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This paper is concerned with test of significance on high dimen-
sional covariance structures, and aims to develop a unified framework
for testing commonly-used linear covariance structures. We first con-
struct a consistent estimator for parameters involved in the linear
covariance structure, and then develop two tests for the linear co-
variance structures based on entropy loss and quadratic loss used for
covariance matrix estimation. To study the asymptotic properties of
the proposed tests, we study related high dimensional random matrix
theory, and establish several highly useful asymptotic results. With
the aid of these asymptotic results, we derive the limiting distribu-
tions of these two tests under the null and alternative hypotheses.
We further show that the quadratic loss based test is asymptotically
unbiased. We conduct Monte Carlo simulation study to examine the
finite sample performance of the two tests. Our simulation results
show that the limiting null distributions approximate their null dis-
tributions quite well, and the corresponding asymptotic critical values
keep Type I error rate very well. Our numerical comparison implies
that the proposed tests outperform existing ones in terms of control-
ling Type I error rate and power. Our simulation indicates that the
test based on quadratic loss seems to have better power than the test
based on entropy loss.

1. Introduction. High dimensional data analysis has become increas-
ingly important in various research fields. Fan and Li (2006) gave a brief
review of regularization methods to deal with several challenges in high
dimensional data analysis. Bai and Saranadasa (1996) demonstrated the
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impact of dimensionality for test of two-sample high dimensional normal
means. This paper aims to develop powerful tests for high-dimensional co-
variance structure without the normality assumption.

Test of covariance structure is of great importance in multivariate data
analysis. Under normality assumption, various tests for covariance matrix
have been developed in the classical multivariate analysis (see, e.g., Ander-
son (2003)). However, these tests become invalid when the dimension p of
data is large relative to the sample size n (see Ledoit and Wolf (2002)). Al-
ternatives to the classical tests of covariance structure have been developed
in the literature (see Srivastava (2005); Birke and Dette (2005); Srivastava
and Reid (2012)). Several authors have studied testing whether a covariance
matrix equals the identity matrix. Johnstone (2001) derived the Tracy-
Wisdom law of the largest eigenvalue of the sample covariance matrix for
normal distribution with covariance matrix being the identity matrix and
p/n→ y ∈ (0, 1). Without normality assumption, Bai, Jiang, Yao and Zheng
(2009) proposed correcting the LRT for testing whether the covariance ma-
trix equals a known one (or equivalently testing whether the covariance
matrix equals the identity matrix), and derived the limiting null distribu-
tion when p/n → y ∈ (0, 1) by using results from modern random matrix
theory (RMT) (see Bai and Silverstein (2004); Zheng (2012)). Wang, Yang,
Miao and Cao (2013) redefined the LRT when y ∈ (0, 1). Wang (2014) fur-
ther investigated the asymptotic power of the LRT. Jiang, Jiang and Yang
(2012) studied a corrected LRT when y ∈ (0, 1]. They discussed the LRT

for the case y = 1 and showed that the performance of the corrected LRT
when y = 1 is quite different from that when y ∈ (0, 1). Cai and Ma (2013)
tested the covariance matrix being a given matrix from a minimax point of
view and allowed p/n→∞.

Sphericity testing is another important problem under high-dimensional
settings. When p, n → ∞, Chen, Zhang and Zhong (2010) studied testing
sphericity for high dimensional covariance matrices. Wang and Yao (2013)
also studied testing sphericity for large dimensional data. Under the nor-
mality assumption, Jiang and Yang (2013) obtained the limiting null dis-
tributions of LRTs for test of sphericity, test of independence, the equality
test of covariance matrices, and the identity test of covariance matrix using
moment generating function technique, under the assumption that p < n
and p/n→ y ∈ (0, 1]. Jiang and Qi (2015) further obtained the limiting null
distributions of test statistics studied in Jiang and Yang (2013) under the
normality assumption and p < n− c for some 0 ≤ c ≤ 4. As an extension of
test of sphericity, testing banded structure of covariance matrices has been
considered. Cai and Jiang (2011) tested banded structure of covariance ma-
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trices by limiting law of coherence of random matrices. This test enjoys high
power for sparse alternatives if log p = o(n1/3). Qiu and Chen (2012) stud-
ied testing banded structures based on U-statistics under the assumption
p/n→ y ∈ (0,∞).

This paper intends to develop a unified framework for testing linear covari-
ance structures when p/n→ y ∈ (0,∞) and without the normality assump-
tion. Not only several commonly-used structures such as test of sphericity,
compound symmetric structure and banded structure are included, but also
many more structures can be covered by selecting the proper basis matri-
ces. To begin with, we propose estimating the parameters involved in the
linear covariance structure by the squared loss; then develop two tests for
these covariance structures based on the entropy loss and quadratic loss
used for covariance matrix estimation in the classical multivariate analysis
(see Muirhead (1982)). We demonstrate that many existing tests for specific
covariance structures are special cases of the newly proposed tests. Further-
more, to establish the asymptotic theory of the proposed tests, we first study
asymptotic properties of some useful functionals of high-dimensional sam-
ple covariance matrix. We further prove that these functionals converge in
probability, and their joint distribution weakly converges to a bivariate nor-
mal distribution. These asymptotic results are of their own significance in
spectral analysis of RMT. Finally, using these asymptotic results, we derive
the limiting distributions of the two proposed tests under both null and al-
ternative hypotheses, and the power functions of these two tests. We further
show that the test based on quadratic loss is asymptotically unbiased in the
sense that the power under the alternative hypothesis is always greater than
the significance level.

We conduct Monte Carlo simulation study to examine the finite sample
performance of the two tests. Our simulation results show that the limiting
null distributions of the proposed tests approximate their null distributions
quite well, and the corresponding asymptotic critical values keep Type I
error rate very well. Our numerical comparison implies that the proposed
tests outperform existing ones in terms of controlling Type I error rate and
power. Our simulation indicates that the test based on quadratic loss seems
to have higher power than the test based on entropy loss.

The rest of this paper is organized as follows. In Section 2, we propose
an estimation procedure for parameters involved in the linear covariance
matrix structure, and develop two tests for linear structure. We further
derive the asymptotic distributions of these two tests under the null and
alternative hypotheses. In Section 3, we conduct Monte Carlo simulation to
compare the finite sample performance of the proposed tests with existing
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ones. Theoretical proofs and technical lemmas are given in the Appendix.

2. Tests on linear structures of covariance matrices. Suppose
that {x1,x2, · · · ,xn} is an independent and identically distributed random
sample from a p-dimensional population x with mean E(x) = µ, and covari-
ance matrix Cov(x) = Σ. Following the commonly-adopted assumptions
in the literature of RMT (see Bai and Silverstein (2004)), we impose the
following two assumptions.

Assumption A. Assume that the p-dimensional population x satisfies the
independent component structure that can be represented as x = µ+
Σ1/2w, where w = (w1, · · · , wp)T , and w1, · · · , wp are independent
and identically distributed and E(wj) = 0, E(w2

j ) = 1 and E(w4
j ) =

κ <∞, for 1 ≤ j ≤ p.
Assumption B. Denote by yn−1 = p/(n − 1). Assume that yn−1 → y ∈

(0,∞).

Assumption A relaxes the normality assumption by imposing the moment
conditions. This assumption is often used in random matrix theories. Re-
garding to the representation in Assumption A, it is natural to assume that
wj is standardized so that E(wj) = 0 and E(w2

j ) = 1. If wj is with finite
kurtosis, then Assumption A is satisfied. Of course, multivariate normal dis-
tribution satisfies Assumption A. Many other distributions may also satisfy
Assumption A.

Assumption B allows that p diverges as n grows to infinity. This assump-
tion implies that we are interested in studying the asymptotic behaviors of
test procedures under the statistical settings in which both the dimension p
and the sample size n are allowed to tend to infinity. Assumption B allows
that p may be less than or greater than the sample size. Hereafter we omit
the subscript n in pn for simplicity. Denote by x and Sn the sample mean
and sample covariance matrix, respectively. That is,

(2.1) x = n−1
n∑
i=1

xi, Sn = (n− 1)−1
n∑
i=1

(xi − x)(xi − x)T .

2.1. Estimation. Linear structure for covariance matrix Σ means that Σ
can be represented as a linear combination of pre-specified symmetric p× p
matrices (A1, . . . ,AK) with fixed and finite K. That is,

(2.2) Σ = θ1A1 + θ2A2 + . . .+ θKAK ,

where {θj , j = 1, . . . ,K} are unknown parameters. Here A1, . . . ,AK are
a set of basis matrices, and they are assumed to be linearly independent.
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For example, Anderson (1973) provided various covariance matrices with
different linear structures. In particular, the author showed that the covari-
ance for x =

∑K
k=1 Ukζk + e satisfies the linear covariance structure, where

ζk ∼ N(0, θkIp), e ∼ N(0, θ0Ip), ζ1, . . . , ζK , e are independent and Ip is the
identity matrix. Several other useful linear covariance structures are given
in Section 2.4.

Under normality assumption, the parameter θ = (θ1, · · · , θK)T can be
estimated by the maximum likelihood estimate. The theoretical property
and related computational issue have been studied in Anderson (1973) and
Zwiernik, Whler and Richards (2014) when p is fixed and finite. Without
assuming a specific distribution on W such as the normality of W, we
propose estimating θ by minimizing the following squared loss function

(2.3) min
θ

tr(Sn − θ1A1 − . . .− θKAK)2.

Let C be a K × K matrix with (i, j)-element being trAiAj and a be a
K × 1 vector with j-th element being trSnAj . Further define D = C−1.
Minimizing (2.3) yields a least squares type estimator for θ:

(2.4) θ̂ = Da.

It can be shown that under Assumptions A and B, θ̂k = θk + Op(n
−1), k =

1, · · · ,K, by using (2.10) in Theorem 2.1 below.

2.2. Tests. In this section, we develop two tests for the linear structures
of covariance matrices:

(2.5) H0 : Σ = θ1A1 + θ2A2 + . . .+ θKAK .

