.7)

If |β ′′′| = 1, then letting i be the unique index such that β ′′′
i = 1, we see that

|ā[∂β ′
v μ∂β ′′

v ∂α
x g]∂β ′′′

v v| = |ā[∂β ′
v μ∂β ′′

v ∂α
x g]ei | � ‖∂α

x g‖
W

|β′′|,p
v

〈v〉γ+2 ≤ ‖∂α
x g‖

W
|β|,p
v

〈v〉γ+2,

(2.8)

where the second-to-last inequality follows exactly as above. If |β ′′′| = 0, then we write 

∂
β ′
v μ∂α

x ∂
β ′′
v g = √

μ(g+ − g−), where g+ and g− are both non-negative. Then

ā[∂β ′
v μ∂β ′′

v ∂α
x g]∂β ′′′

v v = ā[√μg+]v + ā[√μg−]v.

Since g+ and g− are both non-negative, we apply our work from the case |α| + |β| = 0 to see 

that

|ā[∂β ′
v μ∂β ′′

v ∂α
x g]∂β ′′′

v v| ≤ |ā[√μg+]v| + |ā[√μg−]v|
� ‖g+‖L

p
v (R3)〈v〉γ+2 + ‖g−‖L

p
v (R3)〈v〉γ+2. (2.9)

Since |∂β ′
v μ| � √

μ, it is clear that

‖g+‖p

L
p
v (R3)

+ ‖g−‖p

L
p
v (R3)

= ‖μ−1/2∂β ′
v μ∂α

x ∂β ′′
v g‖p

L
p
v (R3)

� ‖∂α
x g‖

W
|β′′|,p
v (R3)

≤ ‖∂α
x g‖

W
|β|,p
v (R3)

.

(2.10)

Combining (2.7), (2.8), (2.9), and (2.10), we obtain the desired estimate:

|∂α
x ∂β

v (ā[μg]v)| � ‖∂α
x g‖

W
|β|,p
v (R3)

〈v〉γ+2.

Proceeding in a similar manner and using our bound on ∂α
x ∂

β
v (ā[μg]v), we can show

|∂α
x ∂β

v (v · ā[μg]v)| � ‖∂α
x g‖

W
|β|,p
v (R3)

〈v〉γ+2.

This establishes (a).

For (b), if γ ∈ (−3, 0), (1.3) implies

|∂α
x ∂β

v c̄[μg](v)| �
∑

|β ′|≤|β|

∫

R3

|w|γ |∂α
x ∂β ′

v g(v − w)|√μ(v − w)dw

� ‖∂α
x g‖

W
|β|,∞
v (R3)

⎛

⎜

⎝

∫

R3

√
μ(v − w)|w|γ dw

⎞

⎟

⎠
� ‖∂α

x g‖
W

|β|,∞
v (R3)

〈v〉γ ,

since γ > −3. If γ = −3, then c̄[μg] = c3μg, and an even stronger bound is satisfied.
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To prove (c), in the case γ = −3, the desired estimate is an immediate consequence of the 

formula c̄[μg] = c3μg. Letting γ ∈ (−3, 0), we restrict to the case |α| + |β| = 0 for brevity; the 

remaining cases follow easily from (2.6). Using Hölder’s inequality,

|c̄[μg]|p �

∫

R3

g(v − w)p|w|γ μ(v − w)dw

⎛

⎜

⎝

∫

R3

μ(v − w)|w|γ dw

⎞

⎟

⎠

p/p′

�

∫

R3

〈v〉pγ/p′ |w|γ |g(v − w)|pμ(v − w)dw,

where p′ is the dual exponent to p. Note that p/p′ = p − 1. This implies that

∫

R3

〈v〉−θ |c̄[μg]|p dv �

∫

R3

∫

R3

〈v〉−θ+γ (p−1)|w|γ |g(v − w)|pμ(v − w)dw dv

�

∫

R3

∫

R3

〈w〉−θ+γ (p−1)|w|γ |g(v − w)|p dw dv � ‖g‖p

L
p
v

∫

R3

〈w〉−θ+γ (p−1)|w|γ dw,

by Fubini’s Theorem and the estimate ‖〈v〉rμ(v − w)‖L∞
v (R3) � 〈w〉r for any r ∈ R. The last 

integral is finite because, by assumption, −θ + γp < −3. �

Lemma 2.2. Let γ ∈ [−3, 0), μ = e−λ〈v〉2
for some λ > 0, and let g, α, and β be such that 

∂α
x g(x, ·) ∈ H

|β|
v for x ∈R3. Let A[g], B[g], and C[g] be defined by (2.2)–(2.4). Then we have

|∂α
x ∂β

v A[g](x, v)| � ‖∂α
x g(x, ·)‖

H
|β|
v

〈v〉γ+2,

|∂α
x ∂β

v B[g](x, v)| � ‖∂α
x g(x, ·)‖

H
|β|
v

〈v〉γ+2.

If ∂α
x g(x, ·) ∈ W

|β|,∞
v for x ∈R3, then

|∂α
x ∂β

v C[g](x, v)| � ‖∂α
x g(x, ·)‖

W
|β|,∞
v

〈v〉γ+2.

The implied constants depend only on α, β , γ , and λ.

Proof. The bounds on A[g] and B[g] follow immediately from Lemma 2.1(a) with p = 2, and 

the bound on C[g] follows from Lemma 2.1(a) and (b) with p = ∞. �

3. Local existence

In this section, we solve (2.1) on a time interval [0, T ]. To do this, we first consider a lineariza-

tion of (2.1) with added viscosity on a bounded domain. Let us introduce the following notation: 

for any ε > 0 and R > 3, define the mollifier ζε(x, v) = ε−6ζ(x/ε, v/ε) for some non-negative, 

C∞
c function ζ such that 

∫

ζ dx dv = 1. Next, let 
R = {(x, v) ∈ R6 : |x|2 + |v|2 < R2} be a 

ball in R6 centered at the origin. Finally, let χR be a smooth cutoff function on R6, supported in 
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R−1, equal to 1 in 
R−2, radially symmetric, monotone, and such that |Dn
x,vχR| ≤ 2n for any 

n ∈ N ∪ {0}.

Lemma 3.1. Let gin ∈ H k
ul and h ∈ L∞([0, T ], H k

ul) be given nonnegative functions with T > 0. 

For any ε > 0, let hε = ζε ∗ h. Then, for all R sufficiently large, there exists a unique solution 

G = Gh,R,ε to

∂tG = ε�x,vG + tr
(

A[hε]D2
vG

)

+ B[hε] · ∇vG − v · ∇xG +
(

C[hε] − κ〈v〉2
)

G (3.1)

on [0, T ] × 
R with initial data and boundary values

G(0, x, v) = χR(x, v) (ζε ∗ gin) (x, v) and G(t, y,w) = 0 for all (t, y,w) ∈ [0,∞) × ∂
R.

(3.2)

The solution G is nonnegative and G ∈ C∞([0, T ] × 
R).

Lemma 3.1 follows from standard parabolic theory. For existence and uniqueness, see [32, 

Theorem 5.6]. Higher regularity follows from [32, Theorem 4.28], and the nonnegativity of G is 

implied by the maximum principle [32, Corollary 2.5]. As such, we omit the proof.

Our next step is to solve the linearized problem (3.1) on the whole space and with ε = 0. We 

do this by looking at the solutions Gh,R,ε of (3.1) above and extracting a weak limit as R tends 

to ∞ and ε tends to zero. Recall that Tρ0,κ = ρ0/2κ .

Lemma 3.2. Let T ∈ (0, Tρ0,κ ], let h ∈ L∞([0, T ], H k
ul) and gin ∈ H k

ul be given nonnegative 

functions. Then there exists a solution G ∈ Y k
T to the linearized problem

∂tG + v · ∇xG + κ〈v〉2G = tr
(

A[h]D2
vG

)

+ B[h] · ∇vG + C[h]G (3.3)

with G(0, x, v) = gin(x, v). Moreover, G is nonnegative and

‖G‖2

Y k
T

≤ ‖gin‖2

H k
ul

exp
(

C1T
(

1 + ‖h‖�

L∞([0,T ],H k
ul)

))

(3.4)

for � = max{8, 2/|γ | + 1} and some C1 > 0 depending on k, γ , ρ0, and κ .

Proof. Before beginning, we set some notation and make some useful observations. Let ψ

be a fixed smooth cut-off function in the velocity variable; that is, ψ is radial, nonnegative, 

identically 1 for |v| ≤ 1, vanishes for |v| ≥ 11/10, and monotonic. For 0 < r < R, define 

ψr(v) = ψ(v/r). We then define

‖g‖
Ḣ

k,l
ul,r(
R)

=
∑

|α|+|β|=k

sup
a∈BR/10

∫


R

|φ(x − a)ψr(v)〈v〉l∂α
x ∂β

v g(x, v)|2 dx dv,

‖g‖Ẏ k
T ,r,R

= ‖g‖
L∞([0,T ],Ḣ k,0

ul,r (
R))
+ ‖g‖

L2([0,T ],Ḣ k,1
ul,r (
R))

, and ‖g‖Y k
T ,R

=
k

∑

m=0

‖g‖Ẏm
T,R/2m,R

.

(3.5)
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We note that the higher-derivative norms in ‖ ·‖Y k
T ,R

are more strongly localized. In particular, no-

tice that Y 0
T ,R coincides with L∞([0, T ], L2

ul(
R)) ∩L2([0, T ], H 0,1
ul (
R)) since ψR ≡ 1 on 
R . 

We also mention that the support of ψ and the admissible a in the supremum are chosen so that, 

when m ≥ 1, supp(φ(· − a)ψR/2m) avoids the boundary of 
R when R ≥ 40
√

3/7.

We write φ = φ(x − a), φ2 = φ((x − a)/2), and ψ = ψ(v). We frequently use the following 

facts:

(i) φ = φφ2;

(ii) |∇xφ| � φ2;

(iii) for any s, η > 0, 〈v〉2−s ≤ η〈v〉2 + Csη
− max{2/s−1,0} for Cs > 0 depending only on s;

(iv) replacing φ with φ2 in the definition (1.4) of ‖ · ‖H k
ul

defines an equivalent norm.

Also, recall that if ∂α
x ∂

β
v f ∈ Lp for some multi-indices α and β , then ‖∂α

x ∂
β
v (ζε ∗ f )‖Lp ≤

‖∂α
x ∂

β
v f ‖Lp . This implies A[hε], B[hε], and C[hε] satisfy the same bounds as A[h], B[h], and 

C[h] (cf. Lemma 2.2), with constants independent of ε.

Throughout the proof, we take N to be a fixed positive integer that will eventually be chosen 

large enough (independently of R or ε) that our inequalities close correctly. Also, we denote by 

C1 a running constant that is independent of R and ε (but may depend on N ). Finally, we denote 

by C̃ a running constant independent of R, ε, and N .

For given R and ε, let GR = Gh,R,ε be the solution to (3.1) with boundary conditions (3.2)

on 
R , guaranteed by Lemma 3.1. We will establish a bound on GR in Y k
T ,R (uniform in R and ε) 

that will then allow us to take a limit as R tends to ∞ and ε tends to zero.

