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Abstract

We consider the spatially inhomogeneous Landau equation with soft potentials. First, we establish the
short-time existence of solutions, assuming the initial data has sufficient decay in the velocity variable
and regularity (no decay assumptions are made in the spatial variable). Next, we show that the evolution
instantaneously spreads mass throughout the domain. The resulting lower bounds are sub-Gaussian, which
we show is optimal. The proof of mass-spreading is based on a stochastic process, and makes essential
use of nonlocality. By combining this theorem with prior results, we derive two important applications:
C®°-smoothing, even for initial data with vacuum regions, and a continuation criterion (the solution can be
extended as long as the mass and energy densities stay bounded from above). This is the weakest condition
known to prevent blow-up. In particular, it does not require a lower bound on the mass density or an upper
bound on the entropy density.
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1. Introduction
1.1. The Landau equation
We are interested in the Landau equation from plasma physics, in three space dimensions:
0 f+v-Vaf = 0u(f ))=tr (AlfIDLf) +ELF1S. (L1)

For a constant y > —3, the coefficients a[ f](z, x, v) € R3*3 and c[f1(t, x, v) € R are defined by

_ w w i)
alfli=ay | (1= —=& — ) w|"™f(t,x,v —w)dw, 1.2)
lw — |w]
R3
Afli=e [ ol fx0 - w)dw. (1.3)
R3
where a,,, ¢, > 0 are constants and I is the identity matrix on R3. For y = —3, the expression

of a[ f] is unchanged and the expression for ¢[ f] must be replaced by c3 f for a fixed constant
c3 > 0. We assume that initial data f;,(x,v) > 0 is given. The solution f(¢,x,v) >0 to (1.1)
models the evolution of a particle density in phase space in a regime where grazing collisions
predominate. When y > —3, the Landau equation can be seen as an approximation to the non-
cutoff Boltzmann equation in this regime. See, for example, [8,33] for the physical background.
We are interested in the case of soft potentials, i.e. y € [=3,0). The case y € [-2,0) is also
called moderately soft potentials, y € [—3, —2) is called very soft potentials, and y = —3 is
called the Landau—Coulomb equation.

It is not currently known whether global-in-time classical solutions to (1.1) exist for general,
non-perturbative initial data. In this paper, we establish the existence of a C* solution of the
Cauchy problem for (1.1) on some time interval [0, T'], without a smallness assumption on the
initial data, and give a continuation criterion in terms of physically relevant quantities. Define

M(t,x)= f [, x,v)dv, (mass density)
IR’%

E(t,x)=/|v|2f(t,x,v)dv, (energy density)
R3

H(t,x)= / f, x,v)log f(t, x,v)dv. (entropy density)
R3

In the homogeneous setting, i.e. when there is no x dependence, the mass and energy of the
solution are conserved and the entropy is decreasing, but these properties have not been shown
for the full inhomogeneous equation. Several regularity results for weak solutions of (1.1) have
been derived under the assumption that M (¢, x), E(t, x), and H (¢, x) are bounded above, and
that M (¢, x) is bounded away from zero, including [7,20,29]. (See the Related Work section
below.) The present paper makes three contributions: first, to develop a local existence theory
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that is compatible with these a priori results; second, to remove the assumptions that the mass of
f is bounded from below and the entropy is bounded from above from the regularity criteria for
our solution; third, to show that solutions may be continued so long as the mass and energy can
be controlled from above when y € (—2, 0); when y € [—3, —2], we require, additionally, that a
higher moment and the L°° norm of f are controlled.

In both the Boltzmann and Landau equations, coercivity of the bilinear collision operator is
a crucial ingredient in proving regularization theorems. For the Landau equation, the coercivity
of Or(f, f) comes from the ellipticity of the matrix a[ f], and it is clear from (1.2) that the
ellipticity may degenerate if M (¢,x) =0 at some (¢, x). Our Theorem 1.3 implies that, under
relatively weak assumptions, M (t, x) is necessarily positive for ¢+ > 0 and a[ f] is uniformly
elliptic. Our method also allows us to remove the entropy bound from our criteria for smoothness
and continuation.

1.2. Main results

Before stating our results, we define the uniformly local weighted Sobolev spaces we use.
Uniformly local spaces (first introduced by Kato in [31]) do not specify any decay as |x| — oo.
Let (v) = (1 + |v|*)!/2. For integers k, £ > 0, define

el gt sy = sup f 6 (x — a)(v)'8%0f g (x, v)|> dx dv,
! Ia\+|ﬁ|<k“ER

where ¢ € Cgo(R3) is a cutoff satisfying 0 <¢ <1, ¢ =11in By, and ¢ =0 in R3 \ B3. Here,
fora, B € (NU {0})3 , 08 = 8?11 8?22 8;? We define 8,’? similarly. Then, our uniformly local spaces
are:

Hp R = (81 18l 8. o) < 00). (1.4)

We often write Hl]fl’e (]Ré) Let HY = Hfl 0 L2 ¢ Hl?l ¢ and L= L O Our main time-
dependent spaces will be

Yf = L%([0, T1, H{(R%) N L2([0, T], Hy ' (RS)). (1.5)

Our first main result is the local well-posedness of (1.1):

Theorem 1.1. Let fi,(x,v) : R3 x R3 — Ry be such that ePotv fm(x v)eH HK (Rﬁ) for some
0o > 0 and some k > 4. Then for some T > 0, depending only on y, po, k, and ||ep0 fm||Hk,

there is a unique solution f >0 to (1.1) with f(0,x,v) = fin(x,v) and e /2f € Yk
C%([0, T1, Hj(R)).

While the proof of Theorem 1.1 involves mostly classical techniques, a local existence result
for the Landau equation was previously missing from the literature (except in the case y = —3,
see [28]), and we believe it is important to fill this gap. Our existence theorem also provides a
convenient framework for our other results.
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Note that, in light of the definition of Hfl’l, Theorem 1.1 makes no assumption on the behavior
of fi, as |x| — oo. The requirement that f;, have four Sobolev derivatives is an improvement
over [28], and matches the current state of the art for results on the Boltzmann equation [3-5].
At this time, it is unclear whether this hypothesis can be relaxed further.

Next, by relating equation (1.1) to a certain stochastic process, we prove that the mass density
M (¢, x) instantly becomes positive, and moreover stays uniformly positive on compact sets away
from r = 0. Before stating this theorem, we define well-distributed initial data, a hypothesis under
which we can strengthen our results.

Definition 1.2. We say that a function g : R} x R? — [0, 00) is well-distributed with param-
eters R,8,r > 0 if, for every x € R3, there exists x,, € Br(x) and v, € Bgr(0) such that

g Z 813r(x,n)xBr(Um) :

Heuristically, a function is well-distributed if for every x € R3, there is some uniform amount
of mass nearby at relatively low velocities. For a simple example of well-distributed initial data
consider the following: if o and xper are continuous, non-negative, non-zero functions, with yper
periodic, then any fo(x, v) > x0(v) xper(x) is well-distributed.

Now we state our mass-pushing theorem, which will be crucial in obtaining the smoothness
of solutions to the Landau equation. For technical reasons, we work with solutions of the type
constructed in Theorem 1.1, but a similar property should be expected to hold for solutions with
weaker decay and regularity.

Theorem 1.3. Suppose 0 < T < T < T and that f is a solution of (1.1) on [0, T] such that

2 . . .
PV f e Y;f for some p > 0, and such that f is non-negative and not uniformly equal to zero.

(i) Then, for any (t,x) € [T, T] x R3, there exists VT %, pT.x > 0 depending only on T, T, K,
the initial data, and the quantities

sup (M(t,x) + E(t,x)), if y €(=2,0), or
xeR3,1€[0,T]
sup  (M(t,x) + E(t,x) + P(t,x) + | f(t, %, ) porey) »  if ¥ €[=3, 2],
xeR3,t€(0,T]
(1.6)

such that, for all v € R3,

S, x,v) > vr xexp {—pLx|v|mﬁX{3—V,4}} )

Here, P(t,x) = fR3 [v]? f(t, x,v)dv with p > 3|y|/(5 + ).
(ii) If, in addition, f(0,-,-) is well-aﬁstributed for some parameters R, S, r, then, we find

vr, p > 0 depending on R, 8, r, T, K, and the quantities (1.6), with vy depending addi-
tionally on T, such that, for all (t,x,v) € [T, T] x R3 x R3

Ftx,v) > vzexp{—mvﬂﬁ}. (1.7)
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The significance of T in the previous theorem is as follows: we wish to apply Theorem 1.3
iteratively (in combination with Theorem 1.1 and Theorem 1.4) to show continuation of solutions
past any T such that (1.6) is finite. The time of extension may go to zero as T approaches some
finite value, but the key point is that this can only happen if (1.6) blows up, not as a result of the
dependence of the estimates on 7.

In the well-distributed case of (1.7), one might expect a lower bound like e’p“"Z, as these
“Maxwellians” are the steady state solutions of the Landau equation. The above result, however,
is sharp for well-distributed initial data, as we demonstrate in Proposition 4.4. In light of results
that show convergence to Maxwellians for a priori global solutions such as [14], or for solutions
starting close to equilibrium such as [36,39], we infer that the comparatively fatter tails of the
Maxwellians form as ¢t — oo. For non-well-distributed initial data, it is not clear whether the
lower bounds in Theorem 1.3(i) are optimal. We leave this question for future work.

The proof of Theorem 1.3 relies on probabilistic methods to show that a positive amount of
mass anywhere in space and velocity can spread (at least a small amount) to any other loca-
tion and velocity instantaneously. Given the kinetic setting, which naturally involves following
“random” trajectories, probabilistic methods seem well-adapted to the problem, and there is a
somewhat rich history of using stochastic processes to study kinetic equations (see Section 1.4
below).

Theorem 1.3 implies in particular that M (¢, x) = fR3 f(t,x,v)dv > 0 for every ¢ and x, that
the positive lower bound is uniform locally in 7 > 0 and x € R?, and that it is uniform in x,
for fixed ¢, when the initial data is well-distributed. Theorem 1.3 also implies a[ f] is uniformly
elliptic. An almost immediate consequence of this, along with the Schauder estimates of [29], is
the smoothness of f, as stated in the following:

Theorem 1.4. Suppose 0 < T < T < T and that f solves (1.1) with ep<”)2f € Y}1 for some
p>0.Then f € C®((0,T] x R3 x R). Moreover, suppose that ||ep(“>2f||Y;1 < A for some
A >0 and fix p € (0, p). For every compact set K C R and for every (t,x) € [T, T] x K, we
have ||eﬁ<”>2f(t, X, ) gk w3y < Ck,k for all integers k > 0. If the initial data is well-distributed,
then ”eﬁ(v)zf”LOO([LT],Huk](R())) < Cy for all integers k > 0. The constants depend on the sub-

scripted quantities along with A, T, T, 0, p, and, in the well-distributed case, those constants
in Definition 1.2.

Theorem 1.4 applies in particular to the solution constructed in Theorem 1.1. To our knowl-
edge, this is the first C* solution to the Cauchy problem for (1.1) that does not require pertur-
bative initial data. Also, note that the initial data of our solution may contain vacuum regions.
When the initial data is well-distributed, the dependence of the constant on f can be weakened;
we refer the reader to Theorems 1.5 and 5.1.

Finally, we show that our solution can be extended as long as the physical quantities remain
bounded above. In particular, this implies that any blow-up of solutions to the Landau equation
with suitable initial data must occur at the level of the quantities (1.6). We state this roughly at
present, for the ease of the reader (see Theorem 5.1 for a more detailed statement).

