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Abstract We consider stochastic perturbations of geodesic flow for left-invariant
metrics on finite-dimensional Lie groups and study the Hörmander condition and
some properties of the solutions of the corresponding Fokker–Planck equations.
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1 Introduction

Our motivation for this paper comes from the problem of turbulent mixing. However,
instead of studying the motion of fluids, which can be mathematically described by
trajectories in the group of diffeomorphisms of the domain containing the fluid (as
pointed out by Arnold 1966), we will study its finite-dimensional version when the
diffeomorphism group is replaced by a finite-dimensional Lie group G. We equip
G with a left-invariant metric and consider stochastically perturbed geodesic flows.
In other words, the infinite-dimensional configuration space of the usual continuum
mechanics fluid models, given by the connected component of the group of volume-
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preserving diffeomorphism of a domain occupied by the fluid, is replaced here by a
finite-dimensional configuration space given by a Lie group G.

Such finite-dimensional models may admittedly be somewhat removed from impor-
tant phenomena in the real flows related to very high (or infinite) dimensionality of
the phase spaces relevant there (at least if do not take the dimension of G as large
parameter), but it does retain an important feature: the amplification of the stochastic
effects by the nonlinearity. It is this feature on which we focus our attention in this
work.

A well-known example of this effect in the context of 2d incompressible fluids has
been established in a seminal paper by Hairer and Mattingly (2006), where ergodicity
for stochastically forced 2d Navier–Stokes equation was proved for degenerate forcing,
under optimal assumptions. There are at least two important themes involved in this
result. One might perhaps be called algebraic and involves calculations of Lie algebra
hulls related to the Hörmander hypoellipticity condition (Hörmander 1967; Hairer
2011). The other one belongs to analysis/probability and deals with consequences
of the Hörmander condition (which are of course already of great interest in finite
dimension) in the infinite-dimensional setting (under suitable assumptions). In the
finite-dimensional models we consider in this paper, the analysis component is much
simpler, although there still are many non-trivial and interesting issues related to
various aspects of hypoelliptic operators, such as the domains of positivity of the
fundamental solutions and convergence to equilibria.

Our focus here will be on the algebraic part. Roughly speaking, we will be inter-
ested in algebraic conditions which imply the Hörmander condition, ergodicity, and
convergence to equilibria. The stochastic forces will be essential for this, but it is
interesting to try to minimize the “amount” of stochasticity which is needed.

One can of course also study the ergodicity of the non-stochastic dynamics, but we
have nothing new to say about this notoriously difficult problem.

The interaction between the noise and nonlinearity plays an important role in tur-
bulence theory, where transport of energy from low to high spatial Fourier modes is
observed (and conjectured mathematically for solutions of the Navier–Stokes equa-
tions, see, e.g., Kraichnan 1967 for well-known 2d turbulence conjectures). The
ergodic measures on the space of velocity fields generated by random forces act-
ing on a few low modes (with white noise in time) should be the right probability
measures for defining the various averages one studies in turbulence. Our models can
be thought about as an fairly abstract version of this situation when the configuration
space is simplified to a finite-dimensional Lie group.

In addition to the work (Hairer and Mattingly 2006), important papers studying
Navier–Stokes with low-mode forcing in connection with stochastic ergodicity or
controllability include (Agrachev and Sarychev 2005, 2006; Romito 2004; Shirikyan
2007; Földes et al. 2015; Glatt-Holtz et al. 2017). Applications of Langevin equations
for fluid flows to the study of random motion of particles in fluid can be found, for
example, in Hinch (1975) and Roux (1992).

We consider two different types of models. The first one might be called the
Langevin-type perturbation of the geodesic flow. It is related to the stochastic equation

ẍ + ν ẋ = ξ, (1.1)
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where ξ is a random force, which is “degenerate”, in the sense that it acts only in a few
directions. On a group G with a left-invariant metric (and under suitable assumptions
on ξ ), one can employ symplectic reduction and obtain an equation

żk = qk(z, z) − νzk + σ k
l ẇl , (1.2)

in the Lie algebra g of the group, where we sum over repeated indices, k runs from 1
to the dimension of the group, l runs from 1 to the dimension of the noise (which can
be 1), wl are independent standard Wiener processes, and the equation

ż = q(z, z) (1.3)

is the Euler–Arnold equation in g as established in Arnold (1966). For this model,
we determine an algebraic condition on q which is necessary and sufficient for the
Hörmander condition for the corresponding Fokker–Planck equation to be satisfied in
the cotangent space T ∗G, see Theorem 3.1. For a compact group G, this condition
implies ergodicity, and the projection of the ergodic measure to G is the Haar measure.
This means that the (stochastically perturbed) geodesic flow will visit all points on the
group with the same probability (with respect to the Haar measure). We note that in
the setting of the left-invariant metrics on a group this will typically not be the case
without forcing, due to known conserved quantities one gets from Noether’s theorem.

For our next group of models, we take a compact manifold Z ⊂ gwhich is invariant
under the flow of (1.3) and consider

ż = q(z, z) + ξ, (1.4)

where ξ schematically stands for random forcing induced by the Brownian motion in
Z with respect to a natural Riemannian metric. One example we have in mind—in the
cotangent bundle T ∗G picture1—is the intersection of a co-adjoint orbit and an energy
level. The manifold Z can have much lower dimension than G. This situation may in
fact be a fairly realistic description of a motion with random perturbations in which the
quantities defining Z are monitored and kept close to constant values by some control
mechanism. When combined with random perturbations, such control might easily
induce random drift along the surface defined by specified values of the controlled
quantities. (A more concrete mathematical process is described in Sect. 3.3.) Together
with the equation

a−1ȧ = z, (1.5)

the stochastic equation (1.4) gives a stochastic equation in G × Z . In this situation,
we again determine an algebraic condition on Z which is necessary and sufficient for
the Fokker–Planck equation in G × Z associated with (1.4) to satisfy the Hörmander
condition, see Theorem 3.2, and, when the condition is satisfied, establish ergodicity

1 We can of course go back and forth between TG and T ∗G with the help of the metric.
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and convergence to equilibrium. For compact G, the ergodic measure is given by a
product of the Haar measure on G and an invariant measure on Z .

In the case of a non-compact G and a compactly supported initial condition for
the Fokker–Planck equation, the behavior will of course be different, and we illustrate
what one might expect by an explicit calculation for G = Rn and a one-dimensional
manifold Z , see Proposition 3.1.