For ease of notation, we define

X = X(t) := ‖h‖L∞([0,t],H k
ul)

, Ym,R = Ym,R(t) := ‖GR‖
L∞([0,t],Ḣm,0

ul,R/2m (
R))
,

and Zk,R = Zk,R(t) :=
(

k
∑

m=0

Y 2
m,R

)

1
2

.

(3.6)

We now begin the mechanics of the proof. Our goal is to prove that

d

dt
‖GR‖2

Ḣ
0,0
ul,R(
R)

+ κ‖GR‖2

Ḣ
0,1
ul,R(
R)

+ ε‖GR‖2

Ḣ
1,0
ul,R(
R)

≤ C1

(

1 + X�
)

Z2
0,R, (3.7)

and, by induction, that

d

dt
‖GR‖2

Ḣ
m,0
ul,R/2m (
R)

+ κ‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ ε‖GR‖2

Ḣ
m+1,0
ul,R/2m (
R)

≤ C1

(

1 + X�
)

Z2
m,R + G̃m,

(3.8)

for all 1 ≤ m ≤ k and all R sufficiently large (depending on the parameters and the data). Recall 

that C1 is a fixed constant that depends on k, ρ0, κ , γ , and N , but not on R or ε. Here G̃m is 

a time-integrable function such that, if R is sufficiently large in a way we make explicit in the 

sequel,
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T
∫

0

G̃m(t)dt ≤ ε.

Base case: Recall that, for m = 0, there is no longer any cut-off in v in the Ḣ -norms. We multiply 

(3.1) by φ2GR and integrate over 
R . Since GR = 0 on ∂
R , we can integrate by parts without 

boundary terms, yielding

1

2

d

dt
‖GR‖2

L2(
R)
+ κ

∫


R

φ2〈v〉2G2
R dx dv + ε

∫


R

φ2|∇GR|2 dx dv

≤
∫


R

φv · ∇xφG2
R dx dv −

∫


R

φ2∇vGR · A[h] · ∇vGR dx dv

−
∫


R

φ2GR (∇v · A[hε]) · ∇vGR dx dv − 1

2

∫


R

φ2G2
R∇v · B[hε]dx dv

+
∫


R

φ2C[hε]G2
R dx dv

=: I1 + I2 + I3 + I4 + I5.

Since h is nonnegative, so is hε , and therefore A[hε] is nonnegative definite. We may then ig-

nore I2, since it is nonpositive. The transport term is easily bounded using Young’s inequality:

|I1| ≤
κ

N

∫


R

φφ2〈v〉2G2
R dx dv + C1

∫


R

φφ2G
2
R dx dv ≤ κ

N
‖GR‖2

Ḣ
0,1
ul,R

+ C1Z
2
0,R.

For I3, we note that GR vanishes on the boundary of 
R , allowing us to integrate by parts without 

boundary terms. We then use Lemma 2.2 and Young’s inequality with η > 0 to obtain

I3 = −1

2

∫


R

φ2(∇v · A[hε]) · ∇v(G
2
R)dx dv �

1

2

∫


R

φ2|D2
vA[hε]|G2

R dx dv

�

∫


R

φ2‖hε‖H 2
v
〈v〉2+γ G2

R dx dv ≤ ηX‖φ〈v〉GR‖2
L2(
R)

+ η− max{2/δ−1,0}X‖φGR‖2
L2(
R)

.

Setting η = κN−1X−1 yields I3 ≤ κ
N

‖GR‖2

Ḣ
0,1
ul,R(
R)

+ C1X
�Z2

0,R . The remaining terms are 

bounded in a similar way. That is, using Lemma 2.2,

|I4| �
∫


R

φ2G2
R|∇vB[hε]|dx dv

�

∫


R

φ2‖hε‖H 1
v
〈v〉2+γ G2

R dx dv ≤ κ

N
‖GR‖2

Ḣ
0,1
ul,R(
R)

+ C1X
�Z2

0,R,
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and using Lemma 2.2 and the Sobolev embedding, i.e. H k(R6) ⊂ L∞(R6),

|I5| �
∫


R

φ2G2
R|C[hε]|dx dv �

∫


R

φ2‖hε‖L∞
v

〈v〉2+γ G2
R dx dv

≤ κ

N
‖GR‖2

Ḣ
0,1
ul,R(
R)

+ C1X
�Z2

0,R.

Summing over all α and β , taking a supremum in a, and choosing N large enough yields (3.7).

Induction step: Let α and β be multi-indices with |α| +|β| = m ≤ k. Let ψm = ψR/2m . Applying 

∂α
x ∂

β
v to (3.1), multiplying by φ2ψ2

m∂α
x ∂

β
v GR , and integrating over 
R yields

1

2

d

dt

∫


R

φ2ψ2
m|∂α

x ∂β
v GR|2 dx dv + κ

∫


R

φ2ψ2
m〈v〉2|∂α

x ∂β
v GR|2 dx dv

= J1 + J2 + J3 + J4 + J5 + J6,

(3.9)

where

J1 =
∫


R

φ2ψ2
m∂α

x ∂β
v tr

(

A[hε]D2
vGR

)

∂α
x ∂β

v GR dx dv,

J2 =
∫


R

φ2ψ2
m∂α

x ∂β
v (B[hε] · ∇vGR) ∂α

x ∂β
v GR dx dv,

J3 =
∫


R

φ2ψ2
m∂α

x ∂β
v (C[hε]GR)∂α

x ∂β
v GR dx dv,

J4 = −
∫


R

φ2ψ2
m

[

∂α
x ∂β

v , v · ∇x + κ〈v〉2
]

GR∂α
x ∂β

v GR dx dv =

= −
3

∑

j=1

∫


R

φ2ψ2
m

(

∂
α+ej
x ∂

β−ej
v + 2κ(vj∂

α
x ∂

β−ej
v + ∂α

x ∂
β−2ej
v )

)

GR∂α
x ∂β

v GR dx dv,

J5 = −
∫


R

φ2ψ2
mv · ∇x∂

α
x ∂β

v GR∂α
x ∂β

v GR dx dv, and

J6 = ε

∫


R

φ2ψ2
m�∂α

x ∂β
v GR∂α

x ∂β
v GR dx dv.

(3.10)

Here, ∂
α+e1
x means ∂

α1+1
x1

∂
α2
x2

∂
α3
x3

, etc., ∂ i
vj

GR = 0 if i < 0, and the [·, ·] in J4 is the commutator. 

Note that we have not yet integrated by parts in any variable. We proceed to bound each of the 

six terms above.
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Estimating J1: By the product rule we have

J1 =
∑

α′+α′′=α
β ′+β ′′=β

∫


R

φ2ψ2
mtr

(

∂α′
x ∂β ′

v (A[hε])D2
v∂

α′′
x ∂β ′′

v GR

)

∂α
x ∂β

v GR dx dv.

We must use different techniques depending on the distribution of derivatives.

J1 terms with |α′| + |β ′| = m ≥ 2: In this case, α′ = α and β ′ = β . Lemma 2.2 yields

∫


R

φ2ψ2
m|∂α

x ∂β
v A[hε]||D2

vGR||∂α
x ∂β

v GR|dx dv

�

∫


R

φ2ψ2
m〈v〉2+γ ‖∂α

x hε‖H
|β|
v

|∂α
x ∂β

v GR||D2
vGR|dx dv

�

∫


R

φ2‖∂α
x hε‖H

|β|
v

φ‖ψm〈v〉1+γ ∂α
x ∂β

v GR‖L2
v
φ‖ψm〈v〉D2

vGR‖L2
v

dx.

By Hölder’s inequality in x and the Sobolev embedding, i.e. H 2(R3) ⊂ L∞(R3), we have

∫


R

φ2‖∂α
x hε‖H

|β|
v

φ‖ψm〈v〉1+γ ∂α
x ∂β

v GR‖L2
v
φ‖ψm〈v〉D2

vGR‖L2
v

dx

≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‖φ2∂
α
x hε‖L2

xH
|β|
v

‖φψm〈v〉1+γ ∂α
x ∂

β
v GR‖L2‖φψm〈v〉D2

vGR‖L∞
x L2

v
if m ≥ 4

‖φ2∂
α
x hε‖L4

xH
|β|
v

‖φψm〈v〉1+γ ∂α
x ∂

β
v GR‖L2‖φψm〈v〉D2

vGR‖L4
xL2

v
if m = 3

‖φ2∂
α
x hε‖L∞

x H
|β|
v

‖φψm〈v〉1+γ ∂α
x ∂

β
v GR‖L2‖φψm〈v〉D2

vGR‖L2 if m = 2

≤ X‖φψm〈v〉1+γ ∂α
x ∂β

v GR‖L2‖GR‖
Ḣ

m,1
ul,R/2m (
R)

.

Therefore,

∫


R

φ2ψ2
m|∂α

x ∂β
v A[hε]||D2

vGR||∂α
x ∂β

v GR|dx dv

≤ ηX‖φψm〈v〉∂α
x ∂β

v GR‖L2‖GR‖
Ḣ

m,1
ul,R/2m (
R)

+ Cη
− max{ 1

|γ | −1,0}
X‖φψm∂α

x ∂β
v GR‖L2‖GR‖

Ḣ
m,1
ul,R/2m (
R)

≤ 2ηX‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ Cη−2 max{1/|γ |−1,0}−1X‖GR‖2

Ḣ
m,0
ul,R/2m (
R)

.

Setting η = κN−1X−1 then gives
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∫


R

φ|∂α
x ∂β

v A[hε]||D2
vGR||∂α

x ∂β
v GR|dx dv ≤ 2κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1X
max{2/|γ |,2}Z2

m,R

≤ 2κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R.

(3.11)

The remaining case (|α′| + |β ′| = m = 1) is handled later, as it relies on a different approach.

J1 terms with |α′| + |β ′| = m − 1 ≥ 2: The analysis is similar to the previous case. We use 

Lemma 2.2 to obtain

∫


R

φ2ψ2
m|∂α′

x ∂β ′
v A[hε]||D2

v∂
α′′
x ∂β ′′

v GR||∂α
x ∂β

v GR|dx dv

≤
∫


R

φ2ψ2
m〈v〉2+γ ‖∂α′

x hε‖
H

|β′|
v

|D2
v∂

α′′
x ∂β ′′

v GR||∂α
x ∂β

v GR|dx dv

�

∫


R

φ2‖∂α′
x hε‖

H
|β′|
v

φ‖ψm〈v〉D2
v∂

α′′
x ∂β ′′

v GR‖L2
v
φ‖ψm〈v〉1+γ ∂α

x ∂β
v GR‖L2

v
dx.