Theorem 1.5. If the initial data fi, is well-distributed and e"O(wzfm € H:l for some py > 0,
then a unique solution to (1.1) exists for as long as the quantity (1.6) remains finite.
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In the case y € (—2,0), Theorem 1.5 gives a physically meaningful continuation criterion.
Namely, that blow-up can be prevented, and the solution extended, by obtaining upper bounds
on the mass and energy. When y € [—3, —2], one must control also the higher moment P and
the L° norm of f. The additional restrictions in Theorems 1.3 and 1.5 in the case y € [—3, —2]
(see (1.6)) are inherited from [29]. This is related to the challenging issue of finding an a priori
L bound for f when y < —2, which is open even in the spatially homogeneous case.

The requirement that the quantities (1.6) remain finite is the weakest known condition for
global existence of solutions to the inhomogeneous Landau equation. We emphasize that we do
not require an a priori positive lower bound on the mass density M (¢, x) = fR3 f(t,x,v)dv,asis
required in [7,20,29,38]. While earlier regularity results for the Landau equation such as [20,29]
were based on adapting the corresponding theory for local equations, our proof of Theorem 1.3
makes essential use of nonlocality, since the spreading of mass from (¢, xg, vo) to (f1, x1, v1)
relies on velocities that are in general far from vg or v;.

1.3. Related work

So far, global-in-time classical solutions to (1.1) have only been constructed for initial data
close to an equilibrium state: see the work of Guo [26] in the x-periodic case and Mouhot—
Neumann [36] with x € R3. For general initial data, Villani [42] showed the existence of renor-
malized solutions with defect measure. Existence or non-existence of classical global-in-time
solutions for general initial data remains a challenging open problem. Regarding short-time ex-
istence, spatially periodic classical solutions were found by He—Yang [28] in the Coulomb case
(y = —3) by taking the grazing collisions limit in their estimates on the Boltzmann collision
operator. They take initial data in a weighted Hx7 v space, with mass density bounded away from
zero. Compared to [28], the present paper makes a stronger decay assumption on f;, in v, but
improves on the required number of derivatives, covers both the cases y = —3 and y € (-3, 0),
and allows f;, to have vacuum regions, which is more satisfactory on physical grounds.

There is a previous “mass pushing” result for the Boltzmann equation, due to Briant [6],
which is obtained on T3 x R3 or Q x R3, where Q is a smooth, convex domain. It is shown
that vacuum regions are immediately filled and the solution obeys a lower bound of the form
f(t,x,v) > exp{—|v|X/C} for some C and some explicit K . However, the methods of [6] lever-
age the fact that the differential operator in the Boltzmann equation is an integral operator; this
is advantageous for obtaining pointwise bounds, but is unavailable for the Landau equation. Fur-
ther, the lower bound of [6] depends on stronger norms of f and the constant K tends to infinity
in the grazing collisions limit that recovers Landau from Boltzmann. As such, our proof is com-
pletely independent of that in [6]. We mention also the earlier work of [35,37], on which [6] is
based. We note the relative simplicity of our proof when compared to that of [6].

Our regularity results make use of prior work from the last few years on weak solutions of
(1.1) with M(t, x), E(t,x), and H(t, x) bounded above, and M (¢, x) bounded below. In that
context, Golse—Imbert—Mouhot—Vasseur [20] showed local Holder continuity (see also Wang—
Zhang [44]), Cameron—Silvestre—Snelson [7] showed global Holder continuity and propagation
of Gaussian bounds (in the case y € (—2, 0)), and Henderson—Snelson [29] established C*° reg-
ularity for y < 0, with stronger assumptions on f in the case y < —2. At least for solutions in
the class we consider, Theorem 1.3 allows us to improve this regularity criterion. Earlier smooth-
ing results for (1.1) such as [9,34] that make much stronger assumptions on f (infinitely many
moments in v bounded in H? ) also include a condition about f having mass bounded below,
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either explicitly or as part of the assumption that f is close to a Maxwellian equilibrium. The
same is true of many smoothing results for the Boltzmann equation such as [2,3,10].

There has also been a great deal of work on existence and regularity for the spatially homo-
geneous Landau equation, which results from taking f independent of x in (1.1). We refer to
[1,12,13,22,21,38,43,45] and the references therein.

1.4. Probabilistic approaches to kinetic equations

Early work related the homogeneous Boltzmann and Landau equation to a fully nonlin-
ear stochastic process which, through Malliavin calculus or Martingale theory, could recover
weak solutions to the equations (see [40,19]). By relating these processes to certain Wasserstein
distances, the weak function-solutions could be shown to be unique (see [41,17,18,16] and ref-
erences therein); i.e., the distance between two weak function-solutions is nonincreasing along
the flow generated by the equation. The techniques have since been adapted to show higher reg-
ularity (with some a priori assumptions) for solutions to the homogeneous equations for the case
of Maxwell molecules (see for instance [23,25,15,11]), though the techniques can also apply to
moderately soft potentials [24]. These approaches are limited to the homogeneous (and largely
measure-valued) setting because they relate the equations to a fully nonlinear stochastic process,
which is then used to build the solutions. To the best of our knowledge, Theorem 1.3 is the
first application of ideas in probability to the mass distribution for the inhomogeneous Landau
equation. The crucial difference is that we know, from Theorem 1.1, that a unique solution f
already exists; and, moreover, that it is Holder continuous. For the proof of Theorem 1.3, we
only need to relate the linearized Landau equation to a much simpler process (see Lemma 4.2).
Powerful pre-existing techniques are then applied to obtain a much shorter (and more precise)
proof.

1.5. Proofideas

The strategy of our proof of Theorem 1.1 is as follows. First, we divide f by a Gaussian with
time-dependent decay. The equation (2.1) for the resulting function g is approximated in multi-
ple steps: we first solve a linearized version of the equation on a bounded domain with an extra
diffusive term (Lemma 3.1). By deriving appropriate uniform estimates, we use a compactness
argument to take the limit as the size of the domain increases and the added diffusion goes to
zero to find a solution of the linearized Landau equation on the whole space (Lemma 3.2). Fi-
nally, we solve (2.1) by iteration, making use of our estimates for the linearized problem. This
method is in some ways inspired by previous work on local well-posedness for the non-cutoff
Boltzmann equation by the AMUXY group (Alexandre, Morimoto, Ukai, Xu and Yang), see
[3-5]. Those papers use an approximation scheme based on cutting off the angular singularity
in the Boltzmann collision kernel. Such an approximation is not available for the Landau equa-
tion because the Landau equation results from focusing on grazing collisions in the Boltzmann
equation, i.e. taking the limit where the angular singularity essentially becomes a derivative in v.
‘We point out that our proof covers all cases y € [—3, 0), which requires extra care, while [4,5]
make the restriction that y > —3/2, and [3] replaces the factor [v — w|? in the Boltzmann colli-
sion kernel with (1 + |v — w|?)¥/2, which also sidesteps the difficulties associated with very soft
potentials.

Roughly speaking, mass spreading (Theorem 1.3) holds because nonzero initial data f;,, must
have a “core” of positive mass near some point (xg, vg), which spreads out instantaneously in v
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because of the diffusive property of the equation, and some small amount of this mass is in turn
spread out to any point x at any time ¢ because of the pure advective term. By relating the value
of f to the expectation of a random variable (Lemma 4.2), we show these properties by analyzing
the associated stochastic process. Here it is important to understand the trajectories along which
the equation propagates information. This allows us to roughly estimate how the process spreads
mass from one point to another in R3 x R3. This mass-spreading leads almost immediately to
Theorem 1.4, as mentioned above.

To prove Theorem 1.5, we need to apply the main theorem of [29], which states that weak
solutions of (1.1) with Gaussian-decaying initial data are smooth for all # > O provided M (¢, x),
E(t,x),and H(t, x) are bounded above, and M (¢, x) is bounded below. With Lemma 4.3, we can
derive lower ellipticity constants for f directly from the lower bounds of Theorem 1.3, which
allows us to side-step the conditions that M (t, x) is bounded below and H (¢, x) is bounded
above. Combining the estimates from [29] with the results in [7], we obtain a Gaussian bound on
f attime T. Applying Theorem 1.1 with initial data f (7, -, -) provides the extension. Here it is
crucial that the bounds obtained in Theorem 1.3 depend only on those quantities in (1.6).

1.6. Organization of the paper

In Section 2, we establish various estimates on the coefficients of the equation that will be
needed in the proof of existence. In Section 3, we prove local-in-time existence for f (Theo-
rem 1.1), and in Section 4, we establish the mass-spreading property of the equation along with
the sub-Gaussian bounds (Theorem 1.3). In Section 5, we apply Theorem 1.3 to show that our
solution to (1.1) is C* (Theorem 1.4) and that the solution can be extended for as long as the
quantities (1.6) remain bounded (Theorem 1.5).

2. Preliminaries
First, we introduce the following modified Cauchy problem: for pg,« > 0, let T, , =

p0/(2k), wu(t,v) = e~ =KW and g(r, x,v) = u(r,v)~' f(t, x,v). From (1.1), the equation
for g is

g +v-Vig+i(v)g=n""0r(ng 1g)

=pu (&[/Lg](uDﬁg +gDu+Vu®Vg+Vg® VM)) + clpgle

=tr(Alg]D2g) + Blgl- Vg + Clglg. 2.1
with
Aijlgl = aijlugl, (2.2)
- 81),'/’L
Bjlgl =2a;j[ngl W (2.3)
22

Vv

Clgl = clugl +aijlugl P 2.4)
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where, in general, we sum over repeated indices. Explicitly,

0.
Sl _2(pp — k)i,

2l 25)
M A —2(po — k1)8;j +4(po — «t)?v; v;.

The main purpose of this section is to derive the estimates on the coefficients A, B, and C
defined in (2.2)—(2.4), as well as a and ¢ defined in (1.2)—(1.3), that will be needed in Section 3.

Lemma 2.1. Let y € [—3,0), let p € [2,00], let « and B be multi-indices, let g be a function
on R® such that 07g(x, ) e W,ljﬂl’P(R3)for all x e R3, and let u(v) = e for some X > 0.

(a) For any unit vector e € S?,

1500 @ijLugleie;) (e, v)| S 1058 (x. )l yienn s, (0)7 2.

In addition, we have the following improved bounds in the v direction:
10580 @ij[1glviv)) (v, V)] S 1958 (e ) oo o, (V)7 2,
1500 @ij [1glv) (e, )] S 105 8 0x, )y st s, (0)7
(b) For p = 00, one has

102 8L Elng) (e, )| S 1028 (6, )l yppioe o) (V)7

(c) If p>=2and 6 > 3 + py, one has

-0 - P
/(v) 0% 90 el ug](x, v)|” dv < (|0 g (x. -)IIWJﬁ‘,p(R3)-

R3

The implied constants depend only on o, B, v, X, and, where appropriate, 0 and p.

