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CONSISTENT SELECTION OF THE NUMBER OF
CHANGE-POINTS VIA SAMPLE-SPLITTING

By Changliang Zou§ Guanghui Wang¶, and Runze Li‖

Nankai University§¶ and The Pennsylvania State University‖

In multiple change-point analysis, one of the major challenges is
to estimate the number of change-points. Most existing approaches
attempt to minimize a Schwarz information criterion which balances
a term quantifying model fit with a penalization term accounting for
model complexity that increases with the number of change-points
and limits overfitting. However, different penalization terms are re-
quired to adapt to different contexts of multiple change-point prob-
lems and the optimal penalization magnitude usually varies from the
model and error distribution. We propose a data-driven selection cri-
terion that is applicable to most kinds of popular change-point detec-
tion methods, including binary segmentation and optimal partition-
ing algorithms. The key idea is to select the number of change-points
that minimizes the squared prediction error, which measures the fit of
a specified model for a new sample. We develop a cross-validation es-
timation scheme based on an order-preserved sample-splitting strat-
egy, and establish its asymptotic selection consistency under some
mild conditions. Effectiveness of the proposed selection criterion is
demonstrated on a variety of numerical experiments and real-data
examples.

1. Introduction. Change-point detection has received enormous at-
tention due to the emergence of an increasing amount of temporal data. It
is a process of detecting mean, variance, or distributional changes in time-
ordered observations, and becomes an integrated part of modeling, estima-
tion and inference. Comprehensive reviews of various existing approaches to
the inference of multiple change-points (MCP) can be found, for instance,
Chen and Gupta (2012) and Aue and Horváth (2013).

The determination of the number of change-points K in a dataset has been
central to multiple change-point analysis for decades. It is often approached
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as a model selection problem, since K drives the model dimension. Bayesian
information criterion (BIC, Schwarz (1978)) has become very popular in the
change-point problems, for instance, see Yao (1988), Bai and Perron (1998),
Braun, Braun and Müller (2000), Fryzlewicz (2014), Zou et al. (2014) and
Wang, Zou and Yin (2018), and the asymptotic consistency of the resulting
estimator of K has been established in particular contexts of interest. While
the BIC is well grounded for general models, different BIC terms are required
to adapt to different contexts of MCP problems, and more importantly, the
optimal penalization magnitude usually varies from the model and error
distribution (Zhang and Siegmund, 2007; Hannart and Naveau, 2012). Sev-
eral ad-hoc criteria for the change-point problem were also proposed, for
instance, by Lavielle (2005) and Birgé and Massart (2001). Although these
approaches could be visually useful in practice, their theoretical justification
remains an open problem.

This article develops a new procedure that attempts to circumvent those
limitations while improving the performance of existing criteria. Our strat-
egy is to select the number of change-points that minimizes the squared
prediction error, which measures the fit of a specified model for a new sam-
ple. A new estimation scheme is developed based on the sample splitting,
selecting the estimated number of change-points yielding the smallest esti-
mated squared prediction error. Specially, we divide the sample by the parity
of the time order, being even or odd, resulting in a 2-fold cross-validation
(CV) with order-preserved sample-splitting which is tailored for the change-
point problem. The r-fold CV has been widely used to assess the quality of
regression and classification models (Shao, 1993; Yang, 2007), while analo-
gous results for change-point problems seem rare. This may be because it
is well recognized that under a parametric regression framework, the r-fold
CV, which performs similar to the Akaike information criterion (AIC), tends
to select the model with the optimal prediction performance (Zhang, 1993),
while the BIC tends to identify the true sparse model well (Yang, 2005).
Interestingly, asymptotic selection consistency of the proposed procedure
can be established under some mild conditions, ensuring that the estimated
number of change-points equals to the true one with probability tending
to one. This may contradict with our intuition but can be understood by
carefully examining the connection and difference between the linear regres-
sion and change-point problem; see Section 3.2 for details. The only related
work we noticed is Arlot and Celisse (2011) which proposed to use a CV-
based empirical risk instead of the commonly used least-squares loss function
under a univariate mean change model with heterogeneity. However, no the-
oretical results and numerical evidences on the estimation of the number of
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change-points were provided.
Our selection criterion and its CV estimation are presented in Sections

2 and 3, respectively, using a unified parametric framework which includes
classical univariate or multivariate location and scale problems, ordinary
least-squares, generalized linear models, and many others as special cases,
provided that the corresponding objective (likelihood or loss) function can
be recast into their asymptotically equivalent least-squares problems. The
proposed selection criterion makes minimum requirements on the change-
point detection approach, and can be applied to almost all kinds of change
detection algorithms, such as the local discrepancy based detection (Niu
and Zhang, 2012; Cao and Wu, 2015), binary segmentation and its variants
(Fryzlewicz, 2014), and least-squares or likelihood methods via a dynamic
programming algorithm (Yao, 1988; Hawkins, 2001; Bai and Perron, 2003).
The proposed procedure could be also applicable for some other settings with
minor modifications, including nonparametric models and correlated cases
which are discussed in Section 3.3. In Section 4, numerical experiments in-
dicate that the proposed criterion delivers superior performance in a variety
of simulated and real examples. Section 5 concludes with some remarks, and
theoretical proofs are delineated in the Appendix. Some technical details and
additional numerical results are provided in the Supplementary Material.

Notations: Let {x,x1, . . . ,xn} be a set of d-dimensional vectors and M
be a positive definite matrix. Define the norm ‖x‖ =

√
x>x and ‖x‖M =√

x>Mx. For any interval (l, r] with l ≥ 0 and r ≤ n, denote x̄l,r = (r −
l)−1

∑r
i=l+1 xi. Let TL = (τ1, . . . , τL) be a set of L points such that 0 < τ1 <

· · · < τL < n. We introduce

S2
x(TL; M) =

L∑
l=0

τl+1∑
i=τl+1

(xi − x̄τl,τl+1
)>M(xi − x̄τl,τl+1

),

where τ0 = 0 and τL+1 = n. Moreover, let T̃L̃ = (τ̃1, . . . , τ̃L̃) be another set

of L̃ points such that 0 < τ̃1 < · · · < τ̃L̃ < n and we define S2
x(TL∪T̃L̃; M) =

S2
x

(
sort(TL∪T̃L̃); M

)
, where sort(A) is the set of the sorted elements of A in

ascending order. For a sequence an > 0, we denote Xn & an if there exists
some constant C > 0 such that Xn ≥ Can for large enough n holds with
probability approaching one.

2. A unified model and selection criterion.

2.1. Model. Suppose we have a sequence of independent data observa-
tions Z = {Z1, . . . ,Zn}, collecting from the multiple change-point model,

Zi ∼ m(· | β∗j ), τ∗j < i ≤ τ∗j+1, j = 0, . . . ,Kn; i = 1, . . . , n,(1)
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where Kn is the true number of change-points, τ∗j s are the locations of these
change-points with the convention of τ∗0 = 0 and τ∗Kn+1 = n, β∗j is a d-
dimensional parameter vector of interest and m(· | β∗j ) represents the model
structure of the segment j satisfying β∗j 6= β∗j+1.

Denote Zτj+1
τj = (Zτj+1, . . . ,Zτj+1) and let l(β; Zi) be a plausible loss

function for Zi so that the minimizer of L(β;Zτj+1
τj ) =

∑τj+1

i=τj+1 l(β; Zi),

β̃(Zτj+1
τj ), is either a natural estimate of β∗j or at least a good surrogate for

β∗j when τj = τ∗j for j = 0, . . . ,Kn. The number of change-points Kn is
allowed to grow with the sample size n.

For example, we are frequently concerned with a univariate or multivariate
mean change problem, i.e., d-variate observations Xis follow from

Xi = µ∗j + εi, τ∗j < i ≤ τ∗j+1, j = 0, . . . ,Kn; i = 1, . . . , n,(2)

where µ∗j is the true mean vector for the segment j and εi is a d-dimensional
random vector with mean zero and a positive definite covariance matrix Σ.
By taking Zi = Xi and β∗j = µ∗j , (2) is a special case of (1). The most
popular L(β; ·) may be the negative log-likelihood (up to constant factors)
under normality or the so-called quadratic loss (Yao, 1988)

1

2

τj+1∑
i=τj+1

‖Xi − β‖2.(3)

Consider another example of identifying structural break in linear regression.
Let Zi = (yi,Xi), where yis are the response observations and Xis are the
d-variate explanatory variables, and β∗j s be the regression coefficients. The
L(β; ·) can be chosen as the conventional least-squares loss function (Bai and
Perron, 1998) or some other robust loss function (Bai, 1998) in the form of

τj+1∑
i=τj+1

ρ(yi −X>iβ),(4)

where ρ(·) is a pre-specified function.

2.2. Criterion for measuring the goodness-of-fit. Next, we introduce a
simple yet effective criterion based on score functions which could avoid
numerically obtaining many β̃(Zτj+1

τj )s under the paradigm of loss function
L(β;Zτj+1

τj ). Note that very often E{s(β∗j ; Zi)} ≈ 0, i ∈ (τ∗j , τ
∗
j+1], where

s(·; ·) is the first-order derivative of l(β; Zi) with respect to β. Ideally, given
a γ, E{s(γ; Zi)} 6= E{s(γ; Zi′)} for i ∈ (τ∗j−1, τ

∗
j ] and i′ ∈ (τ∗j , τ

∗
j+1], which

motivates us to consider a least-squares measure described below.
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Given a candidate model, ML, which is specified by a set of change-
points TL = (τ1, . . . , τL) and the corresponding parameters µjs that are
approximations to E{s(γ; Zi)}, i ∈ (τj , τj+1], j = 0, . . . , L, small values of

C(ML;Z) =
L∑
j=0

τj+1∑
i=τj+1

{s(γ; Zi)− µj}>Wn {s(γ; Zi)− µj}(5)

may indicate a good fit of data. One can expect that inappropriate numbers
of change-points may lead to a large value of C(ML;Z), where Wn, possibly
depending on γ, serves as a rough scale estimator for standardization.

For instance, under the multivariate mean change model (2), s(γ,Zi) =
−(Xi−γ) if the loss function (3) is used. Accordingly, the C(ML;Z) becomes

L∑
j=0

τj+1∑
i=τj+1

(Xi − γ + µj)
>Wn (Xi − γ + µj) .