For simplicity, denote Σ0 = θ1A1 +θ2A2 + . . .+θKAK . A natural estimator
of Σ is the sample covariance matrix Sn. With the linear structure assump-
tion, we may estimate θ by θ̂ given in (2.4), and then under H0, a natural
estimator of Σ is Σ̂0 = θ̂1A1 + · · · + θ̂KAK . Let L(·, ·) be a loss function
to measure the deviation between Σ̂0 and Sn. Intuitively, we reject the null
hypothesis if L(Σ̂0,Sn) > δ0 for a given critical value δ0. Motivated by the
entropy loss (EL) L(Σ̂0,Sn) = trSnΣ̂

−1
0 −log(|SnΣ̂−10 |)−p (James and Stein

(1961); Muirhead (1982)), we propose our first test for H0. For p < n− 1,

Tn1 = trSnΣ̂
−1
0 − log(|SnΣ̂−10 |)−p,

where | · | stands for the determinant of a matrix. Denote by λ1 ≥ λ2 ≥ . . . ≥
λp the eigenvalues of S

1/2
n Σ̂−10 S

1/2
n . Then we can write Tn1 as

Tn1 = p

p−1 p∑
j=1

λj − p−1
p∑
j=1

log λj

−p.
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This motivates us to further extend the test to the situation that p > n− 1
by defining

Tn1 = (n− 1)

p−1 n−1∑
j=1

λj − (n− 1)−1
n−1∑
j=1

log λj

−(n− 1).

Define q = min{p, n− 1}. Tn1 can be written in a unified form for p < n− 1
and p ≥ n− 1:

(2.6) Tn1 = q

p−1 q∑
j=1

λj − q−1
q∑
j=1

log λj

−q.
Since this test is motivated by the entropy loss, we refer this test as EL-
test. Motivated by the quadratic loss (QL), another popular loss function
in covariance matrix estimation (see Olkin and Selliah (1977); Haff (1980);
Muirhead (1982)), we propose our second test statistic

(2.7) Tn2 = tr(SnΣ̂
−1
0 − Ip)

2,

and refer the corresponding test as QL-test.

2.3. New results on random matrix and limiting distributions of tests.
In order to derive the limiting distributions of Tn1 and Tn2, we develop
new theory on large dimensional random matrix. In this section, we first
present some useful theoretical results which are necessary to prove our
main theorems.

Let {wki, k, i = 1, 2, · · · } be a double array of independent and identi-
cally distributed random variables with mean 0 and variance 1. Let wi =
(w1i, w2i, · · · , wpi)T , and w1, · · · ,wn be independent and identically dis-
tributed random samples from a p-dimensional distribution with mean 0
and covariance matrix Ip. To derive the limiting distributions of Tn1 and
Tn2, we investigate the limiting distributions of the functionals of the eigen-
values of sample covariance matrix

(2.8) F = (n− 1)−1
n∑
i=1

(wi − w̄)(wi − w̄)T ,

where w̄ = n−1
∑n

i=1 wi. Throughout this paper, denote Γ = Σ1/2. Thus, it
follows by Assumption A that

(2.9) F = Γ−1Sn(ΓT )−1 and Sn = ΓFΓT .
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To study the asymptotic behaviors of Tn1 and Tn2 under H0 and H1, we
establish the asymptotic properties of F. Theorems 2.1 and 2.2 will be re-
peatedly used in the proofs in (c) of Theorems 2.3 and 2.4. Suppose that
λj ’s, j = 1, · · · , p are the real eigenvalues of F. The empirical spectral dis-
tribution (ESD) of F is defined by Gp(λ) = p−1

∑p
j=1 I(λj ≤ λ), where I(·)

is the indicator function. Note that the definition of ESD is suitable for both
random and nonrandom matrices. Denote the spectral norm of a matrix (the
maximum eigenvalue) by ‖·‖ hereafter.

Theorem 2.1. Let Ck, k = 0, 1, and 2, be p×p deterministic symmetric
matrices. Under Assumptions A and B, the following statements are valid.

(a) If ‖C0‖ = O(p), tr C0 = O(p) and tr C2
0 = O(p2), then

(2.10) p−1trFC0 − p−1trC0 = op(1).

(b) If ‖C1‖ = O(p), ‖C2‖ = O(p), tr(Cq
1) = O(pq), tr(Cq

2) = O(pq), and
tr(C1C2)

q = O(pq) for q = 1, 2, then

p−1trFC1FC2 − p−1trC1C2 − yn−1(p−1trC1)(p
−1trC2) = op(1).

If we take C1 = Ip, the identity matrix, in (b), then under the condition
of (b), it follows that

(2.11) p−1trF2C2 − (1 + yn−1)p
−1trC2 = op(1).

Let C1 and C2 be p× p deterministic symmetric matrices. Define

u1 =

{
0, if ‖C1‖ is bounded

3/2, if ‖C1‖ = O(p), tr(Cq
1) = O(pq) for q = 1, 2, 3, 4.

and

u2 =

{
0, if ‖C2‖ is bounded

1/2, if ‖C2‖ = O(p), tr(Cq
2) = O(pq) for q = 1, 2.

Define µ
(1)
n = (p−u1µ

(1)
n1 , p

−u2µ
(1)
n2 )T with

µ
(1)
n1 = [trC2

1+yn−1p
−1(trC1)

2]+yn−1p
−1trC2

1+yn−1(κ−3)p−1
p∑
i=1

(eTi C1ei)
2,

where we call κ = E(w4
j ), and µ

(1)
n2 = trC2 with ei being the ith column of

the p×p dimensional identity matrix. Further define 2×2 symmetric matrix

Σ
(1)
n with (i, j)-th element being σ

(1)
nij as follows:
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σ
(1)
n11 = p−2u1

{
8n−1trC4

1 + 4(κ− 3)n−1
p∑
i=1

(eTi C2
1ei)

2 + 4(n−1trC2
1)

2

+8(n−1trC1)
2(n−1trC2

1) + 4(κ− 3)(n−1trC1)
2n−1

p∑
i=1

(eTi C1ei)
2

+8(n−1trC1)n
−1
[
2tr(C3

1) + (κ− 3)

p∑
i=1

(eTi C1ei)(e
T
i C2

1ei)
]}
,

σ
(1)
n22 = p−2u2

[
2n−1trC2

2 + (κ− 3)n−1
p∑
i=1

(eTi C2ei)
2
]
,

σ
(1)
n12 = p−(u1+u2)

{
4n−1tr(C2

1C2) + 2(κ− 3)n−1
p∑
i=1

(eTi C2
1ei)(e

T
i C2ei)

+2(n−1trC1)n
−1
[
2tr(C1C2) + (κ− 3)

p∑
i=1

(eTi C1ei)(e
T
i C2ei)

]}
.

These expressions come from the proof of the following theorem.

Theorem 2.2. Let C1 and C2 be p×p deterministic symmetric matrices

and let Σ(1) = limn→∞Σ
(1)
n > 0 with either ‖C1‖ being bounded or ‖C1‖ =

O(p), tr(Cq
1) = O(pq) for q = 1, 2, 3, 4, and either ‖C2‖ being bounded or

‖C2‖ = O(p), tr(Cq
2) = O(pq) for q = 1, 2. Under Assumptions A and B, it

follows that (
p−u1trFC1FC1

p−u2trFC2

)
− µ(1)

n
d−→ N(0,Σ(1)).

Hereafter ‘
d−→’ stands for convergence in distribution as n→∞.

Remark 2.1. Theorems 2.1 and 2.2 are established by using related
techniques of RMT. The major goals in RMT are to investigate the asymp-
totic behaviors of the eigenvalues and the convergence of the sequence of
ESDs. However, the limiting spectral distribution (LSD) is possibly defec-
tive. That is, total mass is less then one when some eigenvalues tend to ∞
(see Bai and Silverstein (2010)). Under the RMT framework, the existence
of well-defined LSD is a common and necessary assumption. To apply the
RMT, we need to impose the restrictive assumptions on the target matrices
Ck, k = 0, 1 and 2 in Theorems 2.1 and 2.2. The intuitive explanation is
that the difference between the largest and the smallest eigenvalue is not too
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much and does not increase too fast as p → ∞. Note that the Ck, k = 0, 1
and 2 in these two theorems are not Σ. Thus, Theorems 2.1 and 2.2 are
applicable for a wide range of covariance structures.

We next study the asymptotic properties of the proposed test statistics.
We first establish the limiting null distributions of EL-test and QL-test by
RMT. Before presenting the main results, we provide an useful lemma about
the spectral distributions of random matrices that will be used to establish
the limiting distribution of Tn1. The technical details and proofs are given
in the supplementary (Zheng, Chen, Cui and Li, 2018). Define

α1(y) = (1− y−1) log(1− y)− 1, y < 1,

α2(y) = y−1α1(y
−1)− y−1 log(y−1), y > 1;

(2.12)

the mean functions

m12(y) = 0.5 log(1− y)− 0.5(κ− 3)y, y < 1,

m22(y) = m12(y
−1), y > 1;

(2.13)

and the covariance functions

ν11(y) = ν12(y) = ν21(y) = (κ− 1)y, y < 1,

ν22(y) = −2 log(1− y) + (κ− 3)y, y < 1;

v11(y) = (κ− 1)y, y > 1,

v12(y) = v21(y) = κ− 1, y > 1,

v22(y) = −2 log(1− y−1) + (κ− 3)y−1, y > 1.

(2.14)

Lemma 2.1. Suppose that Assumptions A and B hold. Let λ1, · · · , λp
be the eigenvalues of F in (2.8) and Vn1 = {νij(yn−1)}i,j and Vn2 =
{vij(yn−1)}i,j be 2× 2 matrices whose entries are defined in (2.14), respec-
tively. Then it follows the asymptotic normality, (a) if p < n− 1,

(2.15) V
−1/2
n1

[( ∑p
j=1 λj − p∑p

j=1 log λj − pα1(yn−1)

)
−
(

0
m12(yn−1)

)]
d−→ N(0, I2);

and (b) if p > n− 1,

(2.16) V
−1/2
n2

[( ∑n−1
j=1 λj − p∑n−1

j=1 log λj − pα2(yn−1)

)
−
(

0
m22(yn−1)

)]
d−→ N(0, I2);

and (c) if p = n− 1, then (2.15) still holds by replacing α1(yn−1), νij(yn−1)
and m12(yn−1) by −1, νij(yn) and m12(yn).
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Remark 2.2. Lemma 2.1 establishes the central limit theorem for the
functional of eigenvalues of random matrix. It shows that the asymptotic
behaviors of eigenvalues are quite different between the cases p < n − 1
and p > n − 1. When yn−1 → 0 as n → ∞, α1(yn−1) → 0,m12(yn−1) →
0; When yn−1 → 1−, α1(yn−1) → −1,m12(yn−1) = −∞; When yn−1 →
1+, α2(yn−1) → −1,m22(yn−1) = −∞; When yn−1 → ∞, α2(yn−1) →
0,m22(yn−1)→ 0.