Proof. Note that for any o and B, one has 8)‘;‘8551,-]- [ugl = El,-j[a)‘fa,’f(ug)] and 8)‘3‘355[#5'] =
c10%9% (ug)1. Also note that

02l (ue)l < Y I/mael gl. 2.6)
[8'1=I8I

With p’ € [1,2] such that 1/p + 1/p’ = 1, we have from (1.2) and (2.6) that

0% 0P aijluglw) < Y lw|? 210298 g (v — w) |/ (v — w) dw
1B1< 1813
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1/p

5 ||8)(cxg” W]Lm»P(R}) / /"l‘p /2(U - w)|w|[7 (V+2) dw
3

S 18Y 8l yiptr g (V)7 2,

where we use that |w|p/(”+2) is integrable near the origin since p’(y +2) > —3.
Next, we show that the quadratic form e - (3¢ 8,’,3 ae) has improved upper bounds in the v

direction. First, suppose || 4 |8| = 0. Following the calculations of [7], we have for w = v —
zeR3,

2
v'<1—i®i>v|w|y+2=|v|2 1_<M> |v_z|y+2
lw| — |w] lv—z|

2 2 2
=P (jo = 2P = (ol =z )*) [v = 2I”
=1 (12 = - ) Jo = 2l” = oIz sin? plv — 2I7,

where ¢ is the angle between v and z. Let R = |v|/2. If z € Bg(v), then |sing| < |v — z|/|v],
and

/|v|2|1|2sin2<p|v—ZIVMg(z)dzs / 2% |v — 2" g dz
Br(v) Br(v)
1/p

S (yrt? /ul’/zg"dz S gl e s ()7

rR(V)
On the other hand, if 7 ¢ Bg(v), i.e. [v —z| > R =|v|/2, then |v — z|” < |v|¥, and we have
[ 01?121 sin plv — 2" ug () dz S gl p sy () 2.
RA\BR (v)

Still under the assumption that |a| + |8] = 0, we now show the improved bound on a;;v;. Let
{v/|v], €2, e3} be an orthonormal basis for R? and write

_ v
alpglv = p1 Tl + Brex + Bzes.

The above bound on v - (@v) implies 81 = (v/|v]) - (@[uglv) < ||g||L5(R3)(v)V+]. Since a;;[ug]
is positive-definite, we have

1 1
Br=e2- (@luglv) < Sv - @lpglv) + sea - @lngles) S N8l pees) (v) .

Similarly, B3 < |2l .# g3 ()7 2. We conclude a;jv; S I8l p gs) ()7
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For |x| + |B] > 0, we write

0%l @luglvy= Y. Cpprpraldf udf 92195 v. (2.7)
B+B"+B"=8

If |8”| = 1, then letting i be the unique index such that 8" = 1, we see that
jatof nofl o5 g19f " vl = lalof woll of gleil S 1958l im0 (0)7 > < 195 gl y1ep (0)7 2,
2.8)

where the second-to-last inequality follows exactly as above. If |8”’| = 0, then we write
3{,3 noy 8{? g =./1(g+ — g-), where g and g_ are both non-negative. Then

afol 1ol 82108 v = al g lv + alug-v.

Since g4+ and g_ are both non-negative, we apply our work from the case |«| + |8]| = 0 to see
that

jalof 198" 02 g10f" v| < |l /itg vl + al /g 1v|
Sl e sy )2+ llg-ll Lrgs) (0)7 2. 2.9)
Since |8£3//L| S VI, it is clear that
1817 p s, 1817 p sy = N ™" 200 0T 117 p sy SN 110 ey < 10T &y -
(2.10)
Combining (2.7), (2.8), (2.9), and (2.10), we obtain the desired estimate:
+2.

|87 97 @luglv)| S 19 &y 61 s, (v)7

Proceeding in a similar manner and using our bound on 9% 8{,3 (a[puglv), we can show

19500 (v - aluglo)l S 178l g (007

This establishes (a).
For (b), if y € (-3, 0), (1.3) implies

0208 clugl < Y [ lwl” (8208 g (v — w)l VAW — w) dw
B1<1B1g3

S 1028100 g, / VE© = w)wl” dw [ <1088l 0 g, )7
3

since y > —3.If y = —3, then c[ug] = c3ug, and an even stronger bound is satisfied.
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To prove (c), in the case y = —3, the desired estimate is an immediate consequence of the
formula c[ug] = c3ug. Letting y € (—3, 0), we restrict to the case |«| + |8]| = O for brevity; the
remaining cases follow easily from (2.6). Using Holder’s inequality,

/

r/p

IE[Mg]Ip§/g(v—w)p|w|”u(v—w)dw /M(v—w)lwl”dw
R3 3

5/<v>ﬂ””’|w|y|g(v—w>|”u(v — w)dw,
R3

where p’ is the dual exponent to p. Note that p/p’ = p — 1. This implies that
[t av s [ [ D g - w)iuw - ) dodo
R3 R3 R3

5//<w>‘9+7<"‘1>|w|y|g<v—w>|”dwdv5 ||g||§5/<w>‘9+y<"‘”|w|ydw,
R3 R3 R3

by Fubini’s Theorem and the estimate ||(v)" (v — w)||Lgo(R3) < (w)" for any r € R. The last
integral is finite because, by assumption, —6 + yp < —3. O

Lemma 2.2. Let y € [-3,0), u = e_)‘<”>2 for some A > 0, and let g, o, and B be such that
0yg(x, ) e Hgﬁlforx eR3. Let Algl, Blgl, and C[g] be defined by (2.2)—(2.4). Then we have

10507 ALg1(x. v S 1185 g Cx. I s ()7 +,
19595 BLg10r, v)| < 197 g (x| s (0)7 2.
Ifodg(x,) e W,l,ﬁl’ooforx € R3, then
13200 ClgICx, V)] S 102 8%, oo ()72,
The implied constants depend only on o, B, v, and A.

Proof. The bounds on A[g] and B[g] follow immediately from Lemma 2.1(a) with p =2, and
the bound on C[g] follows from Lemma 2.1(a) and (b) with p =c0. O

3. Local existence

In this section, we solve (2.1) on a time interval [0, T']. To do this, we first consider a lineariza-
tion of (2.1) with added viscosity on a bounded domain. Let us introduce the following notation:
for any ¢ > 0 and R > 3, define the mollifier ¢;(x, v) = 8‘6§(x /€, v/¢e) for some non-negative,
C function ¢ such that [¢dxdv = 1. Next, let Qg = {(x,v) € R®: [x|*> + [v]> < R?*} be a
ball in R® centered at the origin. Finally, let x & be a smooth cutoff function on R®, supported in
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Qr—_1, equal to 1 in Qg_», radially symmetric, monotone, and such that |D’;’U xRr| < 2" for any
n e NU {0}.

Lemma 3.1. Let g;), € HL]]‘l and h € L*([0, T], Hlj‘l) be given nonnegative functions with T > 0.
For any € > 0, let hy = ¢, x h. Then, for all R sufficiently large, there exists a unique solution
G=Gpreto

G =My G +1r (A[hg]DgG) + Blhe]- VoG —v- V4G + (C[hs] - K<v)2) G (3.1
on [0, T] x Qg with initial data and boundary values

G0, x,v) = xpr(x,v) (& * gin) (x,v) and G(t,y,w) =0 forall (t,y, w) € [0, 00) x IQg.
(3.2)

The solution G is nonnegative and G € C*°([0, T] x Qg).

Lemma 3.1 follows from standard parabolic theory. For existence and uniqueness, see [32,
Theorem 5.6]. Higher regularity follows from [32, Theorem 4.28], and the nonnegativity of G is
implied by the maximum principle [32, Corollary 2.5]. As such, we omit the proof.

Our next step is to solve the linearized problem (3.1) on the whole space and with £ = 0. We
do this by looking at the solutions G g ¢ of (3.1) above and extracting a weak limit as R tends
to oo and ¢ tends to zero. Recall that T, ,» = po/2x.

Lemma 3.2. Let T € (0, Ty ], let h € L°°([0, T, Hl’l‘l) and gin € Hlfl be given nonnegative
functions. Then there exists a solution G €Y. ; to the linearized problem

3G +v-V,G+rv)’G=tr (A[h]D?,G) + B[h]- V,G + C[h]G (3.3)
with G(0, x, v) = gin(x, v). Moreover, G is nonnegative and
2 2 A
161 = gl exp (1T (1101 g 7y ) (G4
for A =max{8,2/|y|+ 1} and some C > 0 depending on k, y, po, and k.
Proof. Before beginning, we set some notation and make some useful observations. Let
be a fixed smooth cut-off function in the velocity variable; that is, ¥ is radial, nonnegative,

identically 1 for |v| < 1, vanishes for |v| > 11/10, and monotonic. For 0 < r < R, define
¥ (v) = ¥ (v/r). We then define

lelig = > s [160— v @waalgr 0P drd,

o +|Bl=k A<BRI0

k
Ilis, =181 oqo. 1. 50 + 180 L2071, @y 20 18 1ys = > [ I
' m=0

(3.5)
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We note that the higher-derivative norms in || - || vk , are more strongly localized. In particular, no-

tice that Y{) , coincides with L ([0, T], L} 1(QR)) ﬂLz([O T1, H)' (Qg)) since yg = 1 on Q.
We also mention that the support of ¥ and the admissible a in the supremum are chosen so that,
when m > 1, supp(¢ (- — a)yg/2m) avoids the boundary of 2g when R > 40\/5/7.

We write ¢ = ¢ (x —a), o =¢((x —a)/2), and ¥ = ¥ (v). We frequently use the following
facts:

1) ¢ =¢e2;

(ii) Vil < ¢2;
(iii) forany s, 7 >0, (v)2~5 < n(v)? + Cyn~ ™X2/s=10} for C; > 0 depending only on s;
(iv) replacing ¢ with ¢; in the definition (1.4) of || - || HY defines an equivalent norm.

Also, recall that if 3%8” f € L? for some multi-indices o and B, then |30 (¢, % )| 1r <
||8§85f||Lp. This implies A[h.], B[h¢], and C[h.] satisfy the same bounds as A[4], B[], and
C[h] (cf. Lemma 2.2), with constants independent of ¢.

Throughout the proof, we take N to be a fixed positive integer that will eventually be chosen
large enough (independently of R or ¢) that our inequalities close correctly. Also, we denote by
C'1 arunning constant that is independent of R and ¢ (but may depend on N). Finally, we denote
by Ca running constant independent of R, ¢, and N.

For given R and ¢, let Gg = G, g, be the solution to (3.1) with boundary conditions (3.2)
on Qpr, guaranteed by Lemma 3.1. We will establish a bound on G in Y’T" g (uniformin R and ¢)
that will then allow us to take a limit as R tends to co and ¢ tends to zero.

For ease of notation, we define

X=X@):= ”h”L”([O,I],Hukl)’ Ym R = m r(@) = ”GR”LOC([O 11, Hul R/2m(QR))

. 1 (3.6)
and Zik R =Zkr(t) := (Z Y1421,R> :

m=0

We now begin the mechanics of the proof. Our goal is to prove that

d A\ 72
216 R 00 g0 FKIGRIG 1 o +eIGRIG1 o SCLI+XY) Z5p, G
and, by induction, that
—||GR|| o + KGRI, +ellGrll,, <C(1+x") 2} g+ Gm.
H, g/zm(Q ) Hy 1%/2"‘(Q ) Hul;]/Z(gn(Q ) ( ) m R "
(3.8)

forall I <m <k and all R sufficiently large (depending on the parameters and the data). Recall
that Cy is a fixed constant that depends on k, pg, k, ¥, and N, but not on R or ¢. Here G,, is
a time-integrable function such that, if R is sufficiently large in a way we make explicit in the
sequel,
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T

/ Gn()dt <.

0

Base case: Recall that, for m = 0, there is no longer any cut-off in v in the H-norms. We multiply
(3.1) by $>G g and integrate over Q. Since G g = 0 on dQg, we can integrate by parts without
boundary terms, yielding

1d 2 2 2~2 2 2
EE||GR||L2(QR)+Kf¢ (v) GRdxdv+8/¢ VG g|?>dxdv
Qr QR
5/¢>v.vx¢c;§dxdv—/qszvaR-A[h]-vaRdxdv
QR Qr
1
_/¢2GR(VU.A[hg]).vUGRdxdu—§/¢2G§vv.3[hg]dxdu
Qr Qr

- / ¢*Clhe]1G% dx dv
Qpr

=h+bL+L+1L+1.