The themes above have strong connections to control theory. In addition to the
remark above about interpreting Z as a “control surface”, there is another connection
via the Stroock–Varadhan theorem (1972). Roughly speaking, instead of random
forcing ξ one can consider forcing by control and ask which states can be reached
(and how efficiently). For an introduction to control theory, see, for example, Jurdjevic
(1997).

2 Preliminaries

In this section, we review the necessary background material concerning geodesics on
Lie groups with left-invariant metrics. Most of the results are well known and can be
found in one from or another in well-known texts, such as, for example, Arnold (1966),
Arnold and Khesin (1998), Abraham and Marsden (1987), Marsden and Weinstein
(1983), Marsden and Ratiu (1999) and others.

2.1 Basic Notation and Setup

Let G be a Lie group. Its elements will be denoted by a, b, . . . We will denote by g
and g∗, respectively, its Lie algebra and its dual. Let e1, . . . , en be a basis of g and let
e1, . . . , en be its dual basis in g∗, determined by 〈ei , e j 〉 = δi

j . We assume that a metric
tensor with coordinates gi j in our basis is given on g. In what follows we will mostly
use the standard formalism of orthonormal frames and assume that gi j = δi j , which
can of course always be achieved by a suitable choice of the original basis, although
sometimes it may be useful not to normalize gi j this way, so that other objects could
be normalized instead. When gi j = δi j , we can then identify vectors with co-vectors
without too much notation and write |x |2 for the square of the norm of an x ∈ g
or x ∈ g∗ given by the metric tensor. However, we will try to avoid relying on this
normalization too much, and many of our formulae will be independent of it. In such
situations, we will use the classical convention of using upper indices for vectors and
lower indices for co-vectors, with the usual conventions yk = gkl yl and yk = gkl yl ,
where gkl is the inverse matrix of gkl . In this notation we can, for example, write
|y|2 = yk yk .

The various objects on g and g∗ can be transported to TaG and T ∗
a G for any a ∈ G

in the standard way, by using the left translation b → ab. The resulting frame of
vectors fields on G (or 1-forms) will still be denoted by e1, . . . , en .

We can then consider G as a Riemannian manifold. The left translations b → ab are
more or less by definition isometries of the manifold. They obviously act transitively
on G, and hence, G is a homogeneous Riemannian manifold.
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The relevance of this construction for the mechanics of fluids and rigid bodies
was pointed out in Arnold’s paper (Arnold 1966) already mentioned above. The main
point is that for fluids and rigid bodies the configuration space of the corresponding
physical system is naturally given by a group (which, however, is infinite-dimensional
for fluids), and the kinetic energy given a natural metric tensor on it. We refer the reader
to the book by Arnold and Khesin (1998) for a deeper exposition of these topics and
additional developments.

2.2 The Symplectic Structure in T∗G in Left-Invariant Frames

The cotangent space T ∗G is the canonical phase space for describing the geodesic
flow in G via the Hamiltonian formalism. For a group G with a left-invariant metric,
the space T ∗G can be identified with G × g∗ by using the frame e1, . . . , en on G:

(a, y) ∈ G × g∗ → ykek(a) ∈ T ∗
a G, (2.1)

where e1, . . . , en is the frame in T ∗G which is dual to e1, . . . , en . Here and in what
follows we use the standard convention of summing over repeated indices. The “coor-
dinates” in T ∗G given by (a, y) are convenient for calculations and will be freely used
in what follows. Note that the prolongation of the action a → ba of G on itself to
T ∗G has a very simple form in the (a, y) coordinates:

(a, y) → (ba, y), (2.2)

i.e., the y coordinate stays unchanged. This is exactly because the frame ek is left-
invariant.

As any cotangent space of a smooth manifold, the space T ∗M carries a natural
symplectic structure. We start with the canonical 1-form on T ∗G, which is given by

α = ykek(a). (2.3)

The symplectic form ω is then given by

ω = dα. (2.4)

We have

dα = dyk ∧ ek + ykdek . (2.5)

The calculation of dek is standard. First, we introduce the structure constants of g
(with respect to the basis ek by

[ei , e j ] = ck
i j ek . (2.6)

123



2254 J Nonlinear Sci (2018) 28:2249–2274

Next, we apply Cartan’s formula for the exterior differentiation:

dek(ei , e j ) = ei · ek(e j ) − e j · ek(ei ) − ek([ei , e j ]). (2.7)

Combining (2.6) and (2.7), together with the fact that the first two terms on the right-
hand side of (2.7) vanish due to left invariance of the objects involved, we obtain

ω = dα = dyk ∧ ek − 1

2
yk ck

i j ei ∧ e j . (2.8)

In other words, in the local frame on T ∗G given by e1, . . . , en, e1 ∼ ∂
∂y1

, . . . , en ∼
∂

∂yn
, the form ω is given by the block matrix2

(−C(y) −I
I 0

)
, (2.9)

where C(y) denotes the matrix ykck
i j . The inverse of matrix (2.9) is

(
0 I
−I −C(y)

)
, (2.10)

and for any function H = H(a, y) on T ∗G the corresponding Hamiltonian equations
are

(a−1ȧ)k = ∂ H
∂yk

,

ẏk = −ek H + ylcl
jk

∂ H
∂y j

,
(2.11)

where (a−1ȧ)k denotes the kth coordinate of the vector a−1ȧ ∈ g, the expression ek H
denotes the derivative along the ek direction in the variable a. The last term on the
right-hand side of the second equations represents the Poisson bracket {H, yk} with
H considered as a functions of y (and a considered as fixed when calculating the
bracket). The bracket is uniquely given by its usual properties and the relations

{yi , y j } = ykck
i j . (2.12)

It can be obtained by applying the standard Poisson bracket on the symplectic manifold
T ∗G to functions independent of a in the above coordinates (a, y).

Note that Eq. (2.11) does not depend on the metric, they depend only on the structure
of the Lie algebra.

