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Abstract

Feature screening plays an important role in the analysis of ultrahigh dimen-
sional data. Due to complicated model structure and high noise level, existing
screening methods often suffer from model misspecification and the presence of
outliers. To address these issues, we introduce a new metric named cumulative
divergence (CD), and develop a CD-based forward screening procedure. This
forward screening method is model-free and resistant to the presence of outliers
in the response. It also incorporates the joint effects among covariates into the
screening process. With a data-driven threshold, the new method can automat-
ically determine the number of features that should be retained after screening.
These merits make the CD-based screening very appealing in practice. Under
certain regularity conditions, we show that the proposed method possesses sure
screening property. The performance of our proposal is illustrated through sim-
ulations and a real data example.
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1. INTRODUCTION

Regression analysis with ultrahigh dimensional covariates arises in many scientific fields

such as agriculture, biomedicine, economics, finance, and genetics. It is desirable to

identify the important covariates that are truly influential to the response. Traditional

best subset selection methods are computationally infeasible in the presence of ultra-

high dimensional covariates. In the past two decades, many regularization methods,

such as LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), adaptive LASSO (Zou,

2006), and Dantzig selector (Candes and Tao, 2007), have been proposed for variable

selection. However, when the covariates are ultrahigh dimensional, Fan et al. (2009)

stated that these regularization methods suffer from the simultaneous challenges of

computational expediency, statistical accuracy, and algorithmic stability.

To deal with ultrahigh dimensionality, Fan and Lv (2008) suggested screening out

most unimportant covariates before implementing an elaborative variable selection.

They proposed a sure independent screening procedure (SIS) for linear models using

marginal Pearson correlation between each covariate and the response. Since the sem-

inal work of Fan and Lv (2008), feature screening has received extensive attention in

the past decade. In particular,Wang (2009) proposed a forward regression and Chang

et al. (2013) suggested a marginal likelihood ratio test to screen out unimportant co-

variates in linear models. Li et al., (2012) suggested replacing Pearson correlation with

Kendall’s rank correlation in the presence of outliers. Ma, Li and Tsai (2017) proposed

quantile partial correlation for feature screening in linear quantile regression. Fan and

Song (2010) and Xu and Chen (2014) suggested maximum likelihood estimate and Mai

and Zou (2013) proposed Kolmogorov-Smirnov statistic to screen out unimportant fea-

tures in generalized linear models. Fan et al. (2011) and He, Wang and Hong (2013)

suggested nonparametric screening procedures for additive models. Song et al. (2014)
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proposed an independent screening procedure for varying coefficient models. These

model-based screening procedures are effective if the working model is close to the

underlying true model, and may be very ineffective otherwise.

To minimize the impact of model misspecification, several model-free screening

methods have been developed. For instance, Zhu et al., (2011) proposed a sure inde-

pendent ranking and screening procedure for a general class of index models. Li, Zhong

and Zhu (2012) suggested distance correlation for feature screening, which can simul-

taneously deal with grouped covariates and multivariate response. Shao and Zhang

(2014) introduced martingale difference correlation to perform screening as long as the

mean function of the response is concerned. These model-free methods are favored

when we are lack of prior information on the regression structure. However, most of

them are based on marginal correlations and are vulnerable in the presence of outliers.

In the present work, we develop a model-free forward screening procedure for ultra-

high dimensional data. Forward screening is related to but much more challenging than

conditional screening. For conditional screening, the conditioning set is fixed. However,

for our proposed forward screening procedure, the conditioning set is iteratively up-

dated in a data-driven fashion. Moreover, existing conditional screening procedures are

model-based and there is little literature on model-free conditional screening (Wang,

2009; Xu and Chen, 2014; Barut, Fan and Verhasselt, 2016). To the best of our knowl-

edge, how to design a model-free forward screening has not been studied yet. We aim

to fill in this gap in this paper. To this end, we first introduce the concept of cumulative

divergence (CD), a new correlation metric to characterize functional dependence. We

show that the CD is robust to the presence of outliers in the conditioning variable. We

further propose a CD-based forward screening procedure. At each step of the forward

screening, a new covariate will be added to an active index set based on its conditional
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CD with the response. This procedure stops when the conditional CD of all remaining

covariates is less than a certain threshold. Compared with marginal screening methods,

the forward screening incorporates the joint correlation among the covariates. With a

data-driven threshold, our proposal can adaptively determine the number of features

that should be retained after screening. Therefore, it is convenient for implementation

without ad hoc tuning steps. Due to its robust property, our proposal performs well

even when the underlying true model is misspecified. It is also robust in the presence of

outliers. This appealing property makes the CD-based forward screening attractive for

handling ultrahigh dimensional noisy data. Under some regularity conditions, we show

that our forward screening method possesses the sure screening property in the termi-

nology of Fan and Lv (2008). We further demonstrate the finite sample performance

of the proposed procedures through simulations and a real data example.

We summarize the major contributions of this paper as follows. (1) The proposed

forward screening approach is distinguished from marginal screening approaches in that

the joint correlations among the covariates are taken into account by the proposed for-

ward screening procedure and yet are ignored by the marginal screening methods (Zhu

et al.,, 2011; Li, Zhong and Zhu, 2012). (2) The proposed forward screening procedure

is model-free, and hence robust to model misspecification. Thus, the proposed proce-

dure is different from existing model-based forward regression and conditional screening

methods (Wang, 2009; Xu and Chen, 2014; Barut, Fan and Verhasselt, 2016). This

model-free property is very appealing in ultrahigh dimensional data analysis, especially

when we are often lack of information on the underlying regression structure. (3) We

propose the CD to quantify deviation from mean independence. The CD is robust to

the presence of outliers in the conditioning variable, is thus different from the martin-

gale difference correlation (Shao and Zhang, 2014). Our proposed CD-based forward

screening approach inherits this robustness property and is robust to the presence of
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outliers in the response.

This paper is organized as follows. In Section 2, we introduce the notion of cumula-

tive divergence and study its properties. In Section 3, we propose a model-free forward

screening procedure and establish its sure screening property. In Section 4, we assess

the finite sample performance of our proposed forward screening procedure through

comprehensive numerical studies. Some concluding remarks are given in Section 5. All

technical details are relegated to the Appendix and a supplementary document.

2. THE CUMULATIVE DIVERGENCE

In each step of the forward screening procedure to be developed, we have to determine

whether a covariate should be selected through testing whether the conditional mean

function of the response variable is independent of this covariate. This motivates us to

start with a simplified problem by testing mean independence that

H0 : E(Y | X) = E(Y ) almost surely versus H1 : otherwise. (2.1)

Let (X̃, Ỹ ) be an independent copy of (X, Y ). We assume var(X) > 0 and 0 <

var(Y ) < ∞ throughout. We do not require var(X) < ∞. Let “ ⇔ ” stand for “the

statements on both the left and the right hand sides are equivalent”, and supp(X)

stand for the support of the conditioning variable X. We first note that

E(Y | X) = E(Y ) almost surely

⇔ E(Y | X < x0) = E(Y ), for all x0 ∈ supp(X)

⇔ cov{Y,1(X < x0)} = 0, for all x0 ∈ supp(X)

⇔ E
[
cov2

{
Y,1(X < X̃) | X̃

}]
= 0. (2.2)
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This motivates us to define the cumulative covariance (CCov) and the CD as follows.

Definition 2.1. Assume var(X) > 0 and 0 < var(Y ) < ∞. The cumulative co-

variance, denoted CCov(Y | X), and the cumulative divergence, denoted CD(Y | X),

between random variables X and Y are defined, respectively, by

CCov(Y | X)
def
= E

[
cov2

{
Y,1(X < X̃) | X̃

}]
and (2.3)

CD(Y | X)
def
= CCov(Y | X)/var(Y ). (2.4)

The definition of CD allows for var(X) = ∞, indicating that the distribution of X

can be heavy-tailed. Since the rank of X is used in the definition of CCov(Y | X), this

also indicates that CD(Y | X) is robust to outliers in the conditioning variable X. The

following theorem states that the CD possesses several other appealing properties.

Theorem 1. The CD has the following properties.

1. Assume var(X) > 0 and 0 < var(Y ) < ∞, then 0 ≤ CD(Y | X) ≤ 1/4 and

CD(Y | X) = 0 if and only if E(Y | X) = E(Y ) almost surely. In addition,

CD(X | Y ) = CD(Y | X) = 0 if F (y | X) = F (y) for all y ∈ R, where

F (y | X)
def
= pr(Y < y | X) and F (y) = pr(Y < y), for y ∈ R.

2. For a, b ∈ R with a 6= 0, and an arbitrary strictly monotone transformation

M(X), CD(Y | X) = CD{aY + b |M(X)}.