Since A is nonnegative, so is &, and therefore A[h.] is nonnegative definite. We may then ig-
nore I, since it is nonpositive. The transport term is easily bounded using Young’s inequality:

Hul,R

K K
|| < N/qsqsz(v)zG%edxdqucl/¢¢26§dxdv5 N||GR||2.O_l + C1Z§ &
Qr QR

For I3, we note that G r vanishes on the boundary of Qp, allowing us to integrate by parts without
boundary terms. We then use Lemma 2.2 and Young’s inequality with » > 0 to obtain

1 1
L= [ Alh) - Vu(GRdrdv S 5 [ $IDIAIIGE dxdo
Qr QR

S f ¢*llhell g2 () G dx dv < XN ()GRlGa g, + 1~ "X 0GR g -

Qpr

: — o N—lx—1 i < K 2 A2 L
Setting n =k N7 X7 yields I < ”GR”HS’jQ(QR) + C1 X ZO’R. The remaining terms are

bounded in a similar way. That is, using Lemma 2.2,

|14|§f¢263g|vv8[h81|dxdv

Qr

2 2 2 K 2 A2
5/¢ el ()7 Gredvdv = G RIGa o +C1XM 25 1.
Qr
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and using Lemma 2.2 and the Sobolev embedding, i.e. H kRO ¢ L>®(R®),
151 < / ¢*G%IClh]ldxdv S f¢2||he||Lgc<v>2+VG§ drdv
Qr QR

K 2 A2
< N”GR”HS:k(QR)-’_ClX ZO,R'

Summing over all & and B, taking a supremum in a, and choosing N large enough yields (3.7).

Induction step: Let o and B be multi-indices with ||+ |B| =m < k. Let ¥, = g /2m. Applying
0y 8,’? to (3.1), multiplying by ¢21ﬂ,%l 0y 855 G g, and integrating over Qp yields

1d
EE/d)zl/f’%"agafGR'dedv—i_K/¢’2W1121<U)2|33353GR|2dxdu
o ot (3.9)
=Ji+ 1+ T3+ Ja+ Js + Jg,
where
i =/¢2wiagaftr(A[hg]DfGR) 3998 G g dx dv,
Qp
— 212 qaaqp aap
Jz_/¢ Y0y 0y (Blhe] - VyGR) 0y 9, Grdxdu,
Qg
= [ vl cinG s G,
Qg

3
==Y [ 202 (a;’*ef o+ 2eiaral 7+ ool 7)) GroLaf Grdxdv,

i=lg,

J5=—/¢2¢,iv.vxagafGRagafGRdxdu, and
Qr

Jo=¢ / P> Y2 A% PG R G g dx dv.
QR

Here, 87! means 8)?1‘“8)?22 dys , etc., Bl’;jG r=0ifi <0, and the [, -] in J4 is the commutator.
Note that we have not yet integrated by parts in any variable. We proceed to bound each of the
six terms above.
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Estimating Ji: By the product rule we have

h= Y f¢2¢,3,tr(a;'/af/(A[hg])Dgag”af”GR)a;;‘afGRdxdv.

o' +a" =a,

B+B'=p

QR

We must use different techniques depending on the distribution of derivatives.

J1 terms with |&'| + | 8’| = m > 2: In this case, @' =« and 8/ = 8. Lemma 2.2 yields
f¢2wi|a;z‘afA[h81||D$GR||B;'85‘GR|dx dv
Qpr
< / G W (V)T 107 he 101105 9) G RII D G rl dx dv
Qr

5/¢z||a;‘hg||va¢||wm<v>‘”a;‘afGR||Lg¢||wm<v>D§GR||L%dx.
QR

By Holder’s inequality in x and the Sobolev embedding, i.e. H>(R?) ¢ L>®(R3), we have
/ 21105 hell 1510 1Y (0) 7 350 G Rl 2011 Yim (v) DG Rl 2 dx
QR

208 hell i I wm (v)'+7 89 Gl 1210 Wm (V) DIG R o2 if m >4
< {1620 hel 4 i lgwm (v)'+7 029 Gl 12| (V) DIGRI 42 if m=3
16208 hel oo 161 16 Vm ()1 +7920] Gl 219 Vm (V) D2GRIl 2 if m=2

= XY () 00 Grl2 Gl s (0
Therefore,
/¢2¢;|aga§A[hs]||DﬁGRl|a;;‘a§GR|dx dv
QR

< X 16V () GRIL2IGRI fmt o)
+ O B0 X g, 0798 G 121G R
x % Hul,R/zm (R2R)

<20X||GRI>., 4 Oy 2max/lyI=100=1 G 2. _
=20l R”Hulfli/Z‘“(QR) 1 | R”Hul,vlg/zm(QR)

Setting =k N~' X~ then gives
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2
f¢|a;z‘a§A[hg]||D$GR||6;‘8§GR|dx dv < |Gl + ¢ xmax2/ 2 72
N Hyr /om (2g) ’
Qg

- 2K G ol

Ci(1+XxMZ72 ..
ul,R/Zm(QR)+ 11+ XMZ, e

@3.11)

The remaining case (|o’| + |8’| = m = 1) is handled later, as it relies on a different approach.

J1 terms with |&’| + |8’| = m — 1 > 2: The analysis is similar to the previous case. We use
Lemma 2.2 to obtain

/¢21ﬂ,,21|8)‘f/85/A[h5]||D12,8)‘§‘//85//GR||3§85GR|dxdv
Qr

< / 2 0V VN0 hell | DY 9 G RIIOY D) Gl dx dv
Qr

S f 21102 he | 191 B l1m (0) D3O 0 G Rl 260 10m () 7 3298 Gigll 2 dx.
QR
By Holder’s inequality in x and Sobolev embedding, we have

f 2110 el o @ 1Vm (0) DO 3 Grll 20 I (v)' 7 070 Gl 2 dx
Qpr

16202 hell i 0¥ (W) D202 05 GRll 312 | ()1 +7 9200 GRll 2 if m >4
< S

1620 el it 19 (V) DO 00 Grll 2|V (0)'+7 070 Grll 2 i m=3

= Xligvn (0) OO GRIL2 NG RN fnt oy

2k 5
S ﬁ ”GR ”I_'Im,]

Ci(1+XMHZ2 .,
ul,R/2m(QR)+ 11+ XMZ, k

(3.12)

where the last inequality was obtained in the same way as in (3.11). The remaining cases (|a'| +

|/|l=m —1=1 and |&'| + |8'| = m — 1 = 0) are handled later, as they rely on a different
approach.

J1 terms with 2 < |&'| + |8'| < m — 2: This is a generic “middle case” where each factor in the
integrand has a mild number of derivatives. Here we use Lemma 2.2 to write
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f 202 10% 08 Alh 1| D20 8F" G |0 9P G g| dx dv
QR
S f G2.0) 20T el 1 OV DTS 08" G RIdYin |90 G vl dx dv
g (3.13)
= 18205 hell o i 10V (0) Y OLOVGRILZNGRI s 0

<2—K||GR||2. 1 +C1 1+ XMZ2 R
- N Hylgjom (2R) m,R

The last lines follow by the Sobolev embedding and the same analysis as in (3.11) and (3.12).

Ji terms with |o’| + | 8’| = 1: This also includes the cases where |'| + |8'| =m =1 and |o/| +
|8’| =m — 1 = 1. Here we use integration by parts to write

/ 22 (ag’af’A[hg]Dgag”af”G R) 9708 G g dx dv
Qpr

=— / 22V, 0% 98 G -9 0F Alhe] - V,0%0P G dx dv

Qpr

- /¢2¢,%,(vv 0% 98 Alhe)) - v,0% 0P Gro%0P G g dx dv
QR
- 2/¢2¢mvvwm 0% 9P Alhe] - V,0%" 0P GRro%0F Grdxdv =: Jy | + Jio + J13.
QR

The term Jj > is handled in the same way as (3.11)—(3.13). For J; 3, by Lemma 2.2, the fact that
(v) <2R on Qp, and the fact that |V, 4, | < R™',,_1, we have

VEPS / 92010 hell o (2 (Vi + 1Vuvml?) 9219005 0f Grl[0%0f G| dx
QR

S 1205 hell o i 10Wm ()7 V08 08 G Rl 2 Wm (v)329F Gkl 2
+ R 19205 el i 190V —1 9005 8 Grll 21 ¢ Vm—105 0] Gl 2

< 2GRl +C1(1+ XM Z2 g+ RV XIGRI 0o :
- N HU"IIL:R/zm(QR) m, H™ I(QR)

ul,R/2m—
The bound for J; | is a combination of the two used above. Since |a”| 4 |8”| =m — 1, we have
that 9¢ 8{? Gr=0; (8;‘// 8,’? GR), with 0, a single derivative in one coordinate (either x or v). Let

M = (m;;) be a symmetric matrix and let H be a vector field. Then, we have the following
identity:
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/H-M~82dedv:Z/H,~m,~jazH,~dxdv
R6 i,j RO

1
=—Z/azﬂ,-m,-,-dexdv—Z/H,-azm,»,-H,-dxdw—E/H.aZM.dedv.
i’jRG i*j ]R6 ]R6

Applying this identity to J; 1, we see that

1 / ! " 7
Jii < 5f¢2w,%,|aza;“ O Alhe1||V,0% 08 Ggl*dx dv

QR
(3.14)
+ [ 100315 o8 A1V, 8 Gl ax o
Qr

The first term on the right-hand-side of (3.14) is bounded in the same way as Ji 2 (see
(3.11)—(3.13)). The second term changes slightly based on the nature of d,. If 9, is a deriva-
tive in v, then the second term is bounded in the same way as Ji 3. If 9; is a derivative in x,
then

/ 10, (>0 2)110% 08 Alhe11V,0¢" 08" G g]? dx dv

QR

< / brp v 210 88 Al 111,02 98" G g | dx dv

Qr

Y ” " K
S Xlloaym () IV 7 Grllge S S IGRIGm o
I,R/2m

u

+C1(+XMZ

using Young’s inequality as before. Combining the different estimates above, we see that

/ P22 r ((a;f'af'A[hg])D,%ag”af"GR) 9708 G g dx dv
S (3.15)

<ClIGRIZ, +C1(1+XMZY g+ CIRVXIGRI, o

K
N Hy Rjom (S2R) ul.R/2m-1 (Q2g)

Ji terms with |a'| = |B’| = 0: This also includes the case where || + || =m — 1 = 0. Inte-
grating by parts yields

vUX v

f vt (Alh D020 Gr ) 320] G v dv

Qr
= —/¢2¢,%,vuaga§GR - Alhe]- V,9%9P G dx dv
QR
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—/¢2wi(vv-A[hs])~Vv8§8§GRa;‘a§GRdxdv
Qg
—2/¢21/fmvu1/fm'A[he]~Vv8§‘BfGR8§‘BfGRdxdu.
Qg

Crucially, the first term is nonpositive, so we may ignore it. For the rest, we integrate by parts
once more and use Lemma 2.2 and Young’s inequality to obtain

/¢21/fritr (A[hs]DgagafGR) 8381/}3GR dx dv
Qg
g/¢2|a§‘8:?GR|2(w,iw?,A[hs]+wm|vvwm||m[hg]|
Qpr

+ (V¥ + Y| DY DIALA | ) dx do (3.1

< f 971000 GrlP () dallhell oz (V7 + R72W7_, ) dedv
QR

< 2GRl +C10+XMZ5 g+ CIRYIGRI 00 :
N Hi'gjom () R I et ()
analogously to the above estimate for Jj 3.
Combining (3.11)-(3.13), (3.15), and (3.16), we see that
~ K 2 AN 2 2
J1 < C—|GRll* Ci(+X™"Z C1R” X ||GRll* . 3.17
1S CFIGRIG o TOHXNZ ek ORI XIGR G o  GID