For another example, consider detecting the change in a univariate se-
quence where E(Xi) = ν∗j and Var(Xi) = σ2V (ν∗j ) with some function
V (·) for τ∗j < i ≤ τ∗j+1, j = 0, . . . ,Kn. Braun, Braun and Müller (2000)
suggested using quasi-deviance as a goodness-of-fit criterion, in our nota-
tions, l(µ, x) =

∫ x
µ (x− t)/V (t)dt. It can be easily checked that C(ML;Z) =∑L

j=0

∑τj+1

i=τj+1{(Xi − γ)/V (γ) + µj}2Wn.

The role of C(ML;Z) can be more clearly understood by further decom-
posing it into

C(ML;Z) =
L∑
j=0

τj+1∑
i=τj+1

{
s(γ; Zi)− s̄(γ;Zτj+1

τj )
}>

Wn

{
s(γ; Zi)− s̄(γ;Zτj+1

τj )
}

+

L∑
j=0

nj
{
s̄(γ;Zτj+1

τj )− µj
}>

Wn

{
s̄(γ;Zτj+1

τj )− µj
}
,

≡S2
s (TL; Wn) +D(ML;Z),(6)

where s̄(γ;Zτj+1
τj ) = n−1

j

∑τj+1

i=τj+1 s(γ; Zi) and nj = τj+1 − τj . By not-

ing that S2
s (TL; Wn) − S2

s (TKn ; Wn) could be quite large when L < Kn,
S2
s (TL; Wn) would help prevent the underfitting. On the other hand, when
L > Kn, S2

s (TL; Wn) does not decrease too much as L increases, but the
term D(ML;Z) would dominate D(MKn ;Z) under certain conditions on
µjs. Thus, C(ML;Z) could be a useful measure to quantify the deviation
from the true model. In practice, the candidate model ML needs to be esti-
mated based on the only available sample and thus a cross-validation based
estimation procedure is developed.
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3. Cross-validation for change-points.

3.1. Algorithm. In this section, we propose a new selection criterion
based on the estimated C(ML; ·) through a special 2-fold cross-validation
scheme. The key idea is to split the data into one training set Z1 and one
validation set Z2, where the training set Z1 is used to construct a candi-
date model ML via a given change detection algorithm, and C(ML;Z2) is
estimated as the goodness-of-fit measured on the left-out validation set Z2.
To further reduce the estimation variability due to splitting randomness,
multiple data splittings can be performed (Zhang, 1993). However, since the
change-point problem has an intrinsic order structure, randomly splitting
may not be an ideal choice. A simple yet effective way is to use the parity
splitting, i.e., dividing the sample into

ZO = {Z2t−1, t = 1, . . . , T} and ZE = {Z2t, t = 1, . . . , T} ,

one of which is set as the training set and the other is used for validation,
where we assume for convenience that n = 2T is even. Using this splitting
strategy, the original change-point structure can be preserved as much as
possible and the difference between the training and validation samples is
minimal. Our procedure is described as follows.

Suppose that a base change detection algorithm A(L;Z) and the largest
possible number of change-points KU

n are prespecified. The estimated num-
ber of change-points K̂n can be obtained via the following Cross-validation
with Order-Preserved Sample-Splitting (COPSS) procedure.

Cross-validation with Order-Preserved Sample-Splitting (COPSS):

Step 1 (Initialization). Specify a proper γ and Wn. Compute s(γ; Zi)
for i = 1, . . . , n.
Step 2 (Training). Given L, obtain the set of change-points T̂ OL =(
τ̂OL,1, . . . , τ̂

O
L,L

)
based on the ZO using the detection algorithmA(L;ZO).

Then compute s̄(γ;Z
τ̂OL,j+1

τ̂OL,j
) for j = 0, . . . , L based on ZO. Denote the

resulting change-point model as M̂O
L .

Step 3 (Validation). Compute C(M̂O
L ;ZE) using (5) with µjs replaced

by s̄(γ;Z
τ̂OL,j+1

τ̂OL,j
)s.

Step 4 (Cross-validation). Repeat Steps 2–3 by interchanging ZO and

ZE and obtain C(M̂E
L ;ZO).

Step 5 (Estimation). Set

K̂n = arg min
1≤L≤KU

n

{
C(M̂O

L ;ZE) + C(M̂E
L ;ZO)

}
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as the estimated number of change-points.

To better understand the mechanism of our proposed procedure, we con-
sider the classical univariate mean change-point problem for illustration.
Assume a univariate sequence of observations Xis follow from (2). The pop-
ular BIC minimizes

SBIC(L) =
n

2
log

n−1
L∑
j=0

τ̂L,j+1∑
i=τ̂L,j+1

(
Xi − X̄τ̂L,j ,τ̂L,j+1

)2+ Lζn,(7)

where (τ̂L,1, . . . , τ̂L,L) is obtained by A(L;Z) based on the whole sample.
The second term of order ζn can be viewed as a penalty which is chosen to
be slightly larger than the maximum variation level (no change) so that it
can dominate the first term of SBIC(L) under overfitting models with high
probability and in this case it is usually chosen as of order log n (Yao, 1988).

Asymptotically speaking, as long as log n/ζn → c ∈ [0,∞) and ζn/n →
0, the BIC estimator is consistent when the change magnitudes are fixed.
However, the “optimal” penalty is always not easy to be determined since it
may depend on the change magnitudes and error distributions. In contrast,
it can be verified that taking the quadratic loss function (3), C(M̂O

L ;ZE) is
equivalent to (up to a scale constant)

L∑
j=0

τ̂OL,j+1∑
i=τ̂OL,j+1

(
XE
i − X̄E

τ̂OL,j ,τ̂
O
L,j+1

)2
+

L∑
j=0

nj

(
X̄E
τ̂OL,j ,τ̂

O
L,j+1

− X̄O
τ̂OL,j ,τ̂

O
L,j+1

)2
,

(8)

where the symbols with the superscripts “O” and “E” stand for the quan-
tities based on the sample ZO and ZE , respectively. In our CV-based pro-
cedure, the second term plays a similar role to the “ζn” term in the BIC,
i.e., avoiding overfitting (see Section 3.2 for theoretical discussion). As op-

posed to the BIC, the C(M̂O
L ;ZE) can be viewed as a data-driven penalized

loss function which greatly facilitates the determination of the number of
change-points in practice. This data-driven feature benefits from the use
of sample-splitting and thus certain efficiency loss would be incurred. Intu-
itively, using the summation of C(M̂E

L ;ZO) and C(M̂O
L ;ZE) may result in

variance reduction that is verified by simulation in Section 4.
Remark 1 . The γ and Wn need to be specified to implement our algorithm.
In many cases, such like the multivariate mean change-point model and
change-point regression problem with least-squares loss function, it can be
verified that the algorithm is invariant with γ. In fact, our numerical results
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also reveal that the choice of γ is not crucial and thus we recommend using
β̃n ≡ arg minβ L(β;Zn1 ) (assumed to exist) as γ, when no preference is given.
The performance of our procedure is not sensitive to Wn either, because the
Wn plays only the role in standardizing the components of s(γ; Zi) so that
they are aggregated in a fair way. From the asymptotic analysis in Section
3.2 we can see that there is a minimal requirement for Wn, and hence we
can even simply choose it as the identity matrix Id or the pooled sample
covariance matrix based on {s(γ; Z1), . . . , s(γ; Zn)}. �

3.2. Theoretical justification. We now establish an asymptotic property
regarding the selection consistency of the COPSS procedure. The consis-
tency property ensures that the resulting estimated number of change-points
equals to the true one with probability approaching one, when the change
detection algorithm A(L;Z) performs reasonably well.

For ease of exposition, we introduce the following notations. Let T ∗Kn =
(τ∗1 , . . . , τ

∗
Kn

). Denote the minimal and maximal distance between change-

points as λn = min0≤j≤Kn(τ∗j+1 − τ∗j ) and λn = max0≤j≤Kn(τ∗j+1 − τ∗j ),
respectively, and the minimal signal strength as ∆n = min1≤j≤Kn ‖µ∗j−1 −
µ∗j‖2. Given L ≥ 1, let T̂L = (τ̂L,1, . . . , τ̂L,L) be the estimated change-points
based on half of the data. For j = 0, . . . ,Kn, let µ∗j = E{s(γ; Zi)}, Σ∗j =
Cov{s(γ; Zi)} and Ui = s(γ; Zi)− µ∗j , i ∈ (τ∗j , τ

∗
j+1]. Denote by σ(Σ∗j ) and

σ(Σ∗j ) the maximum and minimum eigenvalues of Σ∗j for j = 0, . . . ,Kn, and
moreover let σ = max{σ(Σ∗0), . . . , σ(Σ∗Kn)} and σ = min{σ(Σ∗0), . . . , σ(Σ∗Kn)}.
Also, denote the maximum and minimum eigenvalues of Wn by ωn and ωn,
respectively.

Assumption 1 (Noises). The Σ∗j s are positive-definite matrices and

there exists a positive integer m ≥ 2 such that E(‖Σ∗j
−1/2Ui‖2m) < ∞

for i ∈ (τ∗j , τ
∗
j+1], j = 0, . . . ,Kn.

Assumption 2 (Detection Precision). If q = L − Kn ≥ 0, then there
exist τ̂L,i1 , . . . , τ̂L,iKn belonging to T̂L such that max1≤j≤Kn |τ̂L,ij − τ∗j | ≤
δq,n holds with probability approaching one as n → ∞, where δq,n is some
positive sequence.

Assumption 3 (Minimum Signal). The jump sizes ‖µ∗j−1−µ∗j‖s satisfy

λnωn∆n

Knωnσλ
2/m
n

→∞, as n→∞.(9)

Remark 2 The moment conditions in Assumption 1 are used to control the
supremum of the objective function and is commonly used in the literature,
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e.g., Yao and Au (1989). Assumption 2 sets theoretical minimal requirements
for the accuracy of the change-points detected by the algorithm A(L;Z)
when L ≥ Kn. This is reasonable because we cannot expect that our selection
procedure would work well if all the estimated change-points are far away
from the true ones. Under such circumstances, an appropriate algorithm
generally results in a δq,n-neighborhood of the true location set in the sense
that for each true change-point there exists at least a point in the estimated
set so that their distance is less than δq,n (Harchaoui and Lévy-Leduc, 2010).
The condition on δq,n will be made in Theorem 1. We explicitly express the
dependence of δq,n on q because for some algorithms different estimation
accuracies may be achieved with different values of q; see the discussions
below Theorem 1. The requirements on the smallest signal strength and
distance between two change-points are made in Assumption 3 so that the
change-points are asymptotically identifiable. It can be further relaxed if
(sub-)Gaussian noises are considered (Niu, Hao and Zhang, 2016). Under
the conventional assumption that Kn does not depend on n, τ∗j /n converges
to a constant for each j and the change magnitudes are fixed, Assumption
3 is valid when m > 2. �

It is worth noting that the conditions on the signal strength is made for
‖µ∗j −µ∗j−1‖ rather than ‖β∗j −β∗j−1‖ in Assumption 3. Simply speaking, an
implicit assumption here is that the change in β would result in the change
in E{s(γ; Zi)} and consequently the segmentations with s(γ; Zi) would be
approximately equivalent to the original change-point model. In fact, ‖µ∗j −
µ∗j−1‖ is often an increasing function of ‖β∗j − β∗j−1‖ for j = 1, . . . ,Kn.
For example, under the classical multivariate mean change-point model (2),
µ∗j − µ∗j−1 = β∗j − β∗j−1. This is also true if the quasi-deviance is used
(Braun, Braun and Müller, 2000). Also, for the regression problem with the
loss function (4) being ρ(x) = x2/2, we will have s(γ; Zi) = −Xi(yi−X>iγ),
and thus µ∗j − µ∗j−1 = E(XiX

>
i )(β

∗
j − β∗j−1).