We next present the limiting null distributions of the proposed tests.

Theorem 2.3. Suppose that Assumption A and B hold. Denote by σ2n1(y) =
−2y− 2 log(1− y), y < 1. Using the same notations in Lemma 2.1, we have
the following results under H0 in (2.5)

(a) For p < n− 1,

(2.17)
Tn1 + pα1(yn−1) +m12(yn−1)

σn1(yn−1)

d−→ N(0, 1).

Moreover, for p = n− 1, σ−1n1 (yn){Tn1 − p+m12(yn)} d−→ N(0, 1).
(b) For p > n− 1,

(2.18)
Tn1 + pα2(yn−1) +m22(yn−1)

σn1(y
−1
n−1)

d−→ N(0, 1).

(c) Let B =
∑K

k=1 dkAk, where d = (d1, · · · , dK)T = Dc and c be a K-
dimensional vector with the k-th entry being trAkΣ

−1
0 . Assume that

σ2n2 = y2n−1−(κ−1) y3n−1+2 y3n−1 p
−1 tr(Σ0B)2+(κ−3) y3n−1p

−1∑p
i=1(e

T
i ΓTBΓei)

2

has finite limit. It follows that

(2.19)
Tn2 − (p+ κ− 2)yn−1

2σn2

d−→ N(0, 1).

Remark 2.3. When the population is Gaussian, then κ = 3 and the
limiting distributions can be simplified as follows

Tn1 + pα1(yn−1) +m12(yn−1)

σn1(yn−1)

d−→ N(0, 1), p < n− 1

Tn1 − p+m12(yn)

σn1(yn)

d−→ N(0, 1), p = n− 1

Tn1 + pα2(yn−1) +m22(yn−1)

σn1(y
−1
n−1)

d−→ N(0, 1), p > n− 1

Tn2 − (p+ 1)yn−1

2
√
y2n−1 − 2y3n−1 + 2y3n−1p

−1tr(Σ0B)2

d−→ N(0, 1)
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where

α1(yn−1) = [1− (yn−1)
−1] log(1− yn−1)− 1;

α2(yn−1) = y−1n−1[(1− yn−1) log(1− y−1n−1)− 1] + y−1n−1 log yn−1;

m12(yn−1) = 0.5 log(1− yn−1);
m22(yn−1) = 0.5 log[1− (yn−1)

−1].

Moreover, especially for test of sphericity in Gaussian population, we have

[Tn2 − (p + 1)yn−1]/(2yn−1)
d−→ N(0, 1). The statistic Tn1 is just from the

original form of James and Stein’s loss function.

Remark 2.4. The EL-test Tn1 is just equivalent to the corrected LRT
and the QL test Tn2 is just equivalent to the corrected John’s test for test of
sphericity (see Theorems 2.1 and 2.2 in Wang and Yao (2013)). Moreover, as
we mentioned in the introduction, the performance of the EL-test between
p < n − 1 and p > n − 1 are quite different. This is the reason why the
limiting null distribution of EL-test statistic is presented in part (a) and (b)
of Theorem 2.3 separately.

The limiting null distributions can be used to construct the rejection
regions of Tn1 and Tn2. We next establish the asymptotic power functions.

Suppose that under H1 : Σ = Σ1, where Σ1 cannot be represented as a
linear combination of the selected matrices. Using the estimation procedure
proposed in Section 2.3, there still exists the linear approximation for Σ1.
Denoted by a∗1 = (trΣ1A1, · · · , trΣ1AK)T , θ∗1 = (θ∗11, . . . , θ

∗
K1)

T = Da∗1,
and Σ∗1 = θ∗11A1 + . . . + θ∗K1AK can be viewed as the best linear approx-

imation to Σ1 under H1. Recall that θ̂1 defined in (2.4) is the estimator
of θ∗ based on observations and θ̂k1 = θ∗k1 + Op(1/n), k = 1, · · · ,K. Nat-
urally, Ip − Σ1Σ

∗
1
−1 measures the approximation error between the alter-

native Σ1 and the null hypothesis. Σ1Σ
∗
1
−1 is the core of the entropy loss

and the quadratic loss. After symmetrization, we obtain the error denoted
by E = Σ∗1

−1(Ip −Σ1Σ
∗
1
−1). Notice that E = 0 under H0.

Let (h1, · · · , hK)T = D(trEA1, . . . , trEAK)T and Gp(t) be the ESD of

ΓT (Σ∗1
−1 +

∑K
k=1 hkAk)Γ, where recall Γ = Σ

1/2
1 under H1. Let b0 =

yn−1p
−1trΣ1Σ

∗
1
−1, E0 = −(b0Ip−Σ1Σ

∗
1
−1)E+b0Σ

∗
1
−1 and (h∗1, · · · , h∗K)T =

D(trE0A1, . . . , trE0AK)T . Let B∗ = Σ∗1
−1+

∑K
k=1 hkAk and B1∗ = Σ∗1

−1+∑K
k=1 h

∗
kAk. Assume that ‖ΓTΣ∗1

−1Γ‖ = O(p), tr[ΓTΣ∗1
−1Γ]q = O(pq) for

q = 1, 2, 3, 4, tr[ΓTB∗Γ]q = O(p) for q = 1, 2 and tr[ΓTB1∗Γ]q = O(pq) for
q = 1, 2 and Gp(t) has the non-degenerated LSD G(t). Under such alter-
native hypothesis, we obtain the following limiting distributions in Theo-
rem 2.4.
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Theorem 2.4. Suppose that Assumption A and B hold, and the limits of

σ
(1)
nj , j = 1, 2, 3, exist. Then under H1 : Σ = Σ1 that can not be represented

as the linear combination of given matrices, it follows that

(a) for p < n− 1, satisfying Gp(t)→ G(t),

Tn1 − pF yn−1,G
1 − µ(1)1

σ
(1)
n1

d−→ N(0, 1),

(b) for p > n− 1, satisfying Gp(t)→ G(t),

Tn1 − pF yn−1,G
2 − µ(1)2

σ
(1)
n2

d−→ N(0, 1),

(c)

Tn2 − µ(1)3

σ
(1)
n3

d−→ N(0, 1),

where µ
(1)
j , j = 1, 2, 3, F

yn−1,G
j , j = 1, 2 and σ

(1)
nj , j = 1, 2, 3, are given in

the proof of Theorem 2.4.

For fixed significance level α, the corresponding power of the test based

on the statistic Tn2 is βTn2(Σ1) = 1 − Φ((µ0 − µ(1)3 )/σ
(1)
n3 − 2qα/2 σ/σ

(1)
n3 ) +

Φ((µ0−µ(1)3 )/σ
(1)
n3 + 2qα/2 σ/σ

(1)
n3 ), where qα/2 is the α/2 quantile of N(0, 1),

µ0 = (p + κ − 2)yn−1 and σ = σn2 defined in Theorem 2.3. The following
theorem shows that QL-test is asymptotically unbiased in the sense that
βTn2(Σ1) ≥ α ≥ βTn2(Σ0), for any Σ1 belongs to certain alternative. Let
I{·} be an indicator function.

Theorem 2.5. Suppose that Assumptions A and B are satisfied and the

limit of σ
(1)
n3 exists. Under H1 : Σ = Σ1, and Σ1 satisfies that the empirical

spectral distribution p−1
∑p

j=1 I{λ̃j≤t} weakly converges to some distribution

function with λ̃j’s being the eigenvalues of ΓTΣ∗1
−1Γ = Ip + A, A ≥ 0 and

trA2 > δ > 0, then for the prefixed significance level α,

βTn2(Σ1) > α,

when n is sufficiently large and δ is any given small constant. Furthermore,
if p−1trA→ c1 6= 0, then βTn2 → 1 as n→∞.

Remark 2.5. Note that µ0 = (p+κ−2)yn−1. The the proof of Theorem

2.5 reveals a nice property that for large p, µ
(1)
3 − µ0 ≥ p{(1 + y)c21 + 2yc1},

which tends to ∞ at rate p. This implies that the power of QL-test increases
to one quickly. This is consistent with our numerical studies in Section 3.
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2.4. Examples. In this section, we demonstrate how the proposed tests
of linear structures of covariance matrices provide a unified framework for
many existing tests on covariance matrix by several examples, some of which
are new to literature.

Example 2.1. Test of sphericity has been well studied since the sphericity
structure is the simplest linear structure of covariance matrix. Let A1 = Ip.
The test of sphericity is to test the null hypothesis

(2.20) H10 : Σ = θ1A1

for an unknown positive constant θ1 versus H11 : Σ 6= θ1A1 for any positive
constant θ1.

Under H10, θ1 can be estimated by θ̂1 = p−1trSn = θ1 + Op(n
−1) under

Assumptions A and B. When κ = 3 (e.g., under normality assumption), by
Theorem 2.3, we have the following limiting null distribution of Tn1. For
p < n− 1,

(2.21)
Tn1 + (p− n+ 1.5) log(1− yn−1)− p√

−2yn−1 − 2 log(1− yn−1)
d−→ N(0, 1),

and for p > n− 1,

Tn1 + (n− 0.5− p) log(1− y−1n−1)− (n− 1) + (n− 1) log(yn−1)√
−2y−1n−1 − 2 log(1− y−1n−1)

d−→ N(0, 1).