Estimating J,: Next we consider the integral term J,, which can be written as

o +a" =a

h= Y Copap f ¢*y2 0% 88 Blhe]- V0% 08 Gro%0P G dx dv,
/ " QR
B+6"=p

where Cy g o, is a positive constant depending only on «, 8, &', and B’
Jy terms with 2 < |o’| + |B’| < m: We use the estimates on B[h,] in Lemma 2.2, Holder’s

inequality, and the Sobolev embedding to obtain

/ ¢>y20% 08 Blhe]- v,0 98" Gro*8F G dx dv
Qg

S / 20V 7107 el 1 0V V005 8] G Rl |870] Gl dx dv
Qg
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< / 21107 el o @10 (0)' 7 Vo3 ) G rll L2 1im (v) 950 G vl 12
QR
16208 el i |9 () 47 V0807 G Rl 2 |9 ¥m (0) 320 Gl 2
o' + 1] <m —2
16202 hell i 10V (0) 17 9,02 00 Gkl s 12 0Wm (0)020] Gl 12,

<
o/ | + 1B/ =m — 1
16205 hel 5 i 9 Wm (0)' 7 VoGl o2 I pvm (v)0%0L Grllz2, |+ 18 |=m >3
16202 he o 10 1pvm (0) Y VG rll 2l (0)0%0F GRllp2r 1|+ 18| =m=2
< 2—K||GR||2. +C1(1 4 x)722 (3.18)
- N H:rll"li/zm(QR) m,R> ’

through identical analysis as for J;. We emphasize that for each of the cases above, |o| +
1B’ = 2.

Jy terms with |o’| + |B’| = 1: Here there are m derivatives on each of the Gg factors in the
integrands. We again use Lemma 2.2, Holder’s inequality, and the Sobolev embedding to obtain

/ ¢* 2 9% 0F Blh,]- V0% 08" Gro%0P G g dx dv
Qpr

< / 210 hell o @Y (0) 7 Vo3 9 G rll 31 im (v) 95 0 G vl 1
e (3.19)

<1620 hell oo ot |00m (0) 7 V007 0 Gl 218 m (0)3 0] G vl 2
2k
= IGR I +C1(+ X125 g,

Hy R jom (S2R)

through identical analysis as above.

Jy term with |a’| + |B’| = 0: We integrate by parts to write

/ ¢* W2 Blhe] - V0295 G %98 G g dx dv
Qg

1
=3 / G2V, - Bho110%08 Gl dx dv — / 62U Vot - BU19%0E G g 2 dx dv
QR Qp

=1+ Jop.

By Lemma 2.2,

' Ry2m (82R)

K
USBS / O U lell gy ()7 1070] G r|? dx dv < NG Rl +C1X"Zp g (3.20)
Qg
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The other term is bounded in the same way as J; 3. Namely,

RS [ etz P (42 + 190 ) 1055 G dx
QR

(3.21)
2K 2 Ay 72 2
< — . 1+X™Z R"X . .
= WGt o TOAFXDZ0 e+ ORI XIGR G o,
Combining (3.18), (3.19), (3.20), and (3.21), we see that
~ K 2 Ay 2 2
Jo < C—||GRrll* Ci(l+X™MZ CiR"X||GRrII* . 3.22
2 < CGUGRIGn g+ ClU+XDZ g4 R XIGR o - B22)

Estimating J3: We have

=Y | ¢*wko ol Clh19? 8f" Gro?of G g dx dv.

o' +a"=a

B+8'=B

R

Here, the case-by-case analysis is simpler because there is no longer any extra gradient in v.
Recall that Clh,] = c[uhe] + a;; [uhg]u_laiju. Then, using the expression (2.5) for 0;;u/ i,
we write

/ ¢* 2 0% 8P Clh 104" 98" G R0 9P G g dx dv
Qpr

5/¢21//3,|a§/a§/c[uh£]||ag”a§”GR||agafGR|dxdu
QR
2 12 19a a8 a” qp” aqp _.
+ [ ¢7Y,107 0y (v-alphel-v) |0y 97 GRrll9y 9, Grldxdv=:J31+ J32.
QR

J3.1 term with |&'| + || > 1: For the first term, in preparation to apply Lemma 2.1(c) with

0 =7/2, we notice that
1
2

_7 o ,B/_ 2 7 7 o /3
Jsp= | o2 [ () 2107 9y cluhell”dv | @llYm(v)EGrllLze@lvm (v)80; 9, Grll 2 dx
Qpr

3

if || +|8|=m=>2,

W=

_Iiad B = 3 7 I oa B
1< | ¢ (v)7218y 8y clphell" dv | Gllvm(v) 2GRy 16811 Vm(v) 1290, GRIl L2 dx
Qgr 3

if |a’|+|ﬂ/|=m—121,



C. Henderson et al. / J. Differential Equations 266 (2019) 1536—-1577 1559

1
7
~I a0/ 9B = 4 A Loaaap
S| ¢ [ () 2[0y 8y clphell"dv | llYm (v) 16 GRllym-24¢l1Ym(v) 169, 9y Grll 2 dx
Qg 3

if 2<lo/|+1B'|<m~2,

=

—1 ad' 9B = 6 A L aaap
SBa= | ¢ [()2[0y 8y clphelPdv | llYm (v) 2 GRrllym-13¢[1Ym(v) 29 9y Grll 2 dx
Qr 3

if |o/|+ 18 |=1, any m.

Therefore,

ahe Il m 11 Wm () F G R | 2o |V (V)5 G | if o/ +181=m>2,

e lyym-12 10V (V) 2 Grllyrs | pym (2 Grllgm  if o[+ 18 =m—1>1,
e ll 2.4 [ $Wm (V) 16 G Rl 2.4 | $Ym (V) 6 GRll g if 2 < || + 18| <m —2,
ghe |yl dvm (v) 5 G Rllyn-13l16Ym (V)T Grllgn i /| + 181 =1, anym.

51 S

By (weighted) Sobolev embedding and Young’s inequality with > 0, we have in all cases

Hy Rjom

2
_ 2k
.13,15X<’7||GR||H"11ﬁ/2m(QR)+C17] 7Zm,R> §N||GR||2,,,,1 +Ci(1+XM2Zp p.

(3.23)

where we have chosen 1 = K%N_%X_%.
J3.1 term with |&’| 4+ |B’| = 0: From Lemma 2.1(b) with p = oo and the Sobolev embedding
(H*(R%) c L*®(R®%)), we see that

J31 S el oo f Y2 ()Y 1029 GRrPdxdv < (1 + XM Z2 , (3.24)
Qr

J3 2 term: For the last term, Lemma 2.1(a) with p = 2 implies

J3.2 S llgahell pm / PP U2 1(v)% 9P G R|I(v) T 8% G g dx dv
QR

(3.25)
< 2GRl +Ci1(1+XMZ2
- N g om Q) m, R
Combining (3.23)—(3.25), we see that
~ K 2 Ay 72 2
<C— . 1+xM27 RYX : ) 3.26
5 < CN ”GRllH;'l’;ﬂm(QR) +Ci(1+XMZ, g +Ci ”GR”H;?_’;’/zm_l(Qm (3.26)
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Estimating Js and Js: All derivatives appearing in J4 are of order at most m. By Cauchy—
Schwartz,

C\72 .. 3.27
HLR/zmmR)Jr 1<m.R (3.27)

u

K
145/¢2w,i<v>|D;?,UGR||a§a§GR|dxdvs ~NGRI
Qr

Likewise, since V¢ < ¢, we integrate by parts in Js to obtain

Js = / YVt - V|07 9] GrlI>dxdv < /¢¢zwi<v>|a,?aﬁGR|2dxdv
Qr Qr (3.28)
< ZIGrIP, +C122
- N Hiyg jom (2R) m.R:
Estimating Je: For the final quantity on the right-hand side of (3.9), we integrate by parts to write
Jo=—¢ / 2 Y2 V%P Gl dxdv — e / v (¢2%ﬁ) V%9 G 9P G g dx dv.
Qr Qr

The first term is negative. We will need it to close the estimates. We integrate the second term by
parts once more (note that supp(¢ ) C Qg for m > 1), yielding

—e/V(cpzw,%l)-Va)‘j‘afGRajj‘afGRdxdvzg/A(q&zwi)|8§85GR|2dxdv
Qr Qr
58/ (0202 + V2 AV + GIDIGD + G2 (Vutsn | + Y| D2 ) 10505 G r 2 dx dv

Qpr

£
<CeZ? Ci— Ggl%., ]
<CieZpt CiglGallymn g,
For the last inequality, we used analysis similar to J; 3 above. We also used that |V,
|D24r| < R™24—1. Therefore,

&
Jo+ ¢ / Y| VXL GrI*dxdv < CreZ), g + C1—5 IGRIZ 0 (3.29)

3 .
R H | ryjom—1 (828

Qg

Proof of (3.8): Combining (3.17), (3.22), (3.26), (3.27), (3.28), and (3.29), then summing over
all ¢ and B with |«| + | 8] = m yields

1d
— L GRI2 Grl> Grl?
T l R”Hﬂﬁ/zm(w) sl R”Hﬂ‘]l/zm(ﬂk) + ¢l R“Hlj'}j;]/‘;?n(ﬂk) 530
~ K .
<CE\GRI2, Ci(1+X™)Z% ¢ + CIRY X||GR|>,, :
< NII R||Hu1j,i/2m($21e)+ 11+ XHZ, g+ Ci I RllHUL,g/zm_l(QR)
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If we now choose N larger than 2C /K, the first term on the right-hand side is absorbed on the
left. We then define

Gn=CIR"X||G
n=CIR XIGklGma
ul,R/2!

By induction, (3.8) holds for m — 1. Integrating from O to ¢, we have

1GROI 10 +x/||GR<s>|| s ds+s/||GR<s>|| ds

ul R/2M— 1(82) ul R/2M— 1(828) ul R/zm 1(828)

t

fllgmlli,kl+C1/( +X ()N 22 g(s)ds +e.
0

Applying Gronwall’s inequality, we see that for all ¢ € [0, T']

IGI -1 +8/||GR(S)|I ds

tR/zm* R lR/2m 1 (§28)

t

< (lgunty +e)exo €1 [ (14 X(5)") 0

0
See (3.5). In particular, the bound on the second term implies that

T

1 X
/Gm(s)ds<8 if R>2< 2 (Ilg,nllHk +8)exp(C1T(l+XA))> . (3.31)

X|=

Fixing R as above, and using the bound from (3.31) in (3.30) yields (3.8).

Conclusion of Proof: Summing (3.7) and (3.8) for all m up to k and using Gronwall’s inequality
as above gives, for all 1 € [0, Ty, 1,

1GIs = (gl +&)exp(CITA+X D). (3.32)

Now consider the sequence of functions {Gg} (for K € N) of solutions to the problem (3.1)
on Qg with boundary conditions (3.2) and with ¢ = (InK )~1. Note that this choice of ¢ still
allows condition (3.31) to hold true, for sufficiently large K depending on the parameters of the
problem.