3. If X and Y are jointly normal with Pearson correlation ρ, then CD(Y | X) =

CD(X | Y ) = ρ2/
(
2
√

3π
)
. In particular, CD(X | X) = 1/

(
2
√

3π
)
.

4. Let X̃ be an independent copy of X. If Y is normal and all involved moments

exist, CD(Y | X)/var(Y ) = E
[
E2
{
∂F (X̃ | Y )/∂Y | X̃

}]
.
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The first assertion of Theorem 1 indicates that CD(Y | X) is a useful measure

to detect whether the conditional mean function of Y depends on X functionally. In

particular, CD(Y | X) = 0 if and only if E(Y | X) = E(Y ). This ensures that

the CD is a useful tool to test (2.1). In general, CD(Y | X) 6= CD(X | Y ) even if

var(X) = var(Y ). If X and Y are independent, then CD(Y | X) = CD(X | Y ) = 0;

and if X and Y are jointly normal, CD(Y | X) = CD(X | Y ).

The second assertion of Theorem 1 indicates that the CD is invariant with respect

to strictly monotone transformation of X. This invariant property matches the fact

that E(Y | X) = E{Y |M(X)} and is however not shared by other popular correlation

measures, such as Pearson correlation, martingale difference (Shao and Zhang, 2014),

or distance correlation (Székely, Rizzo and Bakirov, 2007; Székely and Rizzo, 2009).

This property implies that the CD is robust against model misspecification and the

presence of outliers, because it merely uses the rank rather than the observed values

of X. The virtue of robustness makes the associated forward screening procedure to

be developed in Section 3 potentially attractive for ultrahigh dimensional noisy data.

The third assertion of Theorem 1 implies that, when X and Y are jointly normal

with Pearson correlation ρ and unit variance, our proposed CD is closely related to

other popular correlation measures through ρ. In particular, Kendall’s rank correlation

(Huber and Ronchetti, 2009) equals to 2 arcsin(ρ)/π, the squared martingale difference

correlation equals to ρ2{4(1−
√

3 + π/3)}−1/2, and the squared distance correlation is{
ρ arcsin(ρ) + (1− ρ2)1/2 − ρ arcsin(ρ/2)− (4− ρ2)1/2 + 1

}
/(1 + π/3−

√
3).

A sample version of the CD can be conveniently constructed. Specifically, let

{(Xi, Yi), i = 1, . . . , n} be a random sample from the joint distribution of (X, Y ).
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We estimate CCov(Y | X) and CD(Y | X) respectively by

ĈCov(Y | X)
def
= n−3

n∑
j=1

[
n∑
i=1

(Yi − Y ) {1(Xi < Xj)− Fn(Xj)}

]2
and

ĈD(Y | X)
def
= ĈCov(Y | X)/v̂ar(Y ), (2.5)

where

Y
def
= n−1

n∑
i=1

Yi, Fn(Xj)
def
= n−1

n∑
i=1

1(Xi < Xj) and v̂ar(Y )
def
= n−1

n∑
i=1

(Yi − Y )2.

To decide critical values in the test for the hypothesis (2.1), we propose a wild bootstrap

procedure as follows. Define εi = Yi − Y and Y ∗i = Y + aiεi, where ai satisfies pr(ai =

1) = pr(ai = −1) = 1/2. The wild bootstrap sample is {(Xi, Y
∗
i ), i = 1 . . . , n}. We

repeat the wild bootstrap procedure m times to obtain ĈD
(1)

(Y ∗ | X), . . . , ĈD
(m)

(Y ∗ |

X). Denote τ the (1 − α)-th quantile of {ĈD
(1)

(Y ∗ | X), . . . , ĈD
(m)

(Y ∗ | X)}. We

reject H0 at the significance level α if ĈD(Y | X) calculated from the original sample

{(Xi, Yi), i = 1, . . . , n} is greater than τ and accept H0 otherwise.

We conduct a simulation study to compare the finite-sample performance of the CD

with that of four commonly-used correlation: Pearson correlation, rank correlation,

distance correlation and martingale difference correlation. We consider two scenarios

for generating the conditioning variable X. In the first scenario X is standard normal

and in the second scenario X follows Cauchy distribution. Let Y = c exp(−X2) + ε,

where ε ∼ N(0, 1). We set c = 0.0, 0.5, 1.0, 1.5 and 2.0. The null hypothesis H0

in (2.1) holds true when c = 0. We set the sample size n = 100 and summarize the

simulation results in Figure 1 when the significance level α = 0.05.

It can be clearly seen from Figure 1 that the sizes of all tests are close to the

significance level α = 0.05. Both the Pearson correlation and the rank correlation test
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( A) ( B)

Fi g ur e 1:  T h e p o w er c ur v es of t h e P e ars o n c orr el ati o n t est ( d as h e d li n e m ar k e d
wit h cir cl es), t h e K e n d all’s r a n k c orr el ati o n t est ( d ott e d li n e m ar k e d wit h pl us si g ns),
t h e m arti n g al e di ff er e n c e c orr el ati o n t est ( d ot d as h li n e m ar k e d wit h cr oss si g ns), t h e
dist a n c e c orr el ati o n t est (l o n g d as h li n e m ar k e d wit h di a m o n d si g ns) a n d t h e c u m ul ati v e
di v er g e n c e t est (s oli d li n e m ar k e d wit h st ar si g ns), r es p e cti v el y. I n Fi g ur e 1 ( A), b ot h
X a n d ε ar e st a n d ar d n or m al. I n Fi g ur e 1 ( B), X f oll o ws C a u c h y distri b uti o n a n d ε is
st a n d ar d n or m al.

f ail t o d et e ct t h e n o n- m o n ot o n e m e a n d e p e n d e n c e. T h e C D t est is m u c h m or e p o w erf ul

t h a n b ot h t h e m arti n g al e di ff er e n c e c orr el ati o n t est a n d t h e dist a n c e c orr el ati o n t est

w h e n X f oll o ws C a u c h y distri b uti o n. T his si m ul at e d e x a m pl e e m piri c all y c o n fir ms t h at

t h e r o b ust n ess pr o p ert y of t h e C D t est.

3. A F O R W A R D S C R E E N I N G P R O C E D U R E

I n t his s e cti o n w e pr o p os e a m o d el-fr e e f or w ar d s cr e e ni n g pr o c e d ur e b as e d o n t h e C D.

T his n e w f or w ar d s cr e e ni n g pr o c e d ur e i n h erits t h e a p p e ali n g pr o p erti es of t h e C D.

T o e as e s u bs e q u e nt pr es e nt ati o n, w e i ntr o d u c e t h e f oll o wi n g n ot ati o ns. L et Y b e

t h e r es p o ns e a n d x = ( X 1 , . . . , Xp )
T b e t h e p - di m e nsi o n al c o v ari at e v e ct or. L et F

b e a w or ki n g i n d e x s et a n d F c b e its c o m pl e m e nt. B ot h F a n d F c ar e s u bs ets of

{ 1 , 2 , . . . , p} . We d e fi n e x F
d ef
= { X k , k ∈ F } t h e c o v ari at e v e ct or i n d e x e d b y F a n d

Σ F
d ef
= v ar( x F ). L et | F| st a n d f or t h e c ar di n alit y of F . We ass u m e t hr o u g h o ut t h at
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E(x) = 0 for simplicity.

The goal of feature selection is to identify the smallest index set A such that

Y ⊥⊥ x | xA, (3.1)

where ⊥⊥ stands for statistical independence. Model (3.1) implies immediately that

F (y | x) = F (y | xA), for y ∈ R. Therefore, identifying xA which satisfies model (3.1)

is equivalent to seeking for the smallest index set

A def
= {k : F (y | x) depends functionally on Xk for y ∈ R, k = 1, . . . , p}.

Model (3.1) covers a wide variety of existing models. Interested readers can refer to

Section 2.1 of Zhu et al., (2011) for details.

We first note that model (3.1) ensures that Y⊥⊥Xk | xF for all k ∈ F c and all

A ⊆ F . Therefore, given a working index set F , assessing whether Xk, k ∈ F c, is truly

important for the response variable Y amounts to testing the hypothesis that

H0 : Y ⊥⊥ Xk | xF versus H1 : otherwise. (3.2)

The law of iterated expectations implies immediately that E {Xk − E(Xk | xF) | Y } =

E {E(Xk | xF , Y )− E(Xk | xF) | Y }. Under H0 in (3.2), E(Xk | xF , Y ) = E(Xk | xF),

and hence E {Xk − E(Xk | xF) | Y } = 0. Under H1 in (3.2), Xk is dependent upon Y

even when xF is given. Thus it is reasonable to expect that E(Xk | xF , Y ) 6= E(Xk |

xF) and accordingly E {Xk − E(Xk | xF) | Y } 6= 0. These, together with Theorem 1,

motivate us to use ωk|F
def
= CD {Xk − E(Xk | xF) | Y } to test (3.2).