2 We use the usual identifications: if f, g are two co-vectors with coordinates fi , g j , respectively, then the

two-form f ∧g is identified with the antisymmetric matrix ωi j = fi g j − f j gi and ( f ∧g)(ξ, η) = ωi j ξ
i η j

for any two vectors ξ, η.
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2.3 The Symplectic Reduction to g∗ and the Euler–Arnold Equation

When H is invariant under the prolongation of the action by left multiplication of G
on itself to T ∗G, which is equivalent to H not depending on a in the above coordinates
(a, y), i.e., H = H(y), then the second equation of (2.11) does not contain a and is
simply

ẏk = {H, yk}. (2.13)

This is a form of the Euler–Arnold equation, formulated in g in Arnold (1966)
in the Lagrangian setting. The Hamiltonian formulation can be found, for example,
in Marsden and Weinstein (1983). We also refer the reader to Marsden and Ratiu
(1999) for an excellent exposition of these topics. Sometimes the name Euler–Poisson
equation is used for (2.13). This equation represents one form of the reduction in
the equations on T ∗G to g∗ by the symmetries of the left action of G on itself, see,
for example, Marsden and Weinstein (1983). The space g∗ has a natural structure of
a Poisson manifold [with the Poisson bracket given by (2.12)] and is foliated into
“symplectic leaves”, which are given by the orbits of the co-adjoint representation,
see, for example, Arnold and Khesin (1998) and Marsden and Weinstein (1983). The
orbits are given by

Oȳ = {
(Ad a)∗ ȳ, a ∈ G

}
(2.14)

where ȳ is a fixed vector in g∗ and Ad a is defined below, and they have a natural
structure of a symplectic manifold (with the maps (Ad a)∗ acting by as symplectic
diffeomorphism).

2.4 Conserved Quantities, the Moment Map, and Noether’s Theorem

The Killing fields associated with the symmetries of the Riemannian structure on G
with the left-invariant metric given by left multiplications b → ab are easily seen to
be given by right-invariant vector fields e(a) = ξa (where ξ ∈ g) on G. By Noether’s
theorem, there should be a conserved quantity associated with any such field. It is easy
to see that the quantity is given by

(a, y) → ((Ad a−1) ξ , y) =
(
ξ, (Ad a−1)∗y

)
, (2.15)

where the operator Ad a is defined for matrix groups as usual by

Ad a ξ = aξa−1. (2.16)

With a slight abuse of notation, we will use the formula also for general groups, in
which case one of course has to interpret ξ → aξa−1 as the derivative at identity of
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the map b → aba−1. The map M : T ∗G → g∗ given in the (a, y) coordinates by

M(a, y) = (Ad a−1)∗ y (2.17)

is the usual moment map associated with the (symplectic) action of G on T ∗G (given
by the prolongation of the left multiplication). The vector M(a, y) is conserved under
the Hamiltonian evolution, and the quantities (ξ, M) are the conserved quantities
from Noether’s theorem applied to our situation. In particular, the Hamiltonian equa-
tions (2.11) obtained from taking the Hamiltonian as

H(a, y) = (ξ, M(a, y)) (2.18)

are

(ȧ)a−1 = ξ

ẏ = 0. (2.19)

The conservation of M also has a geometric interpretation: If x(s) is a geodesics
(parametrized by length) on a Riemannian manifold and X is a Killing field
(infinitesimal symmetry), then the scalar product (ẋ, X) is constant. This is of
course just another way to state the Noether’s theorem in this particular case,
but it can also be interpreted in terms of properties of Jacobi fields along our
geodesics.

In the context of rotating rigid bodies, the quantity M corresponds to the conser-
vation of angular momentum, see Arnold (1966). In the context of ideal fluids, the
conservation of M corresponds to the Kelvin–Helmholtz laws for vorticity, as observed
by many authors.

It is easy to check the following fact: When H is independent of a, i.e., H = H(y),
then for a curve (a(t), y(t)) in T ∗G satisfying the “kinematic” equation

(a−1ȧ)k = ∂ H

∂yk
(2.20)

the “dynamical” equation

ẏk = {H, yk} (2.21)

is equivalent to the (generalized) momentum conservation

M(a, y) = const. (2.22)

Also, if (a(t), y(t)) is a solution of the equations of motion and H = H(y), then
y(t) is given by

y(t) = (Ad a(t))∗ ȳ (2.23)

for some fixed co-vector ȳ ∈ g∗.
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3 Perturbations by Random Forces

We now introduce the stochastic perturbation. There is more than one way of doing
this. We use the classical Langevin equation, see, for example, Birrell et al. (2017), as
a starting point. This approach seems to be best suited for our goals here. There are
other important ways to introduce stochastic perturbations into the geodesic flow. We
mention, for example, Arnaudon et al. (2014) and Lázaro-Camí and Ortega (2008),
although the methods used there produce stochastic processes which are different from
those we use here.

3.1 Langevin Equation

The Langevin equation can be symbolically written as

ä = −νȧ + εẇ, (3.1)

for some parameters ν > 0 and ε > 0, which for a given t > 0 and a(t) is considered as
an equation in Ta(t)G, with ä interpreted as the covariant derivative of ȧ along the curve
a(t), and w is a suitable form of Brownian motion in the Riemannian manifold G. Of
course, the expression ẇ is somewhat ambiguous and there are some subtle points in
writing things in the correct way from the point of view of rigorous stochastic calculus.3

Here we will mostly avoid the subtleties of the right interpretation of the stochastic
equations such as (3.1) by working instead with the Fokker–Planck equation, and we
can define the transition probabilities for our processes via that equation.

A good starting point for writing the Fokker–Planck equation associated with (3.1)
is the Liouville equation in T ∗G. This equation describes the evolution of a density
f (a, y) with respect to the volume element given by the natural extension of the
Riemannian metric from G to T ∗G, which is proportional to the volume element
given by the nth power ω ∧ ω ∧ · · · ∧ ω (n times) of the canonical symplectic form ω

above. The Liouville equation is

ft + vkek f + bk
∂ f

∂yk
= 0, (3.2)

where

vk = ∂ H

∂yk
, bk = {H, yk}, (3.3)

and ek f denotes the differentiation of f (a, y) as a function of a in the direction of the
field ek defined earlier. The vector field X = vkek + bk

∂
∂yk

is div-free (with respect

3 In particular, when working on manifolds, one often has to distinguish carefully between the Itô and
Stratonovich integrals. In the stochastic processes we will use here, this issue mostly does not come up. A
typical case where it does come up is, for example, the formal equation for the Brownian motion on G in
our setting: a−1ȧ = σẇ, or da = a ◦ dw. In this case, the equation should be interpreted in the sense of
Stratonovich. See, for example, Birrell et al. (2017) for a discussion of related topics.
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to our volume form in T ∗G), as follows from the Liouville theorem in Hamiltonian
mechanics. Hence, Eq. (3.2) is the same as

ft + div (X f ) = 0, (3.4)

where div is taken using our volume form on T ∗G. Our Fokker–Planck equation
corresponding to (3.1) can now be obtained by taking H = 1