By Hölder’s inequality in x and Sobolev embedding, we have

∫


R

φ2‖∂α′
x hε‖

H
|β′|
v

φ‖ψm〈v〉D2
v∂

α′′
x ∂β ′′

v GR‖L2
v
φ‖ψm〈v〉1+γ ∂α

x ∂β
v GR‖L2

v
dx

≤

⎧

⎪

⎨

⎪

⎩

‖φ2∂
α′
x hε‖

L4
xH

|β′|
v

‖φψm〈v〉D2
v∂

α′′
x ∂

β ′′
v GR‖L4

xL2
v
‖φψm〈v〉1+γ ∂α

x ∂
β
v GR‖L2 if m ≥ 4

‖φ2∂
α′
x hε‖

L∞
x H

|β′|
v

‖φψm〈v〉D2
v∂

α′′
x ∂

β ′′
v GR‖L2‖φψm〈v〉1+γ ∂α

x ∂
β
v GR‖L2 if m = 3

≤ X‖φψm〈v〉1+γ ∂α
x ∂β

v GR‖L2‖GR‖
Ḣ

m,1
ul,R/2m (
R)

≤ 2κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R,

(3.12)

where the last inequality was obtained in the same way as in (3.11). The remaining cases (|α′| +
|β ′| = m − 1 = 1 and |α′| + |β ′| = m − 1 = 0) are handled later, as they rely on a different 

approach.

J1 terms with 2 ≤ |α′| + |β ′| ≤ m − 2: This is a generic “middle case” where each factor in the 

integrand has a mild number of derivatives. Here we use Lemma 2.2 to write
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∫


R

φ2ψ2
m|∂α′

x ∂β ′
v A[hε]||D2

v∂
α′′
x ∂β ′′

v GR||∂α
x ∂β

v GR|dx dv

�

∫


R

φ2〈v〉γ+2‖∂α′
x hε‖

H
|β′|
v

φψm|D2
v∂

α′′
x ∂vβ

′′GR|φψm|∂α
x ∂β

v GR|dx dv

≤ ‖φ2∂
α′
x hε‖

L∞
x H

|β′|
v

‖φψm〈v〉1+γ ∂α
x ∂β

v GR‖L2‖GR‖
Ḣ

m,1
ul,R/2m (
R)

≤ 2κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R.

(3.13)

The last lines follow by the Sobolev embedding and the same analysis as in (3.11) and (3.12).

J1 terms with |α′| + |β ′| = 1: This also includes the cases where |α′| + |β ′| = m = 1 and |α′| +
|β ′| = m − 1 = 1. Here we use integration by parts to write

∫


R

φ2ψ2
mtr

(

∂α′
x ∂β ′

v A[hε]D2
v∂

α′′
x ∂β ′′

v GR

)

∂α
x ∂β

v GR dx dv

= −
∫


R

φ2ψ2
m∇v∂

α′′
x ∂β ′′

v GR · ∂α′
x ∂β ′

v A[hε] · ∇v∂
α
x ∂β

v GR dx dv

−
∫


R

φ2ψ2
m(∇v · ∂α′

x ∂β ′
v A[hε]) · ∇v∂

α′′
x ∂β ′′

v GR∂α
x ∂β

v GR dx dv

− 2

∫


R

φ2ψm∇vψm · ∂α′
x ∂β ′

v A[hε] · ∇v∂
α′′
x ∂β ′′

v GR∂α
x ∂β

v GR dx dv =: J1,1 + J1,2 + J1,3.

The term J1,2 is handled in the same way as (3.11)–(3.13). For J1,3, by Lemma 2.2, the fact that 

〈v〉 ≤ 2R on 
R , and the fact that |∇vψm| � R−1ψm−1, we have

J1,3 �

∫


R

φ2‖∂α′
x hε‖

H
|β′|
v

〈v〉2+γ
(

ψ2
m + |∇vψm|2

)

φ2|∇v∂
α′′
x ∂β ′′

v GR||∂α
x ∂β

v GR|dx dv

� ‖φ2∂
α′
x hε‖

L∞
x H

|β′|
v

‖φψm〈v〉1+γ ∇v∂
α′′
x ∂β ′′

v GR‖L2‖φψm〈v〉∂α
x ∂β

v GR‖L2

+ Rγ ‖φ2∂
α′
x hε‖

L∞
x H

|β′|
v

‖φψm−1∇v∂
α′′
x ∂β ′′

v GR‖L2‖φψm−1∂
α
x ∂β

v GR‖L2

≤ 2κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R + Rγ X‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
.

The bound for J1,1 is a combination of the two used above. Since |α′′| + |β ′′| = m − 1, we have 

that ∂α
x ∂

β
v GR = ∂z(∂

α′′
x ∂

β ′′
v GR), with ∂z a single derivative in one coordinate (either x or v). Let 

M = (mij ) be a symmetric matrix and let H be a vector field. Then, we have the following 

identity:
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∫

R6

H · M · ∂zH dx dv =
∑

i,j

∫

R6

Himij∂zHj dx dv

= −
∑

i,j

∫

R6

∂zHimijHj dx dv −
∑

i,j

∫

R6

Hi∂zmijHj dx dv = −1

2

∫

R6

H · ∂zM · H dx dv.

Applying this identity to J1,1, we see that

J1,1 ≤ 1

2

∫


R

φ2ψ2
m|∂z∂

α′
x ∂β ′

v A[hε]||∇v∂
α′′
x ∂β ′′

v GR|2 dx dv

+
∫


R

|∂z(φ
2ψ2

m)||∂α′
x ∂β ′

v A[hε]||∇v∂
α′′
x ∂β ′′

v GR|2 dx dv.

(3.14)

The first term on the right-hand-side of (3.14) is bounded in the same way as J1,2 (see 

(3.11)–(3.13)). The second term changes slightly based on the nature of ∂z. If ∂z is a deriva-

tive in v, then the second term is bounded in the same way as J1,3. If ∂z is a derivative in x, 

then

∫


R

|∂z(φ
2ψ2

m)||∂α′
x ∂β ′

v A[hε]||∇v∂
α′′
x ∂β ′′

v GR|2 dx dv

�

∫


R

φ2φψ2
m|∂α′

x ∂β ′
v A[hε]||∇v∂

α′′
x ∂β ′′

v GR|2 dx dv

� X‖φ2ψm〈v〉1+ γ
2 ∇v∂

α′′
x ∂β ′′

v GR‖2
L2 �

κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R,

using Young’s inequality as before. Combining the different estimates above, we see that

∫


R

φ2ψ2
mtr

(

(∂α′
x ∂β ′

v A[hε])D2
v∂

α′′
x ∂β ′′

v GR

)

∂α
x ∂β

v GR dx dv

≤ C̃
κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R + C1R

γ X‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
.

(3.15)

J1 terms with |α′| = |β ′| = 0: This also includes the case where |α′| + |β ′| = m − 1 = 0. Inte-

grating by parts yields

∫


R

φ2ψ2
mtr

(

A[hε]D2
v∂

α
x ∂β

v GR

)

∂α
x ∂β

v GR dx dv

= −
∫


R

φ2ψ2
m∇v∂

α
x ∂β

v GR · A[hε] · ∇v∂
α
x ∂β

v GR dx dv
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−
∫


R

φ2ψ2
m(∇v · A[hε]) · ∇v∂

α
x ∂β

v GR∂α
x ∂β

v GR dx dv

− 2

∫


R

φ2ψm∇vψm · A[hε] · ∇v∂
α
x ∂β

v GR∂α
x ∂β

v GR dx dv.

Crucially, the first term is nonpositive, so we may ignore it. For the rest, we integrate by parts 

once more and use Lemma 2.2 and Young’s inequality to obtain

∫


R

φ2ψ2
mtr

(

A[hε]D2
v∂

α
x ∂β

v GR

)

∂α
x ∂β

v GR dx dv

�

∫


R

φ2|∂α
x ∂β

v GR|2
(

ψ2
m|D2

vA[hε] + ψm|∇vψm||∇vA[hε]|

+ (|∇vψm|2 + ψm|D2
vψm|)|A[hε]|

)

dx dv

�

∫


R

φ2|∂α
x ∂β

v GR|2〈v〉2+γ φ2‖hε‖L∞
x H 2

v

(

ψ2
m + R−2ψ2

m−1

)

dx dv

≤ 2κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R + C1R

γ ‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
,

(3.16)

analogously to the above estimate for J1,3.

Combining (3.11)–(3.13), (3.15), and (3.16), we see that

J1 ≤ C̃
κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R + C1R

γ X‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
. (3.17)

Estimating J2: Next we consider the integral term J2, which can be written as

J2 =
∑

α′+α′′=α
β ′+β ′′=β

Cα,β,α′,β ′

∫


R

φ2ψ2
m∂α′

x ∂β ′
v B[hε] · ∇v∂

α′′
x ∂β ′′

v GR∂α
x ∂β

v GR dx dv,

where Cα,β,α′,β ′ is a positive constant depending only on α, β , α′, and β ′.

J2 terms with 2 ≤ |α′| + |β ′| ≤ m: We use the estimates on B[hε] in Lemma 2.2, Hölder’s 

inequality, and the Sobolev embedding to obtain

∫


R

φ2ψ2
m∂α′

x ∂β ′
v B[hε] · ∇v∂

α′′
x ∂β ′′

v GR∂α
x ∂β

v GR dx dv

�

∫


R

φ2〈v〉2+γ ‖∂α′
x hε‖

H
|β′|
v

φψm|∇v∂
α′′
x ∂β ′′

v GR|φψm|∂α
x ∂β

v GR|dx dv
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≤
∫


R

φ2‖∂α′
x hε‖

H
|β′|
v

φ‖ψm〈v〉1+γ ∇v∂
α′′
x ∂β ′′

v GR‖L2
v
φ‖ψm〈v〉∂α

x ∂β
v GR‖L2

v
dx

≤

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

‖φ2∂
α′
x hε‖

L∞
x H

|β′ |
v

‖φψm〈v〉1+γ ∇v∂
α′′
x ∂

β ′′
v GR‖L2‖φψm〈v〉∂α

x ∂
β
v GR‖L2 ,

|α′| + |β ′| ≤ m − 2

‖φ2∂
α′
x hε‖

L4
xH

|β′ |
v

‖φψm〈v〉1+γ ∇v∂
α′′
x ∂

β ′′
v GR‖L4

xL2
v
‖φψm〈v〉∂α

x ∂
β
v GR‖L2 ,

|α′| + |β ′| = m − 1

‖φ2∂
α
x hε‖L2

xH
|β|
v

‖φψm〈v〉1+γ ∇vGR‖L∞
x L2

v
‖φψm〈v〉∂α

x ∂
β
v GR‖L2, |α′| + |β ′| = m ≥ 3

‖φ2∂
α
x hε‖L∞

x H
|β|
v

‖φψm〈v〉1+γ ∇vGR‖L2‖φψm〈v〉∂α
x ∂

β
v GR‖L2, |α′| + |β ′| = m = 2

≤ 2κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R, (3.18)

through identical analysis as for J1. We emphasize that for each of the cases above, |α′| +
|β ′| ≥ 2.