To ensure that ωk|F has nontrivial power in test for (3.2), we further assume that
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A1. E{∂F (y | x)/∂Xk} 6= 0 for some y ∈ R, for all k ∈ A.

It is remarkable that (3.1) ensures that E{∂F (y | x)/∂Xk} = 0 for all y ∈ R, and all k ∈

Ac. This fact, together with Assumption A1, ensures that the important and the unim-

portant covariates are separable, which is stated in Theorem 2.

Theorem 2. Under H0 in (3.2), we have ωk|F = 0. If we further assume that x is

normal and Assumption A1 holds, then min
F :Fc∩A6=∅

max
k∈Fc∩A

ωk|F > 0.

Theorem 2 guarantees that, if all the truly important covariates have been selected

into F already, then for any k ∈ F c, we have ωk|F = 0. However, if there are a few

important covariates that have not been found yet, that is, F c ∩ A 6= ∅, then there

must exist k ∈ F c ∩ A such that max
k∈Fc∩A

ωk|F > 0. This motivates us to reject H0 in

(3.2) when the sample version of max
k∈Fc∩A

ωk|F is sufficiently large.

How to estimate ωk|F is a nontrivial task because it involves estimating E(Xk | xF).

A fully nonparametric estimate of E(Xk | xF) is apparently undesirable, especially

when xF is high dimensional. In the present context, we assume that

A2. E(Xk | xF) = gk|F(xF ,βk|F), where gk|F is known and βk|F is unknown.

We allow E(Xk | xF) to be a general parametric function. When x follows elliptically

contoured distribution, E(Xk | xF) is indeed a linear function of xF , for all k and F ⊆

{1, . . . , p}. Examples of elliptically contoured distribution include multivariate normal

distribution, multivariate t-distribution, symmetric multivariate Laplace distribution

and multivariate logistic distribution, etc.

Let {(xi, Yi), i = 1, . . . , n} be a random sample from (x, Y ), where each covariate,

for notational clarity, is assumed to be marginally standardized to have zero mean and
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unit variance in advance. To carry out the CD test for (3.2), we estimate ωk|F by

ω̂k|F = n−2
n∑
j=1

[
n∑
i=1

1(Yi < Yj){Xik − gk|F(xiF , β̂k|F)}

]2/ n∑
i=1

{
Xik − gk|F(xiF , β̂k|F)

}2
,

where β̂k|F is obtained through the nonlinear least squares. That is,

β̂k|F
def
= argmin

βk|F

n∑
i=1

{Xik − gk|F(xiF ,βk|F)}2 (3.3)

We reject H0 in (3.2) when ω̂k|F is sufficiently large. Deciding the critical value for the

CD test amounts to studying the asymptotic distribution of ω̂k|F . Let g′k|F(xF ,βk|F),

g′′k|F(xF ,βk|F) andg′′′k|F(xF ,βk|F) be the first, the second and the third derivatives of

gk|F(xF ,βk|F) with respect to βk|F , respectively. We denote g′l1,k|F(xF ,βk|F) the l1-th

component of g′k|F(xF ,βk|F), g′′l1l2,k|F(xF ,βk|F) the (l1, l2)-th component of g′′k|F(xF ,βk|F)

and g′′′l1l2l3,k|F(xF ,βk|F) the (l1, l2, l3)-th component of g′′′k|F(xF ,βk|F). Let δk|F
def
= Xk −

E(Xk | xF) and C be a generic constant. We assume the following conditions.

(B1) There exists ϑ > 0 such that p = o{exp(anϑ)} for any a > 0.

(B2) For any working index set F ⊆ {1, 2, . . . , p} and k ∈ F c, E(X4
k) ≤ C,E(δ8k|F) ≤

C, E{|g′l1,k|F(xF ,βk|F)|8} ≤ C; |gk|F(xF ,βk|F)| ≤ Gk|F(xF) with E[{Gk|F(xF)}4] ≤

C; |g′l1,k|F(xF ,βk|F)| ≤ Gl1,k|F(xF) with E[{Gl1,k|F(xF)}4] ≤ C; |g′′l1l2,k|F(xF ,βk|F)| ≤

Gl1l2,k|F(xF) with E[{Gl1l2,k|F(xF)}4] ≤ C; |g′′′l1l2l3,k|F(xF ,βk|F)| ≤ Gl1l2l3,k|F(xF)

with E[{Gl1l2l3,k|F(xF)}4] ≤ C, for all l1, l2, l3 and βk|F .

(B3) There exists c0 such that ‖Σ−1F ‖∞ < c0 for all p, where ‖A‖∞
def
= max

l

∑
m

|alm|

stands for the infinity norm of the matrix A = (alm).

Condition (B1) allows p to diverge exponentially faster than n. Condition (B2) is widely

used to study the asymptotic behavior of nonlinear least squares estimation. See, e.g.,
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Jennrich (1969) and White (1981). This condition can be simplified dramatically when

gk|F(xF ,βk|F) is linear. Theorem 3 requires condition (B3) holds true for |F| = o(n1/5).

Many precision matrices satisfy Condition (B3). In particular, if we denote Σ−1F =

(σ−1,lm)|F|×|F| and let σ−1,lm equal 1 if l = m and rn otherwise, then this condition

is satisfied as long as |rn| ≤ (c0 − 1)/(|F| − 1). If Σ−1F is a banded or block-diagonal

matrix and each row has d nonzero entries, for example, σ−1,lm equals 1 if l = m, r if

1 ≤ |l−m| < d and 0 if |l−m| ≥ d, condition (B3) simply requires |r| ≤ (c0−1)/(d−1).

Condition (B3) can also be satisfied by many other sparse precision matrices. If Σ−1F

is a power-decay matrix, say, σ−1,lm = ρ
|l−m|
n , for |ρn| < 1, condition (B3) is satisfied as

long as (1−ρ|F|n ) ≤ c0(1−ρn). Condition (B3) is also implied by ‖Σ−1‖∞ < c0. Similar

conditions are also assumed in the literature. See, for example, Mai et al. (2012, page

34-35) and Bickel and Levina (2008, page 2580).

Theorem 3. In addition to Conditions (B1)-(B3), we further assume |F| = o(n1/5).

1. Under H0 in (3.2), we have, ωk|F = 0 and pr
(
nω̂k|F < q κk|F

)
−pr

(
Qk|F < q

)
→

0, for any q ∈ R+, where Qk|F
def
=
∞∑
j=1

λj,k|Fχ
2
j(1), κk|F is defined in (B.1), χ2

j(1)s

are independent χ2(1) random variables, λj,k|Fs are nonnegative constants that

depend on the joint distribution of (Xk,xF , Y ) and E
(
Qk|F

)
= 1.

2. Under H1 in (3.2) and if ωk|F > 0 for k ∈ F c, we have pr
{
n1/2(ω̂k|F − ωk|F) < t

}
−

pr
(
Tk|F < t

)
→ 0, for any t ∈ R, where Tk|F is a normal random variable with

mean zero and variance ∆k|F and ∆k|F is defined in (B.3).

The condition |F| = o(n1/5) seems somewhat stringent. By refining Assumption A2,

such as E(Xk | xF) = gk|F(xT
Fβk|F), this condition can be weakened to |F| = o(n1/3).

This condition is in line with that of Huber (1973), Fan and Peng (2004) and Tan

and Zhu (2018). We impose this condition because βk|F is unknown and has to be
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estimated from data. We do not impose sparsity assumption on βk|F but we do require

the convergence rate of β̂k|F be fast enough to ensure the weak convergence of ω̂k|F .

The requirement on β̂k|F can be met under the condition that |F| = o(n1/5).

Theorem 3 shows that ω̂k|F is root-n consistent under H0 and n-consistent under

H1, indicating that the CD test has nontrivial power in test for (3.2). We adopt the

wild bootstrap procedure introduced in Section 2 to determine critical values.

Next we adapt our proposed CD test for (3.2) with a working index set F to a

forward screening procedure for ultrahigh dimensional feature selection in model (3.1).

The rationale of our proposed forward screening procedure is as follows. If H0 in (3.2)

is rejected, we update F with F ∪ {k}, because Xk is possibly influential for Y . With

the updated F , we further consider testing (3.2) until H0 is accepted for all k ∈ F c. It

is reasonable to expect A ⊆ F when the forward screening procedure stops. To provide

theoretical justification for our proposal, we assume the following condition.