The bound in (3.32) holds for each such Gg. If L > 0 is any large number, we conclude that
Ixr Gk ||Y# is bounded uniformly in K. Recall that x; is a smooth cutoff function in x and v,
supported in the ball of radius L — 1, and equal to 1 in the ball of radius L — 2. Therefore, a
subsequence converges weakly to some limit in G € Y’T‘ supported on the ball of radius L — 1.
Note that G and G/ are identical on the ball of radius min(L, L") and for all ¢ € [0, T'].
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A diagonalization argument allows us to take L to oo and extract a subsequence (which we
also denote as {Gk}) and a limit G €Y. # such that

Gk — G in Y} oncompact sets.
Lemma 2.2 implies that A[h.] — A[h] in the space L*°([0, T], Hl]l(I) as ¢ = (In K)~!' -0, and
similarly for B[h.] and C[h.]. Since k > 4, the function G has sufficient regularity that it is a
solution to the linearized problem (3.3) in W;"**H2  on all of RS. By the maximum principle
for (3.1), each G is nonnegative, and therefore so is G. Furthermore, G inherits the bound (3.4)
from (3.32). O

We are now ready to solve (2.1) by constructing a sequence of approximate solutions in the
space Y; given by (1.5).

Theorem 3.3. Assume that g;, € H, and that

ul’
”gi"”Hl]fl < M.

Then, for some T € (0, Ty, | depending on My, there exists a unique nonnegative g € Y. IT‘ solving
2.1) with g(0, x,v) = gin(x, v).

We emphasize that, although 7" depends on My, M can be arbitrarily large.

Proof. Define go(t, X, v) = gin(x,v) and, for n > 1, define the sequence {g"} recursively as the
solution of

08" +v-Vig" +k()g" =t (Alg" T IDIg") + Blg" '] Vug" + Clg"lg",  (3.33)

with g"(0, x, v) = g;, (x, v). This is precisely the linearized problem (3.3). Then, by Lemma 3.2,
for any T € (0, T, ], each g" exists, is nonnegative, belongs to Yk, and satisfies

ny2 A n—1 A
18" 156 < ginllys exp (1T (118" oy ) ) (334)

for some A > 1 and Cy > 0 that are independent of n.
Assume by induction that, forn > 1,

18"~ o g0,71, 1) < 2Mo, (3.35)

for some T € (0, Ty, i ]. This hypothesis holds for n =1 by our assumption on g;,. Then (3.34)
becomes

18" 134 = MG exp(C1T (1 + 2Mo)™).

If we take
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. { 2In2 }
T < min )

SS————
Ci(1+ (2Mg)hy """

then || g" ||Y§ < 2M)y, and in particular ||g" ||Lm([0’T]’Hk]) < 2My. Note that T is independent of 7.
We conclude (3.35) holds for all n > 1.
Next, define w”" = g”" — g"~!. Equation (3.33) implies, for n > 2,

' +v-Vew' 4+ k() 2w =1tr (A[g”*‘]Dﬁw”) + Blg" "] Vou" + Clg" "
+ tr (A[wn_l]Dggn_l) + B[wn—l] . van—l + C[wn—l]gl’l—l,

and w" (0, x, v) = 0. For all multi-indices with |«| + |8] < k, we differentiate the equation for

w" by 9 353 , multiply by ¢28§‘ af w”, and integrate over R®. Note that the estimates developed in
the proof of Lemma 3.2 were independent of R and . Repeating the calculations (now without
any cutoff in v or mollification of g"~! or w"~!) yields, by Lemmas 2.1 and 2.2 and the fact that
||g"||Y; <2M, for all n > 0,

T
w3 < € / (14 18" O ) 1" ()13 ds
0

T
+C / ")l (18" 13 + 1" ()17, ) ds
0

= CIT(+ M) [w" Iy + C1 T (2Mo)" + (4Mo)™) (4Mo) A2 w1

ko
YT

since || w" | HY < 4Mj and similarly for w1 If necessary, we choose 7' smaller, so that
u

1
clT(1+(2MO)A)<5 and  C1T (2Mo)™ + 4Mo)™) @Mo) A2+ < —

A

Now we have
1
n_ ,n—1 “Neh—1 _ ,n—2
g™ = &™ vk = Sl 8" k- (3.36)
We conclude g" is a convergent sequence and the limit g € Y% is a classical solution of (2.1).

The uniqueness of g follows along the same lines. If g1 and g» are two solutions of (2.1) in
Y; with the same initial data, then w := g1 — g7 satisfies

dJw+v- Vow + k() w=tr (A[gz]Dgw) + Blg2]- Vyw + Clga]w
+ur(AlwlDlg2) + Bl - Vyga + Clulgs,

and w(0, x, v) = 0. By the same estimate as above, and Gronwall’s inequality, we conclude that
Jwlys =0. O

Theorem 3.3 implies our first main result, Theorem 1.1, with f = e’(p"”")(”)zg.
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4. Mass-spreading
We first state a slightly weakened form of Theorem 1.3:

Proposition 4.1. Suppose that the assumptions of Theorem 1.3 hold. Suppose further that there
exist 8o, ro > 0 and xo, vo € R3 such that

801 B, ) (x0) x Byy (o) = fin- 4.1

Then there exists T, > 0, depending only on ro and the upper bound of the physical quantities
in (1.6) such that for every 0 < T <t < Ty, there exists v > 0, which depends only on dy, ro,
T, T, |vol, the physical quantities in (1.6), and |x — xo|, and p > 0, which depends on the same
quantities, such that

f(t,x,v) >vexp [—p|v|ma"{4’37”}} ) 4.2)
We first prove Proposition 4.1, and then show how to obtain Theorem 1.3 from it.
4.1. Proof of Proposition 4.1

We prove the lower bound in Proposition 4.1 using a probabilistic representation. In order
to do this, we require an approximation process; namely, we need to cut-off g;; at infinity and
regularize f. The former is to construct a unique stochastic process associated to the equation
and the latter is to apply Ito’s lemma and relate the stochastic process to f.

We define this approximation process now. Let y be any smooth cut-off function such that
0<x<1,x(=1if |v] <1,and x(v) =0if |[v| > 2. For any R sufficiently large, define

arlf1(, x,v) = x(/Ralf1t, x,v) + (1 — x (v/R)I, (4.3)

where [ is the identity matrix on R3. Then, for any ¢ € (0, 1), define fr_ as the solution to

O fre+ v Vafre=t[@rlf1+eD)D3fre] +Lf1fRe in (0, 7] x R? x R3,
Sr.e = fins on {t =0} x R3 x R3,
“4.4)

with f fixed in the coefficients, the existence and uniqueness of f . follows from the work in
Section 3. Indeed, (4.3) is the linear Landau equation, so the bounds on fg . are, in fact, easier
to obtain. We get, immediately, that PV’ SR.¢ 1s bounded in Y‘T1 independently of R and ¢.

Next, we claim that f € C¥([0, T] x R3 x R3) for some « € (0, 1). Indeed, since f e
LXH?, N W/ H2 | then, by the Sobolev inequality, f € L'WY N W,"°LS | for any p €
[1, 00). We may then apply the anisotropic Sobolev embedding [27, Theorem 2] with p > 36/5
to obtain the Holder continuity of f. We note that fz . inherits the same bound.

Due to the above discussion, along with the uniqueness of solutions to the linearized Landau
equation in the class of functions with e"<”>2 fe Y4, which follows from Theorem 1.1, we obtain
in particular that
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lim lim fre=f, 4.5)
g—->0R—00
where the above limit holds locally uniformly in C¢, for some « € (0, 1). This convergence is a
key point in our argument since, in general, we obtain pointwise lower bounds for fr . when R
is sufficiently large and then we take the limits R — oo and ¢ — 0 to obtain lower bounds on f.
The main tool in the proof of the mass-pushing theorem is a probabilistic interpretation
of (1.1). In preparation for this, we set some notation and collect a few important facts.
Since ap is symmetric and non-negative definite, we may find a symmetric, positive definite
matrix og ¢ such that

ap+¢&l =0R  OR;.

We note that the upper bound on a, i.e. that @ < (v)>1? (cf. [29, Appendix A]), which depends
only on the physical quantities (1.6), yield the upper bound og < (v)™0-14Y/2} “which is
independent of R and ¢. This is important in the proof of Proposition 4.1.

Further, since f €Y. 4 the matrix a g is uniformly Lipschitz in all variables due to the cut-off
in v (see Lemma 2.1). Since € > 0, we notice that o . is uniformly Lipschitz as well. We note
that the & is not crucial here since the square root of a non-negative C2 function is C%!. The
bound on the Lipschitz constant of og . depends on € and R, but we use it only to guarantee the
existence of a solution to our stochastic differential equation below. Importantly, we do not use
this Lipschitz bound anywhere in our estimate of m.

Lemma 4.2. Suppose that the conditions of Theorem 1.3 hold. For any (t,x,v) € [0, T] x
R3 x R3, there is a unique solution to the stochastic differential equation

dVit =Gree (1 =5, X557, Vi) AW,
dXé,x,u — _Vst,x,v ds, (46)

Votl=v, XM =x,
forall s € (0,t), where Wy is a Brownian motion in R3. Further, we have
too o yh XU XN g
Froo(t.x,v) =E[eh COmXTI0 p (pon )], (47)

Though the kinetic setting is non-standard, the proof of Lemma 4.2 follows from the usual
arguments. The existence is due to a Picard iteration, the uniqueness is due to Grénwall’s in-
equality, and the formula for fr . requires only an application of Ito’s Lemma. As such, we omit
the proof. We refer the interested reader to [30]. It is important for the application of Ito’s Lemma
that fg , be C Uin7 and x and C% in v. Using the Schauder estimates of [29] along with the pos-
itive definiteness of ag + €I, we see that this is the case. This is where the ¢/ term is crucial; the
regularity of fg . is required below.

We also need the following lemma, which shows that pointwise lower bounds for f in a small
ball give a lower ellipticity constant for the matrix a[ f]. This implies a lower bound for og ¢.
The proof of this lemma is similar to calculations that appeared in [13] and [38], but there is a
key difference: with pointwise lower bounds available, there is no need to use the upper bound
on the entropy density H (¢, x), so this lemma allows us to remove the entropy assumption from
our criteria for smoothness and continuation.
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Lemma 4.3. Let g : R? — R be an integrable function such that g > 81 B, (vo), Jor some §,r >0
and vy € R3. Then alg] defined by (1.2) satisfies

(1+1v])?, ee$S?,

4.8
1+ v)?’*2, e-v=0, (4.8)

a;jlglt, x,v)eje; > cd {

for unit vectors e, where ¢ > 0 is a constant depending only on y, vy, and r.

Proof. We consider the case vy = 0, but the general case follows similarly. For any e € S?, (1.2)
implies

_ (w-e)? :
aij[g]eiej:ay/<l— o lw|” g — w)dw > 8 / sin?(0,.u)|w| P2 dw, (4.9)

R3 B (v)

where 6., is the angle between e and w. Let A, = {w € B, (v) : |w -e|? > |w|*(1 — &)}. Since
sin6, 4, 1s close to zero in A¢, we want to avoid that set to derive a lower bound. We can assume
e = v/|v|, since that is the worst case, i.e. the case where A, is largest for a given ¢. Clearly,
there exists gg € (0, 1) such that |A,)| = |B,|/2. With (4.9), this already implies a;;[gle;e; 2
8(1+|v|)Y for small |v|. For |v] large (compared to r), since A, contains a cylinder of diameter
~  /€olv| and height 2r, and this cylinder must have volume bounded independently of |v|, we
conclude gy ~ |v|_2. Hence, from (4.9),

B, (v
aijlgleie; =8 f sa|w|y+2dwzaso|v|y+2%26|v|—2|v|y+226|v|y.