J2 terms with |α′| + |β ′| = 1: Here there are m derivatives on each of the GR factors in the 

integrands. We again use Lemma 2.2, Hölder’s inequality, and the Sobolev embedding to obtain

∫


R

φ2ψ2
m∂α′

x ∂β ′
v B[hε] · ∇v∂

α′′
x ∂β ′′

v GR∂α
x ∂β

v GR dx dv

�

∫


R

φ2‖∂α′
x hε‖

H
|β′|
v

φ‖ψm〈v〉1+γ ∇v∂
α′′
x ∂β ′′

v GR‖L2
v
φ‖ψm〈v〉∂α

x ∂β
v GR‖L2

v
dx

≤ ‖φ2∂
α′
x hε‖

L∞
x H

|β′|
v

‖φψm〈v〉1+γ ∇v∂
α′′
x ∂β ′′

v GR‖L2‖φψm〈v〉∂α
x ∂β

v GR‖L2

≤ 2κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X)�Z2
m,R,

(3.19)

through identical analysis as above.

J2 term with |α′| + |β ′| = 0: We integrate by parts to write

∫


R

φ2ψ2
mB[hε] · ∇v∂

α
x ∂β

v GR∂α
x ∂β

v GR dx dv

= −1

2

∫


R

φ2ψ2
m∇v · B[hε]|∂α

x ∂β
v GR|2 dx dv −

∫


R

φ2ψm∇vψm · B[hε]|∂α
x ∂β

v GR|2 dx dv

=: J2,1 + J2,2.

By Lemma 2.2,

J2,1 �

∫


R

φ2ψ2
m‖hε‖H 1

v
〈v〉2+γ |∂α

x ∂β
v GR|2 dx dv ≤ κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1X
�Z2

m,R. (3.20)
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The other term is bounded in the same way as J1,3. Namely,

J2,2 �

∫


R

φ2‖hε‖L2
v
〈v〉2+γ

(

ψ2
m + |∇vψm|2

)

|∂α
x ∂β

v GR|2 dx dv

≤ 2κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R + C1R

γ X‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
.

(3.21)

Combining (3.18), (3.19), (3.20), and (3.21), we see that

J2 ≤ C̃
κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R + C1R

γ X‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
. (3.22)

Estimating J3: We have

J3 =
∑

α′+α′′=α
β ′+β ′′=β

∫


R

φ2ψ2
m∂α′

x ∂β ′
v C[hε]∂α′′

x ∂β ′′
v GR∂α

x ∂β
v GR dx dv.

Here, the case-by-case analysis is simpler because there is no longer any extra gradient in v. 

Recall that C[hε] = c̄[μhε] + āij [μhε]μ−1∂ijμ. Then, using the expression (2.5) for ∂ijμ/μ, 

we write

∫


R

φ2ψ2
m∂α′

x ∂β ′
v C[hε]∂α′′

x ∂β ′′
v GR∂α

x ∂β
v GR dx dv

�

∫


R

φ2ψ2
m|∂α′

x ∂β ′
v c[μhε]||∂α′′

x ∂β ′′
v GR||∂α

x ∂β
v GR|dx dv

+
∫


R

φ2ψ2
m|∂α′

x ∂β ′
v (v · a[μhε] · v) ||∂α′′

x ∂β ′′
v GR||∂α

x ∂β
v GR|dx dv =: J3,1 + J3,2.

J3,1 term with |α′| + |β ′| ≥ 1: For the first term, in preparation to apply Lemma 2.1(c) with 

θ = 7/2, we notice that

J3,1 ≤
∫


R

φ2

⎛

⎜

⎝

∫

R3

〈v〉− 7
2 |∂α′

x ∂β ′
v c̄[μhε]|2 dv

⎞

⎟

⎠

1
2

φ‖ψm〈v〉 7
8 GR‖L∞

v
φ‖ψm〈v〉 7

8 ∂α
x ∂β

v GR‖L2
v

dx

if |α′| + |β ′| = m ≥ 2,

J3,1 ≤
∫


R

φ2

⎛

⎜

⎝

∫

R3

〈v〉− 7
2 |∂α′

x ∂β ′
v c̄[μhε]|3 dv

⎞

⎟

⎠

1
3

φ‖ψm〈v〉 7
12 GR‖

W
1,6
v

φ‖ψm〈v〉 7
12 ∂α

x ∂β
v GR‖L2

v
dx

if |α′| + |β ′| = m − 1 ≥ 1,
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J3,1 ≤
∫


R

φ2

⎛

⎜

⎝

∫

R3

〈v〉− 7
2 |∂α′

x ∂β ′
v c̄[μhε]|4 dv

⎞

⎟

⎠

1
4

φ‖ψm〈v〉 7
16 GR‖

W
m−2,4
v

φ‖ψm〈v〉 7
16 ∂α

x ∂β
v GR‖L2

v
dx

if 2 ≤ |α′| + |β ′| ≤ m − 2,

J3,1 ≤
∫


R

φ2

⎛

⎜

⎝

∫

R3

〈v〉− 7
2 |∂α′

x ∂β ′
v c̄[μhε]|6 dv

⎞

⎟

⎠

1
6

φ‖ψm〈v〉 7
24 GR‖

W
m−1,3
v

φ‖ψm〈v〉 7
24 ∂α

x ∂β
v GR‖L2

v
dx

if |α′| + |β ′| = 1, any m.

Therefore,

J3,1 �

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

‖φ2hε‖Hm‖φψm〈v〉 7
8 GR‖L∞‖φψm〈v〉 7

8 GR‖Hm if |α′| + |β ′| = m ≥ 2,

‖φ2hε‖Wm−1,3‖φψm〈v〉 7
12 GR‖W 1,6‖φψm〈v〉 7

12 GR‖Hm if |α′| + |β ′| = m − 1 ≥ 1,

‖φ2hε‖Wm−2,4‖φψm〈v〉 7
16 GR‖Wm−2,4‖φψm〈v〉 7

16 GR‖Hm if 2 ≤ |α′| + |β ′| ≤ m − 2,

‖φ2hε‖W 1,6‖φψm〈v〉 7
24 GR‖Wm−1,3‖φψm〈v〉 7

24 GR‖Hm if |α′| + |β ′| = 1, any m.

By (weighted) Sobolev embedding and Young’s inequality with η > 0, we have in all cases

J3,1 � X

(

η‖GR‖
Ḣ

m,1
ul,R/2m (
R)

+ C1η
−7Zm,R

)2

≤ 2κ

N
‖GR‖2

H
m,1
ul,R/2m

+ C1(1 + X�)Z2
m,R,

(3.23)

where we have chosen η = κ
1
2 N− 1

2 X− 1
2 .

J3,1 term with |α′| + |β ′| = 0: From Lemma 2.1(b) with p = ∞ and the Sobolev embedding 

(H 4(R6) ⊂ L∞(R6)), we see that

J3,1 � ‖φ2hε‖L∞

∫


R

φ2ψ2
m〈v〉γ |∂α

x ∂β
v GR|2 dx dv ≤ (1 + X�)Z2

m,r (3.24)

J3,2 term: For the last term, Lemma 2.1(a) with p = 2 implies

J3,2 � ‖φ2hε‖Hm

∫


R

φ2ψ2
m|〈v〉∂α

x ∂β
v GR||〈v〉1+γ ∂α

x ∂β
v GR|dx dv

≤ 2κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R.

(3.25)

Combining (3.23)–(3.25), we see that

J3 ≤ C̃
κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R + C1R

γ X‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
. (3.26)
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Estimating J4 and J5: All derivatives appearing in J4 are of order at most m. By Cauchy–

Schwartz,

J4 �

∫


R

φ2ψ2
m〈v〉|Dm

x,vGR||∂α
x ∂β

v GR|dx dv ≤ κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1Z
2
m,R. (3.27)

Likewise, since ∇xφ � φ2, we integrate by parts in J5 to obtain

J5 =
∫


R

ψ2
mφ∇xφ · v|∂α

x ∂β
v GR|2 dx dv �

∫


R

φφ2ψ
2
m〈v〉|∂α

x ∂β
v GR|2 dx dv

≤ κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1Z
2
m,R.

(3.28)

Estimating J6: For the final quantity on the right-hand side of (3.9), we integrate by parts to write

J6 = −ε

∫


R

φ2ψ2
m|∇∂α

x ∂β
v GR|2 dx dv − ε

∫


R

∇
(

φ2ψ2
m

)

· ∇∂α
x ∂β

v GR∂α
x ∂β

v GR dx dv.

The first term is negative. We will need it to close the estimates. We integrate the second term by 

parts once more (note that supp(φψm) ⊂ 
R for m ≥ 1), yielding

− ε

∫


R

∇
(

φ2ψ2
m

)

· ∇∂α
x ∂β

v GR∂α
x ∂β

v GR dx dv = ε

2

∫


R

�
(

φ2ψ2
m

)

|∂α
x ∂β

v GR|2 dx dv

� ε

∫


R

(

φ2ψ2
m + ψ2

m(|∇xφ|2 + φ|D2
xφ|) + φ2(|∇vψm|2 + ψm|D2

vψm|)
)

|∂α
x ∂β

v GR|2 dx dv

≤ C1εZ
2
m,R + C1

ε

R2
‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
.

For the last inequality, we used analysis similar to J1,3 above. We also used that |∇vψm|, 
|D2

vψm| � R−2ψm−1. Therefore,

J6 + ε

∫


R

φ2ψ2
m|∇∂α

x ∂β
v GR|2 dx dv ≤ C1εZ

2
m,R + C1

ε

R2
‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
. (3.29)

Proof of (3.8): Combining (3.17), (3.22), (3.26), (3.27), (3.28), and (3.29), then summing over 

all α and β with |α| + |β| = m yields

1

2

d

dt
‖GR‖2

Ḣ
m,0
ul,R/2m (
R)

+ κ‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ ε‖GR‖2

Ḣ
m+1,0
ul,R/2m (
R)

≤ C̃
κ

N
‖GR‖2

Ḣ
m,1
ul,R/2m (
R)

+ C1(1 + X�)Z2
m,R + C1R

γ X‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
.

(3.30)
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If we now choose N larger than 2C̃/κ , the first term on the right-hand side is absorbed on the 

left. We then define

G̃m = C1R
γ X‖GR‖2

Ḣ
m,0

ul,R/2m−1 (
R)
.

By induction, (3.8) holds for m − 1. Integrating from 0 to t , we have

‖GR(t)‖2

Ḣ
m−1,0

ul,R/2m−1 (
R)
+ κ

t
∫

0

‖GR(s)‖2

Ḣ
m−1,1

ul,R/2m−1 (
R)
ds + ε

t
∫

0

‖GR(s)‖2

Ḣ
m,0

ul,R/2m−1 (
R)
ds

≤ ‖gin‖2

H k
ul

+ C1

t
∫

0

(

1 + X(s)�
)

Z2
m−1,R(s)ds + ε.

Applying Grönwall’s inequality, we see that for all t ∈ [0, T ]

‖GR‖2

Ẏm−1

t,R/2m−1,R

+ ε

t
∫

0

‖GR(s)‖2

Ḣ
m,0

ul,R/2m−1 (
R)
ds

≤
(

‖gin‖2

H k
ul

+ ε
)

exp

⎛

⎝C1

t
∫

0

(

1 + X(s)�
)

ds

⎞

⎠ .

See (3.5). In particular, the bound on the second term implies that

T
∫

0

G̃m(s)ds ≤ ε if R ≥ 2

(

C1X

ε2

(

‖gin‖2

H k
ul

+ ε
)

exp
(

C1T (1 + X�)
)

)− 1
γ

. (3.31)

Fixing R as above, and using the bound from (3.31) in (3.30) yields (3.8).