2 gkl yl yk , where gkl

is a (constant) positive-definite matrix, and adding the damping and diffusion term
to (3.2):

ft + vkek f + bk
∂ f

∂yk
+ ∂

∂yk

(
−νyk f − ε2

2

∂ f

∂yk

)
= 0, (3.5)

where we raise the indices with gkl by yk = gkl yl , as usual. In terms of stochastic
processes, the last equation is the forward Kolmogorov equation associated with the
stochastic ODE

a−1da = v dt, vk = ∂ H

∂yk
,

dy = b(y, y) dt − νy dt + εer dwr , (3.6)

where, as above, e1, . . . , en is the basis in g∗ which is dual to the basis e1, . . . , en

in g, and w1, . . . , wn are standard independent Wiener processes. This is the usual
Langevin equation (see, e.g., Birrell et al. 2017) expressed in our coordinates (a, y).
It can be considered as a combination of the Liouville transport with an Ornstein–
Uhlenbeck process along the linear fibers of T ∗G. When ε = 0, Eq. (3.5) can be
thought of as a modification of the Liouville equation (3.2) to the situation described
by the ODE

a−1ȧ = v, vk = ∂ H

∂yk
,

ẏ = b(y, y) − νy. (3.7)

Equation (3.5) can be interpreted as describing a “physical Brownian motion” in
G. We can, for example, think a trajectory in G being perturbed by random “kicks”,
in the spirit of Einstein’s paper (1905). (In this picture, Einstein’s Brownian particle is
replaced by a point in our configuration space G.) We refer the reader to Birrell et al.
(2017) and Bismut (2005) to results concerning the relations between the physical
Brownian motion and the standard Brownian motion in the setting of Riemannian
manifolds.

The symmetry reduction for (3.5) corresponding to the symmetry reduction for (3.1)
is very simple: We consider it only for functions depending on y, which results in
dropping the term vkek f . The symplectic reduction in (2.11)–(2.13) corresponds to
the same procedure applied to the Liouville equation (3.2).
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There is an explicit steady solution of (3.5) given by

f (a, y) = Ce−βH , β = 2ν

ε2 , (3.8)

where C is any constant. The formula is the same as in the flat space. The approach
to equilibrium will, however, be influenced by the term bk

∂
∂yk

which is absent in the
flat case. Strictly speaking, the last statement applies unambiguously only to compact
groups G, where equilibrium (3.8) is easily seen to be unique among probability
densities (for a suitable C , under some natural assumptions on H ). We will discuss
this point in some detail below in the more difficult case of degenerate forcing.

Given that the conservation of M(a, y), from the point of view of Statistical
Mechanics, it is natural to consider (at least when G is compact) distributions in
the phase space T ∗G given by

f (a, y) = Ce−βH(y)+(ξ, M(a,y)) = Ce−βH(y)+((Ad a−1)ξ, y) (3.9)

for β > 0 and ξ ∈ g. In fact, if we replaced the Langevin equation by the Boltzmann
equation

ft + vkek f + bk
∂ f

∂yk
= Q( f, f ), (3.10)

for appropriate “collision operator” Q (defined on each fiber T ∗
a G in the same way as

in the flat case), densities (3.9) should be among the equilibria (the set of which could
possibly be larger due to symmetries other than those generated by the left shifts).
The large degeneracy of the set of equilibria is an important feature of the Boltzmann
equation which is crucial for fluid mechanics. It is not shared by the Langevin equation,
for which the equilibrium is unique (under reasonable assumptions). This is related to
the hypoellipticity of the differential operator in (3.5), which we will discuss in some
details for more general operators in the next subsection.

We remark that one can modify the Langevin equation and get (3.9) as equilibria
for the modified equation. For this, we simply change the Hamiltonian in (3.5) to the
expression

H̃(a, y) = H(y) −
(
(Ad a−1)ξ, y

)
(3.11)

This corresponds to watching a Brownian motion of a particle in incompressible fluid
which moves in G as a rigid body along the Killing field ξa. (This is a steady solution
of the equations of motion for an incompressible fluid.) The term ((Ad a−1)ξ, y) in
the Hamiltonian then produces the analogues of centrifugal and Coriolis forces which
we encounter in rotating coordinate frames.

The damping term −νyk in (3.5) [and (3.7)] can be replaced by a more general term
−μl

k yl , where the damping coefficients μl
k can be obtained as follows. We assume that

there is a quadratic function P on g such that 2P(a−1ȧ) is the instantaneous loss of
energy per unit time due to the damping. Letting a−1ȧ = v, we write P = μklv

lvk for
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a positive-definite symmetric matrix μkl . The second equation in (2.11) is modified
by adding the term − ∂ P

∂vk = −μklv
l to the right-hand side. Writing vk = gkl yl ,

we see that the damping term should be −μl
k yl , with μl

k = μkr grl . With the more
complicated (and possibly un-isotropic) damping terms, expression (3.9) for equilibria
will, of course, change and explicit formulae may no longer be available.

3.2 Langevin Equation with Degenerate Forcing

In PDEs of fluid mechanics, one sometimes considers forcing through low
spatial Fourier modes which is “white noise” in time. See, for example, Hairer and
Mattingly (2006) and Kuksin (2006). In our context here this is akin to considering the
system

(a−1ȧ)k = ∂ H

∂yk
,

ẏk = −ek H + ylc
l
jk

∂ H

∂y j
− νyk +

r∑
i=1

εẇi f̃ i
k , (3.12)

where f̃ 1, . . . f̃ r are some fixed vectors in g∗ and wi are standard independent Wiener
processes. The term −νyk represents friction. In some cases, it is natural to consider
the more general friction term −μl

k yl discussed at the end of the last subsection, but
here we will focus on the case μl

k = δl
k . The main complication in (3.12) as compared

to the previous section is that r can be less than the dimension n of g∗.
In the remainder of this subsection, we will assume that

H = H(y) = 1

2
|y|2 = 1

2
yk yk, (3.13)

which corresponds to geodesic flow, or kinetic energy in classical mechanics. Also,
below we will need to do some Lie bracket calculations for which some formulae seem
to be easier when we work in g rather than g∗. This amounts to “raising the indices”
in the old-fashioned language, i.e., working in the coordinates yk rather than yk . We
note that with these assumptions we have

yk = vk . (3.14)

Equation (3.12) then becomes

(a−1ȧ)k = yk,

ẏk = q̃k
i j yi y j − νyk +

r∑
i=1

εẇi f k
i , (3.15)

where the notation is self-explanatory, perhaps with the exception of the term q̃k
i j yi y j ,

in which the coefficients are not uniquely determined by the function y → q̃(y, y). A

