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1 Abstract

Gravitational waves are produced by accelerating masses, but in most cases they are too
weak to detect. In 2015 LIGO announced its first gravitational wave detection which was
produced by the merging of two black holes 1.3 billions years ago. The detectable com-
ponent of gravitational waves, known as the oscillatory waveform, is predicted to have a
smaller, lower frequency counterpart called the memory: a permanent warping of space-
time. In addition to memorys small amplitude compared to the oscillatory waveform, low
frequency noise sources on earth make it difficult for ground based detectors to reach the
SNR (signal to noise ratio) needed to detect this component. While memory is likely not
currently detectable due to LIGO limitations, it is of interest to characterize future detec-
tor sensitivities to know where and when to look for this phenomenon. Here we implement
Bayesian parameter estimation to calculate the likelihood of a simulated set of LIGO data
with a template, both of which include memory. Next we explore binary systems of vary-
ing masses and distances along with the noise curves of various observatories in order to
establish the SNR needed to detect gravitational wave memory. Our final goal is to find a
ballpark SNR value for when memory will be detectable.

2 Introduction: LIGO, Gravitational Waves, and Memory

In 1916 Albert Einstein proposed a theory that unifies gravity, spacetime, and energy which
he called the general theory of relativity. In his theory he predicted that massive, acceler-
ating objects would emit waves that physically distort spacetime; these objects were given
the name gravitational waves. In hopes of directly testing for the existence of gravitational
waves a detector called LIGO (Laser Interferometer Gravitational Wave Observatory) was
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built in 1995. Twenty years later in 2015 the first detection of a gravitational wave was
announced: a merger of two black holes that occurred approximately 1.3 billion years ago
[1]. This binary black hole merger process is an example of a compact binary coalescence
(CBC). CBCs can consist of binary neutron stars, binary black holes, or black hole-neutron
star binaries; all of these systems have the capability to produce gravitational waves that
are detectable by ground-based interferometers. A binary black hole system will undergo
three main phases. The first phase of this process is the inspiral which consists of the
black holes orbiting one another with a shrinking orbit as energy is gradually lost through
gravitational wave emission. Next is the merger where the black holes combine to make
one black hole; gravitational wave emission peaks at this time. Finally the ringdown stage
is where the resulting black hole oscillates between a spheroid, and an elongated spheroid
through gravitational wave emission. Since this first occurrence, there have been a handful
of gravitational waves detected by LIGO [2]. With each detection providing new informa-
tion, there is constantly a push to analyze the data in hopes of further understanding the
sources that produce the waves. Along with gaining information concerning some of the
universe's most extreme events, LIGO observations provide unique tests of general rela-
tivity in the strong-field, highly dynamical regime. While we have begun to probe general
relativity with these detections, there are other predictions that we have yet to test. Here
we begin to characterize the detectability of one of these predictions, gravitational wave
memory, through the study of binary black hole mergers.

3 Motivation for Memory Detection

General relativity predicts that gravitational waves will have an oscillatory component
as well as a memory component (Figure 1). These oscillatory and memory components
are polarized in the plus and cross orientations. These polarizations are similar to that
of light except they are related by a 45◦ rotation compared to the 90◦ rotation for EM
(electromagnetic) radiation. These polarizations also have oscillatory and non-oscillatory
components. For a binary inspiral there is a non-oscillatory component to the + polariza-
tion which makes the amplitude of the gravitational wave end with a non-zero value [3].
This non-zero amplitude represents the gravitational wave memory, a weak stretching that
permanently alters spacetime, which is displayed in Figure 1 [4].
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Figure 1: Waveform showing oscillatory binary black hole merger with memory (solid
blue line) and without memory (dashed blue line). Made with package GWMemory from
Gravitational-wave memory: waveforms and phenomenology [5].

Linear memory, discovered in the 1970s, arises from near-zero-frequency changes in the
time derivatives of the source's multipole moments. Multipole moments are a combination
of the mass moment, the extent to which an object resists rotational acceleration about a
particular axis, and the mass-current moment which corresponds to the star's spin angular
momentum (the star's moment of inertia about its spin axis multiplied by its spin angular
frequency ω) [6]. Linear memory also appears in systems that experience kicks such as
a rogue black hole, or systems that eject particles such as neutrinos from supernovae [3].
Non-linear memory, also known as Christodoulou memory [3][7], grows slowly and is a
non-oscillatory contribution to to the gravitational wave's amplitude. It originates from
gravitational waves that are sourced by the previously emitted waves. All gravitational
waves carry a component of nonlinear memory which means it should be included in LIGO
waveform models [7].