Conclusion of Proof: Summing (3.7) and (3.8) for all m up to k and using Grönwall’s inequality 

as above gives, for all t ∈ [0, Tρ0,κ ],

‖GR‖2

Y k
t,R

≤
(

‖gin‖2

H k
ul

+ ε
)

exp
(

C1T (1 + X(t)�)
)

. (3.32)

Now consider the sequence of functions {GK} (for K ∈ N) of solutions to the problem (3.1)

on 
K with boundary conditions (3.2) and with ε = (lnK)−1. Note that this choice of ε still 

allows condition (3.31) to hold true, for sufficiently large K depending on the parameters of the 

problem.

The bound in (3.32) holds for each such GK . If L > 0 is any large number, we conclude that 

‖χLGK‖Y k
T

is bounded uniformly in K . Recall that χL is a smooth cutoff function in x and v, 

supported in the ball of radius L − 1, and equal to 1 in the ball of radius L − 2. Therefore, a 

subsequence converges weakly to some limit in ḠL ∈ Y k
T supported on the ball of radius L − 1. 

Note that ḠL and ḠL′ are identical on the ball of radius min(L,L′) and for all t ∈ [0, T ].
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A diagonalization argument allows us to take L to ∞ and extract a subsequence (which we 

also denote as {GK}) and a limit Ḡ ∈ Y k
T such that

GK → Ḡ in Y k
T on compact sets.

Lemma 2.2 implies that A[hε] → A[h] in the space L∞([0, T ], H k
ul) as ε = (lnK)−1 → 0, and 

similarly for B[hε] and C[hε]. Since k ≥ 4, the function Ḡ has sufficient regularity that it is a 

solution to the linearized problem (3.3) in W
1,∞
t H 2

x,v on all of R6. By the maximum principle 

for (3.1), each GK is nonnegative, and therefore so is Ḡ. Furthermore, Ḡ inherits the bound (3.4)

from (3.32). �

We are now ready to solve (2.1) by constructing a sequence of approximate solutions in the 

space Y k
T given by (1.5).

Theorem 3.3. Assume that gin ∈ H k
ul, and that

‖gin‖H k
ul

≤ M0.

Then, for some T ∈ (0, Tρ0,κ ] depending on M0, there exists a unique nonnegative g ∈ Y k
T solving 

(2.1) with g(0, x, v) = gin(x, v).

We emphasize that, although T depends on M0, M0 can be arbitrarily large.

Proof. Define g0(t, x, v) = gin(x, v) and, for n ≥ 1, define the sequence {gn} recursively as the 

solution of

∂tg
n + v · ∇xg

n + κ〈v〉gn = tr
(

A[gn−1]D2
vg

n
)

+ B[gn−1] · ∇vg
n + C[gn−1]gn, (3.33)

with gn(0, x, v) = gin(x, v). This is precisely the linearized problem (3.3). Then, by Lemma 3.2, 

for any T ∈ (0, Tρ0,κ ], each gn exists, is nonnegative, belongs to Y k
T , and satisfies

‖gn‖2

Y k
T

≤ ‖gin‖2

H k
ul

exp
(

C1T
(

1 + ‖gn−1‖�

L∞([0,T ],H k
ul)

))

, (3.34)

for some � > 1 and C1 > 0 that are independent of n.

Assume by induction that, for n ≥ 1,

‖gn−1‖L∞([0,T ],H k
ul)

≤ 2M0, (3.35)

for some T ∈ (0, Tρ0,κ ]. This hypothesis holds for n = 1 by our assumption on gin. Then (3.34)

becomes

‖gn‖2

Y k
T

≤ M2
0 exp(C1T (1 + (2M0)

�).

If we take
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T ≤ min

{

2 ln 2

C1(1 + (2M0)�)
, Tρ0,κ

}

,

then ‖gn‖Y k
T

≤ 2M0, and in particular ‖gn‖L∞([0,T ],H k
ul)

≤ 2M0. Note that T is independent of n. 

We conclude (3.35) holds for all n ≥ 1.

Next, define wn = gn − gn−1. Equation (3.33) implies, for n ≥ 2,

∂tw
n + v · ∇xw

n + κ〈v〉2wn = tr
(

A[gn−1]D2
vw

n
)

+ B[gn−1] · ∇vw
n + C[gn−1]wn

+ tr
(

A[wn−1]D2
vg

n−1
)

+ B[wn−1] · ∇vg
n−1 + C[wn−1]gn−1,

and wn(0, x, v) = 0. For all multi-indices with |α| + |β| ≤ k, we differentiate the equation for 

wn by ∂α
x ∂

β
v , multiply by φ2∂α

x ∂
β
v wn, and integrate over R6. Note that the estimates developed in 

the proof of Lemma 3.2 were independent of R and ε. Repeating the calculations (now without 

any cutoff in v or mollification of gn−1 or wn−1) yields, by Lemmas 2.1 and 2.2 and the fact that 

‖gn‖Y k
T

≤ 2M0 for all n ≥ 0,

‖wn‖2

Y k
T

≤ C1

T
∫

0

(

1 + ‖gn−1(s)‖�

H k
ul

)

‖wn(s)‖2

H k
ul

ds

+ C1

T
∫

0

‖wn−1(s)‖�

H k
ul

(

‖gn−1(s)‖2

H k
ul

+ ‖wn(s)‖2

H k
ul

)

ds

≤ C1T (1 + (2M0)
�)‖wn‖2

Y k
T

+ C1T
(

(2M0)
� + (4M0)

�
)

(4M0)
(�−2)+‖wn−1‖2

Y k
T

,

since ‖wn‖H k
ul

≤ 4M0 and similarly for wn−1. If necessary, we choose T smaller, so that

C1T
(

1 + (2M0)
�
)

≤ 1

2
and C1T

(

(2M0)
� + (4M0)

�
)

(4M0)
(�−2)+ ≤ 1

4
.

Now we have

‖gn − gn−1‖Y k
T

≤ 1

2
‖gn−1 − gn−2‖Y k

T
. (3.36)

We conclude gn is a convergent sequence and the limit g ∈ Y k
T is a classical solution of (2.1).

The uniqueness of g follows along the same lines. If g1 and g2 are two solutions of (2.1) in 

Y k
T with the same initial data, then w := g1 − g2 satisfies

∂tw + v · ∇xw + κ〈v〉2w = tr
(

A[g2]D2
vw

)

+ B[g2] · ∇vw + C[g2]w

+ tr
(

A[w]D2
vg2

)

+ B[w] · ∇vg2 + C[w]g2,

and w(0, x, v) = 0. By the same estimate as above, and Grönwall’s inequality, we conclude that 

‖w‖Y k
T

= 0. �

Theorem 3.3 implies our first main result, Theorem 1.1, with f = e−(ρ0−κt)〈v〉2
g.
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4. Mass-spreading

We first state a slightly weakened form of Theorem 1.3:

Proposition 4.1. Suppose that the assumptions of Theorem 1.3 hold. Suppose further that there 

exist δ0, r0 > 0 and x0, v0 ∈R3 such that

δ01Br0
(x0)×Br0

(v0) ≤ fin. (4.1)

Then there exists T∗ > 0, depending only on r0 and the upper bound of the physical quantities 

in (1.6) such that for every 0 < T ≤ t ≤ T∗, there exists ν > 0, which depends only on δ0, r0, 

T , T , |v0|, the physical quantities in (1.6), and |x − x0|, and ρ > 0, which depends on the same 

quantities, such that

f (t, x, v) ≥ ν exp
{

−ρ|v|max{4,3−γ }
}

. (4.2)

We first prove Proposition 4.1, and then show how to obtain Theorem 1.3 from it.

4.1. Proof of Proposition 4.1

We prove the lower bound in Proposition 4.1 using a probabilistic representation. In order 

to do this, we require an approximation process; namely, we need to cut-off āij at infinity and 

regularize f . The former is to construct a unique stochastic process associated to the equation 

and the latter is to apply Ito’s lemma and relate the stochastic process to f .

We define this approximation process now. Let χ be any smooth cut-off function such that 

0 ≤ χ ≤ 1, χ(v) = 1 if |v| ≤ 1, and χ(v) = 0 if |v| ≥ 2. For any R sufficiently large, define

āR[f ](t, x, v) = χ(v/R)ā[f ](t, x, v) + (1 − χ(v/R))I, (4.3)

where I is the identity matrix on R3. Then, for any ε ∈ (0, 1), define fR,ε as the solution to

{

∂tfR,ε + v · ∇xfR,ε = tr
[

(āR[f ] + εI)D2
vfR,ε

]

+ c̄[f ]fR,ε, in (0, T ] ×R3 ×R3,

fR,ε = fin, on {t = 0} ×R3 ×R3,

(4.4)

with f fixed in the coefficients, the existence and uniqueness of fR,ε follows from the work in 

Section 3. Indeed, (4.3) is the linear Landau equation, so the bounds on fR,ε are, in fact, easier 

to obtain. We get, immediately, that eρ〈v〉2
fR,ε is bounded in Y 4

T independently of R and ε.

Next, we claim that f ∈ Cα([0, T ] × R3 × R3) for some α ∈ (0, 1). Indeed, since f ∈
L∞

t H 4
x,v ∩ W

1,∞
t H 2

x,v , then, by the Sobolev inequality, f ∈ L
p
t W

1,p
x,v ∩ W

1,6
t L6

x,v for any p ∈
[1, ∞). We may then apply the anisotropic Sobolev embedding [27, Theorem 2] with p > 36/5

to obtain the Hölder continuity of f . We note that fR,ε inherits the same bound.

Due to the above discussion, along with the uniqueness of solutions to the linearized Landau 

equation in the class of functions with eρ〈v〉2
f ∈ Y 4

T , which follows from Theorem 1.1, we obtain 

in particular that
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lim
ε→0

lim
R→∞

fR,ε = f, (4.5)

where the above limit holds locally uniformly in Cα, for some α ∈ (0, 1). This convergence is a 

key point in our argument since, in general, we obtain pointwise lower bounds for fR,ε when R

is sufficiently large and then we take the limits R → ∞ and ε → 0 to obtain lower bounds on f .

The main tool in the proof of the mass-pushing theorem is a probabilistic interpretation 

of (1.1). In preparation for this, we set some notation and collect a few important facts.

Since āR is symmetric and non-negative definite, we may find a symmetric, positive definite 

matrix σ̄R,ε such that

āR + εI = σ̄R,εσ̄R,ε.

We note that the upper bound on ā, i.e. that ā � 〈v〉2+γ (cf. [29, Appendix A]), which depends 

only on the physical quantities (1.6), yield the upper bound σR,ε � 〈v〉max{0,1+γ /2}, which is 

independent of R and ε. This is important in the proof of Proposition 4.1.

Further, since f ∈ Y 4
T , the matrix āR is uniformly Lipschitz in all variables due to the cut-off 

in v (see Lemma 2.1). Since ε > 0, we notice that σ̄R,ε is uniformly Lipschitz as well. We note 

that the ε is not crucial here since the square root of a non-negative C2 function is C0,1. The 

bound on the Lipschitz constant of σ̄R,ε depends on ε and R, but we use it only to guarantee the 

existence of a solution to our stochastic differential equation below. Importantly, we do not use 

this Lipschitz bound anywhere in our estimate of m.