123



J Nonlinear Sci (2018) 28:2249–2274 2261

straightforward “raising of indices” gives the definition

([x, y], z) = (q̃(z, x), y), x, y, z ∈ g, (3.16)

which coincides with the Arnold form B from Arnold (1966). In what follows it will
be advantageous to work with the symmetrization of q̃ , which will be denoted by q:

q(x, y) = 1

2
(q̃(x, y) + q̃(y, x)) . (3.17)

In Eq. (3.15), it does not matter whether we use q̃ or q, of course. Instead of (3.15),
we can write

ȧ = az,

ż = q(z, z) − νz + εσ ẇ, (3.18)

where we use z to emphasize that the equations are considered in g, as the variable y
was used to denote elements of g∗, w is the vector of the standard Wiener process in
Rr and σ is a suitable n × r matrix. The corresponding Fokker–Planck equation for
f = f (a, z; t) then is

ft + zkek f + qk(z, z)
∂ f

∂zk
+ ∂

∂zk

(
−νzk f − ε2

2
hkl ∂ f

∂zl

)
= 0, (3.19)

for a suitable symmetric positive semi-definite matrix h (which is constant in z).
This is a degenerate parabolic operator, and we will study the classical (parabolic)

Hörmander condition for hypoellipticity for the Lie brackets generated by the vector
fields relevant for the operator, see Hairer (2011). For the convenience of the reader,
we state the definition from Hairer (2011). We set

Xk = σ l
k

∂

∂zl
k = 1, . . . , r, (3.20)

which we consider as vector fields on TG (using the coordinates (a, z) above). The
field on TG defining the Euler–Arnold equation will be denoted by X0, see (3.25) for
the precise formula. We define inductively the sets

S0 = {X1, . . . ,Xr }, Sm+1 = Sm ∪ {[Y,X j ], Y ∈ Sm, j ≥ 0}, S = ∪m≥0Sm .

(3.21)

The Hörmander condition is that at each point (a, z) ∈ TG the vectors Y(a, z),Y ∈ S
span the tangent space T(a,z)TG.

One can also formulate the condition as follows. In the Lie algebra of the smooth
vector fields on TG consider the minimal subalgebraAwhich containsX1, . . . ,Xr and
is closed under the conjugation byX0, i.e., the mapX → [X0,X ]. Then {X (a, z), X ∈
A} = T(a,z)TG for each (a, z) ∈ TG. It is easy to see that the definition comes out the
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same if we demand that, in addition to the conditions above, A is also closed under
the multiplication by smooth functions, i.e., is also a module over C∞(TG).

The coordinates on TG we will use are (a, z), which correspond to zkek(a). The
vector fields on TG which will be relevant for our purposes will be of the form
Ak(z)ek(a) + Xk(z) ∂

∂zk . These are the vector fields which are invariant under the
prolongation of the natural action of G on itself by the left multiplication to T (TG).
[First we prolong the action to TG, and then, we prolong again to T (TG).] We will
write

Ak(z)ek(a) + Xk(z)
∂

∂zk
=

(
A
X

)
=

(
A(z)
X (z)

)
. (3.22)

In these coordinates, the Lie bracket is

[ (
A
X

)
,

(
B
Y

) ]
=

(
A ∧ B + DX B − DY A

[X, Y ]
)

, (3.23)

where we use A∧ B to denote the function of z obtained from A(z) and B(z) by taking
the Lie bracket in g pointwise, as opposed to [X, Y ], which denotes the Lie bracket of
X, Y considered as vector fields in g. The notation DA X has the usual meaning: the
derivative of X = X (z) (at z) in the direction of A = A(z).

Let us write Q = Q(z, z) for the vector field in g given by the vector field
qk(z, z) ∂

∂zk .

For simplicity, we will work out the case when hkl is of rank one, which means that
the random forcing is applied only in one direction, which will be denoted by F (and
considered as a constant vector field in g). Hence

hkl = Fk Fl . (3.24)

In this case, the vector fields for the Hörmander condition calculation can be taken as

(
0
F

)
, and X0 = 1

2

(
z

Q − νz

)
. (3.25)

We have
[(

0
F

)
,

(
z

Q − νz

)]
=

(
F

DF Q − νF

)
(3.26)

and
[(

0
F

)
,

[(
0
F

)
,

(
z

Q − νz

)]]
=

(
0

D2
F Q

)
. (3.27)

This means that we have extended our list of vector fields by the field

(
0
G

)
, G = 1

2
D2 Q = Q(F, F). (3.28)
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We can now take
[(

0
G

)
,

[(
0
F

)
,

(
z

Q − νz

)]]
=

(
0

DG DF Q

)
, (3.29)

and extend our list of fields by

(
0

Q(F, G)

)
. (3.30)

We note that the new fields obtained in this way are “constant” (in the coordinates we
use), so the procedure can be easily iterated.

Definition 3.1 We will say that Q is non-degenerate with respect to a set F ⊂ g if
there is no non-trivial subspace M ⊂ g containing F which is invariant under Q, in
the sense that Q(z, z′) ∈ M whenever z, z′ ∈ M .

We can now formulate the main result of this subsection:

Theorem 3.1 The operator of the Fokker–Planck equation (3.19) satisfies the Hör-
mander condition if and only if Q is non-degenerate with respect to the range of the
matrix h (considered as a map from g to g).

Proof The necessity of the condition can be seen when we consider functions depend-
ing only on z. If there is a non-trivial linear subspace invariant under both Q and the
diffusion, then particle trajectories starting at M clearly cannot leave M , and therefore,
the operator cannot satisfy the Hörmander condition.

On the other hand, if Q is non-degenerate with respect to the range of h, then the
above calculation shows that the Lie brackets of fields (3.25) (with perhaps several
fields of the same form as the first one) generate the fields of the form

(
0

X j

)
, j = 1, . . . n, (3.31)

where X1, . . . , Xn ∈ g form a basis of g. Formula (3.25) now shows that the fields of
the form

(
X j

Y j (z)

)
(3.32)

can also be generated. Together with fields (3.31), they clearly form a basis of T (TG)

at each point (a, z), and the proof is finished. ��
Remark 1 1. If one replaces the damping term −νzk in (3.18) by a more general

expression −μk
l zl , where μ is as at the end of the last subsection, our proof still

gives that the non-degeneracy of Q is sufficient for the Hörmander condition.
However, simple examples show that it is no longer necessary. The problem of a
simple characterization of the necessary and sufficient condition in that case seems
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to be an interesting one. An obvious obstacle to the Hörmander condition arises
when there exists a non-trivial subspace M ⊂ g containing the range of h, which
is invariant under both Q and A. It might be too optimistic to hope that this is the
only obstacle, although we do not have any specific examples which would show
that the nonexistence of such an M does not guarantee the Hörmander condition.
We plan to address these issues in a future work.