Since linear and nonlinear memory depend on the form of general relativity field equa-
tions, a set of ten coupled non-linear differential equations that describe gravity as a result
of spacetime being curved by mass and energy, it is possible that different forms of memory
could be uncovered if general relativity were to be modified [8]. Since memory is difficult
for LIGO to detect, it has mostly been disregarded by scientists studying gravitational
waves. However, the memory scales linearly with the black hole's mass which means there
will likely be a detectable contribution to the calculated waveform amplitude of the re-
sulting gravitational waves [9]. This memory effect is computed to be non-negligible as it
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enters the waveform at approximately the same order as the quadrupole. From this one
can conclude that the memory effect should not be impossible to detect with the proper
equipment and analysis techniques [3]. Now that LIGO has published seven CBC (compact
binary coalescence) events, there is more data to explore and a greater potential to detect
memory.

4 Background - Gravitational Wave Memory

While there are numerous methods one can utilize to begin to understand gravitational
radiation, one helpful analogy is electromagnetic radiation. As electric charges move they
create electromagnetic waves that propagate outward from their source at the speed of light.
The waves carry energy and their energy flux falls off as 1

r2
where r is the distance away

from the source, while the amplitude falls off as 1
r . They can be detected by the forces they

apply to electrons, or by the amount of energy the source loses from the wave propagation.
In a similar fashion, gravitational waves arise when moving masses send out waves that
are the fluctuating curvature of spacetime. The amplitude of the waves also falls off as 1

r
over long distances and they can be detected either by the gravitational strain they apply
to groups of massive objects in free fall, or the amount of energy that is lost by the source.
While there are strong similarities between gravitational and electromagnetic radiation,
the differences become apparent when the strength of the two forces are compared. Due
to the weakness of gravity, only very powerful astrophysical interactions are capable of
producing gravitational waves that are detectable on earth. Some of these interactions
include mergers of neutron stars, black holes, or a combination of both [10].

An additional factor that differs between electromagnetism and gravitation is gravita-
tional waves have a large nonlinearity [11]. This nonlinearity is intriguing to study because
it will help us further understand the fundamental nature of gravitational waves. Gravita-
tional waves are sourced by energy and mass which allows the particles that carry gravity,
called gravitons, which carry energy, to source gravitational waves and emit more gravi-
tons. These gravitons interact or couple with one another which gives rise to the residual
warping of spacetime; this is what we refer to as gravitational wave memory. By better
understanding this nonlinear memory we may also reach a stronger comprehension of other
objects in our universe such as black holes. While black holes are produced by collapsed
massive stars, the theoretical point at its center, the singularity, is thought to have infinite
spacetime curvature. For this reason black holes can be considered a physical representa-
tion of memory. However, since quantum mechanics is not currently able to account for
this and we do not have a clear picture of strong field quantum gravity, there are certainly
flaws in the idea of infinite spacetime curvature. Studying nonlinear memory will allow
us to test whether this firm prediction of general relativity holds up to our quantitative
predictions. While the nonlinear component of gravitational radiation is very important,
it becomes easier to understand the background physics when only the linear portion is
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considered at first. In this case, the relevant Einstein field equation reduces to a form sim-
ilar to that of one of Maxwells equations. After taking the time derivatives of the source's
multipole moments the resulting equation for the gravitational wave strain far from the
source becomes

h(r, t) =
2G

c4r

d2Iij
dt2

(t− r/c) (1)

where Iij represents the mass quadrupole moment of the source [12]. This is known as
the quadrupole formula of general relativity which is used to calculate energy loss. The
equation for this quadrupole moment gives rise to an indirect way to detect gravitational
waves, that is, by considering a system where motion is measured very accurately. An
example of this is a binary neutron star system with one pulsar and one neutron star
where the rate general relativity predicts the system will lose energy can be calculated.
The work of Hulse-Taylor [13] concluded that the loss of energy will cause the orbit of the
neutron star and the pulsar, and therefore the orbital period, to shrink. The change in
orbital features can be tracked through the Doppler shift of the arrival time of the radio
pulses. From the formula for gravitational wave energy loss one can then predict what the
orbital period of the binary system will be at a particular moment in time. The measure of
a decreasing orbital period and the energy lost through gravitational radiation were shown
to match which means gravitational waves were indirectly detected [13].

5 Limitations of Memory Detection

While we have good reason to believe gravitational wave memory exists, it is the detection
process that has prevented us from obtaining substantial results. In understanding why
gravitational wave memory has not yet been directly detected, it is helpful to first examine
the details that make finding it difficult. The first reason is due to the extremely small size
of the memory effect. The size of memory at its peak value is roughly 1

5 the size of the
maximum value of the oscillatory waveform making it significantly more difficult to detect.