Theorem 1. Suppose that Assumptions 1–3 hold. If there exist positive
sequences αq,n, q = 0, 1, . . ., satisfying that Kn log log δq,n = o(αq,n), and for
L = Kn + q with q ≥ 1,

S2
U(T ∗Kn ; Wn)− S2

U(T̂L ∪ T ∗Kn ; Wn) & ωnσαq,n,(10)

then our procedure is consistent in the sense that limn→∞ Pr(K̂n = Kn) = 1.

Intuitively speaking, the condition (10) implies that the reduction of total
variation due to adding the points in T̂L into the true set has a lower bound
diverging to infinity. The mechanism of locating change-points is usually to
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search for a model from the candidate models so that the total variation is
mostly reduced, and accordingly the condition (10) will be roughly satisfied
for some αq,n.

The condition Kn log log δq,n = o(αq,n) is quite mild and can be satisfied
by many effective detection procedures. In particular, it holds for the binary
segmentation (BS) method (Venkatraman, 1992) with αq,n = log log λn, and
for the optimal partitioning (OP) algorithm (Auger and Lawrence, 1989)
and local discrepancy (LD) based algorithm (Niu and Zhang, 2012) with
αq,n = ηq,n, where

ηq,n =

{
log log λn, if q = 0, 1,

log λn, if q ≥ 2.

For q = 0, say the number of change-point is correctly specified, it is well
known that the change-point estimators obtained by the algorithms men-
tioned above are consistent with the optimal rate Op(1) in a parametric set-
ting, when the change magnitudes are fixed; see Venkatraman (1992), Bai
and Perron (1998), Hao, Niu and Zhang (2013) and the references therein.
Thus, this condition holds if Kn/ log log λn → 0. By Lemmas 4–5 given in
the Appendix, we can verify that the case of q > 0 is also valid for those
algorithms. This condition also restricts the relationship between the Kn

and sample size n. Faster divergence rate of Kn may be possible, but more
stringent conditions on the signal strength and tail probabilities of Ui would
be required.
Remark 3 It is interesting to examine the case with ∆n → 0. Generally,
δq,n & ∆−1

n (Niu, Hao and Zhang, 2016), and thus Kn log log δq,n = o(αq,n)
would not hold if the minimal signal strength goes to zero in a polynomial
rate for q = 0, 1. In such situations, the COPSS procedure is likely to yield
an overfitting model but with only one redundant change-point since that
condition may still hold for q = 2, at least for the LD or OP algorithm. �

We show in the next theorem that (10) holds when T̂L was obtained by the
popular BS and OP algorithms. Specifically, for a given model size L, the OP
algorithm finds the estimated change-point set by T̂L = arg minML

C(ML;Z).
For the BS algorithm, let τ̂1,1 = arg minM1

C(M1;Z), and then for 2 ≤ l ≤
L, one iteratively obtains

τ̂l,l = arg min
0≤k≤l−1

{
min
M1

C(M1;Z τ̂l,k+1

τ̂l,k+1)

}
,

where τ̂l,k = τ̂l−1,k for k = 1, . . . , l − 1 with τ̂l,0 = 0 and τ̂l,l = n. The final

estimated change-point set is T̂L = (τ̂L,1, . . . , τ̂L,L). Note that the BS was
typically used in conjunction with a thresholding criterion. Consequently, the
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estimated change-point number depends on the threshold and the procedure
does not necessarily guarantee a model with any given size by choosing a
suitable threshold. Hence, we modify it as above so that the algorithm is
in a nested way. The BS will thereafter refer to this one which should not
cause any confusion.

Theorem 2. If Assumptions 1–3 hold and lim infn→∞(ωnσ)/(ωnσ) >
0, then the condition (10) is valid for the optimal partitioning and binary
segmentation algorithms with αq,n being ηq,n and log log λn, respectively, and
accordingly the selection procedure is consistent.

The proofs of Theorems 1–2 are given in the Appendix. The ideas of the
proofs are similar to that of Nishii (1984). When a correct model is com-
pared with an underfitting model, the first term of the criterion function
S2
s (T̂ OL ; Wn) in (6), which measures the goodness-of-fit of the number and

locations of the change-points obtained from the sample ZO on the sam-
ple ZE , asymptotically dominates and the correct model is preferred; when
comparing a simpler correct model with a more complex correct model, the
second term of the criterion function, i.e. the “penalty” term D(M̂O

L ;ZE),
asymptotically dominates and the simpler model is preferred. Hence, with
probability approaching one, the CV criterion favors the true model over
either an underfitting model or an overfitting model. We also want to point
out that the condition (10) also holds for the LD algorithm such as the SaRa
proposed by Niu and Zhang (2012), with αq,n = ηq,n, but more conditions
on a sliding window size is needed.

In general, under a large-sample framework, in which the number of vari-
ables p is fixed and n goes to infinity, it has been pointed out in various
models that the r-fold CV or the delete-k CV (if lim infn→∞(n− k)/n > 0)
is not consistent (Shao, 1993; Zhang, 1993). If the training sample size is
negligible compared to n, then model consistency could be obtained. This
has been confirmed theoretically by Shao (1993, 1997) for the variable se-
lection problem in linear regression. It turns out that, when the goal is to
identify the true model, the proportion of data used for evaluation in CV
needs to be dominating in size. Using a very small proportion of the data
for training is clearly not a good choice in our change-point problem, be-
cause the accuracy of change-point detection algorithms heavily relies on
the sample size. In the other hand, under some high-dimensional or infinite-
dimensional models, different consistency behaviors are noted (Yang, 2005;
Bai, Fujikoshi and Choi, 2017). In particular, Yang (2007) revealed interest-
ing behaviors of CV: under some conditions, with an appropriate choice of
data splitting ratio, CV is consistent when it is applied to compare between



12 ZOU, WANG AND LI

parametric and nonparametric methods or within nonparametric methods.
These related findings shed light on understanding why the CV works in
the MCP. In fact, if the candidate number of change-points is L, the cardi-
nality of the collection of candidate models is diverging with n, say

(
n−1
L

)
,

resulting in the validity of the condition (10). From the proof of Theorem 1,

we can tell that D(M̂O
L ;ZE) is approximately larger than D(M̂O

Kn
;ZE) by

an order of at least log log λn when L > Kn and thus (10) holds, whereas
S2
s (T̂ OKn ; Wn) − S2

s (T̂ OL ; Wn) is just Op(1) which would result in the favor
of the true model. However this is not the case in the classical regression
problem where the number of variables is fixed and the cardinality of the
collection of candidate models is accordingly fixed as n→∞.

For a clearer comparison, we consider the univariate sequence with K = 0,
say no change-point. It can be verified that in this case the major term in
D(M̂O

K+1;ZE)−D(M̂O
K ;ZE) is of the form,

max
1≤τ≤T−1

τ(T − τ)

T

(
X̄O

0,τ − X̄O
τ,T

)2
,

which is of Op(log log n) by the Darling-Erdős Theorem (Darling and Erdös,
1956). In contrast, in the regression problem with only one candidate co-

variate, D(M̂O
K+1;ZE) reflects only the difference between the two least-

squares estimators obtained from ZE and ZO, and thus D(M̂O
K+1;ZE) −

D(M̂O
K+1;ZE) = Op(1); the CV will fail.

Remark 4 . From the proofs of Theorems 1–2, we can claim that our pro-
posed procedure is also consistent if we use classical r-fold (r > 2) CV
to replace the parity splitting. There is no general conclusion that the lat-
ter would outperform the commonly-used 5-fold or 10-fold CV. Intuitively
speaking, a 5-fold CV would help to obtain a more accurate training model
as we use 80% data, preventing the model from undefitting to certain de-
gree. However, since the validation set with only 20% observations may not
fully reflect the underlying change-point structure, overfitting would often
be incurred if the sample size is not sufficiently large. Table S.3 in the Sup-
plementary Material presents some results by using both the classical and a
slightly modified order-preserved multi-fold CV. Though the 2-fold strategy
in the COPSS procedure may not be always the optimal one, our numeri-
cal experience indicates that it is capable of providing balanced protection
from the underfiting and overfitting because this splitting method makes
the training and validation sets the most similar among all the choices of
splitting. Considering its computational advantages, we would recommend
it for practical use when there is little prior information about the data. A
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random assigning treatment in conjunction with our 2-fold splitting strat-
egy as suggested by an anonymous referee could improve in some scenarios
especially when the sequence has some systematical trend. More details can
be found in the Supplementary Material. �

3.3. Extensions.

3.3.1. Modified CV procedure for the PELT. The COPSS can be applied
to most change detection algorithms which seek for all possible segmenta-
tions with the number of change-points 0 ≤ L ≤ KU

n . In contrast, there are
other efficient approaches such as the Pruned Exact Linear Time (PELT) Al-
gorithm (Killick, Fearnhead and Eckley, 2012) which was designed for identi-
fying multiple change-points by directly minimizing a “loss” plus “penalty”
function over all possible numbers and locations of change-points. Conse-
quently, the PELT outputs a single number of estimated change-points in-
stead of running over all possible candidate models. The issue of specifying
penalty terms for the PELT still remains open. The COPSS would be help-
ful, say we may choose a suitable penalty term which produces a relatively
small squared prediction error over a sequence of penalization magnitudes.
Although this procedure cannot go over all candidate models as it is un-
controllable to obtain a one-to-one correspondence from the model size to
the penalization magnitude, it is able to considerably alleviate the depen-
dence on the manual choice of penalty term. Some numerical evidence can
be found in Section 4.