2. Very recently, we learned about the paper (Herzog and Mattingly 2015). The
methods there could be used (with some adjustment to our situation) to prove
the above theorem and also to say more about the set where the solutions of the
Fokker–Planck equation are positive.

Corollary 3.1 When G is compact and Q is non-degenerate with respect to the dif-
fusion matrix h in the sense above, process (3.18) [and hence also (3.15)] is ergodic
with respect to a distribution density given by a function which is independent of a.
In other words, the Lagrangian positions of the “particles” are uniformly distributed
(with respect to the Haar measure) in the limit of infinite time.

In our situation, this is not hard to prove once the Hörmander condition is established
by following methods in Hairer (2008, 2011) and Khasminskii (2012).

Remark One should be also able to prove convergence to the equilibrium measure
following the methods of Villani (2009), but we will not pursue this direction here. It
is perhaps worth reminding that in general there is a difference between uniqueness
of the ergodic measure and the convergence to equilibrium. A simple example in our
context here is provided by the equation

ft + fx1 = 1

2
fx2x2 . (3.33)

considered in the 2d torus. Note that this equation does not satisfy the parabolic
Hörmander condition, while its spatial part satisfies the elliptic Hörmander condition.

3.3 Constrained Diffusion in the Momentum Space

The Euler–Arnold equation (2.13) leaves invariant the co-adjoint orbits (2.14) and
also the energy levels {H = E}. It is therefore of interest to consider perturbations
by noise which “respects” some of the constraints. For example, one can add noise
respecting the co-adjoint orbit, but not the energy levels. An example of this situation
(in the presence of non-holonomic constraints) is considered in Hochgerner and Ratiu
(2012). It is closely related to stochastic processes on co-adjoint orbits introduced
by Bismut (1981). One can also consider noise which preserves energy levels but not
necessarily the co-adjoint orbits, or one can consider noise which preserves both the
co-adjoint orbits and the energy levels.

We wish to include all these situations in our considerations, and therefore, we
will consider the following scenario. We assume that we are given a Hamiltonian
H = H(y) and a manifold M ⊂ g∗ which is invariant under the evolution by the
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Euler–Arnold equation (2.13). If M is given locally as a non-degenerate level set of
some conserved quantities φ1, . . . , φr (in the sense that {H, φk} = 0, k = 1, . . . , r ),

M = {
y ∈ g∗, φ1(y) = c1, φ2(y) = c2, . . . φr (y) = cr

}
locally in y, (3.34)

there is a natural measure m on M (invariant for the Hamiltonian flow if the group is
unimodular, but not in general) which is generated by the volume in g∗ (given by our
metric there) and the conserved quantities by first restricting the volume measure in
g∗ to

Mε = {
y ∈ g∗, φ1(y) ∈ (c1 − ε, c1 + ε), φ2(y)

∈ (c2 − ε, c2 + ε), . . . , φr (y) ∈ (cr − ε, cr + ε)} (3.35)

then normalizing the restricted measure by a factor 1
2ε

and taking the limit ε → 0+.
In the case r = 1, we have

m = 1

|∇φ1| Hn−1|M , (3.36)

where Hn−1 is the n −1 dimensional Hausdorff measure generated by our metric, and
the gradient and its norm in the formula are also calculated with our given metric. For
general r we have similar formulae, the corresponding expression can be seen easily
from the co-area formula, for example. However, the above definition via the limit
ε → 0+ is perhaps more natural, as is relied only on the objects which are “intrinsic”
from the point of view of the definition of m: the underlying measure in g∗ and the
constraints φk . (The proof that the limit as ε → 0+ is well defined is standard and is
left to the interested reader.)

As the Hamiltonian evolution in the phase-space T ∗G ∼ G × g∗ preserves the
Liouville measure, which, in the (a, y) coordinates defined by (2.1), is the product
of the Haar measure on G and the canonical volume measure in g∗, we see that the
product of the (left) Haar measure hG on G and m is an invariant measure for the
Hamiltonian evolution in the subset of T ∗G given by G × M in the (a, y) coordinates.
If the group G is not unimodular,4 the measure m may not be preserved by the Euler–
Arnold equation (2.13) in g∗, which represents the symplectic reduction in the original
full system. This is because while the vector field

vkek + qk
∂

∂yk
(3.37)

in the Liouville equation (3.2) is div-free in T ∗G, its two parts may not be div-free in
G or g∗, respectively, unless the group is unimodular.

4 Recall that a group is unimodular of the notions of left-invariant and right-invariant Haar measures
coincide. This is the same as demanding that the maps y → Ad a∗y preserve the volume in g∗, i.e., have
determinant 1.
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The Liouville equation for the evolution in G × M is the same as (3.2)

ft + vkek f + bk
∂ f

∂yk
= 0, (3.38)

where f = f (a, y) now denotes the density with respect to the measure hG × m
(where hG is again the left Haar measure on G).

We now consider stochastic perturbations of the Liouville equation (3.38) on G×M .
As in the Langevin-type equations, the random forces will act only in the y-component,
so that the kinematic equation (a−1ȧ)k = vk is left unchanged.

We will demand that the stochastic term will also leave invariant the measure hG×m,
and as it acts only in the y-variable, it then must leave invariant the measure m.

There is more than one way in which noise can be introduced in a reasonable way
into (3.38). For example, if V is a vector field (with coordinates Vk) tangent to M
which generates a flux on M preserving the measure m, one can replace Eq. (2.11) by

dyk = {H, yk} dt + ε Vk ◦ dW, (3.39)

where W is the standard 1d Wiener process and ◦ indicates, as usual, that the
corresponding stochastic integrals should be taken in the Stratonovich sense.5 The
corresponding Fokker–Planck equation is given by

ft + vkek f + bk
∂ f

∂yk
= ε2

2
(D∗

V )2 f, (3.40)

where D∗
V is adjoint to DV = Vk

∂
∂yk

with respect to the measure m. As the flux by V

preserves m, we have in fact D∗
V = −DV . In this case, the operators D2

V and (D∗
V )2

coincide and arise from the functional
∫

M

1

2
|DV f |2 dm (3.41)

This is in some sense the “minimal non-trivial noise” model, and it might be of interest
in some situations.

