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Abstract

Value aggregation is a general framework for
solving imitation learning problems. Based
on the idea of data aggregation, it gener-
ates a policy sequence by iteratively inter-
leaving policy optimization and evaluation in
an online learning setting. While the exis-
tence of a good policy in the policy sequence
can be guaranteed non-asymptotically, little
is known about the convergence of the se-
quence or the performance of the last policy.
In this paper, we debunk the common be-
lief that value aggregation always produces
a convergent policy sequence with improving
performance. Moreover, we identify a crit-
ical stability condition for convergence and
provide a tight non-asymptotic bound on the
performance of the last policy. These new
theoretical insights let us stabilize problems
with regularization, which removes the incon-
venient process of identifying the best policy
in the policy sequence in stochastic problems.

1 INTRODUCTION

Reinforcement learning (RL) is a general framework
for solving sequential decision problems (Sutton and
Barto, 1998). Using policy gradient methods, it has
demonstrated impressive results in GO (Silver et al.,
2016) and video-game playing (Mnih et al., 2013).
However, due its generality, it can be difficult to
learn a policy sample-efficiently or to characterize the
performance of the found policy, which is critical in
applications that involves real-world costs, such as
robotics (Pan et al., 2017). To better exploit the do-
main knowledge about a problem, one popular ap-
proach is imitation learning (IL) (Pomerleau, 1989).
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In this framework, instead of learning a policy from
scratch, one leverages a black-box policy 7*, called the
expert, from which the learner can query demonstra-
tions. The goal of IL is to identify a policy 7 such that
its performance is similar to or better than 7*.

A recent approach to IL is based on the idea of data
aggregation and online learning (Ross et al., 2011; Sun
et al., 2017). The algorithm starts with an empty
dataset and an initial policy 71; in the nth iteration,
the algorithm uses the current policy 7, to gather new
training data into the current dataset and then a su-
pervised learning problem is solved on the updated
dataset to compute the next policy 7, 1. By interleav-
ing the optimization and the data collection processes
in an online fashion, it can overcome the covariate shift
problem in traditional batch IL (Ross et al., 2011).

This family of algorithms can be realized under the
general framework of value aggregation (Ross and Bag-
nell, 2014), which has gained increasing attention due
to its non-asymptotic performance guarantee. After
N iterations, a good policy 7 exists in the generated
policy sequence {m,})_; with performance J(w) <
J(m*) 4+ Te + O(%), where J is the performance in-
dex, € is the error due to the limited expressiveness of
the policy class, and T is the horizon of the problem.
While this result seems strong at first glance, its guar-
antee concerns only the existence of a good policy and,
therefore, is not ideal for stochastic problems. In other
words, in order to find the best policy in {m, }__; with-
out incurring large statistical error, a sufficient amount
of data must be acquired in each iteration, or all poli-
cies have to be memorized for a final evaluation with
another large dataset (Ross et al., 2011).

This inconvenience incentivizes practitioners to just
return the last policy mn (Laskey et al., 2017), and,
anecdotally, the last policy 7y has been reported to
have good empirical performance (Ross et al., 2013;
Pan et al., 2017). Supporting this heuristic is the in-
sight that the last policy 7y is trained with all obser-
vations and therefore ideally should perform the best.
Indeed, such idealism works when all the data are sam-
pled i.i.d., as in the traditional batch learning prob-
lems (Vapnik, 1998). However, because here new data
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are collected using the updated policy in each itera-
tion, whether such belief applies depends on the con-
vergence of the distributions generated by the policy
sequence.

While Ross and Bagnell (2014) alluded that “...the
distribution of visited states converges over the itera-
tions of learning.”, we show this is not always true—
the convergence is rather problem-dependent. In this
paper, we identify a critical stability constant 6 that
determines the convergence of the policy sequence. We
show that there is a simple example (in Section 4) in
which the policy sequence diverges when 6 > 1. In
Section 5, we provide tight non-asymptotic bounds on
the performance of the last policy 7y, in both deter-
ministic and stochastic problems, which implies that
the policy sequence always converges when 6 < 1. Our
new insight also suggests that the stability of the last
policy 7w can be recovered by regularization, as dis-
cussed in Section 6.

2 PROBLEM SETUP

We consider solving a discrete-time RL problem. Let
S be the state space and A be the action space of an
agent. Let II be the class of policies and let T be the
length of the planning horizon.! The objective of the
agent is to search for a policy m € II to minimize an
accumulated cost J(w):

T-1
min J(7) == minE,_ lz ct(st,at)] (1)

rell rell P
=0

in which ¢; is the instantaneous cost at time ¢, and
o= denotes the trajectory distribution of (s;, a;) € S x
A, for t = 1,...,T, under policy a; ~ 7(s;) given a
prior distribution pg(sg). Note that we do not place
assumptions on the structure of S and A and the policy
class II. To simplify the notation, we write E, . even
if the policy is deterministic.