3.3.2. A nonparametric setting. Without imposing any parametric mod-
eling assumption, consider the MCP based on independent data Z = {Xi}ni=1,
such that

Xi ∼ Fj(x), τ∗j < i ≤ τ∗j+1, j = 0, . . . ,Kn; i = 1, . . . , n,

where Fj is the cumulative distribution (CDF) of the segment j satisfying
Fj 6= Fj+1. Lee (1996) and Zou et al. (2014) discussed localization-based and
global-loss-based detection algorithms using empirical CDF, respectively.
Zou et al. (2014) and Haynes, Fearnhead and Eckley (2017) studied the
estimation of Kn by the BIC. Following Zou et al. (2014), we may consider
the criterion as

C(ML;Z) =

∫
u
Lu(ML)dw(u),(11)
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where Lu is the negative joint nonparametric log-likelihood for each given
candidate model ML, namely,

Lu(ML) =−
L∑
j=0

(τj+1 − τj)
{
F̂
τj+1
τj (u) log

(
F̃
τj+1
τj (u)

)
+
(
1− F̂ τj+1

τj (u)
)

log
(
1− F̃ τj+1

τj (u)
)}
,

F̂
τj+1
τj (u) is the empirical CDF of the sample {Xτj+1, . . . , Xτj+1} and w(u) is

a nonnegative weight function. In this case, the modelML is represented by
a candidate set of change-points (τ1 < · · · < τL) and the associated “pseudo”

CDF F̃
τj+1
τj (u) for j = 0, . . . , L. Accordingly, C(M̂O

L ;ZE) can be obtained by
taking A(L;ZO) as the method proposed by Lee (1996), Zou et al. (2014)
or its PELT version Haynes, Fearnhead and Eckley (2017).

3.3.3. Cases when unknown correlations exist. Though the asymptotic
consistency of our proposed estimator is established under the assumption
that Zis are independent, we may expect that the procedure is also applica-
ble for dependent cases. The main difficulty lies in that the parity splitting
would make ZO and ZE have similar error structures because the nearest ob-
servations are usually most correlated. By adapting the idea of moving block
bootstrap for stationary series (Künsch, 1989), we suggest a pre-localizing
procedure which is capable of alleviating the effect of autocorrelations to
certain degree. Our first step is to locate the most influential points that
have the largest local jump sizes quantified by certain measures.

Localizing Algorithm :

Step 1. Choose an appropriate integer ωn and take the change-point
set as O = ∅.
Step 2. Initialize Ti = 0 for i = 1, . . . , n. For i = ωn, . . . , n−ωn, update
Ti to be a two-sample test statistic for the samples Z ii−ωn and Z i+ωni .
Step 3. For i = ωn, . . . , n − ωn, if i = arg max

i−ωn<j≤i+ωn
|Tj |, update O =

O ∪ {i}.

The ωn is a sequence of sliding window lengths for which ωn/n → 0.
Properties of using local discrepancy measures to detect multiple change-
points in univariate sequences have been widely studied; see for example
Lee (1996), Jeng, Cai and Li (2010) and Niu and Zhang (2012). Unlike
those works in which one specifies a threshold value to determine which
are the true change-points in O, the localizing algorithm aims only to help
naturally split the data into many subsets.
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Denote O = {l1, . . . , lm−1}, where m = |O| + 1 and set l0 = 0, lm =
n+ 1. Intuitively, O provides an overfitting of the true model, say it at least
includes a small neighborhood of the true location set. Thus, the observations
in each segment, divided by O, have approximately the same parameters.

This motives us to calculate the m estimated parameters β̃(Z lk+1

lk
) or average

scores s̄(γ;Z lk+1

lk
), k = 0, . . . ,m − 1 and for simplicity they are denoted as

X = {X1, . . . ,Xm}. By this construction, the correlations among X are
expected to be relatively weak. The original change-point problem is now
re-framed into the change-points detection in this mean sequence of size m.
Consequently, given a candidate model ML specified by (τ1, . . . , τL) and
(µ0,µ1, . . . ,µL), the criterion C(ML;Z) can be defined as

C(ML;X ) =

L∑
j=0

τj+1∑
i=τj+1

Ni‖Xi − X̄(τj , τj+1)‖2 +

L∑
j=0

τj+1∑
i=τj+1

Ni‖µj − X̄(τj , τj+1)‖2,

where Ni = li+1 − li, and X̄(τj , τj+1) =
∑τj+1

i=τj+1NiXi/
∑τj+1

i=τj+1Ni is the

weighted sample mean vector of the segment (τj , τj+1]. The use of Ni dis-
tinguishes this objective function from standard least-squares function (8),
because the sequence {X1, . . . ,Xm} is heterogeneous with the variance of Xi

being approximately proportional to Ni. Then, the proposed CV procedure
can be applied.

In this paper, we will use simulations to demonstrate the effectiveness
of our proposed algorithm discussed in Sections 3.3.1-3.3.3 but theoretical
investigation certainly warrants future research.

4. Numerical results. To evaluate the performance of our proposed
COPSS procedure which utilizes a special CV criterion for identifying the
number of change-points, we mainly compare with the BIC (or its variants
by modifying the loss function and associated penalization term) on a range
of simulated and real examples. The two criteria are in conjunction with a
wide variety of change-point detection algorithms including OP algorithm
(Bai and Perron, 2003; Braun, Braun and Müller, 2000; Zou et al., 2014), BS
method (Matteson and James, 2014) and its variant the wild binary segmen-
tation (WBS) algorithm (Fryzlewicz, 2014), LD-based detection procedure,
the SaRa, proposed by Niu and Zhang (2012), and the PELT (Killick, Fearn-
head and Eckley, 2012; Haynes, Fearnhead and Eckley, 2017). Several MCP
models are considered, reflecting changes in different aspects such as the
location, scale, distribution and regression relationship. The data can be
univariate, multivariate or in linear model structure, either independent or
correlated. Table 1 gives a short preview of all simulated models and the
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associated CV criteria we will use. For the BIC to be compared, we will
either consider (7) with suitable penalty ζn tailored for a specific model in
Table 1 or refer to the related literature and adopt the default formulation.

To further specify a MCP model in Table 1, we examine two kinds of
generation mechanism of the number and locations of change-points (CP).

CP(A). Both the number and locations of change-points are fixed. We adopt
the blocks setting which is widely used in the literature (Fryzlewicz,
2014). Specifically, Kn = 11 and T ∗Kn/n ≈ (0.10, 0.13, 0.15, 0.23, 0.25,
0.40, 0.44, 0.65, 0.76, 0.78, 0.81).

CP(B). Both the number and locations of change-points can vary with the
sample size n. We set Kn =

⌊
(log n)1.01

⌋
with bxc representing the

largest integer not greater than x. The corresponding change-points
are set as τ∗j = j bn/(Kn + 1)c + Uniform{−a, a} with a =

⌊
n1/4

⌋
for j = 1, . . . ,Kn, where Uniform{a, b} with integers a, b denotes the
discrete uniform distribution with support {a, a+ 1, . . . , b}.

We fix KU
n = 20 unless otherwise specified. For each example, 1000 repli-

cations is used to approximate the distribution of K̂n−Kn, where K̂n is ob-
tained by either the BIC or our proposed COPSS procedure in conjunction
with the change-point detection algorithms under various examples specified
in Table 1.

4.1. Univariate examples.

4.1.1. Mean change-point model. Detecting mean shift in a univariate
time-series has been widely discussed in the literature. In this section, four
commonly used detection algorithms, the OP, BS, WBS and PELT, are in-
vestigated. We consider the ready-made R-packages “wbs” and “changepoint”,
which implement the WBS and the PELT methods, respectively. We apply
the conventional BIC, see (7), for comparison. As we mentioned earlier, the
optimal penalization magnitude usually varies from the model and error
distribution. To get a broader picture of the performance comparison, we
choose the penalty term ζn = (log n)α with α = 1, 1.3, 1.5, as the order of
magnitude log n has been shown to have superior performance when the
noises are independently and identically distributed (iid) normal random
variables (Fryzlewicz, 2014). To implement the PELT in conjunction with
the newly proposed COPSS procedure, we follow the guidelines in Section
3.3.1 and consider a range of penalty values and choose the one yielding the
minimum squared prediction error. For the other three algorithms, we apply
each in the training step, examining them one by one.
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Table 1

Preview of simulated models and the associated CV criteria. Detailed generation
of the change signal (such like θis, σis, θis, (αi,β

>
i )s, qis and Fis), together with

other nuisance parameters (σ, p and q) are deferred in the specific context. The
symbols with the superscripts “O” and “E” stand for the quantities based on the
ZO and ZE, respectively. For a given L, the change-points τ̂L,js are obtained on

the basis of ZO by certain change detection algorithm.

No. Model C(M̂O
L ;ZE)

I Xi = θi + σεi
L∑
j=0

τ̂OL,j+1∑
i=τ̂O

L,j
+1

(XE
i − X̄O

τ̂O
L,j

,τ̂O
L,j+1

)2

II Xi = σiεi
L∑
j=0

τ̂OL,j+1∑
i=τ̂O

L,j
+1

(V Ei − V̄ Oτ̂O
L,j

,τ̂O
L,j+1

)2, Vi = logX2
i

III Xi = θi + σεi
L∑
j=0

τ̂OL,j+1∑
i=τ̂O

L,j
+1

‖XE
i − X̄O

τ̂O
L,j

,τ̂O
L,j+1

‖2Wn
, Wn = diag−1{Cov(X)}

IV Yi = αi + X>iβi + σεi

L∑
j=0

τ̂OL,j+1∑
i=τ̂O

L,j
+1

‖RE
i − R̄O

τ̂O
L,j

,τ̂O
L,j+1

‖2Wn
,

Ri = (Yi, YiX
>
i)
>, Wn = Cov−1

(
[1

...X]
)

V Xi ∼ Multinomial(n0,qi)
L∑
j=0

τ̂OL,j+1∑
i=τ̂O

L,j
+1

‖XE
i − X̄O

τ̂O
L,j

,τ̂O
L,j+1

‖2Wn
, Wn = diag−1{Cov(X)}

VI Xi ∼ Fi(·)
−
∫
u

[∑L
j=0(τ̂OL,j+1 − τ̂OL,j)

{
F̂E

τ̂OL,j+1

τ̂O
L,j

(u) log
(
F̂O

τ̂OL,j+1

τ̂O
L,j

(u)
)

+
(
1− F̂E

τ̂OL,j+1

τ̂O
L,j

(u)
)

log
(
1− F̂O

τ̂OL,j+1

τ̂O
L,j

(u)
)}]

dw(u)

VII
Xi = θi + σεi

εis ∼ ARMA(p, q)

L∑
j=0

τ̂OL,j+1∑
i=τ̂O

L,j
+1

NE
i (SEi − S

O
τ̂O
L,j

,τ̂O
L,j+1

)2

Si = X̄li,li+1 , Si1,i2 =
∑i2
i=i1+1NiSi/

∑i2
i=i1+1Ni,

l1, . . . , lm−1 local minimizers

Model I-CP(A) is considered, where we set n = 2048. The signal func-
tion θis are chosen as a piecewise constant function with Kn = 11 and
the scale parameter σ is taken to be 7. Four scenarios of the error dis-

tribution are considered: (i) εi
iid∼ N(0, 1), (ii) εi

iid∼
√

3Uniform(−1, 1), (iii)

εi
iid∼ sin(2πi/n)/

∑n
j=1 sin(2πj/n)·N(0, 1) and (iv) εi

iid∼ 0.25t3, where Uniform(a, b)
is the continuous uniform distribution with support [a, b] and tν is the Stu-
dent’s t-distribution with the degree of freedom ν.