Here we will consider the situation when the noise is non-degenerate in M , leaving
the interesting case of the degenerate noise in M to future studies. Our motivation is the
following. For ε > 0, we consider the usual Brownian motion in g∗, but restricted to the
set Mε above, with the understanding that the trajectories “reflect back” (we can think
about an action of some control mechanism) at the boundary (corresponding to the
Neumann condition at the boundary for the corresponding Fokker–Planck equation,
which is just the heat equation in this case). As ε → 0+, a good model for the limiting
process on M is given by an operator constructed as follows, see Freidlin and Wentzell
(2012) for related themes. First, we take the metric induced on M by the given metric in
g∗. Assume the metric is given by g̃i j in some local coordinates. Assume the measure m

5 Note that with Itô integration of the particle trajectories might not stay in M .
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is given as m(x) dx in these coordinates, where m(x) is a (smooth) function. Denoting
by g̃ the determinant of g̃i j , the volume element given by g̃i j in our coordinates is√

g̃ dx . We then define a new metric

hi j =  g̃i j (3.42)

so that the volume element
√

h dx satisfies

√
h dx = m(x) dx . (3.43)

Then we take the generator of our process to be the Laplace operator on M with respect
to the metric h. We will denote this operator by L M . Our Fokker–Planck equation then
will be

ft + vkek f + bk
∂ f

∂yk
= ε2

2
L M f. (3.44)

We will be interested in ergodicity properties of the process given by this equation.
In the remainder of this subsection, we will assume again (3.13), i.e., the Hamil-

tonian H is quadratic (and positive definite). We can then “lower the indices” and
work with TG and g rather than with T ∗G and g∗. We will denote by Z the image
of M in g under the “lowering indices” map and will denote the elements of Z ⊂ g
by z, with coordinates zk . Similarly to (3.14), we have zk = vk . The Fokker–Planck
equation (3.44), now considered on G × Z , becomes

ft + zkek f + qk(z, z)
∂ f

∂zk
= ε2

2
L f, (3.45)

where qk is defined by (3.17), and L is the operator on Z corresponding to L M . It is
of course again a Laplacian for some metric on Z (which is conformally equivalent to
the metric on Z induced by the underlying metric in g).

Let us now consider conditions under which the operators corresponding to (3.45)
or (3.44) satisfy the usual Hörmander commutator condition for hypoellipticity.

Definition 3.2 A p-hull6 of a subset S⊂g is the smallest Lie subalgebra h⊂g with the
following properties:

(i) h contains the set S − S = {s1 − s2, s1, s2 ∈ S},
(ii) h is invariant under the mappings Ad s: z → [s, z] for each s ∈ S.

Remarks 1. The p-hull will be relevant in the context of the evolution Eq. (3.45). For
the “spatial part” of operator (3.45), obtained by omitting the term ft , the relevant
“hull” is simply the Lie algebra generated by S.

6 Here p stands for parabolic, as the definition is tied to the parabolic Hörmander condition.
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2. Condition (1) in the definition already implies that h is invariant under the mapping
Ad (s1 − s2) for any s1, s2 ∈ S. Therefore in (2) we can require invariance of h
under Ad s0 for just one fixed s0 ∈ S [and—given (i)—the definition will be
independent of the choice of s0].

The main result of this section is the following:

Theorem 3.2 In the notation introduced above, assume that M is a smooth analytic
submanifold of g∗. Then the operator on G × M corresponding to (3.44) [or, equiv-
alently, the operator on G × Z corresponding to (3.45)] satisfies the Hörmander
condition if and only if the p-hull of Z coincides with g.

Proof Let us first show that the p-hull condition is necessary for the Hörmander
condition. One can see this from the Lie bracket calculations below, but it is instructive
to verify it directly. Assume h is a non-trivial Lie subalgebra of g containing Z − Z
for which we can find z0 ∈ Z\h such that h is invariant under Ad z0. Let us set

e = zk
0ek . (3.46)

The Lie algebra h defines (locally) a foliation F of G into cosets aH , where H is
the (local) Lie subgroup of G corresponding to h. The main point now is that the
invariance of h under Ad z0 implies that the flow given by the equation

a−1ȧ = e (3.47)

preserves the foliation. (Another formulation of this statement could be that Eq. (3.47)
“descends” to G/H .) This means that the perturbations given by the stochastic
terms in (3.45) will still preserve the foliation [e.g., by the Stroock–Varadhan the-
orem (1972)], and it is not hard to conclude that set of points reachable by the
corresponding process cannot be open.

For the proof that the p-hull condition is sufficient, we write our operator (locally)
in the form

ft + X0 f −
m∑

j=1

X 2
j f, (3.48)

where m is the dimension of Z (which is of course the same as the dimension of M)
and X j are suitable vector fields on G × Z . All these fields will be of form (3.22), and
we will use the same notation as in (3.22) in what follows. We will be working locally
near a point (a, z0) ∈ G × Z . We choose X j , j = 1, . . . , m so that

X j =
(

0
Y j

)
, j = 1, . . . , m. (3.49)
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where Y j are analytic near z0 and Y j (z) form a basis of Tz Z for each z close to z0.
The field X0 will be of the form

X0 =
(

z
V

)
, (3.50)

where V is an field on Z (analytic near z0). Let us consider local analytic vector fields
on G × Z near (a, z0) of the form

X (a, z) =
(

X (z)
Y (z)

)
(3.51)

as a module A over the set of analytic functions of z ∈ Z . (Recall that we assume
that Z is analytic.) Let M be the minimal submodule of A satisfying the following
requirements:

(a) M contains X1,X2, . . . ,Xm , and
(b) M is invariant under the map Ad X0 : X → [X0,X ], where [ ·, · ] denotes the

Lie bracket for vector fields.

The parabolic Hörmander condition at (a, z0) for the fields X0,X1, . . . ,Xm then is
that

{X (a, z0), X ∈ M} = T(a,z0)(G × Z). (3.52)

For X ∈ A we will denote by πX ∈ g the projection to the first component in
notation (3.22), i.e.,

π

(
X
Y

)
= X. (3.53)

Let

M = πM. (3.54)

As M contains the vector fields (3.49), condition (3.52) is equivalent to

Mz0 = {X (z0), X ∈ M} = g. (3.55)

Using (3.23) and the fact that the fields X1, . . . ,Xm belong to M, it is we see that M
has the following properties.

If Y is an analytic vector field on Z(defined locally near z0), then Y ∈ M.(3.56)

This follows by taking the Lie bracket of

(
0
Y

)
and X0.

If A ∈ M and Y is an analytic vector field on Z(defined locally near z0),

then DY A is in M. (3.57)
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This follows by taking the Lie bracket of

(
0
Y

)
and an X with πX = A.

If A, B ∈ M, then A ∧ B is in M. (3.58)

This follows by taking the Lie bracket of the fields X and Y with πX = A and
πY = B and then using (3.57).