Another reason why the detection of gravitational wave memory is difficult with LIGO is
due to the presence of low-frequency detector noise. While some noise sources are relatively
well understood, quantum and instrument noise are difficult to suppress. Quantum noise
arises from the radiation pressure fluctuations causing random motion of the interferometer
mirrors [14]. Instrument noise is a concern as it can overwhelm or mimic the gravitational
wave strain pattern that is being looked for. The instrument noise is smallest around a few
hundred Hertz, but increases sharply at low and high frequencies. Throughout the LIGO
frequency band there are narrow spikes due to vibrating fibers that suspend the mirrors
and test masses in the interferometers [15]. In summary, the memory effect is dominant at
low frequencies but the noise that limits LIGOs sensitivity to gravitational wave strain is
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orders of magnitudes larger at frequencies below ten to twenty Hertz. This low-frequency
noise makes it significantly more difficult to detect the low-frequency strain signal from
gravitational wave memory.

6 Approach: Potential Methods of Detection

Even though there are numerous challenges to overcome before a clear memory signal is
obtained, there are still strategies that can be implemented to begin the search. One
approach to compute Christodoulou memory is to first calculate the oscillatory waveform
associated with a detected event, hosc(t), from general relativity solutions obtained through
numerical relativity models [16]. Then one can compute hmem(t) from hosc(t) by utilizing
the equations

δhTT
jk (TR,Ω) =

4G

Rc4

∫ TR

−∞
dt

∫
S2

dΩ′
dE

dtdΩ

[
njnk

1− nlNt

]TT

(2)

dE

dtdΩ
=

R2c3

16πG

∣∣∣∣∣h′(t,Ω)

∣∣∣∣∣
2

(3)

where ∆hTT
jk represents the memory component of the waveform, h′ ≡ dh

dt , and h represents
the gravitational wave strain [5].

After computing the hmem component one can create a one-parameter model of the
signal in the data: h(t) = hosc(t) +λhmem(t). Here, λ represents a parameter that equals 1
if the general relativistic predictions are correct, and if the memory component is present.
If the memory component is either not present or detectable then λ will be equal to zero.
Then one can implement Bayesian parameter estimation to compare the model to data that
contains a real signal [17]. Bayesian parameter estimation is achieved by implementing
Bayes’ theorem which is given by

P ( λ| d) =
P ( d| λ)P (λ)∫
P ( d| λ)P (λ)

(4)

P(λ) is the prior which is the prediction of the range of values the parameter λ will
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likely take [18]. For our purposes we set the prior from -10 to 10. P ( d| λ) is the probability
of the data given the prior that was just set and the denominator is the normalization.

By Implementing Bayes’ theorem we obtain a posterior probability distribution function
(PDF) which allows us to graph the posterior against λ. This tells us the likelihood of the λ
parameter taking on a certain value. As predicted, the graph should peak at one and spread
across a range of λ values that will depend on the arguments placed into the GWMemory
code [18]. The width of the PDF corresponds to how accurately the parameter λ can be
measured; the narrower the peak, the more exact the λ measurement. This process can
then be repeated for different distances and masses which will alter the SNR, and therefore
how accurately λ can be measured.

Another potential method of detection is to integrate along the signal to t = 1
fopt

where

fopt (optimal frequency) is the frequency at which the detector is the most sensitive to
ordinary gravitational wave bursts. If the length of the burst with memory (BWM) is
smaller than 1

fopt
, the detectors sensitivity to BWM is practically equivalent to that of

bursts without memory that are one cycle long and whose frequency is fopt. A benefit of
this method is it has the potential to be implemented for any type of detector and signal
used for the study [19].

Additionally, there is the method of stacking events. Combining information from the
mergers could over time, as more compact binary coalescence events are detected, boost
the detectability of memory enough to obtain a clearer picture. Lasky has predicted that
35 to 90 black hole mergers similar in mass and distance as G150194 may be enough for
LIGO to detect memory [4]. Also since LIGO is going through advancements until 2021,
which will make it more sensitive, there is potential that fewer mergers than predicted will
be needed to detect memory [20].

7 Specific Approach to Memory Detection with LIGO

As a prerequisite to attempting the stacking method mentioned above, we have been work-
ing on a general data analysis technique with an oscillatory LIGO waveform in preparation
to work with waveforms with memory. The first steps involve creating simple waveforms
with black hole masses of an arbitrary size. This preliminary step also involves creating a
PSD (Power Spectral Density) with real LIGO data. A power spectral density is a measure
of the strain-equivalent noise in a detector. The ASD (Amplitude Spectral Density) will
also be used in our analysis and is simply the square root of the PSD.