B, ()\Aq

To conclude the proof, we need only consider the case when e - v = 0 and |v| > 3r. In this
case, for any w € B, (v), we have w - e <r and [w| > [v| — r > 2|v|/3. Thus, (w - €)?/|w|?* < 1,
which, in turn, implies sin? Oe.up > ‘51. From (4.9), we have, as desired,

1
- 2 2
aijlgleie; 2 85 (v =" 2B () 2 87wl O
We are now in a position to prove Proposition 4.1.

Proof of Proposition 4.1. We prove this in four steps. We first show that the initial bound is pre-
served on a slightly smaller set for all ¢ € [0, T;]. Then we crucially use Lemma 4.3 to conclude
the diffusivity matrix og . is positive definite for ¢ € [0, 7] and x near xo. This allows us to
spread mass to any v. In the third step, we use the fact that we have mass at any velocity to use
the pure transport term to spread mass to any x, though only for a small range in v. Finally, for
a fixed x, we use the small mass clustered at some of the velocities to repeat our earlier step: we
obtain a lower bound on the viscosity and spread mass to all v. These four steps give us a lower
bound on f for all ¢ € [0, T].

Before beginning, we assume, without loss of generality, that 6o < 1. We also note that all
estimates depend on y and the physical quantities (1.6), though we often do not mention this
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dependence explicitly in the sequel. Finally, we denote m (¢, x, v) to be a positive function satis-
fying the properties as in the statement of Proposition 4.1 that changes line-by-line.

Step 1: Preserving a mass core for short times: The first step is showing that the lower bound on
the mass at (xg, vo) given by (4.1) remains for a short time.

We make this explicit. Fix any R > 2(|vo| + ro) and € € (0, 1). Let ry = min {ro/2, /ro}.
We claim that there exists T, > 0 depending only on vy and r¢ such that, for all ¢ € [0, T],

o
SR, x,v) > 3]1350(x0)><850(v0)(x,v)' (4.10)

To see this, define 7, = inf{r € [0, T] : |Vt”x’” —vg| > r(} and use Lemma 4.2 to obtain

SR, %, 0) 2 []1{1'50 =) fin (Xf'x‘“, Vt"x'”)] = S []l{tio >t}]l{X;’x'”eBro(xo)}]l{Vrt’X’veBro(vo)}]
=8P {ty, > 1, X]V € By (x0), V""" € By, (v0) } - (4.11)

We make the following crucial observation. By our choice of 7, , we consider only trajectories

VIV that never leave By, (vo) C Br(0). As a result, (X5, vi*Y) and thus our estimates in
this step are independent of R (cf. (4.6) and the definition of 6 ().
Let 7> > 0 be a constant to be determined and define

T, = mi L ro—ro 412
x = min T,KO,EW,TZ . (4.12)

If |[v — vol, [x — xo| <rgand ¢ € [0, T;] then we claim that

P{t;, > 1, X;™" € Byy(x0), V[ € Byy(v0)} = P(1y, > t} =P {Omax V5 — ) < 50} )
I - <s<t

4.13)

1,x,v t,x,v

Indeed, suppose that |V;>" — v| < r( for all s € [0, T]. First, we observe that |V;""| < |v| +
ro <|vo| +ro < R. Hence 7,, > . Second,

t t
X7 = xo] < [V;”"”ds + |x —xol < / (lvol +rg) ds 4+ ro < Tilvol + (Ts + Drg < ro.
0 0
Here we used the third term in the definition (4.12) of T, along with the fact that ry < rp/2.

Third, it is clear that V""" € By, (vo). Hence, (4.13) follows.
From (4.13), we conclude that

Plr, > 1. X" € Byy(x0), V/"™""" € Byy(vp)} = 1 - P {Omax [VESY — | > KO} . (414

<s<t

Hence, (4.10) follows from an upper bound of the last term on the right-hand side of (4.14). To
obtain such an upper bound we first apply Markov’s inequality:
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IP’{ max V[V — | >50} =IP’{ max V%V — y|? >£%} 5502E|:max |Vxr — v|2].

O=<s=t O=<s=<t 0<s<t

In order to bound the term on the right hand side, we argue as follows. Use Doob’s inequality
and the Ito Isometry to obtain
/ 2
E[max |[Vi*5Y — v|2] SE|V/ S — v|2] =K /c_rR,g(X;’x’v, vE5)d B

O<s<t

0

[t
—E /|5R’g(xg’x’v,v;’x’v)|2ds
L0

Using the asymptotics of 6 . and the fact that ¢ < 1, we now obtain bounds on E[max; | Vf’x’v —
v|?]. It is useful to consider two cases separately:

First, if y € [~3, —2], then G . is bounded above independently of X}**" and V;"**". Hence,
we see that

E [Omax |VEEy v|2i| < Cot, (4.15)
<s<t

where Cy represents the implied constant above and the upper bound on og .. In this case,

Cot
r2

P{ max |VI5V —v| > rpt <
O<s<t - r,

Letting 7> = K%/ZCO the above is bounded by 1/2. Combining this with (4.11) and (4.14), we
obtain, for all (¢, x, v) € [0, Tx] x By, (x0) X By, (vo),

)
fR,&‘(tv-xa v) > ?0

From our definitions of T, and 7>, it is clear that T, = T if r¢ is sufficiently large, depending
only on |vg|. This finishes the proof of the claim in the case y < —2.
On the other hand, if y € (=2, 0) then

0<s<t

t
’ [max Vet = vlz] SE f (L [VEer | 772)2 ds
0

0<s<

<tE [1 + max [VI©Y — 2T 4 |v|2+y] )
t

Above, we used Lemma 2.1 in the first inequality. We use Young’s inequality on the second term
in the expectation, obtaining

2 1
E |:max |VIor — v|2] < Cot (1 + (Jvo| + ro)2+”) + (Cot) T + EE [Omax |[VEor — v|2i| ,
<s<t

0<s<t
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where Cp again comes from the implied constant above. After increasing Co, this may be re-
arranged to give

E[max |VESY | } < Cot (1 + (lvol +r0)2+V) 4 (Cot) . (4.16)

O<s<t

Hence, we obtain

2

CoT; CoTr) 1
]P’{max |Vtx”—v|>r0} 0 2(1+(|U0|+r0)2+y>+%_ 4.17)
O<s<t _0 ry

We now let

(2) Iyl
T> = — min —
‘T4 {Co<1+(|vo|+ro)z+y) Co}

Then the right hand side of (4.17) is smaller than 1/2. Using this along with (4.11) and (4.14),
we once again obtain that, for all (¢, x, v) € [0, Ty] % By, (x0) X By, (vo),

)
fre(t,x,v) > 30

Using the definitions of T, and 7>, we again note that 7, = T if ry is sufficiently large.
Our bounds do not depend on R and ¢. Hence, taking R — oo and ¢ — 0, we obtain

f,x,v)> > IlB,O(xo)xB,O(vo)(x v), (4.18)

which finishes the proof of the Step 1.

Step 2: Spreading mass in v for x ~ xo: The next step is to show that the mass of f instanta-
neously “spreads out” in v. We require this to “spread out” the mass in x in Step 3, below. We
make this explicit. Fix 0 < T <t < T,. For any x € BLO/Q()Co),

Fltx, ) > vexp{—p|v|maX{4’3_y}}, (4.19)

where ¢ and p are as in the statement of the proposition.
Applying Lemma 4.3 and using the definition of og ¢, we find that there exists Ao, depending
only on 8§y and r¢ such that

GR.e(t, x,0) = Ao(v)?/2. (4.20)

Fix any R > 2(|v| + |vo| + o) and any ¢ € (0, 1). Let ¢, = ry/(4 max{|v|, |vo|, N, |v|2 D,
for Nyy > 1 to be determined. We first prove the claim when t < #.. Then we let 7o = 1nf{s >0:
|V ”| > 2max{|v|, |vo|, 1}} and notice that
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fR,é‘(t’ X, U) Z E[l{tz‘,}‘>t}‘fiﬂ (Xé’x’va ‘/SZ,X,'U)]

o
> EP{QM >1,(X; ", VY)Y € By (x0) x Bry(vo)} -

Since ¢ < t. then it follows that, if # < 7o), Xi’x’v € B, (x0). Hence the above simplifies to

o
fRe(t, x,v) > 7111>{r2|u, >1, V)" e By (v)}. 4.21)

Define v : [0, 1] — R? as ©(s) = v + (s(vg — v))/¢. Then (4.21) further reduces to

8
FRe(t, x,v) = EOP {Olgfiiit VIOV —0(s)] < KO} . (4.22)

In order to obtain a lower bound on the right hand side of (4.22), we use Girsanov’s transform
to change probability measures to Q such that ¥, := V""" — #(s) and

dYy =Gp o (Xy©Y, VI©Y) dB
where f?s is a Q-Brownian motion. Let A, = {maxo<s< |Ys| < r(}. Then we have that

t

t
P{ max |[VI*V —5(s)| <rgt =Eg | exp{ — 56l db, — ooz Pds ¢ 1
ax |Vg v(s)| <ror=IEqg | exp Vo,  dB;s > vog |7ds ¢ 14,
0

0<s<t
0

—|vo—v\2 !
2 j y JLA— ~
> ¢ Corkg(1lugl+lvl-+r0) Eq | exp —/vaRist ]lAr0

0

Here Cy is the implied constant in (4.20). Let g, = Q(Ay,). Then, using Jensen’s inequality, we
obtain

=2 t

1LXV _ 5 Cotg(1+ugl+vl+rg)Y -1 ==—14p

P{Orgggt Vet = 0(s)l 550} Z e 0 GrB | Layy 4y, exp | 0o, dBs
o 0

7|v0—v\2 t

2 y _ - ~

> ¢ Corkg(1lugl+lvl-+r0) qr, expEg ]lAioqzolfvoR’i dBg
0

(4.23)

We note that, after fixing a sufficiently large N, depending only on |vg|, r(, and the physical
quantities (1.6), we may obtain a lower bound for g, by arguing exactly as in Step 1. On the

other hand, letting R = |v| + |vol +ro,
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t t

B | 1, [ foglads || = Eq | L, [yt ab,
0 0
1/2

t
<Q(4,)'*Eq Mm/"j"z?lfds (4.24)
0

12 lvo — v
<q
= Cov/tho(1 + vol + [v] +ry)?/?
lvo — v]?

CatA 3 (1 + |vol + [v] +1¢)Y

=qry t+

where we used Holder’s inequality and the Ito isometry in the first inequality, and we used the
lower bound (4.20) in the second inequality.

Let B = max{3 — y,4}. Combining the discussion regarding g,, with (4.24), (4.23),
and (4.22), and using the fact that [v|>~7¢~! < |v|# + C, for some C; depending only on ¢
and y, we obtain

v~

fR,e(t,x,v)zveXp{—p }zv’eXP{—p’lvl’S},

t

for some v’ and p’ with the same dependences of v and p. Since all estimates are independent
of R and ¢, we may conclude the proof of Step 2 in this case by taking the limit as R — oo and
e — 0.

If t > t., we may simply translate the argument in time and use the semi-group property.
Hence,

v|2_y

fR,s(t,x,v)zveXP{—p }Zv’eXP{—p’IvI’s}

Ie

for some V" and p’ with the same dependencies as v and p. We conclude exactly as above. This
establishes (4.19).

Step 3: Spreading mass in x for select velocities: We now obtain a lower bound on f for all ¢
and x and some subset of velocities. Specifically, we aim to prove that, for all 7 € (0, 7] and all
x € R3 there exist Vs x € R3, depending only on |vg], 79, ¢, and |x — x|, and & » > O depending
on the same quantities and also &g, such that, for all v € By jat (e .x)s

ft,x,v) =68 x. (4.25)

Further, v; x and 6, , depend continuously on (¢, x) € (0, 7] x R3.In particular, this provides a
lower bound of the form (4.1) for f(¢,-,-) at (x, v; ) forany t > 0 and x € R3.