Lemma 4.2. Suppose that the conditions of Theorem 1.3 hold. For any (t, x, v) ∈ [0, T ] ×
R3 ×R3, there is a unique solution to the stochastic differential equation

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dV
t,x,v
s = σ̄R,ε

(

t − s,X
t,x,v
s ,V

t,x,v
s

)

dWs,

dX
t,x,v
s = −V

t,x,v
s ds,

V
t,x,v
0 = v, X

t,x,v
0 = x,

(4.6)

for all s ∈ (0, t), where Ws is a Brownian motion in R3. Further, we have

fR,ε(t, x, v) = E

[

e
∫ t

0 c̄(t−s,X
t,x,v
s ,V

t,x,v
s )dsfin

(

X
t,x,v
t ,V

t,x,v
t

)

]

. (4.7)

Though the kinetic setting is non-standard, the proof of Lemma 4.2 follows from the usual 

arguments. The existence is due to a Picard iteration, the uniqueness is due to Grönwall’s in-

equality, and the formula for fR,ε requires only an application of Ito’s Lemma. As such, we omit 

the proof. We refer the interested reader to [30]. It is important for the application of Ito’s Lemma 

that fR,ε be C1 in t and x and C2 in v. Using the Schauder estimates of [29] along with the pos-

itive definiteness of āR + εI , we see that this is the case. This is where the εI term is crucial; the 

regularity of fR,ε is required below.

We also need the following lemma, which shows that pointwise lower bounds for f in a small 

ball give a lower ellipticity constant for the matrix ā[f ]. This implies a lower bound for σ̄R,ε. 

The proof of this lemma is similar to calculations that appeared in [13] and [38], but there is a 

key difference: with pointwise lower bounds available, there is no need to use the upper bound 

on the entropy density H(t, x), so this lemma allows us to remove the entropy assumption from 

our criteria for smoothness and continuation.
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Lemma 4.3. Let g :R3 → R+ be an integrable function such that g ≥ δ1Br (v0), for some δ, r > 0

and v0 ∈ R3. Then ā[g] defined by (1.2) satisfies

āij [g](t, x, v)eiej ≥ cδ

{

(1 + |v|)γ , e ∈ S2,

(1 + |v|)γ+2, e · v = 0,
(4.8)

for unit vectors e, where c > 0 is a constant depending only on γ , v0, and r .

Proof. We consider the case v0 = 0, but the general case follows similarly. For any e ∈ S2, (1.2)

implies

āij [g]eiej = aγ

∫

R3

(

1 − (w · e)2

|w|2
)

|w|γ+2g(v − w)dw � δ

∫

Br (v)

sin2(θe,w)|w|γ+2 dw, (4.9)

where θe,w is the angle between e and w. Let Aε = {w ∈ Br(v) : |w · e|2 ≥ |w|2(1 − ε)}. Since 

sin θe,w is close to zero in Aε , we want to avoid that set to derive a lower bound. We can assume 

e = v/|v|, since that is the worst case, i.e. the case where Aε is largest for a given ε. Clearly, 

there exists ε0 ∈ (0, 1) such that |Aε0
| = |Br |/2. With (4.9), this already implies āij [g]eiej �

δ(1 +|v|)γ for small |v|. For |v| large (compared to r), since Aε0
contains a cylinder of diameter 

≈ √
ε0|v| and height 2r , and this cylinder must have volume bounded independently of |v|, we 

conclude ε0 ≈ |v|−2. Hence, from (4.9),

āij [g]eiej � δ

∫

Br (v)\Aε0

ε0|w|γ+2dw � δε0|v|γ+2 |Br (v)|
2

� δ|v|−2|v|γ+2 � δ|v|γ .

To conclude the proof, we need only consider the case when e · v = 0 and |v| ≥ 3r . In this 

case, for any w ∈ Br(v), we have w · e ≤ r and |w| ≥ |v| − r ≥ 2|v|/3. Thus, (w · e)2/|w|2 ≤ 1
3

, 

which, in turn, implies sin2 θe,w ≥ 4
5

. From (4.9), we have, as desired,

āij [g]eiej � δ
1

3
(|v| − r)γ+2|Br (v)| � δr3|v|γ+2. �

We are now in a position to prove Proposition 4.1.

Proof of Proposition 4.1. We prove this in four steps. We first show that the initial bound is pre-

served on a slightly smaller set for all t ∈ [0, T∗]. Then we crucially use Lemma 4.3 to conclude 

the diffusivity matrix σ̄R,ε is positive definite for t ∈ [0, T∗] and x near x0. This allows us to 

spread mass to any v. In the third step, we use the fact that we have mass at any velocity to use 

the pure transport term to spread mass to any x, though only for a small range in v. Finally, for 

a fixed x, we use the small mass clustered at some of the velocities to repeat our earlier step: we 

obtain a lower bound on the viscosity and spread mass to all v. These four steps give us a lower 

bound on f for all t ∈ [0, T∗].
Before beginning, we assume, without loss of generality, that δ0 ≤ 1. We also note that all 

estimates depend on γ and the physical quantities (1.6), though we often do not mention this 
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dependence explicitly in the sequel. Finally, we denote m(t, x, v) to be a positive function satis-

fying the properties as in the statement of Proposition 4.1 that changes line-by-line.

Step 1: Preserving a mass core for short times: The first step is showing that the lower bound on 

the mass at (x0, v0) given by (4.1) remains for a short time.

We make this explicit. Fix any R ≥ 2(|v0| + r0) and ε ∈ (0, 1). Let r0 = min
{

r0/2,
√

r0

}

. 

We claim that there exists T∗ > 0 depending only on v0 and r0 such that, for all t ∈ [0, T∗],

fR,ε(t, x, v) ≥ δ0

2
1Br0

(x0)×Br0
(v0)(x, v). (4.10)

To see this, define τr0
= inf{t ∈ [0, T ] : |V t,x,v

t − v0| > r0} and use Lemma 4.2 to obtain

fR,ε(t, x, v) ≥ E

[

1{τr0
>t}fin(X

t,x,v
t ,V

t,x,v
t )

]

≥ δ0E

[

1{τr0
>t}1{Xt,x,v

t ∈Br0
(x0)}1{V t,x,v

t ∈Br0
(v0)}

]

= δ0P
{

τr0
> t,X

t,x,v
t ∈ Br0

(x0),V
t,x,v
t ∈ Br0

(v0)
}

. (4.11)

We make the following crucial observation. By our choice of τr0
, we consider only trajectories 

V
t,x,v
s that never leave Br0

(v0) ⊂ BR(0). As a result, (X
t,x,v
s , V

t,x,v
s ) and thus our estimates in 

this step are independent of R (cf. (4.6) and the definition of σ̄R,ε).

Let T2 > 0 be a constant to be determined and define

T∗ := min

{

T , r0,
1

2

r0 − r0

|v0| + r0

, T2

}

. (4.12)

If |v − v0|, |x − x0| ≤ r0 and t ∈ [0, T∗] then we claim that

P
{

τr0
> t,X

t,x,v
t ∈ Br0

(x0),V
t,x,v
t ∈ Br0

(v0)
}

≥ P(τr0
> t} = P

{

max
0≤s≤t

|V t,x,v
s − v| < r0

}

.

(4.13)

Indeed, suppose that |V t,x,v
s − v| < r0 for all s ∈ [0, T∗]. First, we observe that |V t,x,v

s | ≤ |v| +
r0 ≤ |v0| + r0 < R. Hence τr0

> t . Second,

|Xt,x,v
t − x0| ≤

∣

∣

∣

∣

∣

∣

t
∫

0

V t,x,v
s ds

∣

∣

∣

∣

∣

∣

+ |x − x0| <
t

∫

0

(

|v0| + r0

)

ds + r0 ≤ T∗|v0| + (T∗ + 1)r0 ≤ r0.

Here we used the third term in the definition (4.12) of T∗ along with the fact that r0 ≤ r0/2. 

Third, it is clear that V
t,x,v
t ∈ Br0

(v0). Hence, (4.13) follows.

From (4.13), we conclude that

P
{

τr0
> t,X

t,x,v
t ∈ Br0

(x0),V
t,x,v
t ∈ Br0

(v0)
}

≥ 1 − P

{

max
0≤s≤t

|V t,x,v
s − v| ≥ r0

}

. (4.14)

Hence, (4.10) follows from an upper bound of the last term on the right-hand side of (4.14). To 

obtain such an upper bound we first apply Markov’s inequality:
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P

{

max
0≤s≤t

|V t,x,v
s − v| > r0

}

= P

{

max
0≤s≤t

|V t,x,v
s − v|2 > r2

0

}

≤ r−2
0 E

[

max
0≤s≤t

|V t,x,v
s − v|2

]

.

In order to bound the term on the right hand side, we argue as follows. Use Doob’s inequality 

and the Ito Isometry to obtain

E

[

max
0≤s≤t

|V t,x,v
s − v|2

]

� E

[

|V t,x,v
t − v|2

]

= E

⎡

⎢

⎣

∣

∣

∣

∣

∣

∣

t
∫

0

σ̄R,ε(X
t,x,v
s ,V t,x,v

s )dBs

∣

∣

∣

∣

∣

∣

2
⎤

⎥

⎦

= E

⎡

⎣

t
∫

0

|σ̄R,ε(X
t,x,v
s ,V t,x,v

s )|2 ds

⎤

⎦ .

Using the asymptotics of σ̄R,ε and the fact that ε < 1, we now obtain bounds on E[maxs |V t,x,v
s −

v|2]. It is useful to consider two cases separately:

First, if γ ∈ [−3, −2], then σ̄R,ε is bounded above independently of X
t,x,v
s and V

t,x,v
s . Hence, 

we see that

E

[

max
0≤s≤t

|V t,x,v
s − v|2

]

≤ C0t, (4.15)

where C0 represents the implied constant above and the upper bound on σ̄R,ε. In this case,

P

{

max
0≤s≤t

|V t,x,v
s − v| > r0

}

≤ C0t

r2
0

.

Letting T2 = r2
0/2C0 the above is bounded by 1/2. Combining this with (4.11) and (4.14), we 

obtain, for all (t, x, v) ∈ [0, T∗] × Br0
(x0) × Br0

(v0),

fR,ε(t, x, v) ≥ δ0

2
.

From our definitions of T∗ and T2, it is clear that T∗ = T if r0 is sufficiently large, depending 

only on |v0|. This finishes the proof of the claim in the case γ ≤ −2.

On the other hand, if γ ∈ (−2, 0) then

E

[

max
0≤s≤t

|V t,x,v
s − v|2

]

� E

⎡

⎣

t
∫

0

(1 + |V t,x,v
s |1+γ /2)2 ds

⎤

⎦

� tE

[

1 + max
0≤s≤t

|V t,x,v
s − v|2+γ + |v|2+γ

]

.