For notation: we denote Qr;(s,a) as the Q-function
at time ¢ under policy m and V;(s) = Eqnr [Qn)c (s, a)]
as the associated value function. In addition, we intro-
duce some shorthand: we denote d;(s) as the state
distribution at time ¢ generated by running the policy
« for the first ¢ steps, and define a joint distribution
dr(s,t) = dr4(s)U(t), where U(t) is the uniform dis-
tribution over the set {0,...,7 — 1}. Due to space
limitations, we will often omit explicit dependencies
on random variables in expectations, e.g. we will write

inE, E 2
min Eq, Ex [c] (2)

L A similar analysis can be applied to discounted infinite-
horizon problems.

to denote mingemn Es tod, Eqor [ci(s,a)], which is
equivalent to minger 7.J(7) (by definition of dy).

3 VALUE AGGREGATION

Solving general RL problems is challenging. In this
paper, we focus on a particular scenario, in which the
agent, or the learner, has access to an expert policy
7* from which the learner can query demonstrations.
Here we embrace a general notion of expert. While it is
often preferred that the expert is nearly optimal in (1),
the expert here can be any policy, e.g. the agent’s
initial policy. Note, additionally, that the RL problem
considered here is not necessarily directly related to a
real-world application; it can be a surrogate problem
which arises in solving the true problem.

The goal of IL is to find a policy 7 that outperforms
or behaves similarly to the expert 7* in the sense that
J(m) < J(7*) 4+ O(T). That is, we treat IL as per-
forming a robust, approximate policy iteration step
from 7*: ideally IL should lead to a policy that out-
performs the expert, but it at least returns a policy
that performs similarly to the expert.

AGGREVATE (Aggregate Value to Imitate) is an IL
algorithm proposed by Ross and Bagnell (2014) based
on the idea of online convex optimization (Hazan et al.,
2016). Here we give a compact derivation and discuss
its important features in preparation for the analysis
in Section 5. To this end, we introduce the perfor-
mance difference lemma due to Kakade and Langford
(2002), which will be used as the foundation to derive
AGGREVATE.

Lemma 1. (Kakade and Langford, 2002) Let = and 7’
be two policies and Api(s,a) = Que(s,a) — Vire(s)
be the (dis)advantage function at time t with respect
to running w'. Then it holds that

J(m) = J(7') + TEs tmd, Eamn[Arpi(s,a)].  (3)

3.1 Motivation

The main idea of AGGREVATE is to minimize the
performance difference between the learner’s policy
and the expert policy, which, by Lemma 1, is given
as 7 (J(m) — J(7*)) = Eq,Ex[A:(s,a)]. AGCGRE-
VATE can be viewed as solving an RL problem with
Ar«¢(s,a) as the instantaneous cost at time :

mll[[l EdﬂEﬂ [A‘n-*\t] . (4)

TE

Although the transformation from (2) to (4) seems
trivial, it unveils some critical properties. Most impor-
tantly, the range of the problem in (4) is normalized.
For example, regardless of the original definition of ¢,
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if IT > 7*, there exists at least a policy 7 € II such that
(4) is non-positive (i.e. J(mw) < J(7*)). As now the
problem (4) is relative, it becomes possible to place
a qualitative assumption to bound the performance
in (4) in terms of some measure of expressiveness of
the policy class II.

We formalize this idea into Assumption 1, which is one
of the core assumptions implicitly imposed by Ross
and Bagnell (2014).2 To simplify the notation, we de-
fine a function I such that for any two policies 7, 7’

F(r',m) =Eq Ex [ATr*|t] (5)

This function captures the main structure in (4).
By separating the roles of 7/ (which controls the
state distribution) and 7 (which controls the reac-
tion/prediction), the performance of a policy class II
relative to an expert m* can be characterized with the
approximation error in a supervised learning problem.

Assumption 1. Given a policy 7*, the policy class IT
satisfies that for arbitrary sequence of policies {m, €
I}N_,, there exists a small constant ery »« such that

1
in — fi.n(m) < .
frnemN 1_N( )_€H,7r ) (6)

where f,,(7) == F(mn, ) and fi.,(m) = 3, folm).
This assumption says that there exists at least a pol-
icy m € II which is as good as 7* in the sense that =
can predict 7* well in a cost-sensitive supervised learn-
ing problem, with small error er -, under the average
state distribution generated by an arbitrary policy se-
quence {m, € T} ,.

Following this assumption, AGGREVATE exploits an-
other critical structural property of the problem.

Assumption 2. V' € II, F(«’,7) is a strongly con-
vex function in 7.

While Ross and Bagnell (2014) did not explicitly dis-
cuss under which condition Assumption 2 holds, here
we point out some examples (proved in Appendix A).