To establish (4.25), fix any ¢ € (0, Ty] and R > 0 to be determined. Again notice that up to
shifting in time, we may assume that ¢ < #g, for #p to be determined below, and that the lower
bound from Step 2 (4.19) holds for the initial data. Define v; y = —(xo — x)/¢. Fix any ¢ € (0, 1)
and any R > 2(|v; | +1(/2t + 1), and let
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Ty =inf{s [V = v = 2.

Fix any v € By /4;(v; x) and, using (4.19), there exists mo > 0 depending on &, |vg|, ro, ¢, and
|x — x| such that

SR, x, U)>m0E[]l ‘[;O/t>t}]]-[ [XLGB'O/Z(XO)} [ AveBrO/ZI(UM)]]:r;lop{fgo/t>l}. (4.26)

In the equality above, we used that if 7, ;, > 7 then v/ e By, /2 and

t
|XP5Y — x| = x—xo—l—/V’xvds /(V’x”—vx)ds<20
0

Hence, in order to finish the proof of Step 3, we need only obtain a lower bound on

Plty 0 > t} =P {max [VITY oy, x|<;—(t)}—1—P{max VX, x|>;—‘t)}. 4.27)

0<s< 0<s<t

Since the estimates are significantly simpler when y < —2, we only show the case when y > —2.
Indeed, we follow the work in Step 1 and use the estimate (4.16) to obtain

2
r t X —X
P max [VI5Y — oy, | > 22 <—|Cot(1+ 0
0<s<t 2t g t

where Cy is a positive universal constant. We are now in a position to define 7y. Let

24y
Iy =
+ 7) +Cy (Cor) w) . (428)

Iyl

1 2+y
L 5o\’ o " 5
0 = — min , ) )
4 3247 C 3247 Colx — xo|*HY v o
0 ol = xol 3%y \c,cff

and then (4.28) implies that

1
P max|V”“’—vx|>r—0 —
0<s<t ° 2t — 27

Plugging this into (4.27) and then (4.26) yields the lower bound for fr .. Taking the limits
R — 00 and ¢ — 0 yields the lower bound for f. The continuity of this lower bound and of v;
is clear from the proof. This finishes the proof of Step 3.

Step 4: Spreading mass in v for all x: Since the lower bound of f obtained in Step 3 holds
locally uniformly in x, we may repeat the arguments of Steps 1 and 2 in order to see that, for
any (t,x,v) € (0, T,] x R3 x R3, there exists m(t, x,v) > 0, depending only on ¢, |v|, |vg|, 70,
|x — xo|, and &, such that f(¢, x, v) > m(t, x, v). This finishes the proof. O
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4.2. Using Proposition 4.1 to obtain Theorem 1.3

Proof of Theorem 1.3.(i). First, note that the assumed regularity of f implies that f(0, -, -) is
Holder continuous (see the discussion after formula (4.4)) so that (4.1) is satisfied for some &g, ro,
X0, Vo. Next, notice that applying Proposition 4.1 one time implies that f is positive everywhere
for some small time interval (0, T,]. At which point, we may re-apply Proposition 4.1 on the
time interval (7%, T']. This is possible because, by choosing é7, small enough, we may find r7,
arbitrarily large such that

5T*]lB,T* ()% By, ©(x,v) < f(Ty, x,v).

The sub-Gaussian lower bound then follows directly from Proposition 4.1, concluding the proof
of Theorem 1.3.(i). O

Proof of Theorem 1.3.(ii). Arguing as above, and using the well-distributed initial data, we im-
mediately obtain 81, depending only on R, §, r, T, T, and the quantities in (1.6) such that, for all
(t,x,v)e[T/2,T] x R3 x B1(0), f(t,x,v) > 5. Define

ft,x,v) =81 exp{—B®)|v]* 7},

for g : Ry — Ry to be determined. We claim that f is a sub-solution to the linear Landau
equation; that is, letting L := 0; +v -V, — tr(Zz[f]Dlz)-) —c[f]l,weclaimthat L f <0in [T, T] x
R3 x {|v| > 1}.

By a direct computation, we obtain

Lf=f[-B1P
—ayLf1(@ = )20 v — B2 = IVl 6 — ylv o)) — el /1]
< [-B1P T BT+ cw?].

where C is a constant depending only on é; and the physical quantities (1.6). In the inequality we
used the anisotropic upper bounds for a[ f] of [29, Appendix A], the lower bounds of Lemma 4.3,
and the fact that c[ f] > 0.

At this point, we choose () =14 C1/(t — T /2). We choose the constant C large enough
that —B'(t)|v|>~Y + C(v)? < C~'B%(t)|v|>Y forall |v| > 1. Hence, L f <O0. Since f(z, x, v) >
81> f(t,x,v) whenevert € [T /2, T] and |v| = 1, and we can extend ]Tsmoothly by zero when
t =T/2 and |v| > 1, we have f < f on the parabolic boundary of [T /2, T] x R3 x {jv| > 1}.
It follows from the comparison principle applied to f and f that f < f in [T/2,T] x R x
{|v] = 1}. This concludes the proof. O B B

4.3. Optimality of self-generating lower bounds

We show that the asymptotic behavior of the lower bounds in Theorem 1.3(ii) cannot be
improved in general. We find quite general initial data such that corresponding upper bounds
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hold. This upper bound may perhaps be known in the space homogeneous setting, but we are
unable to find a reference.

Proposition 4.4. Let T > 0 and f be any bounded solution of (1.1) on [0, T] x R3 x R3 such
that the quantities (1.6) remain bounded on [0, T and such that, for some p, K > 0,

£(0,x,v) < K exp{—p|v]*77}.

Then there exist o and C, depending only on y, the quantities (1.6), and || f || oo (0, 71xR8)> Such
that

plv|*7

t,x,v) <K I —
ft,x,v) exp{(x 2Cpr+1

} forall (t,x,v) €0, T] x R® x R3.

Before beginning the proof, we note that there exists f satisfying the conditions of Proposi-
tion 4.4, see, for example, Theorem 1.1.

Proof. In order to conclude, we need only construct a super-solution in [0, T'] x R? x R3. Let
L be as in the proof of Theorem 1.3.(ii). Let f(¢,x,v) = Ke‘”_ﬁ(’)'”'z_y, where o > 0 and
B :R; — R, are to be determined. Computing L f directly as in the proof of Theorem 1.3.(ii),
and using the upper bounds for a[ f] and c[f] in [29, Appendix A] and the fact that a[ f]
is nonnegative definite, we find a constant C, depending only on y, the quantities (1.6), and
”f”LOC([O,T]X]RG)’ such that

LT = F e =Bl = CB 0w —cw].

Then, we define () = p/(2pCt + 1), so that the positive term —B'(t)|v|*"7 dominates for
large |v|. Choosing > 0 large enough, we have L f > 0 for small |v| as well. By our assump-
tion on the initial data, the comparison principle implies that £ < f on [0, T] x R? x R3. This
concludes the proof. O

5. Smoothing and continuation of solutions
We are now ready to show that our solutions to (1.1) are C*° in all three variables.

Proof of Theorem 1.4. We will apply the main theorem of [29]. The Gaussian decay of f in v
(which is uniform in ¢ and x) implies uniform upper bounds on M (¢, x), E(t,x), and H (¢, x).
Theorem 1.3 implies that M (¢, x) > m; , > 0 foreach t € [0, T], x € R3, and that a uniform,
positive lower bound on M (¢, x) holds in any cylinder Q,(#o, xo) = (to — r2] x By (x0) so long
as r? < to. As written, the smoothing theorem [29, Theorem 1.2] requires a lower bound on
M (t, x) that is uniform in # and x. However, these proofs are entirely local in ¢ and x, and still go
through with our locally uniform lower bound on M (#, x). Hence, by the (locally uniform) lower
bound on the mass M (¢, x), Gaussian decay in v of f, and the upper bounds on the physical
quantities (1.6) and H (¢, x), we conclude f isin C*®([0, T'] x R3 x R?) via [29, Theorem 1.2].
Since f has uniform Gaussian decay in v, the proof in [29] shows that all partial derivatives have
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Gaussian decay which is locally uniform in ¢ and x, with constants depending on the order of the
derivative. This implies the moment bounds in the statement of the theorem.

If, in addition, f;, is well-distributed, the lower bound on M (z, x) is uniformon [T /2, T] x R3
forany T € (0, T']. Together with the uniform Gaussian decay, this implies, via [29, Theorem 1.2]
applied to f(T/2 +t, x, v), that all partial derivatives of f satisfy Gaussian-in-v estimates that
are uniform on [T, T] x R} O

Finally, we show that solutions can be extended so long as they are well-distributed initially
(see Definition 1.2) and the hydrodynamic quantities remain bounded. The following is a more
precise statement of Theorem 1.5:

Theorem 5.1. Suppose that the assumptions of Theorem 1.4 hold for some p >0 and T € (0, T
where T > 0. Then there exists Ty > 0, depending only on y, p, and ||e"<v>2f(T, : -)||H4I, such

that f can be extended to be a solution of (1.1) in Y;+T1

If. in addition, the initial data satisfies e™‘ fm H* H, for some py > p, and fin is well-
distributed with parameters R, 8, r, then the solution f satisfies e™n(#-po/2)(v f €Yy 4 for
some /1, > 0. The constant . and the time of extension Ti depend only on T, y, R, 8, r,
[|erotv) f,,, ||H4 and the bounds on (1.6). In particular, T1 may be chosen independently of p

and e £ (T~ )| .

Remark. The significance of the decay rate min(u, po/2) is as follows in constructing a solution
f in Theorem 1.1, our first step was to divide f by e~ (P0=<D( ? for a positive constant « that is
more or less arbitrary, but the resulting time of existence T depends heavily on pg/k and k. This
theorem allows us to remove this dependence when the initial data is well-distributed.

Proof. For a solution f with ePtv f IS Y4, we of course have e?{’ f(T, ,') € H* > and we
may apply Theorem 1.1 to obtain a solution on [T, T 4 T1] for some 77 depending on p, y, and
[|er V) f (T, -, ) - We concatenate this solution with f to obtain a solution on [0, T + T7].

Next, suppose that f;, is well-distributed with parameters R, §, r, and that e"“ f, n € H
By the uniqueness in Theorem 1.1, there is some g € (0, T) depending on [|ePofv) f,,, I HY such

that ePo(V)?/2 f ey, 4 We want to apply [29, Theorem 1.2] to show f and its derivatives up
to order 4 have Gaussmn decay up to time 7', with constants as in the statement of the current
theorem. As written, [29, Theorem 1.2] requires a uniform upper bound on H (¢, x) and a uniform
lower bound on M (¢, x), but the only place in [29] where these two assumptions play a role is
in showing a lower ellipticity bound for a[ f] of the form (4.8). Since f;;, is well-distributed,
Theorem 1.3 and Lemma 4.3 imply such an ellipticity bound holds, with constants depending
only on 1y, T, y, the quantities in (1.6), R, §, and r. With this modification, we can apply [29,
Theorem 1.2]' and conclude that there exist positive constants C and p, depending only on 7o,
T, ¥, R, 8, r, and the upper bounds on (1.6), such that

! The Gaussian bounds of f were originally proved in [7] for the case y € (—2,0). They were extended to the case
y €[—3, —2] in [29] and to apply to derivatives of f via Schauder estimates.
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. 2
[[eminte o/ £ 7.y yt =C, t€ln,TI.

Now we may proceed as in the first paragraph of the proof and obtain a solution on [0, T + T1],
with 77 as in the statement of the theorem. O
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