We then begin to analyze the memory waveform by computing the oscillatory waveform
associated with a detected event (in this study we chose O1 data) from general relativity
solutions obtained with numerical relativity models [16]. We then calculate the memory
waveform by using the package GWMemory [18] which uses a surrogate model: a com-
bination of commonly used waveforms including those from numerical relativity. After
obtaining the memory waveform we form a model of the signal in the data with one pa-
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rameter λ: h(t) = hosc(t) + λhmem(t). From here we use Bayes’ theorem (Equation 4) to
calculate the posterior and we graph the results. The graphs obtained by this method are
discussed in the subsequent section.

8 Posterior Probability Distribution Graph Results

Figure 2 shows the posterior, p( λ| d), graphed against λ using the O1 GW15914 PSD
for the noise weighted inner product [21]. For this graph we fix the total mass to be 60
solar masses, but allow the distance from earth to the CBC, and therefore the SNR, to
vary. This confirms the prediction that the farther away the signal, the harder the memory
component will be to detect as the peak will then cover a wider range of λ values. The
results also match our original prediction as the graph is distributed across a range of λ
values but peaks at one. This peak communicates that the most likely value for λ is one,
however these results are not significant without performing further calculations.

Figure 2: Graph of Likelihood versus lambda for a binary black hole system with a total
of 60 solar masses at distances of 5, 10, 20, 50 megaparsecs.

In order to determine if our results were significant we took the 90% percent confidence
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interval of the posterior. Figure 3 shows the 90% confidence interval of a 60 solar mass
merger at 0.9 megaparsecs away. Here the confidence interval is 0.1 to 1.9 which does not
include zero. This means our results are statistically significant as the memory parameter
being equal to zero is not probable. While this confidence interval does not include zero,
there are many distance and mass combinations that will include zero which emphasizes the
importance of this test when studying if memory could be detectable with given distance
and mass values.

Figure 3: 90% confidence interval: 0.1 to 1.9 of a 60 solar mass merger 0.9 megaparsecs
away.

The next step is to attempt to characterize the detectability of the memory component
using PSD curves from current and future detectors. Our first attempt is by making use
of the O1 GW150914 [22] noise curve graphed with the oscillatory waveform and memory
component in the frequency domain as shown in Figure 4. Before analyzing this graph
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it is important to note that the memory component is never smaller than the oscillatory
component; it is due to the limitations of the package [5] that the graph is presented in
this manner. After viewing this graph we are able to better characterize the detectability
of memory. In the O1 ASD graph the memory component always lies below the noise
curve which means it will not be identified by the specified detector at the chosen distance
(200 megaparsecs). However, in Figure 5 the memory component appears to just cross the
Advanced LIGO ASD noise curve which implies that memory will be easier to detect with
future, more sensitive detectors.

Figure 4: O1 ASD, oscillatory component, and memory component of 60 solar masses at
200 megaparsecs.

Figure 5: Advanced LIGO ASD, oscillatory component, and memory component of 60
solar masses at 200 megaparsecs.
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9 Conclusion and Future Work

There is a continual effort to analyze gravitational wave signals in hopes of gaining a deeper
understanding of their sources, and to explore the predictions of general relativity. While
its effects have not yet been theoretically tested, detecting memory would be an important
scientific feat that would allow us to gain both a deeper understanding of CBCs and confirm
a firm prediction of general relativity. Nonlinear memory continues to be an intriguing
research topic due to the interesting information it has revealed thus far, including the way
it affects the waveform at a leading order equivalent to that of the quadrupole. One way
to further develop our analysis will be to perform a Markov Chain Monte Carlo simulation
that will allow us to sample the entire set of parameters of the gravitational wave signal
opposed to just the memory component, mass, and distance. This process will allow us
to look for degeneracies, or parameters that have a waveform signature similar to that of
memory.

LIGO in combination with other ground-based laser detectors will potentially be able
to detect memory after the discovery of dozens of extreme merger events. Additional
gravitational wave detectors such as Virgo, KAGRA and LIGO-India will further increase
the number of detections which will allow us to more accurately measure λ [9]. There
is also potential that LISA [23] (to be launched in 2030) will be able to greatly enhance
the detectability of gravitational wave memory due to its ability to measure much lower
frequencies. While memory has not yet been observed, the capabilities of our technology
is one of the many reasons why there is optimism surrounding the potential to directly
detect gravitational wave memory.
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