It can be easily verified that Tn1 equals (2/n) times the logarithm of the
LRT under normality assumption when p < n − 1. The LRT has been
well studied for fixed and finite dimension p under normality assumption
(Section 10.7 of Anderson (2003)). Recently Jiang and Yang (2013) derived
the asymptotic distribution of the LRT with y ∈ (0, 1] for normal data.
Chen, Zhang and Zhong (2010) demonstrated that the classical LRT may
become invalid for high-dimensional data and proposed a test based on U-
statistics with p, n→∞. Wang and Yao (2013) proposed the corrected LRT
with p/n → (0, 1). Both Jiang and Yang (2013) and Wang and Yao (2013)
derived the limiting null distribution, which is the same as that in (2.21),
but Jiang and Yang (2013) imposes normality assumption.

For test of sphericity, the Tn2 becomes

(2.22) Tn2 = tr[Sn/(p
−1trSn)− Ip]

2.

Under normality assumption, it follows by Theorem 2.3 that

Tn2 − (p+ 1)yn−1
2yn−1

d−→ N(0, 1).
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The test statistic in (2.22) coincides with the corrected John’s test proposed
by Wang and Yao (2013) with y ∈ (0,∞). Wang and Yao (2013) further
showed that the power of their proposed corrected John’s test is similar to
that of Chen, Zhang and Zhong (2010), and the corrected LRT had greater
power than the corrected John’s test and Chen, Zhang and Zhong (2010)’s
test, when the dimension p is not large relative to the sample size n. But
when p is large relative to n (p < n), the corrected LRT had smaller power
than the corrected John’s test and the test proposed by Chen, Zhang and
Zhong (2010).

Example 2.2. The compound symmetric structure of high dimensional co-
variance matrix is another commonly-used linear structure of covariance
matrix. Let A1 = Ip and A2 = 1p1

T
p , where 1p stands for a p-dimensional

column vector with all elements being 1. Testing compound symmetric struc-
ture is to test

H20 : Σ = θ1A1 + θ2A2,

where θ1 > 0 and −1/(p − 1) < θ2/(θ1 + θ2) < 1 versus H21 : Σ 6= θ1A1 +
θ2A2. Under normality assumption, Kato, Yamada and Fujikoshi (2010)
studied the asymptotic behavior of the corresponding LRT when p < n,
and Srivastava and Reid (2012) proposed a new test statistic for H20 even if
p ≥ n. Without normality assumption, the EL and QL tests can be used to
test the compound symmetric structure. By (2.4), θ1 and θ2 can be estimated
by

θ̂1 = p−1(p− 1)−1(ptrSn − 1Tp Sn1p), θ̂2 = p−1(p− 1)−1(1Tp Sn1p − trSn),

respectively. Thus, both θ̂1 and θ̂2 are n-consistent under Assumptions A
and B. By Theorem 2.3, it follows that

Tn2 − (p+ κ− 2)yn−1
2yn−1

d−→ N(0, 1).

since σn2 = yn−1 in this example. While it seems that the limiting distribu-
tions of Tn1 given in (2.17) and (2.18) cannot be further simplified.

Under normality assumption, when p < n − 1, Tn1 equals (2/n) times
the logarithm of the LRT in Kato, Yamada and Fujikoshi (2010). Srivastava
and Reid (2012)’s method is different from Kato, Yamada and Fujikoshi
(2010) and our proposed tests since Srivastava and Reid (2012) tested the
compound symmetric structure of covariance matrix by testing the inde-
pendence of random variables. The details are as follows. Let G be the
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orthogonal matrix with the first column being the p−1/21p and the ith col-
umn being i−1/2(i − 1)−1/2(1, . . . , 1,−i + 1, 0, . . . , 0)T . Thus, GTΣG is a
diagonal matrix with the first diagonal element being θ1[1 + (p− 1)θ2] and
the remaining diagonal elements being θ1(1−θ2). Thus, Srivastava and Reid
(2012) cast the testing problem H20 as testing the independence of the first
random variable and the remaining p− 1 random variables. Kato, Yamada
and Fujikoshi (2010) and Srivastava and Reid (2012)’s tests are both pro-
posed for the normal case. However, Kato, Yamada and Fujikoshi (2010)’s
test is only valid when p < n, and Srivastava and Reid (2012)’s test still
works when p ≥ n.

Example 2.3. Denote by σij the (i, j)-entry of Σ. Here a (K − 1)-banded
covariance matrix means that σi,j = σj,i = θk if |i−j| = k−1, k = 1, · · · ,K,
and σij = 0 if |i − j| ≥ K. Let A1 = Ip and Ak, 2 ≤ k ≤ K, be a p × p
matrix with (i, j)-element being 1 if |i− j| = k− 1 and 0 otherwise. Testing
the (K − 1)-banded covariance matrix is equivalent to test

H30 : Σ = θ1A1 + · · ·+ θKAK ,

where θk’s are unknown parameters. By (2.4), we have

θ̂1 = p−1trSn,

θ̂k =
1

2
(p− k + 1)−1trSnAk, for 2 ≤ k ≤ K.

When K is a finite positive integer, it can be shown that θ̂k = θk +Op(n
−1)

if p/n→ y ∈ (0,∞).
Qiu and Chen (2012) proposed a test for banded covariance matrix based

on U-statistic. Their test is different from our proposed testing methods. For
general K, the limiting null distributions in Theorem 2.3 cannot be further
simplified. For K = 2, we may obtain a closed form for dk, k = 1, 2 in
Theorem 2.3(c). Specifically, let α = θ1(2θ2)

−1, β = −α + sgn(α)
√
α2 − 1.

Then it follows by some calculations that

d1 =
β

(1− β2)[1− β2(p+1)]θ2

[
2(β2 − β2(p+1))

p(1− β2)
− 1− β2(p+1)

]
,

d2 =
β

(1− β2)[1− β2(p+1)]θ2

[
4(β3 − β2p+1)

p(1− β2)
− 2(1− p−1)β − 2(1− p−1)β2p+1

]
.

Then B = d1Ip + d2A2. Thus, σ2n2 can be obtained. Then testing H30 can
be carried out by using the proposed EL and QL tests.
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Example 2.4. The factor model assumes that X can be represented as
X = v1U1 + · · ·+ vK−1UK−1 + ε, where v1, · · · , vK−1 are random variables
and Uk, k = 1, · · · ,K − 1 are random vectors. Suppose that v1, · · · , vK−1,
U1, . . . ,UK−1 and ε are mutually independent and Cov(ε) = θ1Ip. Condi-
tioning on Uk, k = 1, · · · ,K − 1, the covariance matrix of factor model has
the structure Σ = θ1Ip + θ2U1U

T
1 + · · · + θKUK−1U

T
K−1, where θk+1 =

Var(vk) for k = 1, . . . ,K − 1. Let A1 = Ip, and Ak+1 = UkU
T
k for k =

1, · · · ,K − 1. Thus, it is of interest to test

H40 : Σ = θ1A1 + · · ·+ θKAK ,

where θk’s are unknown parameters. Generally, Uk are orthogonal such that
UT
s Ut = p for s = t and 0 for s 6= t. The parameters can be estimated by

θ̂1 = (p−K+1)−1

(
trSn − p−1

K−1∑
k=1

UT
k SnUk

)
, θ̂k+1 = p−2(UT

k SnUk−pθ̂1)

for k = 1, · · · ,K − 1. Thus, when K is finite and p/n has a finite positive
limit, θ̂k = θk+Op(n

−1) under H40 and Assumptions A and B. Then testing
H40 can be carried out by using the proposed EL and QL tests.

Example 2.5. In this example, we consider testing the particular pattern
of covariance matrix. For even p which is fixed and finite, McDonald (1974)
considered

H50 : Σ =

(
θ1Ip/2 + θ21p/21

T
p/2 θ3Ip/2

θ3Ip/2 θ1Ip/2 + θ21p/21
T
p/2

)
.

Let A1 = Ip,

A2 =

(
1p/21

T
p/2 0

0 1p/21
T
p/2

)
and A3 =

(
0 Ip/2

Ip/2 0

)
.

Then H50 can be written as H50 : Σ = θ1A1 + θ2A2 + θ3A3. Thus, the
proposed EL and QL tests can be used to H50 with high-dimensional data.

3. Simulation studies and application.

3.1. Practical implementation issues. The limiting distributions derived
in Theorem 2.3 involve the unknown parameter κ. Thus, we need to estimate
κ in practice. By Assumption A and some direct calculations, it follows that

(3.1) Var{(x− µ)T (x− µ)} = 2tr(Σ2) + (κ− 3)

p∑
j=1

σ2jj .
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where σjj is the j-th diagonal element of Σ. This enables us to construct a
moment estimator for κ. Specifically, we estimate σjj by σ̂jj = sjj , where
sjj is the j-th diagonal element of Sn. A natural estimator for Var{(x −
µ)T (x− µ)} is

V̂ = (n− 1)−1
n∑
i=1

{(xi − x̄)T (xi − x̄)− n−1
n∑
i=1

[(xi − x̄)T (xi − x̄)]}2.

Under H0, a natural estimator of Σ is Σ̂0 =
∑K

k=1 θ̂kAk defined in Section

2.2. As a result, we may estimate trΣ2 by using trΣ̂2
0. Thus, we may estimate

κ by

(3.2) κ̂0 = 3 +
V̂ − 2 tr(Σ̂2

0)∑p
j=1 s

2
jj

.

It can be shown that κ̂0 is a consistent estimator of κ under H0. The corre-
sponding test statistics control Type I error rate very well in our simulation
study.

As shown in Theorem 2.2, in general, p−1trS2
n−p−1trΣ2 does not tend to

zero. This implies that trS2
n may not serve as an estimator of trΣ2. According

to Theorem 2.2 and ignoring the higher order term, a natural estimator for
trΣ2 is

t̂r(Σ2) = (n− 1){tr(S2
n)− (n− 1)−1[tr(Sn)]2}/n.

This estimator is calibrated by the ratio p/(n − 1) = yn−1. This leads to
another estimator of κ given by

(3.3) κ̂1 = 3 +
nV̂ − 2{(n− 1)tr(S2

n)− [tr(Sn)]2}
n
∑p

j=1 s
2
jj

.