A3. There exist a positive constant C and $ ∈ [0, 1/2) such that

min
F :Fc∩A6=∅

max
k∈Fc∩A

ωk|F > Cn−$. (3.4)

Assumption A3 requires that the signal strength of the truly important covariates,

conditional on the covariates xF that have already been selected, is strong enough to

be detectable. It is also justified in Theorem 2. This assumption is different from the

marginal signal assumptions used in the screening literature in that the marginal signal

strength is quantified through setting the working index set F to be a null set. See,

for example, condition 3 in Fan and Lv (2008), condition E in Fan and Song (2010),

condition C in Fan et al. (2011), condition (C1) in Zhu et al., (2011), and condition (C2)

in Li, Zhong and Zhu (2012). It is generally required that the marginal signal strength
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of all truly important covariates must be greater than a certain threshold in the existing

screening literature. By contrast, Assumption A3 quantifies the signal strength of the

truly important covariates conditional on the selected covariates xF , which ensures

that ωk|F plays a similar role as the regression coefficients in linear models. Similar

assumptions are also made in the literature. See, for example, condition (C3) in Wang

(2009, page 1513) and condition 1 in Barut, Fan and Verhasselt (2016, page 1270).

These assumptions are generally regarded as mild and reasonable.

To establish the sure screening property for the proposed screening procedure, we

further assume the following conditions.

(B4) The cardinality of A satisfies |A| = O(n1/5−γ) for γ ∈ (0, 1/5].

(B5) LetM and υ be two generic positive constants. Assume that E|Xk|m ≤ m!Mm−2υ/2

for all m ≥ 2, k = 1, 2, . . . , p. Assume in addition that E|gk|F(xF ,β0,k|F)|m ≤

m!Mm−2υ/2 and E|g′l1,k|F(xF ,β0,k|F)|m ≤ m!Mm−2υ/2 for all m ≥ 2, F ⊆

{1, 2, . . . , p} and k ∈ F c.

Assumption (B4) is also a technical condition and is closely related to the as-

sumption that |F| = o(n1/5) used in Theorem 3. Condition (B5) is milder than the

sub-Gaussian assumption (Buldygin and Kozachenko, 1980, Lemma 1).

Theorem 4. Suppose that Conditions (B1)-(B5) and Assumption A3 are satisfied. If

we further assume |F| = o(n1/5), 3/5−2$−ϑ > 0 and set ν < Cn−$/2 in the forward

screening procedure, then pr
(
minF :Fc∩A6=∅ maxk∈Fc∩A ω̂k|F > ν

)
→ 1 as n→∞.

Theorem 4 ensures that the proposed procedure can retain all important covariates

with an overwhelming probability if ν is chosen properly. Such a desirable property

is referred to as the sure screening property. The CD is a robust correlation metric,

and our forward screening procedure is also robust to model misspecification. Such
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merits are particularly appealing for analyzing ultrahigh dimensional data in the ab-

sence of prior knowledge of model structure and data quality. Unlike existing model-free

marginal screening methods, the proposed method is a stepwise procedure, which incor-

porates joint correlation among ultrahigh dimensional features in the forward screening

process. It thus provides more reliable results in practice. With a data-driven choice

of ν, the procedure adaptively determines the number of features to be retained after

selection. This makes the implementation of our proposed forward screening method

practically convenient, since our proposal does not require additional ad hoc tuning

steps.

We describe the algorithm for our proposed forward screening procedure as follows.

Step 1 Start with an initial index set F = ∅.

Step 2 For all k ∈ F c, calculate ω̂k|F . Denote k∗ = arg max
k∈Fc

ω̂k|F . If ω̂k∗|F > ν,

update F with F ∪ {k∗}. The data-driven ν will be determined as follows.

(a) Generate X̃ik∗ = gk∗|F(xiF , β̂k∗|F) + aiδ̂i,k∗|F , i = 1, 2, . . . , n, where δ̂i,k∗|F =

Xik∗ − gk∗|F(xiF , β̂k∗|F), and ai are independent and identically distributed

random weights satisfying pr(ai = 1) = pr(ai = −1) = 1/2. We calculatễωk∗|F def
= ĈD

{
X̃k∗−E

(
X̃k∗ | xF

)
| Y
}

using {(X̃ik∗ ,xiF , Yi), i = 1, 2, . . . , n}.

(b) Repeat the above wild boostrap procedure for B times to obtain ̂̃ω(1)

k∗|F , ̂̃ω(2)

k∗|F ,

. . ., ̂̃ω(B)

k∗|F . Set ν to be the (1−α)-th upper quantile of
{̂̃ω(1)

k∗|F ,
̂̃ω(2)

k∗|F , . . . ,
̂̃ω(B)

k∗|F
}

.

We update the working index set F with F ∪ {k∗} if ω̂k∗|F > ν.

Step 3 Repeat Step 2 until no covariate can be added into the working index set F .

Assumption A2 requires that the minimal signal strength be greater than Cn−$,

and Theorem 4 requires the cutoff ν to be smaller than one half of the minimal signal
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strength. These requirements ensure that our proposal possesses the desirable sure

screening property. In practice, however, the magnitude of minimal signal strength is

generally unknown. Consequently, how to choose an optimal cutoff ν is not straightfor-

ward. To put our proposed procedure into practice, at each step and for each covariate,

we choose α = 0.01 and set the cutoff to be the 99-th percentile of asymptotic null

distribution of ω̂k|F in our algorithm. This works satisfactorily in our numerical studies.

4. NUMERICAL STUDIES

4.1. Simulations

In this section, we conduct Monte Carlo simulations to assess the finite sample perfor-

mance of the CD-based forward screening procedure. For convenience of presentation,

we refer to our proposed forward screening method as C-FS. We compare C-FS with the

following five competitors: the forward regression designed for linear model by Wang

(2009, FR), the least absolute shrinkage and selection operator proposed by Tibshirani

(1996, LASSO), the sure independent ranking and screening procedure proposed by

Zhu et al., (2011, SIRS), the distance correlation based sure independence screening

procedure proposed by Li, Zhong and Zhu (2012, DC-SIS), and the Pearson correlation

based sure independence screening procedure proposed by Fan and Lv (2008, SIS) .

To determine the number of features to be retained after screening, we use a BIC-

type criterion for FR, as suggested by Wang (2009). The model size (tuning parameter)

of the LASSO was chosen by 10-fold cross validation. For SIRS, DC-SIS and SIS, we

follow the convention by retaining [n/ log(n)] top ranked covariates into the screened

model. It should be noted that our C-FS algorithm automatically determines the

screening size with a wild bootstrap procedure.

We adopt the following criteria to evaluate the performance of above methods.
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1. Pind: With a given size, Pind is the empirical probability that an influential

covariate is retained after screening.

2. Pall: With a given size, Pall is the empirical probability that all the influential

covariates are retained after screening.

3. FPR: Let Â be the index set of the retained covariates and A be the index

set of truly influential covariates. The false positive rate (FPR) is defined as

|Â\A|/|Ac|, where Â\A is the index set of irrelevant covariates that are retained

after screening and |M| denotes the cardinality of the set M.

4. TPR: The true positive rate (TPR) is defined as |Â∩A|/|A|, where Â∩A denotes

the set of influential covariates that are correctly retained after screening

We report both the mean and the standard errors of the FPR and TPR values based

on 500 repetitions. We set the sample size n = 200, the covariate dimension p = 3, 000

and the bootstrap times B = 1, 000.

Example 1. We generate data from a linear model Y = βTx + c0ε, where β =

(5, 5, 5,−15ρ1/2, 0, . . . , 0)T, c0 = 1 if ε ∼ N(0, 1) and c0 = 0.1 if ε ∼ t(1). We consider

the following two scenarios to generate the covariate x = (X1, . . . , Xp)
T.

(1) The elliptical case: The covariate x is drawn from multivariate normal population

with mean zero and covariance matrix Σ = (σij)p×p, where σii = 1, i = 1, . . . , p,

σi4 = σ4i = ρ1/2 for i 6= 4, and σij = ρ, for i 6= j, i 6= 4 and j 6= 4.

(2) The non-elliptical case: Set x = Σ1/2{v̂ar(z)}−1/2{z− Ê(z)}, where Σ is defined

in the first scenario, z
def
= (Z1, . . . , Zp)

T, Zks are independent of each other and

follow χ2(2) distribution.
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In the above two scenarios, we set ρ to be 0.1, 0.5 and 0.9, respectively, to stand

for small, moderate and high correlation. This example was also used by Fan and Lv

(2008) and Zhu et al., (2011). The simulation results are summarized in Tables 1-2.

Table 1: The mean and the standard errors of both the FPR and the TPR values based
on 500 repetitions for Example 1.