Table 2 reports the distribution of K̂n − Kn together with its mean,
standard deviation (SD) and mean-squared error (MSE) for the BIC and
the COPSS in conjunction with various detection algorithms under Model
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Table 2

Distribution of K̂n −Kn together with its mean, standard deviation (SD) and
mean-squared error (MSE) using various detection algorithms under Model I.

Scenario (i) and CP(A) are considered. Procedure using the BIC is named by the
rule “Algorithm-BIC-α”, where α is the tuning parameter appeared in the penalty;

“Algorithm-CV” stands for an detection algorithm followed by the COPSS
procedure; we also report the corresponding algorithm but with only a single
C(M̂O

L ;ZE)- or C(M̂E
L ;ZO)-criterion, termed as “Algorithm-CV-O” and

“Algorithm-CV-E”, respectively.

K̂n −Kn

Procedures ≤ −3 −2 −1 0 1 2 ≥ 3 mean SD MSE

OP-BIC-1 0.0 0.0 3.0 93.5 3.1 0.4 0.0 0.07 0.28 0.08

OP-BIC-1.3 0.0 0.1 34.7 65.1 0.1 0.0 0.0 0.35 0.48 0.35

OP-BIC-1.5 0.3 5.7 75.4 18.6 0.0 0.0 0.0 0.88 0.49 1.01

OP-CV-O 0.0 0.5 25.4 59.8 10.9 2.0 1.4 0.46 0.79 0.63

OP-CV-E 0.1 0.2 24.9 59.7 10.6 3.1 1.4 0.47 0.80 0.65

OP-CV 0.0 0.0 24.8 66.2 7.5 1.3 0.2 0.35 0.61 0.39

BS-BIC-1 0.0 0.0 3.8 65.7 26.5 3.8 0.2 0.39 0.61 0.47

BS-BIC-1.3 0.0 0.2 39.1 53.2 7.0 0.5 0.0 0.47 0.62 0.49

BS-BIC-1.5 0.5 4.7 77.6 16.4 0.8 0.0 0.0 0.89 0.50 1.02

BS-CV-O 0.0 0.4 13.8 30.8 24.6 17.2 13.2 1.30 1.67 3.80

BS-CV-E 0.1 0.2 12.9 28.7 28.6 15.3 14.2 1.31 1.64 3.79

BS-CV 0.0 0.0 9.9 27.7 32.6 18.6 11.2 1.20 1.32 2.75

WBS-BIC-1 0.0 0.0 5.1 87.6 6.5 0.8 0.0 0.13 0.38 0.15

WBS-BIC-1.3 0.0 0.1 32.4 66.6 0.9 0.0 0.0 0.34 0.49 0.34

WBS-BIC-1.5 0.4 4.5 74.8 20.2 0.1 0.0 0.0 0.85 0.49 0.96

WBS-CV-O 0.0 0.3 26.9 44.9 15.5 6.9 5.5 0.78 1.28 1.68

WBS-CV-E 0.1 0.4 27.7 41.9 15.8 6.9 7.2 0.89 1.46 2.24

WBS-CV 0.0 0.1 25.6 48.1 17.4 6.0 2.8 0.65 1.00 1.02

PELT-CV-O 0.0 0.4 25.5 65.3 5.7 1.8 1.3 0.40 0.74 0.56

PELT-CV-E 0.0 0.5 25.7 65.5 5.9 1.9 0.5 0.38 0.67 0.47

PELT-CV 0.0 0.1 25.2 68.9 5.0 0.8 0.0 0.32 0.55 0.34

I-CP(A) with Scenario (i). First of all, we observe that, in terms of the
probability of correctly identifying the true number of change-points, the
performance of the BIC could be seriously affected by different choices of
penalization magnitude for every detection algorithm. The COPSS performs
reasonably well with the OP or WBS algorithm, and has higher probability
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of correct identification than the BIC with α = 1.3 or 1.5 with the OP. As we
can expect, the BIC with the conventional choice of α = 1 performs better
than the COPSS under Scenario (i), i.e., the normal error. This can be un-
derstood because the COPSS is in a data-driven nature; sacrificing certain
estimation precision due to the use of sample-splitting. Especially under the
CP(A), there are a few short segments whose length is only around 40. We
only got 20 samples to fit the change-point models in such segments and
thus may be inefficient. As a consequence, the probability of missing one
change-point is a little high compared to the best BIC. Moreover, we found
the PELT tends to overestimate the number of change-points; the values of
K̂n−Kn are almost all greater than 2 for all the ζns and thus we omit those
results in Table 2. This phenomenon has also been reported by Fryzlewicz
(2014) in all of the examples he studied. Interestingly, using the COPSS pro-
cedure, this overfitting tendency disappeared and the probability of correct
identification is even slightly higher than the OP with the COPSS.

OP BS WBS PELT

S
cenario (ii)

S
cenario (iii)

S
cenario (iv)
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Fig 1. Distribution of K̂n−Kn for the BIC and our CV criterion in conjunction with the
OP, BS, WBS and PELT algorithms under Scenarios (ii)–(iv) of Model I-CP(A).

The superiority of the BIC with α = 1 does not always hold. Figure 1
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depicts the distribution of K̂n −Kn under Scenarios (ii)–(iv), which reveals
that the performance of the BIC with α = 1 is no longer the best and may
be outperformed by the COPSS (corresponding to CV in Figure 1) for most
cases. Now, we can find the BIC with α = 1 performs the best under Scenario
(ii), i.e., light-tailed noises, as in Scenario (i); while the BIC with α = 1.3
favors Scenario (iii), i.e., the heterogeneous case; and finally the BIC with
α = 1.5 best suits Scenario (iv), i.e., heavy-tailed noise. Consequently, the
“oracle” penalty always differs from error to error and thus is not available
when one has little knowledge about the data. In contrast, the COPSS is
clearly more robust from Table 2 and Figure 1, benefiting from automatically
adapting to the model and error distribution. Similar results under Model
I-CP(B) are provided in the Supplementary Material, from which we can
also conclude that the COPSS could achieve consistent estimation of Kn.

Table 2 also reports the results of the chosen algorithms followed by only a
single C(M̂O

L ;ZE)- or C(M̂E
L ;ZO)-criterion, which reveals that our “crossed”

training-validation procedure (the CV) indeed results in variance reduction.

4.1.2. Variance change-point model. Ideas of detecting changes in mean
can be easily extended to the variance change-point problem (Chen and
Gupta, 1997). To facilitate the comparison, we consider again the PELT
method with penalty values specified as ζn = (log n)α, α = 1, 1.3, 1.5, using
the function “cpt.var()” in the R-package “changepoint”. as discussed in
Section 3.3.1, we search a range of penalty values and use the CV criterion
in Table 1 to choose the best-fit model in order to implement the COPSS.

We take Model II with CP(A) as an illustration example, where we vary
n = Cn · 2048 over a range of values Cn = 0.5, 1, 1.5, . . . , 5. The scale signal
function σis are chosen as a piecewise constant function with breaks at
the Kn = 11 change-points and values between change-points 1, 0.25, 1,
5, 1, 0.25, 1, 5, 1, 0.25, 1, 5. The noises are independently generated as
standardized t5.

Figure 2 depicts the probability of correct identification and the MSE of
K̂n −Kn against the sample size n for the PELT and its CV implementa-
tion. Again, we observe that the performance of the PELT is sensitive to
the penalization magnitude and unstable as the sample size varying. The
detection ability of the PELT with α = 1.5 appears better than our CV im-
plementation when n = 1024, 2048 and exhibits a slightly increasing trend,
but then drops significantly as n continues to increase. In contrast, our CV
criterion presents a steady growth in the detection accuracy as more and
more samples are gathered. In the meantime, the MSE of our procedure
decreases fast.



CONSISTENT SELECTION OF THE NUMBER OF CHANGE-POINTS 21

0.00

0.25

0.50

0.75

1.00

0.5 1 1.5 2 2.5 3
Cn

P
r(

K̂
n=

K
n)

Procedures PELT−1 PELT−1.3 PELT−1.5 PELT−CV

100

101

102

103

0.5 1 1.5 2 2.5 3
Cn

M
S

E

Fig 2. Probability of correct identification and the MSE of K̂n − Kn against the
sample size n = Cn · 2048 for the PELT method and its CV implementation under
Model II-CP(A).

4.2. Multivariate examples.

4.2.1. Multivariate mean change-point model. MCP problem for multi-
variate observations has gained more and more attention as well. In this
section, we compare the COPSS in conjunction with the OP algorithm with
a nonparametric method, ECP, proposed by Matteson and James (2014).
The ECP method involves specifying the level at which to sequentially test
if a proposed change point is statistically significant. In our simulation study,
we use the default value 0.05 (see the R package “ecp”).

Model III with CP(A) is used here, where we fix n = 1024 and 2048. For
simplicity, each dimension of the signals θis are generated as the same as the
signals θis used in Model I-CP(A). Two scenarios for the error distribution

are considered: (i) εi = (ε>i1, ε
>
i2)>. εi1

iid∼ Nd1(0,Σ1) with d1 = bd/2c and

Σ1 = (0.5|i−j|), εi2
iid∼ Nd2(0,Σ2) with d2 = d − d1 and Σ2 = 0.3Id2 +

0.71d21
>
d2

, and εi1 and εi2 are independent, where 1d denotes the d-variate

vector with all the components being one; (ii) εi = (εi1, . . . , εid)
>, where
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εi1, . . . , εid1
iid∼ N(0, 1), εi,d1+1, . . . , εid

iid∼ 0.6t5. We set the dimension d =
5, 10 and adjust the scale parameter to σ = 2.8

√
d.