Chen and Qin (2010) also studied the issue of estimation of tr(Σ2) and
proposed the following estimator

(3.4) t̂r(Σ2) =
1

n(n− 1)
tr

 n∑
j 6=k

(xj − x̄(j,k))x
T
j (xk − x̄(j,k))x

T
k

 ,
where x̄(j,k) is the sample mean after excluding xj and xk. This leads to
another estimator of κ:

(3.5) κ̂2 = 3 +
V̂ − 2n−1(n− 1)−1tr[

∑n
j 6=k(xj − x̄(j,k))x

T
j (xk − x̄(j,k))x

T
k ]∑p

j=1 s
2
jj

.
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We compare the performance of κ̂0, κ̂1 and κ̂2 by Monte Carlo simulation
study. Simulation results are reported in the supplementary material. From
our numerical comparison, κ̂0 performs very well across all scenarios of all
simulation examples in Section 3.2 and its sample standard deviation is much
less than those of κ̂1 and κ̂2. This implies that κ̂0 is more stable than κ̂1 and
κ̂2. Thus, we will use κ̂0 throughout our numerical examples in Section 3.2.

3.2. Numerical studies. We illustrate the proposed testing procedure by
a real data example in the supplemental material. In this section, we focus on
assessing the finite sample performance of the proposed tests including their
Type I error rates and powers. All simulations are conducted by using R
code. We generate n random samples from a population x = Σ1/2w, where
Σ will be set according to the hypothesis to be tested, and w is defined in
the previous section. In order to examine the performance of the proposed
tests under different distributions, we consider the elements of w being in-
dependent and identically distributed as (a) N(0, 1) or (b) Gamma(4,2)−2.
Both distributions have means 0 and variances 1. For each setting, we con-
duct 1000 Monte Carlo simulations. The Monte Carlo simulation error rate
is 1.96

√
0.05× 0.95/1000 ≈ 0.0135 at level 0.05. In the numerical studies,

we consider four different covariance matrix structures, which have been
studied in the literature.

Example 3.1. This example is designed to compare the performance of
proposed testing procedures and the test proposed in Srivastava and Reid
(2012) for hypothesis H20 in Example 2.2. We set the covariance matrix
structure as Σ = θ1Ip + θ21p1

T
p + θ3upu

T
p , where up is a p-dimensional

random vector following uniform distribution over [−1, 1]. The third term
is to examine the empirical power when θ3 6= 0. In our simulation, we set
(θ1, θ2) = (6, 1) and θ3 = 0.0, 0.5, 1.0, respectively. We set θ3 = 0 to examine
Type I error rates and θ3 = 0.5, 1.0 to study the powers of the proposed
tests. The sample size is set as n = 100, 200 and the dimension is taken to
be p = 50, 100, 500, 1000. The percentages of rejecting H20 at level 0.05 over
1000 simulations are summarized in Table 1, where the labels QL, EL and
SR stand for the QL-test, the EL-test and the test proposed by Srivastava
and Reid (2012), respectively. The top panel with θ3 = 0 in Table 1 is Type I
error rates for different testing methods. Table 1 indicates that both QL and
EL tests retain Type I error rates reasonably well across different sample
sizes and dimensions. As Srivastava and Reid (2012) mentioned, SR test can
control Type I error rate under normal assumption. But when the population
distribution departures from the normality, SR test fails to control Type I
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error rate, even the sample size increases from 100 to 200. This is expected
since the SR test is derived based on multivariate normality assumption.
As the sample size increases from n = 100 to n = 200, both QL-test and
EL-test control Type I error rate better. The empirical powers are listed
in the panel with θ3 = 0.5 or 1.0 in Table 1, from which we can see that
QL-test has higher power than EL-test for all cases in this example, and SR
test for most cases in this example. For normal samples with p = 50 and
100, SR test is more powerful than EL-test. We notice that the empirical
power of our proposed methods increases as the dimension increases. It is
consistent with our theoretical results. The power of all three tests increases
significantly when the value of θ3 increases from 0.5 to 1 or the sample size
n increases from 100 to 200.

In summary, QL-test performs the best in terms of retaining Type I error
rate and power. The SR test cannot control Type I error rate for nonnormal
samples. EL-test can control Type I error rate well, but is less powerful than
QL-test. Under normality assumption, EL-test is equivalent to the LRT
test, which is the most powerful test in the traditional setting. For high
dimensional setting, the EL-test corresponds to the corrected LRT, whose
power can be improved by the QL-test for Hk0, k = 2, 3, 4 and 5 from this
example and simulation examples below. Additional numerical comparison
with a test proposed by Zhong, Lan, Song and Tsai (2017) is given in the
Section S.5.2 in Zheng, Chen, Cui and Li (2018). The proposed QL- and
EL-test both outperform the test proposed by Zhong, Lan, Song and Tsai
(2017).

Example 3.2. To test covariance matrix structure in H30, the banded
covariance structure, we construct a banded matrix defined in Example 2.3
with width of band K = 3 . Therefore, the null hypothesis H30 has the linear
decomposition Σ = θ1Ip + θ2A2 + θ3A3 + θ4upup

T , where A2 and A3 are
defined in Example 2.3 and up is generated by the same way in the Example
3.1. We take (θ1, θ2, θ3) = (6.0, 1.0, 0.5) and θ4 = 0 to examine Type I error
rates and take θ4 = 0.5, 1 to examine the powers. In the simulation studies,
we still set sample size n = 100, 200 and dimension p = 50, 100, 500, 1000.
The percentages of rejecting H30 at level 0.05 over 1000 simulations are
listed in Table 2. In this example, we compare the test proposed by Qiu
and Chen (2012) for the banded covariance matrix with our proposed tests,
and refer their test as “QC” test hereinafter. Table 2 indicates that QL, EL
and QC tests control Type I error rates well. QC test is supposed to control
Type I error rates well and has high power since it is particularly proposed
for testing banded matrix. Table 2 indicates that QL-test has higher power
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Table 1
Simulation Results for H20 (in percentage of rejecting H20 over 1000 replications)

Wj ∼ N(0, 1) Wj ∼ Gamma(4,2)−2

θ3 n Test p =50 100 500 1000 50 100 500 1000

0 100 QL 5.23 5.40 5.12 5.19 6.48 5.99 5.64 5.41
EL 5.32 6.51 5.12 5.18 5.77 6.35 5.46 5.54
SR 4.90 5.01 4.91 4.98 9.60 8.96 8.15 8.04

0.5 100 QL 40.25 80.58 100.0 100.0 41.01 80.70 100.0 100.0
EL 13.42 11.38 99.78 100.0 13.74 11.42 99.74 100.0
SR 24.46 59.04 99.99 100.0 41.22 73.86 100.0 100.0

1 100 QL 95.88 99.97 100.0 100.0 95.98 99.97 100.0 100.0
EL 53.53 29.97 100.0 100.0 53.71 30.18 100.0 100.0
SR 87.90 99.67 100.0 100.0 93.61 99.87 100.0 100.0

0 200 QL 5.22 5.14 5.12 5.19 6.32 5.78 5.31 5.34
EL 5.18 5.12 5.05 5.13 5.94 5.42 5.23 5.31
SR 4.98 4.93 4.93 5.03 9.95 9.23 8.44 8.43

0.5 200 QL 79.86 99.32 100.0 100.0 78.56 99.28 100.0 100.0
EL 42.00 58.62 100.0 100.0 41.22 58.62 100.0 100.0
SR 61.74 95.79 100.0 100.0 75.78 98.24 100.0 100.0

1 200 QL 99.98 100.0 100.0 100.0 99.96 100.0 100.0 100.0
EL 97.23 99.53 100.0 100.0 96.86 99.55 100.0 100.0
SR 99.81 100.0 100.0 100.0 99.91 100.0 100.0 100.0

than QC test in our simulation settings, in particular, for p = 50. From our
simulation experience, we find that QC test requires more computing time
than QL and EL tests since QC test is a U -statistic method.

Example 3.3. In this example, we examine Type I error rates and empirical
powers of the proposed tests for H40 and H50 defined in Examples 2.4 and
2.5 respectively. We first investigate the performance of QL and EL tests
for H40. We generate several mutually orthogonal factors. Suppose that u∗k,
k = 1, · · · ,K are independent and identically distributed random vectors
following N(0, Ip). Let u1 = u∗1 and uk = (Ip − Pk)u

∗
k, where Pk is the

projection matrix on u1, · · · ,uk−1 for k = 2, · · · ,K. Providing the vectors
uk, we have the covariance matrix structure

Σ = θ0 Ip +

K∑
k=1

θkuku
T
k

for the factor model defined in Example 2.4. In this simulation, we set K = 4
and the coefficient vector (θ0, θ1, θ2, θ3)

T = (4, 3, 2, 1)T . Similarly, θ4 = 0
is for Type I error rates and θ4 = 0.5, 1.0 is for powers. We summarize
simulation results in the top panel of Table 3. Both QL and EL tests control
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Table 2
Simulation Results for H30 (in percentage of rejecting H30 over 1000 replications)

Wj ∼ N(0, 1) Wj ∼ Gamma(4,2)−2

θ4 n Test p =50 100 500 1000 50 100 500 1000

0 100 QL 5.30 5.19 5.29 5.34 6.61 6.19 5.83 5.89
EL 5.31 6.34 5.20 5.36 5.83 6.32 5.53 5.81
QC 5.00 5.50 5.50 5.90 5.00 5.80 6.10 5.20

0.5 100 QL 46.01 84.91 100.0 100.0 45.13 83.62 100.0 100.0
EL 15.20 12.23 99.90 100.0 15.35 12.13 99.90 100.0
QC 17.00 70.00 100.0 100.0 24.00 85.30 100.0 100.0

1 100 QL 97.49 99.98 100.0 100.0 96.96 99.98 100.0 100.0
EL 60.45 33.68 100.0 100.0 59.80 33.71 100.0 100.0
QC 83.00 100.0 100.0 100.0 78.00 99.90 100.0 100.0

0 200 QL 5.25 5.19 5.16 5.10 6.44 5.84 5.56 5.55
EL 5.24 5.15 5.04 4.94 6.01 5.46 5.25 5.26
QC 6.00 5.40 5.50 4.50 4.00 4.50 5.80 5.10

0.5 200 QL 85.30 99.66 100.0 100.0 84.09 99.64 100.0 100.0
EL 48.46 65.39 100.0 100.0 47.62 65.20 100.0 100.0
QC 49.00 100.0 100.0 100.0 49.00 99.70 100.0 100.0

1 200 QL 99.99 100.0 100.0 100.0 99.98 100.0 100.0 100.0
EL 98.27 99.80 100.0 100.0 98.00 99.76 100.0 100.0
QC 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Type I error rates well and have high powers at θ4 = 0.5 and 1.0. For some
cases such as p = 100 and θ4 = 0.5, QL-test has slightly higher power than
EL-test.