ε method
ρ = 0.1 ρ = 0.5 ρ = 0.9

FPR TPR FPR TPR FPR TPR
mean std mean std mean std mean std mean std mean std

When x follows elliptical distribution

N (0, 1)

C-FS 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
FR 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
LASSO 0.01 0.00 1.00 0.00 0.06 0.00 0.75 0.00 0.04 0.00 0.75 0.00
SIRS 0.00 0.00 0.75 0.00 0.01 0.00 0.75 0.01 0.01 0.00 0.59 0.29
DC-SIS 0.00 0.00 0.75 0.00 0.01 0.00 0.75 0.02 0.01 0.00 0.58 0.29
SIS 0.00 0.00 0.75 0.00 0.00 0.00 0.75 0.00 0.01 0.00 0.60 0.28

t(1)

C-FS 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
FR 0.00 0.00 0.90 0.29 0.00 0.00 0.90 0.29 0.00 0.00 0.77 0.42
LASSO 0.00 0.00 0.84 0.35 0.03 0.02 0.63 0.27 0.02 0.02 0.52 0.34
SIRS 0.01 0.00 0.75 0.01 0.01 0.00 0.75 0.02 0.01 0.00 0.62 0.27
DC-SIS 0.01 0.00 0.75 0.04 0.01 0.00 0.74 0.06 0.01 0.00 0.59 0.28
SIS 0.01 0.00 0.72 0.14 0.01 0.00 0.71 0.16 0.01 0.00 0.51 0.33

When x follows non-elliptical distribution

N (0, 1)

C-FS 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
FR 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
LASSO 0.01 0.01 1.00 0.00 0.06 0.00 0.75 0.00 0.04 0.00 0.75 0.00
SIRS 0.01 0.00 0.75 0.02 0.01 0.00 0.74 0.05 0.01 0.00 0.59 0.28
DC-SIS 0.01 0.00 0.75 0.02 0.01 0.00 0.74 0.05 0.01 0.00 0.59 0.27
SIS 0.01 0.00 0.75 0.02 0.01 0.00 0.74 0.04 0.01 0.00 0.62 0.25

t(1)

C-FS 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
FR 0.00 0.00 0.94 0.21 0.00 0.00 0.93 0.21 0.00 0.00 0.85 0.30
LASSO 0.00 0.00 0.86 0.32 0.03 0.02 0.62 0.28 0.02 0.02 0.49 0.35
SIRS 0.00 0.00 0.75 0.00 0.01 0.00 0.74 0.05 0.01 0.00 0.57 0.29
DC-SIS 0.01 0.00 0.75 0.04 0.01 0.00 0.74 0.06 0.01 0.00 0.56 0.30
SIS 0.01 0.00 0.71 0.15 0.01 0.00 0.69 0.18 0.01 0.00 0.50 0.32

In this example, X4 is marginally independent of Y . It is thus not surprising to

observe from Table 2 that SIRS, DC-SIS and SIS fail to retain X4, as they consider

only the marginal effects. The performance of LASSO is decent for ρ = 0.1 and
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Table 2: The empirical probabilities Pind and Pall based on 500 repetitions for Example
1.

ε method
ρ = 0.1 ρ = 0.5 ρ = 0.9
Pind Pall Pind Pall Pind Pall

X1 X2 X3 X4 ALL X1 X2 X3 X4 ALL X1 X2 X3 X4 ALL
When x follows elliptical distribution

N (0, 1)

C-FS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
SIRS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.79 0.79 0.79 0.00 0.00
DC-SIS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.76 0.77 0.78 0.00 0.00
SIS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.81 0.80 0.81 0.00 0.00

t(1)

C-FS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FR 0.90 0.90 0.90 0.89 0.89 0.90 0.90 0.91 0.90 0.89 0.77 0.77 0.77 0.77 0.76
LASSO 0.85 0.85 0.86 0.79 0.79 0.84 0.83 0.83 0.00 0.00 0.70 0.70 0.70 0.00 0.00
SIRS 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.83 0.82 0.83 0.00 0.00
DC-SIS 0.99 1.00 0.99 0.00 0.00 0.99 0.99 0.99 0.00 0.00 0.80 0.78 0.78 0.00 0.00
SIS 0.95 0.96 0.96 0.00 0.00 0.95 0.95 0.94 0.00 0.00 0.69 0.68 0.68 0.00 0.00

When x follows non-elliptical distribution

N (0, 1)

C-FS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LASSO 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
SIRS 1.00 1.00 1.00 0.01 0.01 0.99 0.99 0.99 0.00 0.00 0.78 0.80 0.80 0.00 0.00
DC-SIS 1.00 1.00 1.00 0.01 0.01 0.99 0.99 0.99 0.00 0.00 0.77 0.80 0.80 0.00 0.00
SIS 1.00 1.00 1.00 0.01 0.01 0.99 1.00 0.99 0.00 0.00 0.83 0.83 0.84 0.00 0.00

t(1)

C-FS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FR 0.94 0.94 0.95 0.93 0.91 0.93 0.93 0.93 0.95 0.90 0.83 0.82 0.83 0.91 0.78
LASSO 0.88 0.87 0.88 0.80 0.80 0.83 0.83 0.82 0.00 0.00 0.65 0.66 0.65 0.00 0.00
SIRS 1.00 1.00 1.00 0.00 0.00 0.99 0.99 0.99 0.00 0.00 0.76 0.76 0.76 0.00 0.00
DC-SIS 1.00 1.00 1.00 0.00 0.00 0.99 0.99 0.99 0.00 0.00 0.75 0.74 0.74 0.00 0.00
SIS 0.94 0.94 0.96 0.00 0.00 0.92 0.93 0.92 0.00 0.00 0.65 0.66 0.69 0.00 0.00
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ε ∼ N (0, 1), but it deteriorates sharply as ρ increases. Both FR and C-FS perform

well when ε is normal. However, when ε ∼ t(1) and x is elliptical, FR has an average

TPR as low as 0.77 for ρ = 0.9. In this scenario, FR is also quite unstable in terms

of the large standard deviations. By contrast, the proposed C-FS attains stable and

satisfactory performance in all scenarios. The simulation results when x follows non-

elliptical distribution are quite similar to those when x follows elliptical distribution.

Example 2. We consider three models where Y depends on xA nonlinearly.

(a) Y = X1 + 0.8X2 + 0.6X3 + 0.4X4 + 0.2 exp(X20 + c0ε).

(b) Y = X1 + 0.8X2 + 0.6(X5 + 1)2 + 0.4X3
10 + 0.2 exp(|X20 + 1|+ c0ε).

(c) Y = β1(X1)X2 + β2(X1)X3 + β3(X1)X4 + β4(X1)X5 + c0ε.

In all three models, ε and c0 are generated in the same way as in Example 1. In

Example 2(a) and 2(b), we consider two scenarios for generating x.

(1) The elliptical case: The covariate x is drawn from multivariate normal population

with mean zero and covariance matrix Σ = (0.5|i−j|)p×p.

(2) The non-elliptical case: Set x = Σ1/2{v̂ar(z)}−1/2{z−Ê(z)}, where Σ = (0.5|i−j|)p×p,

z
def
= (Z1, . . . , Zp)

T, Zks are independent and follow χ2(2) distribution.

In Example 2(c), we generate U1 and U2 independently from uniform distribution on

[0, 1], and set X1 = (U1 + U2)/2, β1(X1) = 4(1 − X2
1 ), β2(X1) = 3{1 + sin(2πX1)},

β3(X1) = 2{1 + (1−X1)
3/2}, and β4(X1) = exp(|X1|). Define Xk = (Zk + 3U1)/4, k =

2, 3, . . . , p, where Zks are independently drawn from (1) the standard normal distribu-

tion in the elliptical case and (2) the χ2(2) distribution in the non-elliptical case.

The simulation results for Example 2 are charted in Tables 3-4. In Example 2(a),

none of SIRS, DC-SIS or SIS is able to identify X20 as an important covariate. This
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is because these methods are relatively sensitive to the transformation of variables.

When ε ∼ t(1), the new C-FS is the only method that has satisfactory performance.

This confirms the robustness behavior of C-FS. In Example 2(b), those model based

methods, such as FR, LASSO and SIS, fail to retain all the important covariates, be-

cause the linear model assumption is violated. In comparison, the model free methods

(C-FS, SIRS, DC-SIS) perform relatively better. The performance of C-FS is the best,

due to its robustness property against the outliers in the response. In Example 2(c),

the marginal screening methods, such as SIRS, DC-SIS and SIS, fail to detect X1 in

all scenarios. Both C-FS and LASSO outperform FR when ε is normal, our C-FS is

the only method that remains satisfactory performance when ε ∼ t(1).