Table 3

Distribution of K̂n −Kn with its MSE for the ECP procedure and the COPSS
(labelled as OP-CV) in conjunction with the OP algorithm under Model

III-CP(A).

d = 5 d = 10

K̂n −Kn K̂n −Kn

Scenario n Procedure −2 −1 0 1 2 MSE −2 −1 0 1 2 MSE

(i) 1024 ECP 0.0 0.0 94.1 5.0 0.8 0.10 0.0 0.0 94.0 4.6 1.4 0.10

OP-CV 0.3 10.8 84.5 3.3 1.1 0.20 4.2 36.9 53.1 4.0 1.2 0.69

2048 ECP 0.0 0.0 94.7 3.3 1.7 0.13 0.0 0.0 94.3 3.4 2.3 0.13

OP-CV 0.0 2.1 95.8 1.7 0.4 0.05 0.6 14.3 80.5 1.9 2.7 0.29

(ii) 1024 ECP 0.0 0.3 92.4 5.6 1.6 0.13 0.0 3.4 89.4 6.3 0.9 0.13

OP-CV 0.0 7.9 87.4 4.4 0.3 0.14 0.0 28.1 69.4 2.5 0.0 0.31

2048 ECP 0.0 0.0 92.9 5.6 1.3 0.13 0.0 0.0 91.3 6.5 2.0 0.16

OP-CV 0.0 0.0 97.0 2.6 0.3 0.05 0.0 0.9 97.8 1.3 0.0 0.02

Table 3 presents the distribution of K̂n−Kn with its MSE for the ECP pro-
cedure and the COPSS in conjunction with the OP algorithm under Scenar-
ios (i)–(ii) with different configurations of (n, d). In terms of the probability
of correct identification, the ECP performs quite robust and better than our
approach when n is relatively small, while it is clear that the performance of
the COPSS will significantly improve, even outperforms the ECP, when the
sample size is doubled. In fact, the ECP can be also viewed as a “data-riven”
procedure from the aspect of determining the number of change-points be-
cause it uses a permutation step to approximate the distribution of the
test statistic. Hence, the ECP is more computationally extensive than the
COPSS. Figure S2 in the Supplementary Material reports how the run-time
(in seconds) changes with the sample size n = Cn · 2048 of both procedures
under Scenario (i) for one replication using an Inter Xeon E5-2650v4 CPU.
Our method is significantly faster and the advantage is more prominent as
n increases.

4.2.2. Change-point in regression coefficients. Another widely studied
example is identifying structural breaks in regression model; see Bai and
Perron (1998, 2003) for example. In this section we perform the OP algo-
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rithm described by Bai and Perron (2003) in conjunction with their BIC
and our CV criterion. For convenience, we will use the OP algorithm im-
plemented in the R package “strucchange” for both criteria (for our CV
criterion, this OP algorithm is used in the training step). For the BIC, we
consider the conventional penalty “the number of parameters × log n”.

We investigate Model IV with CP(B), where n = 512, 1024 and thus Kn =
6, 7 respectively. We consider the signal vector used in Model I-CP(A), i.e.,
γ = (0, 14.64,−3.66, 7.32,−7.32, 10.98,−4.39, 3.29, 19.03, 7.68, 15.37) and let
γk−1 denote the kth element of γ. We set αi ≡ 0 and βi = γmod(J0+j,11) for
τ∗j < i ≤ τ∗j+1, j = 0, . . . ,Kn, where J0 is an integer randomly sampling
from {1, . . . , 11} and mod(a, b) is the modulo operator. Hence, the signals
is allowed to be random for each simulated replication. The covariate Xis
are generated as Xi ∼

√
3σX{Uniform(−1, 1) + δ} with δ = 0 and 1 cor-

responding to the “Zero mean” and “Non-zero mean” situations, respec-
tively, where σX = 0.5SD(βis) and SD({x1, . . . , xn}) denotes the sample
standard deviation of {x1, . . . , xn}. Three scenarios for the error distribu-

tion are considered here: (i) εi
iid∼ N(0, 1), (ii) εi

iid∼ t3, and (iii) an AR(1)
sequence with coefficient 0.5 and N(0, 1) innovations and the noises are
standardized to have unit variance. Finally, the scale parameter σ is chosen
such that SD({X>iβi}ni=1)/SD(σεis) = 3 to control the signal-to-noise ratio.

Figure 3 depicts Pr(K̂n = Kn) for the BIC and our CV criterion under
different scenarios. First, the performances of both procedures are not sensi-
tive to the mean of response (δ = 0 or 1). Second, the BIC with the default
penalization magnitude performs very well with normal noises, while it is
outperformed by the CV under Scenarios (ii)–(iii). This demonstrates that
the order of the penalization magnitude log n may not be sufficient large
to avoid overfitting under the heavy-tailed or correlated noises. Third, the
detection accuracy of our procedure usually gets improved as the sample
size increases.

4.2.3. Changes in multinomial distributions. In this section, we consider
an example of MCP for multinomial distributions, where the variance of the
observations depends on their mean. Braun, Braun and Müller (2000) embed
this problem into a quasi-likelihood formulation and utilized the minimum
deviance rule to fit the model. To determine the number of change-points,
they also adopted the BIC with a penalty ζn = 0.5nα. In particular, they
considered the multinomial observations, i.e., Model V in Table 1, and aimed
to identify the breaks causing the changes in the probability vectors qis.
They recommend using α = 0.23 based on extensive simulations, which will
be served as a benchmark for our comparison. For the COPSS, we adopt
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Fig 3. Probability of correct identification under Model IV-CP(B) when n = Cn ·
2048.

their algorithm in the training step, i.e., given a candidate model size L, we
obtain the estimated change-points by minimizing the corresponding quasi-
deviance on the training samples.

Model V with CP(B) is used here, where we fix n = 1000 and vary n0

over a range of values 40, 60, 800, 100, and the number of outcomes (i.e.,
the dimension of qis) takes value in 2, 4, 10. Under CP(B), Kn = 7 and the
locations of change-points vary from replication to replication. We follow
the mechanism in Braun, Braun and Müller (2000) to generate qis. For
each replication, the initial mean vector q = (q1, . . . , qd)

> was obtained by
normalizing a set of uniform deviates, i.e., qk = Uk/

∑d
l=1 Ul for k = 1, . . . , d,

where Uk ∼ Uniform(0, 1). Jumps were made on the logistic scale, and the
resulting vectors are normalized. To be specific, a new mean vector, say
q′k = (q′1, . . . , q

′
d)
>, was obtained by normalizing expit(logitqk + U ′k) for k =

1, . . . , d, where U ′k ∼ Uniform(−J, J), logit is the logistic transform, and
expit is its inverse. We specify the jump size J = 1.2/

√
d.

Figure 4 plots the probability Pr(K̂n = Kn) against the number of ex-
periments n0 for the BIC and our CV criterion under different number of
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Fig 4. Probability of correct identification against the number of experiments n0
under Model V-CP(B)

outcomes, which again indicates that the BIC procedure is sensitive to the
model variation but the performance of the COPSS (labelled as CV in Figure
4) in methodology is relatively stable.

4.3. Extensions.

4.3.1. MCP for nonparametric models. Here we consider the nonpara-
metric MCP setting as described in Section 3.3.2. Zou et al. (2014) proposed
a nonparametric maximum likelihood approach, NMCD, which used the BIC
in conjunction with the OP algorithm to determine the number of change-
points and they recommended using a penalty ζn = (log n)2.01/2. Later,
Haynes, Fearnhead and Eckley (2017) showed how the PELT can be applied
to the NMCD and proposed the ED-PELT algorithm. The authors also
pointed out that “the PELT requires a penalty to avoid under/over-fitting
the model which can have a detrimental effect on the quality of the detected
change-points.” They then suggested using the CROPS algorithm (Haynes,
Eckley and Fearnhead, 2017), which performs many PELTs for penalty val-
ues across a continuous range. In Haynes, Fearnhead and Eckley (2017),
they used a “graphical” approach suggested by Lavielle (2005) in order to
choose the best segmentation, which remains heuristic. In what follows, we
show that the COPSS with the criterion (11) could be helpful in this case.
Specifically, we apply the idea as illustrated in Section 3.3.1 to specify the
optimal penalty values by running the ED-PELT over a range of candidate
values, denoted as ED-PELT-CV. For comparison, we use the ED-PELT
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(the R-package “changpoint.np”) with the penalty terms ζn1 = 2 log n and
ζn2 = (log n)2.01/2 as benchmarks (Haynes, Fearnhead and Eckley, 2017).

For Model VI, we consider a simple substitution by adopting similar set-
tings in Model I. The change-points generation mechanism is taken as CP(A)
with Kn = 11, and the sample size n is chosen to be n = Cn · 1000 over
a range of values Cn = 1, . . . , 10. We further specify the signal function as
what we used in Model I, and generate the noises as (i) independent normal
or (ii) AR(1) sequence with coefficient 0.5 and (χ2

1−1)/
√

2 innovations. The
scale parameter σ is specified so that SD(θis)/SD(σεis) = 1.
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Fig 5. Probability of correct identification against the sample size n under Model VI-
CP(A), where ED-PELT-1 and ED-PELT-2 stand for the ED-PELT with penalties
ζn1 and ζn2 respectively.

Figure 5 depicts the quantity Pr(K̂n −Kn) against the sample size n for
the ED-PELT-CV and the ED-PELT with two penalties. The ED-PELT
with 2 log n penalty does not perform well as it appears to be too small
to avoid underfitting. The penalty ζn2 can provide accurate identification
with the independence errors, but it is not an ideal one in the autoregressive
case. The ED-PELT algorithm combined with the CV procedure performs
reasonably well in most cases, and outperforms the benchmarks by a quite
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large margin when the independence assumption is violated, which again
demonstrates its adaptiveness in practice.

4.3.2. Changes for correlated sequences. As a final simulation example,
we investigate the performance of our modified CV criterion suggested in
Section 3.3.3 for cases when unknown correlations exist. To implement the
localizing algorithm, we consider the SaRa procedures, i.e., using simple
local two-sample mean test-statistics. The bandwidth h in SaRa is chosen
as h = blog(n)c. Once obtaining the set of the most influential points O,
we apply the OP algorithm in conjunction with our CV criterion (Table 1)
to identify the number of change-points. We name the above procedure as
“SaRa-OP-CV”. As a benchmark, we also apply the SaRa with h = blog(n)c
directly to identify the best model, whose size is determined by the BIC with
the penalty ζn = log n. This procedure is named as “SaRa-BIC”.