We next investigate the performance of QL and EL tests for the covariance
matrix with a special pattern H50. We represent the covariance matrix as a
linear combination

Σ =
4∑

k=1

θkAk,

where A1, A2 and A3 are defined in Example 2.5 and A4 = upu
T
p with

up ∼ Np(0, Ip). We set the first three coefficients (θ1, θ2, θ3) = (6.0, 0.5, 0.1)
and θ4 = 0.0, 0.5 and 1.0 for examining Type I error rates and powers,
respectively. We summarize the simulation results in the bottom panel of
Table 3, which shows that both QL and EL tests can control Type I error
rates, and have high power as well, although QL-test has higher power than
EL-test for (n, p) = (100, 100) and θ5 = 0.5.

4. Technical proofs.
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Table 3
Simulation Results for Example 3.3 (in percentage of rejecting null hypothesis over 1000

replications)

Wj ∼ N(0, 1) Wj ∼ Gamma(4,2)−2

θ4 n Test p =50 100 500 1000 50 100 500 1000

Results for H40

0 100 QL 5.46 5.46 6.02 6.27 6.89 6.53 6.58 6.94
EL 5.40 6.40 5.79 6.20 6.03 6.42 6.30 6.52

0.5 100 QL 99.99 100.0 100.0 100.0 99.96 100.0 100.0 100.0
EL 97.58 86.91 100.0 100.0 97.38 87.25 100.0 100.0

1 100 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 100.0 99.93 100.0 100.0 99.99 99.93 100.0 100.0

0 200 QL 5.32 5.28 5.42 5.52 6.57 6.05 5.89 6.05
EL 5.30 5.22 5.33 5.65 6.15 5.61 5.60 5.65

0.5 200 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 99.99 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1 200 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Results for H50

0 100 QL 5.28 5.19 5.23 5.41 6.59 6.15 5.84 6.16
EL 5.27 6.33 5.17 5.48 5.85 6.35 5.61 5.73

0.5 100 QL 99.64 100.0 100.0 100.0 99.61 100.0 100.0 100.0
EL 85.90 57.86 100.0 100.0 85.89 59.17 100.0 100.0

1 100 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 99.87 97.67 100.0 100.0 99.81 97.86 100.0 100.0

0 200 QL 5.25 5.11 5.08 5.18 6.40 5.84 5.58 5.62
EL 5.25 5.15 5.06 5.05 6.01 5.44 5.29 5.30

0.5 200 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 99.75 99.99 100.0 100.0 99.72 99.99 100.0 100.0

1 200 QL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
EL 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

4.1. Proofs of Theorems 2.1 and 2.2. Recall the definitions of x̄ and Sn
in (2.1) and F in (2.8), it follows that under Assumption A,

(4.1) F = Γ−1Sn(ΓT )−1 and Sn = ΓFΓT .

Proof of Theorem 2.1. Using Chebyshev’s inequality, the proof of (2.10) and
(2.11) is completed by showing that

Ep−1trFC1FC2 − p−1trC1C2 − yn−1(p−1trC1)(p
−1trC2) = o(1)

and

Ep−1trFC0 − p−1trC0 = o(1), Var(p−1trFC0) = o(1),

Var{p−1tr(FC1FC2)} = o(1).



TEST OF HD COVARIANCE STRUCTURE 23

We have

p−1trFC0 = p−1
n∑
i=1

γTi C0γi − p−1nγ̄TC0γ̄,

where γi = (n−1)−1/2wi and γ̄ = n−1
∑n

i=1 γi. Then p−1E
∑n

i=1 γ
T
i C0γi =

n(n− 1)−1p−1trC0 and p−1nEγ̄TC0γ̄ = (n− 1)−1p−1trC0 → 0. Thus

(4.2) Ep−1trFC0 − p−1trC0 → 0.

Moreover
(4.3)

E(p−1
n∑
i=1

γTi C0γi−p−1(n−1)−1ntrC0)
2 = np−2E(γT1 C0γ1−(n−1)−1trC0)

2 → 0.

By (4.2) and (4.3), we have

p−1
n∑
i=1

γTi C0γi − p−1trC0 = op(1).

Similarly, we have
p−1nγ̄TC0γ̄ = op(1).

Thus, we have
p−1trFC0 − p−1trC0 = op(1).

Moreover, we have

p−1trFC1FC2 = p−1
∑
i 6=j

γTi C1γjγ
T
j C2γi + p−1

∑
i

γTi C1γiγ
T
i C2γi

−2p−1nγ̄TC1FC2γ̄ + p−1n2γ̄TC1γ̄γ̄
TC2γ̄,

where p−1E
∑

i 6=j γ
T
i C1γjγ

T
j C2γi = [n/(n− 1)]p−1trC1C2,

p−1
∑
i

E{γTi C1γiγ
T
i C2γi} = [n/(n−1)2]p−1trC2trC1+2n/[p(n−1)2]trC1C2+o(1),

and Ep−1nγ̄TC1FC2γ̄ = n/[p(n−1)2]trC1C2+o(1) and Ep−1n2γ̄TC1γ̄γ̄
TC2γ̄ =

o(1). Then

p−1EtrFC1FC2 − p−1trC1C2 − yn−1(p−1trC1)(p
−1trC2)→ 0.

Similarly, we can prove

Var[p−1
∑
i 6=j

γTi C1γjγ
T
j C2γi]→ 0,
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Var[p−1
∑
i

γTi C1γiγ
T
i C2γi] = p−2Var[γT1 C1γ1γ

T
1 C2γ1]→ 0,

Var[p−1nγ̄TC1FC2γ̄]→ 0, Var[p−1n2γ̄TC1γ̄γ̄
TC2γ̄]→ 0.

Thus we have

[p−1
∑
i 6=j

γTi C1γjγ
T
j C2γi − p−1trC1C2] = op(1),

[p−1
∑
i

γTi C1γiγ
T
i C2γi−yn−1(p−1trC1)(p

−1trC2)−2n/[p(n−1)2]trC1C2] = op(1)

and

{p−1nγ̄TC1FC2γ̄−n/[p(n−1)2]trC1C2} = op(1), {p−1n2γ̄TC1γ̄γ̄
TC2γ̄} = op(1).

Then we have

[p−1trFC1FC2 − p−1trC1C2 − yn−1(p−1trC1)(p
−1trC2)] = op(1).

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Recall γi = (n − 1)−1/2wi, i = 1, . . . , n, and γ̄ =
n−1

∑n
i=1 γi. To derive its limiting distribution, we first calculate E(p−u1trFC1FC1,

p−u2trFC2)
T . Under Assumptions A and B, E [tr(FC2)] = trC2 and it fol-

lows by some calculations that

p−u1E trFC1FC1

= p−u1
(

E
∑
i 6=j

trγiγ
T
i C1γjγ

T
j C1 + E

n∑
i=1

γTi C1γiγ
T
i C1γi

−2nE
∑
j

trγ̄γ̄TC1γjγ
T
j C1 + En2trγ̄γ̄TC1γ̄γ̄

TC1

)
= p−u1

{
[trC2

1 + yn−1p
−1(trC1)

2] + yn−1p
−1trC2

1

+yn−1(κ− 3)p−1
p∑
i=1

(eTi C1ei)
2
}

+ o(1).

To establish the asymptotic normality of (p−u1trFC1FC1, p
−u2trFC2)

T , it
suffices to establish the asymptotic normality of p−u1trFC1FC1+bp

−u2trFC2

for any constant b. Define

An1 = p−u1
(∑
i 6=j

trγiγ
T
i C1γjγ

T
j C1+

n∑
i=1

γTi C1γiγ
T
i C1γi

)
+p−u2b

n∑
i=1

γTi C2γi
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and

An2 = p−u1
(
−2n

∑
j

trγ̄γ̄TC1γjγ
T
j C1+n

2trγ̄γ̄TC1γ̄γ̄
TC1

)
−p−u2bnγ̄TC2γ̄.

It follows that

p−u1trFC1FC1 + p−u2btrFC2 = An1 +An2.

Because Var(An2) = o(1), it is sufficient to deal with An1. We will use
Lindeberg CLT on martingale difference sequence to establish the asymp-
totic normality of An1. Let E`(Z) be the conditional expectation of Z given
{γ1, . . . ,γ`}. Then it can be verified that {(E` − E`−1)An1, ` = 1, . . . , n} is
a martingale difference sequence. Define

δ1` = (E` − E`−1)
∑
i 6=j

trγiγ
T
i C1γjγ

T
j C1,

δ2` = γT` C1γ`γ
T
` C1γ` − EγT` C1γ`γ

T
` C1γ`,

δ3` = b[γT` C2γ` − (n− 1)−1trC2].

Then (E`−E`−1)An1 = p−u1δ1` + p−u1δ2` + p−u2δ3`. We may simplify δ1` as
follows:

δ1` = E`
∑
i 6=j

trγiγ
T
i C1γjγ

T
j C1 − E`−1

∑
i 6=j

trγiγ
T
i C1γjγ

T
j C1

=
2(n− `)
(n− 1)

[γT` C2
1γ` − (n− 1)−1trC2

1]

+2
∑
j≤`−1

[γT` C1γjγ
T
j C1γ` − (n− 1)−1γTj C2

1γj ].

Rewrite

δ2` = γT` C1γ`γ
T
` C1γ` − EγT` C1γ`γ

T
` C1γ`

= [γT` C1γ` − (n− 1)−1trC1]
2 − E[γT` C1γ` − (n− 1)−1trC1]

2

+2(n− 1)−1trC1[γ
T
` C1γ` − (n− 1)−1trC1].