Table 3: The mean and the standard errors of both the FPR and the TPR values based
on 500 repetitions for Example 2.

method

x follows elliptical distribution x follows non-elliptical distribution
ε ∼ N (0, 1) ε ∼ t(1) ε ∼ N (0, 1) ε ∼ t(1)

FPR TPR FPR TPR FPR TPR FPR TPR
mean std mean std mean std mean std mean std mean std mean std mean std

(a)

C-FS 0.01 0.00 0.98 0.06 0.01 0.00 0.98 0.07 0.01 0.00 0.97 0.07 0.01 0.00 0.98 0.07
FR 0.00 0.00 0.88 0.18 0.00 0.00 0.25 0.40 0.00 0.00 0.63 0.28 0.00 0.00 0.21 0.34
LASSO 0.00 0.00 0.83 0.28 0.00 0.00 0.22 0.38 0.00 0.00 0.45 0.44 0.00 0.00 0.14 0.32
SIRS 0.01 0.00 0.90 0.10 0.01 0.00 0.86 0.09 0.01 0.00 0.98 0.07 0.01 0.00 0.97 0.08
DC-SIS 0.01 0.00 0.91 0.10 0.01 0.00 0.44 0.42 0.01 0.00 0.98 0.08 0.01 0.00 0.48 0.46
SIS 0.01 0.00 0.94 0.10 0.01 0.00 0.32 0.41 0.01 0.00 0.84 0.27 0.01 0.00 0.31 0.42

(b)

C-FS 0.00 0.00 0.98 0.06 0.00 0.00 1.00 0.03 0.00 0.00 0.99 0.04 0.00 0.00 1.00 0.02
FR 0.00 0.00 0.60 0.28 0.00 0.00 0.19 0.35 0.00 0.00 0.44 0.23 0.00 0.00 0.14 0.24
LASSO 0.00 0.00 0.54 0.42 0.00 0.00 0.17 0.35 0.00 0.00 0.15 0.29 0.00 0.00 0.04 0.17
SIRS 0.01 0.00 0.96 0.08 0.01 0.00 0.96 0.08 0.01 0.00 0.99 0.04 0.01 0.00 1.00 0.03
DC-SIS 0.01 0.00 0.98 0.06 0.01 0.00 0.41 0.46 0.01 0.00 0.96 0.14 0.01 0.00 0.39 0.46
SIS 0.01 0.00 0.93 0.15 0.01 0.00 0.29 0.41 0.01 0.00 0.60 0.30 0.01 0.00 0.22 0.33

(c)

C-FS 0.01 0.00 0.95 0.09 0.01 0.00 0.99 0.05 0.01 0.00 0.94 0.11 0.01 0.00 0.98 0.06
FR 0.00 0.00 0.89 0.12 0.00 0.00 0.48 0.40 0.00 0.00 0.88 0.14 0.00 0.00 0.49 0.39
LASSO 0.00 0.00 0.96 0.09 0.00 0.00 0.43 0.42 0.00 0.00 0.93 0.12 0.00 0.00 0.43 0.42
SIRS 0.01 0.00 0.73 0.10 0.01 0.00 0.76 0.09 0.01 0.00 0.70 0.13 0.01 0.00 0.73 0.10
DC-SIS 0.01 0.00 0.72 0.11 0.01 0.00 0.74 0.12 0.01 0.00 0.69 0.12 0.01 0.00 0.70 0.13
SIS 0.01 0.00 0.73 0.10 0.01 0.00 0.54 0.29 0.01 0.00 0.72 0.11 0.01 0.00 0.53 0.28

4.2. An Application
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Table 4: The empirical probabilities Pind and Pall based on 500 repetitions for Example
2.

method
ε ∼ N (0, 1) ε ∼ t(1)
Pind Pall Pind Pall

When x follows elliptical distribution
X1 X2 X3 X4 X20 ALL X1 X2 X3 X4 X20 ALL

(a)

C-FS 1.00 1.00 0.99 0.93 0.97 0.90 1.00 1.00 1.00 0.97 0.91 0.90
FR 0.96 0.97 0.91 0.62 0.96 0.58 0.28 0.29 0.27 0.20 0.20 0.19
LASSO 0.92 0.94 0.90 0.70 0.71 0.62 0.25 0.25 0.24 0.19 0.15 0.15
SIRS 1.00 1.00 1.00 1.00 0.48 0.48 1.00 1.00 1.00 1.00 0.32 0.32
DC-SIS 1.00 1.00 1.00 1.00 0.56 0.56 0.53 0.53 0.52 0.48 0.14 0.14
SIS 1.00 1.00 1.00 0.99 0.71 0.71 0.37 0.37 0.37 0.33 0.14 0.13

(b)

C-FS 1.00 0.96 1.00 1.00 0.96 0.91 1.00 0.99 1.00 1.00 0.99 0.98
FR 0.59 0.38 0.67 0.64 0.73 0.10 0.21 0.15 0.22 0.22 0.16 0.11
LASSO 0.59 0.55 0.57 0.53 0.48 0.31 0.18 0.18 0.18 0.17 0.12 0.11
SIRS 1.00 1.00 1.00 0.98 0.84 0.83 1.00 1.00 1.00 0.99 0.82 0.82
DC-SIS 1.00 1.00 1.00 0.97 0.95 0.91 0.44 0.43 0.42 0.39 0.34 0.32
SIS 0.96 0.95 0.93 0.88 0.95 0.76 0.31 0.31 0.29 0.29 0.23 0.19

X1 X2 X3 X4 X5 ALL X1 X2 X3 X4 X5 ALL

(c)

C-FS 1.00 1.00 1.00 0.96 0.78 0.75 1.00 1.00 1.00 1.00 0.94 0.94
FR 0.99 1.00 1.00 0.93 0.56 0.51 0.45 0.59 0.64 0.45 0.28 0.24
LASSO 0.89 1.00 1.00 0.99 0.90 0.80 0.24 0.53 0.54 0.46 0.36 0.22
SIRS 0.00 0.99 0.99 0.93 0.73 0.00 0.00 1.00 1.00 0.97 0.81 0.00
DC-SIS 0.00 0.99 1.00 0.92 0.69 0.00 0.00 0.99 0.99 0.94 0.76 0.00
SIS 0.00 1.00 1.00 0.94 0.72 0.00 0.00 0.78 0.79 0.64 0.49 0.00

When x follows non-elliptical distribution
X1 X2 X3 X4 X20 ALL X1 X2 X3 X4 X20 ALL

(a)

C-FS 1.00 1.00 0.98 0.89 1.00 0.86 1.00 1.00 0.98 0.93 0.99 0.89
FR 0.67 0.69 0.54 0.27 0.97 0.21 0.23 0.26 0.17 0.09 0.32 0.08
LASSO 0.52 0.54 0.46 0.28 0.48 0.26 0.16 0.17 0.14 0.08 0.14 0.08
SIRS 1.00 1.00 1.00 1.00 0.88 0.88 1.00 1.00 1.00 1.00 0.83 0.83
DC-SIS 0.99 1.00 0.99 0.98 0.93 0.91 0.52 0.53 0.51 0.46 0.40 0.37
SIS 0.84 0.87 0.81 0.71 0.98 0.67 0.32 0.32 0.31 0.25 0.35 0.22

(b)

C-FS 0.99 0.96 1.00 1.00 1.00 0.95 1.00 0.99 1.00 1.00 1.00 0.99
FR 0.16 0.08 0.50 0.53 0.90 0.00 0.06 0.03 0.16 0.20 0.27 0.00
LASSO 0.09 0.08 0.21 0.18 0.22 0.04 0.03 0.02 0.06 0.05 0.06 0.01
SIRS 1.00 1.00 1.00 0.98 0.99 0.97 1.00 1.00 1.00 0.99 1.00 0.98
DC-SIS 0.96 0.96 0.98 0.88 0.99 0.86 0.39 0.39 0.42 0.36 0.41 0.33
SIS 0.37 0.37 0.63 0.66 0.96 0.24 0.15 0.14 0.24 0.26 0.32 0.08

X1 X2 X3 X4 X5 ALL X1 X2 X3 X4 X5 ALL

(c)

C-FS 1.00 0.99 0.97 0.95 0.78 0.73 1.00 1.00 1.00 0.98 0.91 0.89
FR 0.96 1.00 0.98 0.92 0.55 0.49 0.48 0.62 0.63 0.45 0.29 0.24
LASSO 0.82 1.00 0.99 0.99 0.87 0.73 0.26 0.53 0.54 0.45 0.35 0.22
SIRS 0.00 0.99 0.95 0.89 0.66 0.00 0.00 1.00 0.99 0.95 0.70 0.00
DC-SIS 0.00 0.99 0.99 0.88 0.59 0.00 0.00 0.99 0.99 0.92 0.60 0.00
SIS 0.00 1.00 0.99 0.92 0.69 0.00 0.00 0.78 0.77 0.66 0.44 0.00
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We further illustrate the performance of the proposed C-FS method through a rat eye

expression dataset, which was previously studied by Scheetz et al. (2006) and Huang

et al. (2008). This dataset consists of 31,042 probe sets of 120 twelve-week-old male

rats, yet only 18,976 probes were sufficiently expressed. The response variable TRIM32

is among these 18,976 probes. This probe was found to cause Bardet-Biedl syndrome

(Chiang et al., 2006). We rank the remaining 18,975 probes according to their variances

and retain only 3,000 probes with the largest variances. Our analysis is based on the

selected 3,000 probes, in addition to the probe TRIM32. The goal is to identify the

probes that affect the expression level of TRIM32 considerably.