If A ∈ M, then z ∧ A is in M. (3.59)

This follows by taking the Lie bracket of X with πX = A with X0 and using (3.56),
(3.57), and (3.58). Taking these properties of M into account, it is clear that the proof
of the theorem will be finished if we show that

Z − Z ⊂ Mz0 . (3.60)

Let l be a linear function in g which vanishes on Mz0 . As Z is analytic, the function
l considered as a function on the manifold Z will be analytic. Property (3.57) of M
implies that the derivatives of all orders ≥ 1 of l at z0 vanish, and therefore, l must be
constant on Z . In particular, l must vanish on Z − Z . We see that no point of Z − Z
can be separated from the subspace Mz0 by a linear function, and (3.60) follows. This
finishes the proof of the theorem. ��

Corollary 3.2 If the assumptions of Theorem 3.2 are satisfied and the group G is
compact, then any solution of the Fokker–Planck equation (3.44) approaches constant.
In particular, the system is ergodic for the (stochastic) dynamics, with the unique
ergodic measure given by the constant density f .

Proof We note that

d

dt

∫
G×Z

f 2(a, z, t) da m(dz) = −ε2
∫

G×Z
|∇z f (a, z, t)|2 da m(dz), (3.61)

where we take Z with the metric defining L . By regularity which follows from the
Hörmander condition, we can consider the �-limit set �( f0) of the evolution starting
with f0, and it consists of smooth functions. Moreover, the integral on the right of (3.61)
has to vanish identically for each function in �( f0), by the usual Lyapunov-function-
type arguments. This means that any function in �( f0) is constant in z and hence
solves the equation

ft + zkek f = 0. (3.62)

It is now easy to see that our assumptions imply that such f is constant also in a. ��
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3.4 A Calculation for a Non-compact Group

We now consider the situation in the previous subsection for the special case G = Rn

and a one-dimensional manifold Z ⊂ g ∼ Rn . In other words, Z will be an analytic
curve in Rn . We will see that analyticity is not really needed for the calculation below,
but we keep it as an assumption, so that we have the Hörmander condition for the
Fokker–Planck equation under the assumptions of Theorem 3.2. We will assume that
Z is equipped with a measure m, the density of which is also analytic with respect to
the parameter which gives an analytic parametrization of Z . We will re-parametrize
Z so that it is given by an analytic periodic function

γ : R → Z ⊂ Rn (3.63)

with minimal period l and, in addition, the measure (as measured by m) of a segment
on the curve between γ (s1) and γ (s2) for some 0 ≤ s1 < s2 < l will be given by
s2 − s1. Sometimes we will also write

γ (s) = z(s), (3.64)

with slight abuse of notation which will hopefully not cause any confusion. In this
special case, the Fokker–Planck equation discussed in the previous section, written in
the variables a = (a1, . . . , an) ∈ G and s (which parametrizes Z ), is

ft + zk(s)
∂ f

∂ak
= ε2

2

∂2 f

∂s2 , (3.65)

where f = f (a1, . . . , an, s, t) is periodic in s, with period l. The p-hull condition
from Definition 3.2 is that Z − Z generates Rn .

We are interested in the long-time behavior of the solutions of (3.65). We will
assume that the p-hull condition is satisfied. It is easy to see that the case when the
condition is not satisfied can be reduced to this case by a suitable choice of variable.7

We note that the change of variables ak → ak − zk
0t for some z0 ∈ Rn is equivalent

to shifting Z to Z − z0. We can therefore assume without loss of generality that

∫ l

0
γ (s) ds =

∫
Z

z m(dz) = 0. (3.66)

This condition enables us to write

γ (s) = ϕ′′(s) (3.67)

7 Here and below this is of course meant only in the context of the example we are considering in this
subsection.
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for some periodic (analytic) ϕ : R → Rn . An important role will be played by the
matrix

�kl = 1

l

∫ l

0
ϕ′

k(s)ϕ
′
l(s) ds. (3.68)

Proposition 3.1 Assume (3.66) (which can be always achieved by a change of vari-
ables a → a − z0t) and let �kl be defined by (3.68). For any compactly supported
initial density f0 = f0(a, s) (normalized to total mass one) the quantity

a → t
n
2

∫ l

0
f (

√
t a, s, t) ds (3.69)

converges as t → ∞ (in distribution) to the density of the normal distribution with
average 0 and covariance matrix 4

ε2 �kl . In other words, the distribution of the positions
of trajectories starting at time t in some compact region will approach (after re-scaling)

the same distribution as the diffusion with covariance matrix 4
ε2 �kl .

Proof We will work with the corresponding stochastic ODE

ȧ = γ (s)

ṡ = εẇ, (3.70)

where w(t) is the standard one-dimensional Wiener process starting at the origin. Our
task reduces to evaluating

a(t) − a(0) =
∫ t

0
γ (εw(t ′)) dt ′ =

∫ t

0
ϕ′′(εw(t ′)) dt ′. (3.71)

We will evaluate the integral by a standard procedure based on the martingale version
of the central limit theorem. We only sketch the main steps. By Itô formula, we have

ϕ(a(t)) − ϕ(a(0)) =
∫ t

0
εϕ′(εw(t ′))dw(t ′) +

∫ t

0

ε2

2
ϕ′′(εw(t ′)) dt ′. (3.72)

We rewrite this as

1√
t

∫ t

0
γ (εw(t ′)) dt ′ =

∫
2

ε
√

t
ϕ′(w(t ′))(−dw(t ′)) − 2

ε2
√

t
(ϕ(a(t)) − ϕ(a(0)))

(3.73)

The last term on the right clearly approaches zero for t → ∞, as ϕ is bounded. The
key point now is to use a martingale version of the central limit theorem [(such as, for
example, Theorem 3.2, page 58 in Hall and Heyde (1980)] to get a good asymptotics
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for the integral on the right. The covariance matrix for that integral generated along a
trajectory w(t ′) is

4

ε2t

∫ t

0
ϕ′

k(εw(t ′))ϕ′
l(εw(t ′)) dt ′. (3.74)

For large times t ′ the distribution of the variable εw(t ′) taken mod l will be approaching
the uniform distribution in [0, l), and therefore, it is not hard to see that for the purposes
of our calculation we can replace the random quantity (3.74) by a deterministic quantity
given by

4

ε2l

∫ l

0
ϕ′

k(s)ϕ
′
l(s) ds = 4

ε2 �kl . (3.75)

The claim of the proposition now essentially follows from the central limit theorem.
��
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