Because the Lindeberg condition of the martingale difference sequence
(p−u1δ1` + p−u1δ2` + p−u2δ3`) may be easily verified, it is sufficient to derive
the limit of

∑n
`=1 E`−1[p

−u1δ1` + p−u1δ2` + p−u2δ3`]
2. Bai and Silverstein

(2010) pointed out that the CLT of the linear spectral statistics of the sample
covariance matrix Sn from {wijI(|wij |≤ηn

√
n), i = 1, . . . , p, j = 1, . . . , n} is

the same as the sample covariance matrix Sn from {wij , i = 1, . . . , p, j =
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1, . . . , n} where ηn → 0 and ηn
√
n → ∞. Then it follows by using Lemma

9.1 in Bai and Silverstein (2010) that

p−2u1
n∑
`=1

E`−1δ1`δ2`

= p−2u1
{

4(n− 1)−2trC1

[
2trC3

1 + (κ− 3)

p∑
i=1

(eTi C1ei)(e
T
i C2

1ei)
]}

+ op(1).

By some calculations, we have

p−(u1+u2)
n∑
`=1

E`−1δ1`δ3`

= 2bp−(u1+u2)(n− 1)−1
[
2tr(C2

1C2) + (κ− 3)

p∑
i=1

eTi C2
1eie

T
i C2ei

]
+ op(1)

and

p−(u1+u2)
n∑
`=1

E`−1δ2`δ3` = 2bp−(u1+u2)(κ− 3)(n− 1)−2trC1

p∑
i=1

eTi C1eie
T
i C2ei

+4bp−(u1+u2)(n− 1)−2trC1trC1C2 + op(1)

by using Lemma 9.1 in Bai and Silverstein (2010) again. We next deal with
the squared terms. We can show that

p−2u1
n∑
`=1

E`−1δ
2
1` = 4p−2u1(n− 1)−1

[
2trC4

1 + (κ− 3)

p∑
i=1

(eTi C2
1ei)

2
]

+4p−2u1 [(n− 1)−1trC2
1]
2 + op(1).

p−2u1
n∑
`=1

E`−1δ
2
2`

= 4p−2u1(n− 1)−2(trC1)
2

[
2trC2

1 + (κ− 3)

p∑
i=1

(eTi C1ei)
2

]
+ op(1),

p−2u2
n∑
`=1

E`−1δ
2
3`

= b2p−2u2(n− 1)−1
[
2trC2

2 + (κ− 3)

p∑
i=1

(eTi C2ei)
2
]

+ op(1).

Thus, we can further derive
∑n

`=1 E`−1(p
−u1δ1` + p−u1δ2` + p−u2δ3`)

2.
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Applying Lindeberg CLT on martingale difference sequence on p−u1δ1` +
p−u1δ2`+p

−u2δ3`, it follows that for any b, p−u1(trFC1FC1−EtrFC1FC1)+
p−u2b(trFC2 − EtrFC2) converges to a normal distribution with mean 0
and variance lim

n→∞

∑n
`=1 E`−1(p

−u1δ1` + p−u1δ2` + p−u2δ3`)
2. The proof of

Theorem 2.2 is completed by calculating the corresponding mean vector

and covariance matrix, which equal µ
(1)
n and Σ

(1)
n given in Section 2.4.

4.2. Proofs of Theorems 2.3, 2.4 and 2.5. Recall Σ0 = θ1A1+· · ·+θKAK

and Σ̂0 = θ̂1A1 + · · ·+ θ̂KAK . Using the identity Σ̂−10 −Σ−10 = −Σ−10 (Σ̂0−
Σ0)Σ̂

−1
0 , it follows that

Σ̂−10

= Σ−10 −
K∑
k=1

(θ̂k − θk)Σ−10 AkΣ
−1
0 +

∑
i,j

[(θ̂i − θi)(θ̂j − θj)Σ̂−10 AiΣ
−1
0 AjΣ

−1
0 ]

= Σ−10 [Ip −
K∑
k=1

(θ̂k − θk)AkΣ
−1
0 ] +

∑
i,j

(θ̂i − θi)(θ̂j − θj)Σ̂−10 AiΣ
−1
0 AjΣ

−1
0 .

Then we have SnΣ̂
−1
0 = SnΣ

−1
0 [Ip−

∑K
k=1(θ̂k−θk)AkΣ

−1
0 ]+

∑
i,j

(θ̂i−θi)(θ̂j−

θj)SnΣ̂
−1
0 AiΣ

−1
0 AjΣ

−1
0 . Under H0, by θ̂k = θk +Op(1/n), then the trace of

the second term is of order op(1).

Proof of Theorem 2.3(a) and (b). When p < n− 1, it follows by the Taylor
expansion of θ̂k at θk, k = 1, · · · ,K that under H0,

trSnΣ̂
−1
0 − log |SnΣ̂−10 |

= trSnΣ
−1
0 −

K∑
k=1

p(θ̂k − θk)p−1trSnΣ−10 AkΣ
−1
0

− log |SnΣ−10 |+
K∑
k=1

p(θ̂k − θk)p−1trAkΣ
−1
0 + op(1)

= trSnΣ
−1
0 − log |SnΣ−10 |+ op(1)

= trF− log |F|+ op(1)(4.4)

since p−1trSnΣ
−1
0 AkΣ

−1
0 − p−1trAkΣ

−1
0 = op(1) under H0 by (2.10) with

setting C0 = ΓTΣ−10 AkΣ
−1
0 Γ. By Lemma 2.1 and when p < n− 1, we have

Tn1 + pα1(yn−1) +m12(yn−1)

σn1(yn−1)

d−→ N(0, 1),
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where σ2n1(yn−1) = −2yn−1 − 2 log(1− yn−1).
This completes the proof of Theorem 2.3(a) with p < n − 1. Similarly,

Theorem 2.3(a) with p = n− 1 can be obtained.
Similarly, for p > n− 1, a direct application of Lemma 2.1 to (4.4) leads

to
Tn1 + pα2(yn−1) +m22(yn−1)√

y−2n−1v11(yn−1) + v22(yn−1)− 2y−1n−1v12(yn−1)

d−→ N(0, 1).

That is,
Tn1 + pα2(yn−1) +m22(yn−1)

σn1(y
−1
n−1)

d−→ N(0, 1).

This completes the proof of Theorem 2.3(b).

Proof of Theorem 2.3(c). Under H0, θ̂k = θk +Op(1/n), it follows that

tr(SnΣ̂
−1
0 − Ip)

2

= tr(SnΣ
−1
0 − Ip)

2 + p
K∑
k=1

(θ̂k − θk)2p−1trSnΣ−10 AkΣ
−1
0

−p
K∑
k=1

(θ̂k − θk)2p−1tr(SnΣ−10 )2AkΣ
−1
0 + op(1).(4.5)

Taking C0 = ΓTΣ−10 AkΣ
−1
0 Γ for k = 1, · · · ,K, it follows by Theorem 2.1

that

tr(SnΣ̂
−1
0 − Ip)

2

= tr(SnΣ
−1
0 − Ip)

2 − 2yn−1

K∑
k=1

(θ̂k − θk)trAkΣ
−1
0 + op(1)

= tr(SnΣ
−1
0 − Ip)

2 − 2yn−1(trΣ̂0Σ
−1
0 − p) + op(1).

By the definition of θ̂ in Section 2.1, it follows that

trΣ̂0Σ
−1
0 = trSnB = trFΓTBΓ,

where B is defined in Theorem 2.3(c) and trΣ0B = trΣ0Σ
−1
0 = p. As a

result, we have

tr(SnΣ̂
−1
0 − Ip)

2

= tr(F− Ip)
2 − 2yn−1(trΣ̂0Σ

−1
0 − p) + op(1)

= −2trF− 2yn−1trΣ̂0Σ
−1
0 + trF2 + 2yn−1p+ p+ op(1)

= −2trF− 2yn−1trFΓTBΓ + trF2 + 2yn−1p+ p+ op(1)

= trF2 + trF(−2Ip − 2yn−1Γ
TBΓ) + 2yn−1p+ p+ op(1).
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By Theorem 2.2, we have

tr(SnΣ̂
−1
0 − Ip)

2 − pyn−1 − (κ− 2)y

2σ
→ N(0, 1),

where

σ2 = 4−1
[
4(κ− 1)(y + 2y2) + 8y3p−1tr(Σ0B)2 + 4(κ− 3)y3p−1

p∑
i=1

(eTi ΓTBΓei)
2

+4y2 + 4(κ− 1)(y + 2y2 + y3)− 8(κ− 1)y(1 + y)2
]

= 4−1
[
4y2 + 8y3p−1tr(Σ0B)2 + 4(κ− 3)y3p−1

p∑
i=1

(eTi ΓTBΓei)
2 − 4(κ− 1)y3

]

= y2 + 2y3p−1tr(Σ0B)2 + (κ− 3)y3p−1
p∑
i=1

(eTi ΓTBΓei)
2 − (κ− 1)y3.

Proof of Theorem 2.4 (c). Due to the space limit, the proof of Theorem 2.4
(a) and (b) are given in the supplementary material.

We next derive the power function of Tn2. First, we consider ΓTΣ∗1
−1Γ be-

ing bounded spectral norm. When ΓTΣ∗1
−1Γ has unbounded spectral norm,

we only add a factor p−3/2 to Tn2. Then the same results are obtained. Under
H1, it follows that

tr(SnΣ̂
−1
0 − Ip)

2

= tr(SnΣ
∗
1
−1 − Ip)

2 + p
K∑
k=1

(θ̂k − θ∗k)2p−1trSnΣ∗1
−1AkΣ

∗
1
−1

−p
K∑
k=1

(θ̂k − θ∗k)2p−1tr(SnΣ∗1
−1)2AkΣ

∗
1
−1 + op(1).

Recall F =
∑n

i=1 γiγ
T
i − nγ̄γ̄T . Thus, we have

p−1trSnΣ
∗
1
−1AkΣ

∗
1
−1 = p−1

n∑
i=1

γTi ΓTΣ∗1
−1AkΣ

∗
1
−1Γγi−(n/p)γ̄TΓTΣ∗1

−1AkΣ
∗
1
−1Γγ̄.