The sample size n = 120 is small compared with the covariate dimension p = 3, 000.

We apply the aforementioned six feature selection/screening methods to this dataset

and denote the retained covariates as xÂ. We order the entries of Â according to the

relative importance of each retained covariate. Specifically, for SIS, DC-SIS, and SIRS,

Â is the index set of the covariates with s largest marginal effects; for C-FS, FR, and

LASSO, Â is the index set of the first s covariates that enter the active set.

We assess the performance of these methods as follows. Given a model size s, we

fit an additive model

Y =
s∑
j=1

fkj(Xkj) + εk, (4.1)

where k = 1, . . . , 6 represents C-FS, FR, LASSO, SIRS, DC-SIS , and SIS respectively.

The subscript kj denotes the jth element in Âk and s is set from 1 to 10. We stop our

comparison at the 10-th step because the C-FS algorithm with critical values decided by

bootstrap stops at this step. In other words, all remaining null hypotheses are accepted

at the significance level 0.01 and there is no need to add additional covariates.

We estimate the unknown functions fkj by the R package mgcv, where the adjusted
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R2 and the explained deviance are summarized in Table 5. Since the deviance explained

Table 5: The adjusted R2 and the explained deviance of the six methods.

model adjusted R2 dev.explained
size C-FS FR LASSO SIRS DC-SIS SIS C-FS FR LASSO SIRS DC-SIS SIS
1 0.33 0.62 0.62 0.33 0.33 0.62 0.35 0.62 0.62 0.35 0.35 0.62
2 0.63 0.68 0.68 0.68 0.68 0.68 0.66 0.69 0.69 0.71 0.69 0.69
3 0.66 0.70 0.68 0.69 0.69 0.69 0.71 0.71 0.70 0.71 0.71 0.71
4 0.72 0.72 0.70 0.70 0.70 0.70 0.74 0.73 0.72 0.73 0.71 0.72
5 0.72 0.74 0.70 0.74 0.70 0.70 0.75 0.75 0.73 0.77 0.72 0.72
6 0.79 0.75 0.73 0.76 0.71 0.73 0.83 0.77 0.77 0.80 0.73 0.77
7 0.81 0.76 0.74 0.76 0.72 0.74 0.84 0.78 0.77 0.80 0.74 0.77
8 0.81 0.77 0.77 0.75 0.72 0.73 0.84 0.79 0.80 0.79 0.74 0.77
9 0.82 0.77 0.77 0.75 0.71 0.74 0.86 0.79 0.81 0.80 0.74 0.78
10 0.84 0.78 0.77 0.74 0.73 0.74 0.88 0.80 0.81 0.78 0.76 0.78

is defined as the proportion of the null deviance explained by the fitted model, the

method with larger deviance has a better performance. From Table 5, we observe

that, as s increases, the proposed C-FS tends to outperform all other marginal effect

based methods. This is partly because these procedures may fail to identify some truly

important covariates. In comparison, the performances of C-FS, FR and LASSO are

relatively satisfactory as they consider the joint effects. Among these methods, the

proposed C-FS has the highest R2 and explained deviance.

We use the five-fold cross-validation to further compare the prediction performance.

Specifically, we randomly partition the dataset into five equal sized subsamples, denoted

D1, . . . ,D5. For each subsample Dk, we use the remaining four subsamples to fit model

(4.1) with s = 10, then calculate the mean squared prediction error on the subsample

Dk. We repeat this procedure such that the prediction is performed on each subsample

exactly once. The mean squared prediction error of C-FS, FR, LASSO, SIRS, DC-SIS

and SIS are 0.43, 0.74, 0.49, 0.78, 0.45 and 0.60, respectively. In this example, the

C-FS gives the best prediction, followed by the DC-SIS and the LASSO.
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5. CONCLUDING REMARKS

In this article, we proposed a CD-based forward screening procedure, which is

model-free and robust to the presence of outliers in the response. By using a stepwise

searching framework, the proposed procedure incorporates joint correlations among

features in the screening process and thus provides more reliable results in applications.

In general, this forward screening procedure shares similar spirit to the iterative

screening approaches (Zhu et al.,, 2011; Zhong and Zhu, 2015). However, how to decide

model sizes for the iterative screening approaches and how to study their theoretical

properties are rarely discussed in existing literature. Equipped with our proposed

model-free forward screening procedure, a data-driven method is proposed to determine

which covariates should be retained. We also show that our proposed forward screening

procedure possesses the desirable sure screening property.

A model-free and robust method is often computationally intensive. Our experi-

ences shows that the proposed C-FS procedure is more computationally demanding

than other procedures. This is possibly caused by stepwise searching and adaptive

thresholding, which make the proposed method more reliable and fully automatic. We

conjecture that a simplified procedure may lead to less computational cost with a small

sacrifice of numerical stability. In our simulation setup, each run takes no more than

4 minutes on average for n = 200 and p = 3000 on PC Intel Core2 Duo T9600 2.8GHz

4GB RAM server. This numerical cost is often acceptable in practice. It would be

interesting to further develop a more efficient algorithm for the CD-based method.

APPENDIX: LEMMAS AND PROOFS OF THEOREMS

Appendix A: Some Lemmas
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Lemma 1. (Bernstein’s Inequality, Van and Wellner (1996, Lemma 2.2.11)) Let

X1, X2, . . . , Xn be independent random variables with mean 0 and E|Xi|m ≤ m!Mm−2υi/2

for every m ≥ 2 and i = 1, 2, . . . , n, where M and υi are positive constants. Then

pr {|X1 +X2 + . . .+Xn| > ε} ≤ 2 exp

{
− ε2

2(υ +Mε)

}
, for υ ≥

n∑
i=1

υi.

For notational clarity, we denote s = |F| in what follows.

Lemma 2. If s = o(n1/5) and conditions (B1)-(B5) hold true, then for any k ∈ F c,

and εn = Cn−κ, C and κ are positive constants,

pr
{

(β̂k|F − β0,k|F)T(β̂k|F − β0,k|F) > εn

}
< 2s exp(−c1ns−1εn),

where c1 is a positive constant and β0,k|F is defined by argmin
βk|F

E{Xk−gk|F(xF ,βk|F)}2.

Proof of Lemma 2: The proof is given in the supplementary document.

Appendix B: Proof of Theorems

Proof of Theorem 2: We prove the first part. Under H0, for any y ∈ R, we have

E {1(Y < y)E(Xk | xF)} = E [E {1(Y < y) | xF}Xk] = E[E{1(Y < y) | xF , Xk}Xk]

= E{1(Y < y)E(Xk | xF , Xk)} = E{1(Y < y)Xk}.

This completes the proof of the first part. Next we prove the second part. Define

ξ(y) = {ξ1(y), . . . , ξp(y)}T def
= E

{
∂F (y | x)

/
∂x
}

. Stein’s lemma yields that ξ(y) =

Σ−1E{1(Y < y)x}. Assumption A1 ensures that, for any k ∈ A, there exists some

y ∈ R such that ξk(y) 6= 0. Next, we show that for any F satisfying F c ∩ A 6= ∅,
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max
k∈Fc∩A

ωk|F > 0 holds. Define Ωk|F(y)
def
= E[1(Y < y){Xk − E(Xk | xF)}]. The

normality of x indicates E(Xk | xF) = βT

k|FxF , where βk|F = Σ−1F ΣF ,k. Thus

Ωk|F(y) = (1,−βT

k|F) [E{1(Y < y)Xk}, E{1(Y < y)xT
F}]

T . Without loss of generality,

we assume (xF , Xk) be the first |F|+ 1 elements of x. It follows that

Ωk|F(y) = (−βT

k|F , 1)(I|F|+1,0(|F|+1)×(p−|F|−1))Σξ(y) = (Σk,S −Σk,FΣ−1F ΣF ,S)ξ(y),

where ΣF1,F2 = E(xT
F1

xF2), for F1,F2 ⊆ S. Under model (3.1), Ωk|F(y) = (Σk,Fc∩A −

Σk,FΣ−1F ΣF ,Fc∩A)ξFc∩A(y). This yields that

∑
k∈Fc∩A

Ω2
k|F(y) =

∑
k∈Fc∩A

ξFc∩A(y)T(Σk,Fc∩A −Σk,FΣ−1F ΣF ,Fc∩A)2ξFc∩A(y)

= ξFc∩A(y)T(ΣFc∩A,Fc∩A −ΣFc∩A,FΣ−1F ΣF ,Fc∩A)2ξFc∩A(y).