Above, we used Lemma 2.1 in the first inequality. We use Young’s inequality on the second term 

in the expectation, obtaining

E

[

max
0≤s≤t

|V t,x,v
s − v|2

]

≤ C0t
(

1 + (|v0| + r0)
2+γ

)

+ (C0t)
2

|γ | + 1

2
E

[

max
0≤s≤t

|V t,x,v
s − v|2

]

,
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where C0 again comes from the implied constant above. After increasing C0, this may be re-

arranged to give

E

[

max
0≤s≤t

|V t,x,v
s − v|2

]

≤ C0t
(

1 + (|v0| + r0)
2+γ

)

+ (C0t)
2

|γ | . (4.16)

Hence, we obtain

P

{

max
0≤s≤t

|V t,x,v
s − v| > r0

}

≤ C0T2

r2
0

(

1 + (|v0| + r0)
2+γ

)

+ (C0T2)
2

|γ |

r2
0

. (4.17)

We now let

T2 = 1

4
min

{

r2
0

C0(1 + (|v0| + r0)
2+γ )

,
r
|γ |
0

C0

}

.

Then the right hand side of (4.17) is smaller than 1/2. Using this along with (4.11) and (4.14), 

we once again obtain that, for all (t, x, v) ∈ [0, T∗] × Br0
(x0) × Br0

(v0),

fR,ε(t, x, v) ≥ δ0

2
.

Using the definitions of T∗ and T2, we again note that T∗ = T if r0 is sufficiently large.

Our bounds do not depend on R and ε. Hence, taking R → ∞ and ε → 0, we obtain

f (t, x, v) ≥ δ0

2
1Br0

(x0)×Br0
(v0)(x, v), (4.18)

which finishes the proof of the Step 1.

Step 2: Spreading mass in v for x ∼ x0: The next step is to show that the mass of f instanta-

neously “spreads out” in v. We require this to “spread out” the mass in x in Step 3, below. We 

make this explicit. Fix 0 < T ≤ t ≤ T∗. For any x ∈ Br0/2(x0),

f (t, x, ·) ≥ ν exp
{

−ρ|v|max{4,3−γ }
}

, (4.19)

where ε and ρ are as in the statement of the proposition.

Applying Lemma 4.3 and using the definition of σR,ε, we find that there exists λ0, depending 

only on δ0 and r0 such that

σ̄R,ε(t, x, v) ≥ λ0〈v〉γ /2. (4.20)

Fix any R > 2(|v| + |v0| + r0) and any ε ∈ (0, 1). Let tc = r0/(4 max{|v|, |v0|, Nr0
|v|2−γ }), 

for Nr0
≥ 1 to be determined. We first prove the claim when t < tc. Then we let τ2|v| = inf{s > 0 :

|V t,x,v
s | ≥ 2 max{|v|, |v0|, 1}} and notice that
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fR,ε(t, x, v) ≥ E[1{τ2|v|>t}fin(X
t,x,v
s ,V t,x,v

s )]

≥ δ0

2
P
{

τ2|v| > t, (X
t,x,v
t ,V

t,x,v
t ) ∈ Br0

(x0) × Br0
(v0)

}

.

Since t < tc then it follows that, if t < τ2|v|, X
t,x,v
t ∈ Br0

(x0). Hence the above simplifies to

fR,ε(t, x, v) ≥ δ0

2
P
{

τ2|v| > t,V
t,x,v
t ∈ Br0

(v0)
}

. (4.21)

Define v̄ : [0, t] → Rd as v̄(s) = v + (s(v0 − v))/t . Then (4.21) further reduces to

fR,ε(t, x, v) ≥ δ0

2
P

{

max
0≤s≤t

|V t,x,v
s − v̄(s)| ≤ r0

}

. (4.22)

In order to obtain a lower bound on the right hand side of (4.22), we use Girsanov’s transform 

to change probability measures to Q such that Ys := V
t,x,v
s − v̄(s) and

dYs = σ̄R,ε(X
t,x,v
s ,V t,x,v

s )dB̂s

where B̂s is a Q-Brownian motion. Let Ar0
= {max0≤s≤t |Ys | ≤ r0}. Then we have that

P

{

max
0≤s≤t

|V t,x,v
s − v̄(s)| ≤ r0

}

= EQ

⎡

⎣exp

⎧

⎨

⎩

−
t

∫

0

˙̄vσ̄−1
R,ε dB̂s − 1

2

t
∫

0

| ˙̄vσ−1
R,ε|

2 ds

⎫

⎬

⎭

1Ar0

⎤

⎦

≥ e

−|v0−v|2

C0 tλ2
0
(1+|v0|+|v|+r0)γ EQ

⎡

⎣exp

⎧

⎨

⎩

−
t

∫

0

˙̄vσ̄−1
R,ε dB̂s

⎫

⎬

⎭

1Ar0

⎤

⎦ .

Here C0 is the implied constant in (4.20). Let qr0
=Q(Ar0

). Then, using Jensen’s inequality, we 

obtain

P

{

max
0≤s≤t

|V t,x,v
s − v̄(s)| ≤ r0

}

≥ e

−|v0−v|2

C0 tλ2
0
(1+|v0|+|v|+r0)γ qr0

EQ

⎡

⎣1Ar0
q−1
r0

exp

t
∫

0

˙̄vσ̄−1
R,ε dB̂s

⎤

⎦

≥ e

−|v0−v|2

C0 tλ2
0
(1+|v0|+|v|+r0)γ qr0

expEQ

⎡

⎣1Ar0
q−1
r0

t
∫

0

˙̄vσ−1
R,ε dB̂s

⎤

⎦ .

(4.23)

We note that, after fixing a sufficiently large Nr0
depending only on |v0|, r0, and the physical 

quantities (1.6), we may obtain a lower bound for qr0
by arguing exactly as in Step 1. On the 

other hand, letting R̃ = |v| + |v0| + r0,
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∣

∣

∣

∣

∣

∣

EQ

⎡

⎣1Ar0

t
∫

0

˙̄vσ−1
R,ε dB̂s

⎤

⎦

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

EQ

⎡

⎣1Ar0

t
∫

0

˙̄vσ−1

R̃,ε
dB̂s

⎤

⎦

∣

∣

∣

∣

∣

∣

≤ Q(Ar0
)1/2EQ

⎡

⎣1Ar0

t
∫

0

| ˙̄vσ−1

R̃,ε
|2 ds

⎤

⎦

1/2

≤ q
1/2
r0

|v0 − v|
C0

√
tλ0(1 + |v0| + |v| + r0)

γ /2

≤ qr0
+ |v0 − v|2

C2
0 tλ2

0(1 + |v0| + |v| + r0)
γ

(4.24)

where we used Hölder’s inequality and the Ito isometry in the first inequality, and we used the 

lower bound (4.20) in the second inequality.

Let β = max{3 − γ, 4}. Combining the discussion regarding qr0
with (4.24), (4.23), 

and (4.22), and using the fact that |v|2−γ t−1 ≤ |v|β + Ct for some Ct depending only on t

and γ , we obtain

fR,ε(t, x, v) ≥ ν exp

{

−ρ
|v|2−γ

t

}

≥ ν′ exp
{

−ρ′|v|β
}

,

for some ν′ and ρ′ with the same dependences of ν and ρ. Since all estimates are independent 

of R and ε, we may conclude the proof of Step 2 in this case by taking the limit as R → ∞ and 

ε → 0.

If t ≥ tc, we may simply translate the argument in time and use the semi-group property. 

Hence,

fR,ε(t, x, v) ≥ ν exp

{

−ρ
|v|2−γ

tc

}

≥ ν′ exp
{

−ρ′|v|β
}

for some ν′ and ρ′ with the same dependencies as ν and ρ. We conclude exactly as above. This 

establishes (4.19).

Step 3: Spreading mass in x for select velocities: We now obtain a lower bound on f for all t

and x and some subset of velocities. Specifically, we aim to prove that, for all t ∈ (0, T∗] and all 

x ∈ R3 there exist vt,x ∈ R3, depending only on |v0|, r0, t , and |x − x0|, and δt,x > 0 depending 

on the same quantities and also δ0, such that, for all v ∈ Br0/4t (vt,x),

f (t, x, v) ≥ δt,x . (4.25)

Further, vt,x and δt,x depend continuously on (t, x) ∈ (0, T∗] ×R3. In particular, this provides a 

lower bound of the form (4.1) for f (t, ·, ·) at (x, vt,x) for any t > 0 and x ∈R3.

To establish (4.25), fix any t ∈ (0, T∗] and R > 0 to be determined. Again notice that up to 

shifting in time, we may assume that t < t0, for t0 to be determined below, and that the lower 

bound from Step 2 (4.19) holds for the initial data. Define vt,x = −(x0 − x)/t . Fix any ε ∈ (0, 1)

and any R ≥ 2(|vt,x | + r0/2t + 1), and let
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τr0/t = inf
{

s : |V t,x,v
s − vt,x | ≥

r0

4t

}

.

Fix any v ∈ Br0/4t (vt,x) and, using (4.19), there exists m̃0 > 0 depending on δ0, |v0|, r0, t , and 

|x − x0| such that

fR,ε(t, x, v) ≥ m̃0E[1{τr0/t>t}1{

X
t,x,v
t ∈Br0/2(x0)

}1{

V
t,x,v
t ∈Br0/2t (vt,x)

}] = m̃0P
{

τr0/t > t
}

. (4.26)

In the equality above, we used that if τr0/t > t then V
t,x,v
t ∈ Br0/2t and

|Xt,x,v
t − x0| =

∣

∣

∣

∣

∣

∣

x − x0 +
t

∫

0

V t,x,v
s ds

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

t
∫

0

(V t,x,v
s − vt,x)ds

∣

∣

∣

∣

∣

∣

<
r0

2
.

Hence, in order to finish the proof of Step 3, we need only obtain a lower bound on

P{τr0/t > t} = P

{

max
0≤s≤t

|V t,x,v
s − vt,x | ≤

r0

2t

}

= 1 − P

{

max
0≤s≤t

|V t,x,v
s − vt,x | >

r0

2t

}

. (4.27)

Since the estimates are significantly simpler when γ ≤ −2, we only show the case when γ > −2. 

Indeed, we follow the work in Step 1 and use the estimate (4.16) to obtain

P

{

max
0≤s≤t

|V t,x,v
s − vt,x | >

r0

2t

}

≤ t2

r2
0

(

C0t

(

1 +
∣

∣

∣

∣

x − x0

t

∣

∣

∣

∣

+ r0

t

)2+γ

+ Cγ (C0t)
2

|γ |

)

, (4.28)

where C0 is a positive universal constant. We are now in a position to define t0. Let

t0 = 1

4
min

⎧

⎪

⎨

⎪

⎩

(

r2
0

32+γ C0

)
1
3

,

(

r2
0

32+γ C0|x − x0|2+γ

)
1

|γ |

,
r0

3
2+γ
|γ | C

1
|γ
0

,

⎛

⎝

r2
0

Cγ C
2

|γ |
0

⎞

⎠

|γ |
2+|γ |

⎫

⎪

⎬

⎪

⎭

,

and then (4.28) implies that

P

{

max
0≤s≤t

|V t,x,v
s − vt,x | >

r0

2t

}

≥ 1

2
.