Because p−1
∑n

i=1 EγTi ΓTΣ∗1
−1AkΣ

∗
1
−1Γγi = p−1trΣΣ∗1

−1AkΣ
∗
1
−1 + o(1)

and

(n/p)Eγ̄TΓTΣ∗1
−1AkΣ

∗
1
−1Γγ̄ = [(n− 1)p]−1trΣΣ∗1

−1AkΣ
∗
1
−1,
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then we have

p−1EtrSnΣ
∗
1
−1AkΣ

∗
1
−1 − p−1trΣΣ∗1

−1AkΣ
∗
1
−1 → 0.

Furthermore, we can show that

Var[p−1
n∑
i=1

γTi ΓTΣ∗1
−1AkΣ

∗
1
−1Γγi]→ 0, and Var[γ̄TΓTΣ∗1

−1AkΣ
∗
1
−1Γγ̄]→ 0.

Then we have p−1trSnΣ
∗
1
−1AkΣ

∗
1
−1 − p−1trΣΣ∗1

−1AkΣ
∗
1
−1 = op(1). More-

over, we have

p−1Etr[SnΣ
∗
1
−1]2AkΣ

∗
1
−1

= p−1E
n∑
i=1

trγiγ
T
i ΓTΣ∗1

−1Γγiγ
T
i ΓTΣ∗1

−1AkΣ
∗
1
−1Γ

+p−1E
∑
i 6=j

trγiγ
T
i ΓTΣ∗1

−1Γγjγ
T
j ΓTΣ∗1

−1AkΣ
∗
1
−1Γ

= np−1(n− 1)−2[2trAkΣ
∗
1
−1(ΣΣ∗1

−1)2

+(κ− 3)

p∑
`=1

(eT` ΓTΣ∗1
−1Γe`)(e

T
` ΓTΣ∗1

−1AkΣ
∗
1
−1Γe`)]

+np−1(n− 1)−2(trΣΣ∗1
−1)(trΣΣ∗1

−1AkΣ
∗
1
−1) + np−1(n− 1)−1trAkΣ

∗
1
−1(ΣΣ∗1

−1)2.

Thus, it follows that p−1Etr(SnΣ
∗
1
−1)2AkΣ

∗
1
−1−yn−1(p−1trΣΣ∗1

−1)(p−1trΣΣ∗1
−1AkΣ

∗
1
−1)−

p−1trAkΣ
∗
1
−1(ΣΣ∗1

−1)2 → 0. Similarly, it can be shown that

Var[p−1
n∑
i=1

trγiγ
T
i ΓTΣ∗1

−1Γγiγ
T
i ΓTΣ∗1

−1AkΣ
∗
1
−1Γ]→ 0

and

Var[p−1E
∑
i 6=j

trγiγ
T
i ΓTΣ∗1

−1Γγjγ
T
j ΓTΣ∗1

−1AkΣ
∗
1
−1Γ]→ 0.

Therefore, we obtain p−1tr(SnΣ
∗
1
−1)2AkΣ

∗
1
−1−yn−1(p−1trΣΣ∗1

−1)(p−1trΣΣ∗1
−1AkΣ

∗
1
−1)−
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p−1trAkΣ
∗
1
−1(ΣΣ∗1

−1)2 = op(1). As a result, it follows that

tr(SnΣ̂
−1
0 − Ip)

2

= tr(SnΣ
∗
1
−1 − Ip)

2 + p
K∑
k=1

(θ̂k − θ∗k)2p−1trSnΣ∗1
−1AkΣ

∗
1
−1

−p
K∑
k=1

(θ̂k − θ∗k)2p−1tr(SnΣ∗1
−1)2AkΣ

∗
1
−1 + op(1)

= tr[SnΣ
∗
1
−1 − Ip]

2 + 2p

K∑
k=1

(θ̂k − θ∗k)p−1trΣΣ∗1
−1AkΣ

∗
1
−1

−2p

K∑
k=1

(θ̂k − θ∗k)[yn−1(p−1trΣΣ∗1
−1)(p−1trΣΣ∗1

−1AkΣ
∗
1
−1) + p−1trAkΣ

∗
1
−1(ΣΣ∗1

−1)2]

+op(1).

Note that

2p
K∑
k=1

(θ̂k − θ∗k)p−1trΣΣ∗1
−1AkΣ

∗
1
−1 = 2trΣ̂0Σ

∗
1
−1ΣΣ∗1

−1 − 2trΣΣ∗1
−1

and

2p
K∑
k=1

(θ̂k − θ∗k)[yn−1(p−1trΣΣ∗1
−1)(p−1trΣΣ∗1

−1AkΣ
∗
1
−1) + p−1trAkΣ

∗
1
−1(ΣΣ∗1

−1)2]

= 2yn−1p
−1(trΣΣ∗1

−1)(trΣ̂0Σ
∗
1
−1ΣΣ∗1

−1) + 2trΣ̂0Σ
∗
1
−1(ΣΣ∗1

−1)2

−2yn−1p
−1[trΣΣ∗1

−1]2 − 2tr[ΣΣ∗1
−1]2.

Thus,

2p

K∑
k=1

(θ̂k − θ∗k)p−1trΣΣ∗1
−1AkΣ

∗
1
−1

−2p

K∑
k=1

(θ̂k − θ∗k)[yn−1p−1trΣΣ∗1
−1p−1trΣΣ∗1

−1AkΣ
∗
1
−1 + p−1trAkΣ

∗
1
−1(ΣΣ∗1

−1)2]

= 2(1− yn−1p−1trΣΣ∗1
−1)trΣ̂0Σ

∗
1
−1ΣΣ∗1

−1 − 2trΣ̂0Σ
∗
1
−1(ΣΣ∗1

−1)2

−2trΣΣ∗1
−1 + 2yn−1p

−1[trΣΣ∗1
−1]2 + 2tr[ΣΣ∗1

−1]2

= trSnB1 − 2trΣΣ∗1
−1 + 2yn−1p

−1[trΣΣ∗1
−1]2 + 2tr[ΣΣ∗1

−1]2
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where B1 =
∑K

k=1 eTkDg · Ak with g = (trGA1, . . . , trGAK)T and G =
Σ∗1
−1ΣΣ∗1

−12(1− yn−1p−1trΣΣ∗1
−1)− 2Σ∗1

−1(ΣΣ∗1
−1)2. Then we have

tr(SnΣ̂
−1
0 − Ip)

2

= tr(SnΣ
∗
1
−1 − Ip)

2 + 2p

K∑
k=1

(θ̂k − θ∗k)p−1trΣΣ∗1
−1AkΣ

∗
1
−1

−2p
K∑
k=1

(θ̂k − θ∗k)[yn−1p−1trΣΣ∗1
−1p−1trΣΣ∗1

−1AkΣ
∗
1
−1 + p−1trAkΣ

∗
1
−1(ΣΣ∗1

−1)2]

+op(1)

= tr(SnΣ
∗
1
−1 − Ip)

2 + trSnB1 − 2trΣΣ∗1
−1 + 2yn−1p

−1(trΣΣ∗1
−1)2 + 2tr(ΣΣ∗1

−1)2

+op(1)

= tr(FΓTΣ∗1
−1Γ)2 + trF(−2ΓTΣ∗1

−1Γ + ΓTB1Γ)

+p− 2trΣΣ∗1
−1 + 2yn−1p

−1(trΣΣ∗1
−1)2 + 2tr(ΣΣ∗1

−1)2 + op(1).

It follows by Theorem 2.2 that under H1,

tr(SnΣ̂
−1
0 − Ip)

2 − µ(1)3

σ
(1)
n3

→ N(0, 1),

where

(σ
(1)
n3 )2

= 8[n−1tr(ΣΣ∗1
−1)4] + 4[n−1tr(ΣΣ∗1

−1)2]2 + 8(n−1trΣΣ∗1
−1)2[n−1tr(ΣΣ∗1

−1)2]

+16(n−1trΣΣ∗1
−1)[n−1tr(ΣΣ∗1

−1)3] + 2n−1tr(−2ΓTΣ∗1
−1Γ + ΓTB1Γ)2

+8n−1tr[(ΣΣ∗1
−1)2Σ(−2Σ∗1

−1 + B1)]

+8(n−1trΣΣ∗1
−1)[n−1trΣΣ∗1

−1Σ(−2Σ∗1
−1 + B1)]

+4(κ− 3)n−1
p∑
i=1

(eTi ΓTΣ∗1
−1ΣΣ∗1

−1Γei)
2

+4(κ− 3)(n−1trΣΣ∗1
−1)2[n−1

p∑
i=1

(eTi ΓTΣ∗1
−1Γei)

2]

+8(κ− 3)(n−1trΣΣ∗1
−1)[n−1

p∑
i=1

(eTi ΓTΣ∗1
−1Γei)(e

T
i ΓTΣ∗1

−1ΣΣ∗1
−1Γei)]

+(κ− 3)n−1
p∑
i=1

[ei(−2ΓTΣ∗1
−1Γ + ΓTB1Γ)ei]

2
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+4(κ− 3)n−1
p∑
i=1

eTi ΓTΣ∗1
−1ΣΣ∗1

−1Γeie
T
i ΓT (−2Σ∗1

−1 + B1)Γei

+4(κ− 3)(n−1trΣΣ∗1
−1)[n−1

p∑
i=1

eTi ΓTΣ∗1
−1Γeie

T
i ΓT (−2Σ∗1

−1 + B1)Γei],

and

µ
(1)
3 =

(trΣΣ∗1
−1)2

n− 1
+
n− 2

n− 1
tr(ΣΣ∗1

−1)2 − 2trΣΣ∗1
−1 + p

+
1

n− 1
[2tr(ΣΣ∗1

−1)2 + (κ− 3)

p∑
i=1

(eTi ΓTΣ∗1
−1Γei)

2],

5. Discussion. We have studied hypothesis testing on linear structure
of high dimensional covariance matrix, and developed two tests for the linear
structure. Under the null hypothesis, the covariance matrix can be repre-
sented as a linear combination of a finite number of pre-specified matrix
bases. This implies that we may estimate the covariance matrix well. If the
null hypothesis gets rejected, one may have to consider more general struc-
ture or unstructured covariance matrix, and conduct further study.
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