Define

ΣF∪(Fc∩A)
def
=

 ΣF ΣF ,Fc∩A

ΣFc∩A,F ΣFc∩A,Fc∩A

 .

Because (ΣFc∩A,Fc∩A −ΣFc∩A,FΣ−1F ΣF ,Fc∩A)−1 is sub-matrix of Σ−1F∪(Fc∩A), we have

ρmax((ΣFc∩A,Fc∩A −ΣFc∩A,FΣ−1F ΣF ,Fc∩A)−1) < ρmax(Σ
−1
F∪(Fc∩A)).

Accordingly,

ρmin(ΣFc∩A,Fc∩A −ΣFc∩A,FΣ−1F ΣF ,Fc∩A) > ρmin(ΣF∪(Fc∩A)) > ρmin(Σ),

where ρmin(M) and ρmax(M) represent the maximum and minimum eigenvalue of ma-
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trix M, respectively. This leads to that

max
k∈Fc∩A

Ω2
k|F(y) ≥ |F c ∩ A|−1

∑
k∈Fc∩A

Ω2
k|F(y)

≥ |F c ∩ A|−1ρ2min(ΣFc∩A,Fc∩A −ΣFc∩A,FΣ−1F ΣF ,Fc∩A)ξT

Fc∩A(y)ξFc∩A(y)

≥ |F c ∩ A|−1ρ2min(Σ)ξT

Fc∩A(y)ξFc∩A(y) > 0,

for some y ∈ R. This completes the proof of the second part of Theorem 2.

For notational clarity, we denote µk|F
def
= E(Xk | xF) in what follows.

Proof of Theorem 3: Define

ζn,k|F(y)
def
= n−1/2

n∑
i=1

1(Yi < y)
{
Xik − gk|F(xiF , β̂k|F)

}
, for y ∈ R.

By Taylor’s expansion, it follows that

ζn,k|F(y) = n−1/2
n∑
i=1

1(Yi < y){Xik − gk|F(xiF ,β0,k|F)}

+ E{1(Y < y)g′k|F(xF ,β0,k|F)}T(β̂k|F − β0,k|F) + op(1).

(S.1) in the supplement gives that

ζn,k|F(y) = n−1/2
n∑
i=1

Vk|F(Xik,xiF , Yi; y) + op(1), where

Vk|F(Xik,xiF , Yi; y) = 1(Yi < y){Xik − gk|F(xiF ,β0,k|F)}+ E{1(Y < y)g′k|F(xF ,β0,k|F)T}

Σ−1k|F{Xik − gk|F(xiF ,β0,k|F)}g′k|F(xiF ,β0,k|F),

and Σk|F = E
[{
g′k|F(xF ,β0,k|F)

}{
g′k|F(xF ,β0,k|F)

}T]
.

Suppose H0 in (3.2) holds true. Theorem 2 ensures that ωk|F = 0. Let ζk|F(·)

be a mean zero Gaussian process with covariance function cov{ζk|F(y1), ζk|F(y2)} =
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E
{
Vk|F(Xk,xF , Y ; y1)Vk|F(Xk,xF , Y ; y2)

}
. It is easy to verify that E{ζn,k|F(y)} = o(1)

and E{ζ2n,k|F(y)} = cov{ζk|F(y), ζk|F(y)}+ o(1). Thus we have ζn,k|F(·) d→ ζk|F(·), and

consequently
∫ +∞
−∞ ζ2n,k|F(y)dFn(y)

d→
∫ +∞
−∞ ζ2k|F(y)dF (y). This, together with the fact

that n ĈCov{(Xk−µk|F) | Y } =
∫ +∞
−∞ ζ2n,k|F(y)dFn(y), yields that n ĈCov{(Xk−µk|F) |

Y } d→
∫ +∞
−∞ ζ2k|F(y)dF (y) (Kuo, 1975). Therefore,

n

[
E

{∫ +∞

−∞
ζ2k|F(y)dF (y)

}]−1
ĈCov{(Xk − µk|F) | Y } d→

∞∑
j=1

λj,k|Fχ
2
j(1).

By Slutsky’s theorem, it follows that nκ−1k|F ω̂k|F
d−→
∑∞

j=1 λj,k|Fχ
2
j(1), where

κk|F
def
= E

[
1(Y < Ỹ ){Xk − gk|F(xF ,β0,k|F)}+ E{1(Y < Ỹ )g′k|F(xF ,β0,k|F)T}Σ−1k|F

{Xk − gk|F(xF ,β0,k|F)}g′k|F(xF ,β0,k|F)
]2/

var{Xk − gk|F(xiF ,β0,k|F)}. (B.1)

Suppose H1 in (3.2) holds true. Recall that

ĈCov{(Xk − µk|F) | Y } =

∫
{n−1/2ζn,k|F(y)}2dFn(y)

=

∫
[n−1/2ζn,k|F(y)− E{Vk|F(Xk,xF , Y ; y)}+ E{Vk|F(Xk,xF , Y ; y)}]2dFn(y)

=

∫
2E{Vk|F(Xk,xF , Y ; y)}[n−1/2ζn,k|F(y)− E{Vk|F(Xk,xF , Y ; y)}]dFn(y)

+

∫
E2{Vk|F(Xk,xF , Y ; y)}dFn(y) + op(n

−1/2)

=

∫
2E{Vk|F(Xk,xF , Y ; y)}n−1/2ζn,k|F(y)dF (y)− 2CCov{(Xk − µk|F) | Y }

+

∫
E2{Vk|F(Xk,xF , Y ; y)}dFn(y) + op(n

−1/2).

Thus

ĈCov{(Xk − µk|F) | Y } − CCov{(Xk − µk|F) | Y } = n−1
n∑
i=1

Zi,k|F + op(n
−1/2),
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with

Zi,k|F
def
= 2

[∫
E{Vk|F(Xk,xF , Y ; y)}Vk|F(Xik,xiF , Yi; y)dF (y)− CCov{(Xk − µk|F) | Y }

]
+ E2{Vk|F(Xk,xF , Y ;Yi)} − CCov{(Xk − µk|F) | Y }, (B.2)

where the expectation is taken with respect to (Xk,xF , Y ). By the central limit

theorem, n1/2
[
ĈCov{(Xk − µk|F) | Y } − CCov{(Xk − µk|F) | Y }

]
converges in dis-

tribution to N (0, ς2k|F), where ς2k|F
def
= var(Zi,k|F). By Slutsky’s theorem, we have

n1/2(ω̂k|F − ωk|F)
d−→ N

(
0,∆k|F

)
, where

∆k|F
def
= ς2k|F

/{
var(Xk − µk|F)

}2
. (B.3)

This completes the proof of Theorem 3.

The uniform consistency of ω̂k|F paves the road for proving Theorem 4.

Proposition 1. Under conditions (B1)-(B5), for any εn > 0, there exists positive

constants c1, c2,c3, c4 and sufficiently small sεn ∈ (0, 2/εn) such that

pr
{

max
k∈Fc
|ω̂k|F − ωk|F | > εn

}
≤ O

[
p exp{n log(1− εnsεn/2)/3}+ p exp(−c1nε2n)

+pn exp(−c2nε2n) + ps exp(−c3ns−2ε2n) + ps exp(−c4ns−2εn)
]
.

Set εn = Cn−κ, for some constants C > 0 and κ > 0. If there exists ϑ > 0 such that

p = o{exp(anϑ)} for any a > 0 and 3/5− 2κ− ϑ > 0, then

max
F :|F|=o(n1/5)

pr

{
max
k∈Fc
|ω̂k|F − ωk|F | > Cn−κ

}
→ 0 as n→∞.

Proof of Proposition 1: The proof is given in the supplementary document.
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Proof of Theorem 4: For notational clarity, we define the random event E1 =

{There exists an index set F , such thatF c ∩ A 6= ∅ and max
k∈Fc∩A

ω̂k|F ≤ ν}. For such an

F , we have, by Assumption A3, max
k∈Fc∩A

ωk|F − max
k∈Fc∩A

ω̂k|F > Cn−$ − ν. Consequently,

max
k∈Fc∩A

(ωk|F − ω̂k|F) ≥ max
k∈Fc∩A

ωk|F − max
k∈Fc∩A

ω̂k|F ≥ Cn−$/2.

Define the random event E2 =
{

max
k∈Fc∩A

(ωk|F − ω̂k|F) > Cn−$/2, for F in E1

}
. The

above discussions imply that E1 ⊆ E2. It follows that

pr

(
min

F :Fc∩A6=∅
max

k∈Fc∩A
ω̂k|F > ν

)
= 1− pr(E1) ≥ 1− pr(E2).

Proposition 1 implies that pr(E2)→ 0, which completes the proof of Theorem 4.
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