Plugging this into (4.27) and then (4.26) yields the lower bound for fR,ε . Taking the limits 

R → ∞ and ε → 0 yields the lower bound for f . The continuity of this lower bound and of vt,x

is clear from the proof. This finishes the proof of Step 3.

Step 4: Spreading mass in v for all x: Since the lower bound of f obtained in Step 3 holds 

locally uniformly in x, we may repeat the arguments of Steps 1 and 2 in order to see that, for 

any (t, x, v) ∈ (0, T∗] × R3 × R3, there exists m(t, x, v) > 0, depending only on t , |v|, |v0|, r0, 

|x − x0|, and δ0, such that f (t, x, v) ≥ m(t, x, v). This finishes the proof. �
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4.2. Using Proposition 4.1 to obtain Theorem 1.3

Proof of Theorem 1.3.(i). First, note that the assumed regularity of f implies that f (0, ·, ·) is 

Hölder continuous (see the discussion after formula (4.4)) so that (4.1) is satisfied for some δ0, r0, 

x0, v0. Next, notice that applying Proposition 4.1 one time implies that f is positive everywhere 

for some small time interval (0, T∗]. At which point, we may re-apply Proposition 4.1 on the 

time interval (T∗, T ]. This is possible because, by choosing δT∗ small enough, we may find rT∗
arbitrarily large such that

δT∗1BrT∗ (0)×BrT∗ (0)(x, v) ≤ f (T∗, x, v).

The sub-Gaussian lower bound then follows directly from Proposition 4.1, concluding the proof 

of Theorem 1.3.(i). �

Proof of Theorem 1.3.(ii). Arguing as above, and using the well-distributed initial data, we im-

mediately obtain δ1, depending only on R, δ, r , T , T , and the quantities in (1.6) such that, for all 

(t, x, v) ∈ [T /2, T ] ×R3 × B1(0), f (t, x, v) ≥ δ1. Define

f (t, x, v) = δ1 exp{−β(t)|v|2−γ },

for β : R+ → R+ to be determined. We claim that f is a sub-solution to the linear Landau 

equation; that is, letting L := ∂t +v ·∇x − tr(ā[f ]D2
v ·) − c̄[f ], we claim that Lf ≤ 0 in [T , T ] ×

R3 × {|v| ≥ 1}.
By a direct computation, we obtain

Lf = f
[

−β ′|v|2−γ

− āij [f ]
(

(2 − γ )2β2|v|−2γ vivj − β(2 − γ )|v|−γ (δij − γ |v|−2vivj )
)

− c̄[f ]
]

≤ f
[

−β ′|v|2−γ − C−1β2|v|2−γ + C〈v〉2
]

,

where C is a constant depending only on δ1 and the physical quantities (1.6). In the inequality we 

used the anisotropic upper bounds for ā[f ] of [29, Appendix A], the lower bounds of Lemma 4.3, 

and the fact that c̄[f ] ≥ 0.

At this point, we choose β(t) = 1 + C1/(t − T /2). We choose the constant C1 large enough 

that −β ′(t)|v|2−γ +C〈v〉2 ≤ C−1β2(t)|v|2−γ for all |v| ≥ 1. Hence, Lf ≤ 0. Since f (t, x, v) ≥
δ1 ≥ f (t, x, v) whenever t ∈ [T /2, T ] and |v| = 1, and we can extend f smoothly by zero when 

t = T /2 and |v| ≥ 1, we have f ≤ f on the parabolic boundary of [T /2, T ] × R3 × {|v| ≥ 1}. 
It follows from the comparison principle applied to f and f that f ≤ f in [T /2, T ] × R3 ×
{|v| ≥ 1}. This concludes the proof. �

4.3. Optimality of self-generating lower bounds

We show that the asymptotic behavior of the lower bounds in Theorem 1.3(ii) cannot be 

improved in general. We find quite general initial data such that corresponding upper bounds 
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hold. This upper bound may perhaps be known in the space homogeneous setting, but we are 

unable to find a reference.

Proposition 4.4. Let T > 0 and f be any bounded solution of (1.1) on [0, T ] × R3 × R3 such 

that the quantities (1.6) remain bounded on [0, T ] and such that, for some ρ, K > 0,

f (0, x, v) ≤ K exp{−ρ|v|2−γ }.

Then there exist α and C, depending only on γ , the quantities (1.6), and ‖f ‖L∞([0,T ]×R6), such 

that

f (t, x, v) ≤ K exp

{

αt − ρ|v|2−γ

2Cρt + 1

}

for all (t, x, v) ∈ [0, T ] ×R3 ×R3.

Before beginning the proof, we note that there exists f satisfying the conditions of Proposi-

tion 4.4, see, for example, Theorem 1.1.

Proof. In order to conclude, we need only construct a super-solution in [0, T ] × R3 × R3. Let 

L be as in the proof of Theorem 1.3.(ii). Let f (t, x, v) = Keαt−β(t)|v|2−γ
, where α > 0 and 

β : R+ → R+ are to be determined. Computing Lf directly as in the proof of Theorem 1.3.(ii), 

and using the upper bounds for ā[f ] and c̄[f ] in [29, Appendix A] and the fact that ā[f ]
is nonnegative definite, we find a constant C, depending only on γ , the quantities (1.6), and 

‖f ‖L∞([0,T ]×R6), such that

Lf ≥ f
[

α − β ′(t)|v|2−γ − Cβ2(t)〈v〉2−γ − C〈v〉γ
]

.

Then, we define β(t) = ρ/(2ρCt + 1), so that the positive term −β ′(t)|v|2−γ dominates for 

large |v|. Choosing α > 0 large enough, we have Lf ≥ 0 for small |v| as well. By our assump-

tion on the initial data, the comparison principle implies that f ≤ f on [0, T ] × R3 × R3. This 

concludes the proof. �

5. Smoothing and continuation of solutions

We are now ready to show that our solutions to (1.1) are C∞ in all three variables.

Proof of Theorem 1.4. We will apply the main theorem of [29]. The Gaussian decay of f in v

(which is uniform in t and x) implies uniform upper bounds on M(t, x), E(t, x), and H(t, x). 

Theorem 1.3 implies that M(t, x) ≥ mt,x > 0 for each t ∈ [0, T ], x ∈ R3, and that a uniform, 

positive lower bound on M(t, x) holds in any cylinder Qr(t0, x0) = (t0 − r2] × Br (x0) so long 

as r2 < t0. As written, the smoothing theorem [29, Theorem 1.2] requires a lower bound on 

M(t, x) that is uniform in t and x. However, these proofs are entirely local in t and x, and still go 

through with our locally uniform lower bound on M(t, x). Hence, by the (locally uniform) lower 

bound on the mass M(t, x), Gaussian decay in v of f , and the upper bounds on the physical 

quantities (1.6) and H(t, x), we conclude f is in C∞([0, T ] ×R3 ×R3) via [29, Theorem 1.2]. 

Since f has uniform Gaussian decay in v, the proof in [29] shows that all partial derivatives have 
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Gaussian decay which is locally uniform in t and x, with constants depending on the order of the 

derivative. This implies the moment bounds in the statement of the theorem.

If, in addition, fin is well-distributed, the lower bound on M(t, x) is uniform on [T /2, T ] ×R3

for any T ∈ (0, T ]. Together with the uniform Gaussian decay, this implies, via [29, Theorem 1.2]

applied to f (T /2 + t, x, v), that all partial derivatives of f satisfy Gaussian-in-v estimates that 

are uniform on [T , T ] ×R3. �

Finally, we show that solutions can be extended so long as they are well-distributed initially 

(see Definition 1.2) and the hydrodynamic quantities remain bounded. The following is a more 

precise statement of Theorem 1.5:

Theorem 5.1. Suppose that the assumptions of Theorem 1.4 hold for some ρ > 0 and T ∈ (0, T ]
where T > 0. Then there exists T1 > 0, depending only on γ , ρ, and ‖eρ〈v〉2

f (T , ·, ·)‖H 4
ul

, such 

that f can be extended to be a solution of (1.1) in Y 4
T +T1

.

If, in addition, the initial data satisfies eρ0〈v〉2
fin ∈ H 4

ul for some ρ0 ≥ ρ, and fin is well-

distributed with parameters R, δ, r , then the solution f satisfies emin(μ,ρ0/2)〈v〉2
f ∈ Y 4

T for 

some μ > 0. The constant μ and the time of extension T1 depend only on T , γ , R, δ, r , 

‖eρ0〈v〉2
fin‖H 4

ul
, and the bounds on (1.6). In particular, T1 may be chosen independently of ρ

and ‖eρ〈v〉2
f (T , ·, ·)‖H k

ul
.

Remark. The significance of the decay rate min(μ, ρ0/2) is as follows: in constructing a solution 

f in Theorem 1.1, our first step was to divide f by e−(ρ0−κt)〈v〉2
for a positive constant κ that is 

more or less arbitrary, but the resulting time of existence T depends heavily on ρ0/κ and κ . This 

theorem allows us to remove this dependence when the initial data is well-distributed.

Proof. For a solution f with eρ〈v〉2
f ∈ Y 4

T , we of course have eρ〈v〉2
f (T , ·, ·) ∈ H k

ul, and we 

may apply Theorem 1.1 to obtain a solution on [T , T + T1] for some T1 depending on ρ, γ , and 

‖eρ〈v〉2
f (T , ·, ·)‖H k

ul
. We concatenate this solution with f to obtain a solution on [0, T + T1].

Next, suppose that fin is well-distributed with parameters R, δ, r , and that eρ0〈v〉2
fin ∈ H 4

ul. 

By the uniqueness in Theorem 1.1, there is some t0 ∈ (0, T ) depending on ‖eρ0〈v〉2
fin‖H 4

ul
such 

that eρ0〈v〉2/2f ∈ Y 4
t0

. We want to apply [29, Theorem 1.2] to show f and its derivatives up 

to order 4 have Gaussian decay up to time T , with constants as in the statement of the current 

theorem. As written, [29, Theorem 1.2] requires a uniform upper bound on H(t, x) and a uniform 

lower bound on M(t, x), but the only place in [29] where these two assumptions play a role is 

in showing a lower ellipticity bound for ā[f ] of the form (4.8). Since fin is well-distributed, 

Theorem 1.3 and Lemma 4.3 imply such an ellipticity bound holds, with constants depending 

only on t0, T , γ , the quantities in (1.6), R, δ, and r . With this modification, we can apply [29, 

Theorem 1.2]1 and conclude that there exist positive constants C and μ, depending only on t0, 

T , γ , R, δ, r , and the upper bounds on (1.6), such that

1 The Gaussian bounds of f were originally proved in [7] for the case γ ∈ (−2, 0). They were extended to the case 

γ ∈ [−3, −2] in [29] and to apply to derivatives of f via Schauder estimates.
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‖emin(μ,ρ0/2)〈v〉2

f (t, ·, ·)‖H 4
ul

≤ C, t ∈ [t0, T ].

Now we may proceed as in the first paragraph of the proof and obtain a solution on [0, T + T1], 
with T1 as in the statement of the theorem. �
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