Scenario (i) Scenario (ii) Scenario (iii) Scenario (iv)

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
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Fig 6. Boxplot of K̂n−Kn against the sample size n = Cn · 2048 for the SaRa-BIC
and the SaRa-OP-CV procedures under Scenarios (i)–(iv) of Model VII.

Model VII with CP(A) is considered here, where we vary the sample size
n = Cn ·2048 over a range of values Cn = 5, 10, 15, 20. The signal function θi
is as the same as in Model I again, and the error ε is specified as ARMA(1, 1)
with parameters (φ, ϕ) and innovations ε ∼ N(0, σ2

ε ). The scale parameter σ
is specified such as SD(θis)/SD(σεis) = 1. Four scenarios for the parameters
(φ, ϕ, σε) are considered: (i) (0.9, 0.5, 0.30), (ii) (−0.9, 0.5, 0.74), (iii) (−0.9,
−0.5, 0.30) and (iv) (0.9, −0.5, 0.74) such that Var(εi) ≈ 1.

Figure 6 presents the boxplot of K̂n − Kn against the sample size n =
Cn·2048 for the SaRa-BIC and the SaRa-OP-CV procedures under Scenarios
(i)–(iv), from which we observe that the SaRa-BIC performs unstably and
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tends to overestimate the number of change-points except under Scenario
(iii). In contrast, our SaRa-OP-CV procedure yields estimates fluctuating
around the true number of change-points, and the variation significantly
reduces as the sample size n increases.

4.4. Real-data examples. Here we revisit two examples appeared in the
literature for illustration. The first dataset, FTSE100, is contained in the R
package “changepoint”, which gives the daily returns of the UK FTSE 100
index from the Apr. 2, 1984 until Sep. 13, 2012. Our interest is to detect
any changes in the variance. We first implement the PELT method with two
penalty values ζn1 = log n and ζn2 = 2 log n which are two default values
in the “changepoint” package. The estimated number of change-points are,
80 and 32, respectively, which differ much. We then run the PELT over a
sequence of penalty values combined with our CV procedure. By specifying
the penalty yielding the minimum squared prediction error, we obtain an
estimate of the number of change-points as 30, which is quite close to the
estimate given under the penalty ζn2.

The second one is the example in Zou et al. (2014), where the authors
considered detecting possible changes in the proportion of the G+C compo-
sition of a human chromosome sequence. The ED-PELT algorithm with a
penalty ζn = (log n)2.1/2 identifies 40 change-points, while the COPSS pro-
cedure detects 37 change-points. By further examining the prediction error
in our CV criterion, we found the errors under the models with 37 and 40
candidate change-points are quite close. These two examples suggest that
the COPSS is indeed able to provide a practical guide to determine the
change-point number if no knowledge about the data is available.

5. Concluding remarks. Determination of the number of change-points
is a long-standing problem. This paper proposes a CV-based procedure,
COPSS, to select the number of change-points under a unified framework.
Interestingly, the COPSS is shown to be consistent under mild conditions,
and thus it could serve as a useful alternative to the classical BIC or ad-
hoc graphical approaches in practice. We conclude the article with three
remarks. First, our unified framework is developed using the score function.
Though it is well recognized that in many cases the score- and likelihood-
(loss-) based methods are approximately equivalent, the former may be sub-
efficient especially when some nuisance parameters present. Thus it is of
interest to thoroughly compare the finite-sample performance of the pro-
posed method with the likelihood-based method under some cases that the
computation of β̃(Zτj+1

τj )s is stable and fast. Second, our numerical results
show that the CV procedure may also work well under large-dimensional
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or autocorrelated scenarios. Theoretical investigation is another interesting
topic for future study. Third, though the COPSS procedure is developed
under the parametric framework (1), some preliminary results given in the
Supplementary Material show that it is also applicable for the nonparametric
regression with multiple change-points (or called jump detection) (Loader,
1996; Müller and Stadtmüller, 1999) in which the model is non-stationary
within each segment (Wu and Zhao, 2007). Asymptotic studies on the con-
sistency of the COPSS in such cases are desired.

Appendix: Proofs. Let {x,x1, . . . ,xn} and {y,y1, . . . ,yn} be two sets
of d-dimensional vectors. Denote by TL and T̃L̃ two sets of L and L̃ points,
respectively, as defined at the end of Section 1. We introduce Sxy(TL; M) =∑L

l=0Rxy(τl, τl+1; M), where for each l = 0, . . . , L

Rxy(τl, τl+1; M) =

τl+1∑
i=τl+1

(xi − x̄τl,τl+1
)>M(yi − ȳτl,τl+1

).

By further introducing #l more points in the sub-interval (τl, τl+1), say
TL,l = (τl,1, . . . , τl,#l

), we extend the definition ofRxy toRxy(τl, TL,l, τl+1; M) =∑#l
k=0Rxy(τl,k, τl,k+1; M) with the convention of τl,0 = τl and τl,#l+1 =

τl+1. Moreover, define Sxy(TL ∪ T̃L̃; M) = Sxy
(
sort(TL ∪ T̃L̃); M

)
. Note

that S2
x = Sxx and R2

x = Rxx. Lastly, for any point τ ∈ (l, r), denote

x̃τl,r =
√

(τ−l)(r−τ)
r−l (x̄l,τ − x̄τ,r).

For notational convenience, we note that our estimation procedure can
be reformulated as follows. Suppose we have two independent sets of d-
dimensional observations {O1, . . . ,On} and {E1, . . . ,En} collected from the
following multiple change-point model

Oi = µ∗j + Σ∗j
1/2Ŭi, Ei = µ∗j + Σ∗j

1/2V̆i, i = τ∗j + 1, . . . , τ ∗j+1, j = 0, . . . ,Kn,

where Ŭ1, . . . , Ŭn, V̆1, . . . , V̆n are independent standardized noises satisfy-
ing E(Ŭ1) = 0 and Var(Ŭ1) = I, and Ŭτ∗j +1, . . . , Ŭτ∗j+1

, V̆τ∗j +1, . . . , V̆τ∗j+1

are identically distributed for each j = 0, . . . ,Kn. Further let θi = µ∗j ,

Ui = Σ∗j
1/2Ŭi and Vi = Σ∗j

1/2V̆i for i = τ∗j + 1, . . . , τ ∗j+1, j = 0, . . . ,Kn.

Given L, let T̂L = (τ̂L,1, . . . , τ̂L,L) be the estimated change-points based on
{O1, . . . ,On}, the corresponding validation error on {E1, . . . ,En} can be
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formulated as

Err(L) =
L∑
l=0

τ̂L,l+1∑
i=τ̂L,l+1

(Ei − Ōτ̂L,l,τ̂L,l+1
)>Wn(Ei − Ōτ̂L,l,τ̂L,l+1

)

=S2
E(T̂L; Wn)− S2

U(T̂L; Wn)− S2
V(T̂L; Wn) + 2SUV(T̂L; Wn)

+

n∑
i=1

(Ui −Vi)
>Wn(Ui −Vi).

We will suppress the dependence on Wn, which should not cause any confu-
sion. To make the notations more readable, we let i index the observations,
j the true change-points, and l the candidate change-points. If j or l has
already been used in the former context, we choose k to be a substitution.

Before we present the proof of Theorem 1, we first state some useful
lemmas.

Lemma 1. Suppose Ŭ, Ŭ1, . . . , ŬN are iid such that E(Ŭ) = 0. If E(‖Ŭ‖2m) <
∞ for some positive integer m ≥ 1, then as N →∞,

max
0≤k1<k2≤N

(k2 − k1)‖ ¯̆
Uk1,k2‖2 = Op(N

2/m).

Lemma 2 (Multivariate Darling-Erdős Theorem). Suppose Ŭ, Ŭ1, . . . , ŬN

are iid such that E(Ŭ) = 0 and Var(Ŭ) = I. If E(‖Ŭ‖2+α) < ∞ for some
α > 0, then

lim
N→∞

Pr
{
aN max

1≤k≤N
k1/2‖ ¯̆

U1,k‖ − bd,N ≤ t
}

= exp{− exp(−t)},

for all t, where aN =
√

2 log logN , bd,N = 2 log logN + d/2 log log logN −
log{Γ(d/2)} and Γ(·) is the Gamma function.

Lemma 3. Suppose Ŭ, Ŭ1, . . . , ŬN are iid such that E(Ŭ) = 0 and
Var(Ŭ) = I. If E(‖Ŭ‖3) <∞, then

max
1≤k1<k2≤N

(k2 − k1)1/2‖ ¯̆
Uk1,k2‖ &

√
logN.

Lemma 1 was obtained by Yao and Au (1989) under the univariate case,
which can be easily extended to this multivariate version. Lemma 2 was
obtained by Horváth (1993), which extends the one-dimensional Darling-
Erdős Theorem in Darling and Erdös (1956). As a corollary, we conclude

that max1≤k≤N k‖ ¯̆
U1,k‖2 = 2 log logN{1 + op(1)}. Lemma 3 presents the
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lower bound for the terms in Lemma 1, whose proof is deferred in the Sup-
plementary Material. We will repeatedly use the above facts in the proofs
of the following lemmas and theorems. The proofs of Lemmas 4 and 5 are
also given in the Supplementary Material.

Lemma 4 (Variation on E). Suppose Assumptions 1–3 hold.
(i) For any T̂L with L < Kn,

S2
E

{
T̂L ∪ T ∗Kn\τ

∗
j ∪ {τ∗j − ρn} ∪ {τ∗j + ρn}

}
− S2

E(T ∗Kn)

≥λn
8
ωn min

1≤j≤Kn
‖µ∗j−1 − µ∗j‖2{1 + op(1)},

where ρn = λn/4.
(ii) For any T̂L with L ≥ 0, S2

E(T̂L)− S2
E(T̂L ∪ T ∗Kn) ≥ 0.

(iii) For any T̂L with L ≥ 0, S2
E(T ∗Kn)− S2

E(T̂L ∪ T ∗Kn) = Op(Lωnσ).

(iv) For any T̂Kn, S2
E(T̂Kn)− S2

E(T ∗Kn) = op(ωnσ log log λn).

Lemma 5 (Variation on U). Suppose Assumptions 1–3 hold.

(i) For any T̂L with L < Kn, S2
U(T ∗Kn) − S2

U(T̂L ∪ T ∗Kn) = Op(Knωnσλ
2/m
n )

and S2
U(T̂L)− S2

U(T̂L ∪ T ∗Kn) = Op(Knωnσ log log λn).

(ii) For any T̂Kn, S2
U(T ∗Kn) − S2

U(T̂Kn ∪ T ∗Kn) = Op(Knωnσ log log δ0,n) and

S2
U(T̂Kn)− S2

U(T̂Kn ∪ T ∗Kn) = Op(Knωnσ log log δ0,n).

(iii) For any T̂L with L = Kn+ q and q ≥ 1, then S2
U(T̂L)−S2

U(T̂L∪T ∗Kn) =

ωnσ{op(log log λn) +Op(Kn log log δq,n)}.

Proof of Theorem 1. For any L, we observe that

Err(L)− Err(Kn) = {S2
E(T̂L)− S2

E(T̂Kn)}+ {S2
U(T̂Kn)− S2

U(T̂L)}

+ {S2
V(T̂Kn)− S2

V(T̂L)}+ 2{SUV(T̂L)− SUV(T̂Kn)}.

It suffices to show that for any L 6= Kn, Pr{Err(L) − Err(Kn) > 0} → 1 as
n→∞. This can be revealed by demonstrating the following facts.
Fact (A): If L < Kn, then

(a) S2
E(T̂L)− S2

E(T̂Kn) ≥ λn/8 ωn min
1≤j≤Kn

‖µ∗j−1 − µ∗j‖2{1 + op(1)};

(b) S2
U(T̂Kn)− S2

U(T̂L) = Op(Knωnσλ
2/m
n );

(c) S2
V(T̂Kn)− S2

V(T̂L) = Op(Knωnσ);

(d) SUV(T̂L)− SUV(T̂Kn) = Op(Knωnσλ
2/m
n ).
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Fact (B): If L = Kn + q with q ≥ 1, then

(a) S2
E(T̂L)− S2

E(T̂Kn) = a non-negative term + Op(Knωnσ) + op(ωnσ log log λn)

(b) S2
U(T̂Kn)− S2

U(T̂L) = S2
U(T ∗Kn)− S2

U(T̂L ∪ T ∗Kn) + op(ωnσαq,n);

(c) S2
V(T̂Kn)− S2

V(T̂L) = Op(Knωnσ);

(d) SUV(T̂L)− SUV(T̂Kn) = op{S2
U(T̂L)− S2

U(T̂Kn)}.

Verification of Fact (A): To show (a), consider the following identity

S2
E(T̂L)− S2

E(T̂Kn) = {S2
E(T̂L)− S2

E(T ∗Kn)} − {S2
E(T̂Kn)− S2

E(T ∗Kn)}.

We observe that S2
E(T̂L) ≥ S2

E

{
T̂L ∪ T ∗Kn\τ

∗
j ∪ {τ∗j − ρn} ∪ {τ∗j + ρn}

}
. By

Lemma 4 (i), we have

S2
E(T̂L)− S2

E(T ∗Kn) ≥ λn
8
ωn min

1≤j≤Kn
‖µ∗j−1 − µ∗j‖2{1 + op(1)}.

Then by Lemma 4 (iv), (a) follows. (b) follows from Lemma 5 (i)–(ii) that

S2
U(T̂L)− S2

U(T̂Kn) = {S2
U(T̂L)− S2

U(T ∗Kn)} − {S2
U(T̂Kn)− S2

U(T ∗Kn)}

= Op(Knωnσλ
2/m
n ).

(c) can be obtained as a corollary of Lemma 4 and to verify (d), we just
need to notice the following fact

SUV(l, r)− SUV

(
l, τ1, . . . , τL, r

)
=

∑
0≤l1<l2≤L

Nτl1 ,τl1+1 +Nτl2 ,τl2+1

r − l
Ũ>τl1 ,τl1+1WnṼτl2 ,τl2+1

and Ũ>WnṼ ≤ (Ũ>WnŨ + Ṽ>WnṼ)/2.
Verification of Fact (B): By Lemma 4 (ii)–(iv), (a) holds. By Lemma 5

(ii)–(iii) and Assumption 2, (b) holds. (c) can also be obtained as a corollary
of Lemma 4. To verify (d), first we can show that

SUV(T̂Kn)− SUV(T̂L) = {SUV(T ∗Kn)− SUV(T̂L ∪ T ∗Kn)}+ op(ωnσαq,n),

by using arguments similar to those in the verification of (b). By the as-
sumption that S2

U(T ∗Kn)−S2
U(T̂L ∪ T ∗Kn) & ωnσαq,n, it suffices to show that

SUV(T ∗Kn)− SUV(T̂L ∪ T ∗Kn) = op{S2
U(T ∗Kn)− S2

U(T̂L ∪ T ∗Kn)}.
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In fact, by Cauchy-Schwarz inequality,

|SUV(T ∗Kn)− SUV(T̂L ∪ T ∗Kn)|

≤ {S2
U(T ∗Kn)− S2

U(T̂L ∪ T ∗Kn)}1/2{S2
V(T ∗Kn)− S2

V(T̂L ∪ T ∗Kn)}1/2.

Hence the fact holds as {S2
U(T ∗Kn)− S2

U(T̂L ∪ T ∗Kn)}/(Knωnσ)→∞.
Finally, according to Facts (A)–(B), we have, with an overwhelming

probability, K̂n = Kn. �

Proof of Theorem 2. First assume q ≥ 2. For each j = 0, . . . ,Kn, let τj

and τj′ be any points such that τ∗j < τj < τj′ < τ∗j+1 and T (j)
q = {τj} ∪

{τj′} ∪ Tq−2 where Tq−2 is a set of q − 2 points satisfying that each point is
located outside the interval [τ ∗j , τ

∗
j+1]. By the definition of OP algorithm, we

observe S2
O(T̂L) ≤ min0≤j≤Kn minτ∗j <τj<τj′<τ∗j+1

S2
O(T ∗Kn ∪T

(j)
q ). We observe

that

S2
U(T̂L ∪ T ∗Kn) = S2

O(T̂L ∪ T ∗Kn) ≤ S2
O(T̂L)

≤ min
0≤j≤Kn

min
τ∗j <τj<τj′<τ

∗
j+1

S2
O(T ∗Kn ∪ T

(j)
q )

= min
0≤j≤Kn

min
τ∗j <τj<τj′<τ

∗
j+1

S2
U(T ∗Kn ∪ T

(j)
q ).

Then, for any j and the corresponding any τj and τj′ ,

S2
U(T ∗Kn)− S2

U(T̂L ∪ T ∗Kn) ≥ S2
U(T ∗Kn)− S2

U(T ∗Kn ∪ T
(j)
q )

≥ ωnσ{R2
Ŭ

(τ∗j , τ
∗
j+1)−R2

Ŭ
(τ∗j , τj , τj′ , τ

∗
j+1)}

≥ ωnσ{(τj′ − τj)‖
¯̆
Uτj ,τj′‖

2 − (τ∗j+1 − τ∗j )‖ ¯̆
Uτ∗j ,τ

∗
j+1
‖2}.

Hence, by Lemma 3, S2
U(T ∗Kn)−S2

U(T̂L ∪ T ∗Kn) & ωnσ log(τ∗j+1− τ∗j ) for any
j. And by the assumption that lim infn→∞(ωnσ)/(ωnσ) > 0, the conclusion
follows. If q = 1, we can similarly show that

S2
U(T ∗Kn)− S2

U(T̂L ∪ T ∗Kn) ≥ ωnσ max
0≤j≤Kn

max
τ∗j <τ<τ

∗
j+1

‖ ˜̆
Uτ
τ∗j ,τ

∗
j+1
‖2

& ωnσ log log λn,

by using Lemma 2, which complete the proof.
For binary segmentation algorithm, the detection procedure is nested and

thus

S2
U(T ∗Kn)− S2

U(T̂L ∪ T ∗Kn) ≥ S2
U(T ∗Kn)− S2

U(T̂Kn+1 ∪ T ∗Kn).
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Again, we have

S2
U(T̂Kn+1 ∪ T ∗Kn) = S2

O(T̂Kn+1 ∪ T ∗Kn) ≤ S2
O(T̂Kn+1).

For each j = 0, . . . ,Kn, let τj be any point such that τ∗j < τj < τ∗j+1. By the
construction of the algorithm, we know that

S2
O(T̂Kn+1) ≤ min

0≤j≤Kn
min

τ∗j <τj<τ
∗
j+1

S2
O(τj ∪ T̂Kn).

We can similarly show that

S2
O(τj ∪ T̂Kn) = S2

O(τj ∪ T̂Kn ∪ T ∗Kn) + op(ωnσ log log λn)

= S2
U(τj ∪ T̂Kn ∪ T ∗Kn) + op(ωnσ log log λn).

It follows that

S2
U(T ∗Kn)− S2

U(T̂Kn+1 ∪ T ∗Kn)

≥ max
0≤j≤Kn

max
τ∗j <τj<τ

∗
j+1

{S2
U(T ∗Kn)− S2

U(τj ∪ T̂Kn ∪ T ∗Kn)}+ op(ωnσ log log λn)

≥ max
0≤j≤Kn

max
τ∗j <τj<τ

∗
j+1

{S2
U(T ∗Kn)− S2

U(τj ∪ T ∗Kn)}+ op(ωnσ log log λn)

≥ ωnσ max
0≤j≤Kn

max
τ∗j <τ<τ

∗
j+1

‖ ˜̆
Uτ
τ∗j ,τ

∗
j+1
‖2 + op(ωnσ log log λn).

�
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Birgé, L. and Massart, P. (2001). Gaussian model selection. J. Eur. Math. Soc. 3
203–268.

Braun, J. V., Braun, R. K. and Müller, H. G. (2000). Multiple changepoint fitting
via quasilikelihood, with application to DNA sequence segmentation. Biometrika 87
301–314.

Cao, H. and Wu, W. B. (2015). Changepoint estimation: another look at multiple testing
problems. Biometrika 102 974–980.

Chen, J. and Gupta, A. K. (1997). Testing and locating variance changepoints with
application to stock prices. J. Amer. Statist. Assoc. 92 739–747.

Chen, J. and Gupta, A. K. (2012). Parametric statistical change point analysis, Second
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Horváth, L. (1993). The maximum likelihood method for testing changes in the param-
eters of normal observations. Ann. Statist. 21 671–680.

Jeng, X. J., Cai, T. T. and Li, H. (2010). Optimal sparse segment identification with
application in copy number variation analysis. J. Amer. Statist. Assoc. 105 1156–1166.

Killick, R., Fearnhead, P. and Eckley, I. A. (2012). Optimal detection of change-
points with a linear computational cost. J. Amer. Statist. Assoc. 107 1590–1598.
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