Proposition 1. Suppose 11 consists of deterministic
linear policies (i.e. a = ¢(s)Tx for some feature map
@(s) and weight x) and Vs € S, ci(s, ) is strongly con-
ver. Assumption 2 holds under any of the following:

1. Vie4(s) is constant overS (in this case Ar«4(s, a)
is equivalent to c¢(s,a) up to a constant in a)

2. The problem is continuous-time and the dynamics
are affine in action.

2The assumption is implicitly made when Ross and Bag-
nell (2014) assume the existence of €class in Theorem 2.1
on page 4.

We further note that AGGREVATE has demonstrated
impressive empirical success even when Assumption 2
cannot be verified (Sun et al., 2017; Pan et al., 2017).

3.2 Algorithm and Performance

Given Assumption 2, AGGREVATE treats f,(-) as the
per-round cost in an online convex optimization prob-
lem and updates the policy sequence as follows: Let
be an initial policy. In the nth iteration of AggreVaTe,
the policy is updated by?

Tpt1 = argmin fi., (7). (7)
mell
After N iterations, the best policy in the sequence
{7 }N_| is returned, i.e. T = 7y, where

iy = argmin J(m). (8)

me{m, 3Ny

As the update rule (7) (aka Follow-the-Leader) has a
sublinear regret, it can be shown that (cf. Section 5.1)

J(ﬁ'N) < J(T"*) +T (eclass + 61reg;ret) y (9)

in which €regret = O(%) is the average regret and

1 N
€class = Min — Z Ed-ﬂ-n [Eﬂ' [Qﬂ*\t] —Er- [Qﬂ*lt]]

compares the best policy in the policy class II and the
expert policy 7*. The term e.,ss can be negative if
there exists a policy in II that is better than 7* under
the average state distribution, % ZnNzl dr, , generated
by AGGREVATE. By Assumption 1, €lass < €11,7+; We
know €glass at least should be small.

The performance bound in (9) satisfies the require-
ment of IL that J(7x) < J(7*)+O(T). Especially be-
cause €qlass can be non-positive, AGGREVATE can be
viewed as robustly performing one approximate policy
iteration step from 7*.

One notable special case of AGGREVATE is DAG-
GER (Ross et al., 2011). DAGGER tackles the prob-
lem of solving an unknown RL problem by imitating
a desired policy 7*. The reduction to AGGREVATE
can be seen by setting ci(s,a) = Egxunx[||la — af]
in (1). In this case, 7* is optimal for this specific
choice of cost and therefore V. ;(s) = 0. By Propo-
sition 1, Az-(s,a) = ci(s,a) and ecass reduces to
min, e % 25:1 Eq, Exlci] > 0, which is related to

the expressiveness of the policy class II.

3We adopt a different notation from Ross and Bagnell
(2014), in which the per-round cost Ea, Er [QW*H] was
used. Note these two terms are equivalent up to an additive
constant, as the optimization here is over w with m, fixed.
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4 GUARANTEE ON THE LAST
POLICY?

The performance bound in Section 3 implicitly as-
sumes that the problem is either deterministic or that
infinite samples are available in each iteration. For
stochastic problems, fi., can be approximated by fi-
nite samples or by function approximators (Ross and
Bagnell, 2014). Suppose m samples are collected in
each iteration to approximate f,. An additional er-

ror in O( \/ﬁ) will be added to the performance of

7n. However, in practice, another constant statistical
error' in O(1) is introduced when one attempts to
identify 7y from the sequence {m,}_;.

This practical issue motivates us to ask whether a sim-
ilar guarantee applies to the last policy 7wy so that the
selection process to find 7 can be removed. In fact,
the last policy 7, has been reported to have good per-
formance empirically (Ross et al., 2013; Pan et al.,
2017). Tt becomes interesting to know what one can
say about 7. It turns out that running AGGREVATE
does not always yield a policy sequence {m,, } with rea-
sonable performance, as given in the example below.

A Motivating Example Consider a two-stage de-
terministic optimal control problem:

{TDGIITIL J(m) = 21611111 c1(s1,a1) + ca(s2,a2) (10)

where the transition and costs are given as

s1=0, sy =10(s1+a1),

C1(Sl,a1) = O7 CQ(Sz,ag) = (52 - a2)2.

Since the problem is deterministic, we consider a pol-
icy class II consisting of open-loop stationary deter-
ministic policies, i.e. a3 = ag = x for some z (for
convenience 7 and x will be used interchangeably).
It can be easily seen that II contains a globally opti-
mal policy, namely x = 0. We perform AGGREVATE
with a feedback expert policy af = s; and some ini-
tial policy |z1| > 0. While it is a custom to initialize
1 = argmingcy F(2*,z) (which in this case would
ideally return z; = 0), setting |z1| > 0 simulates the
effect of finite numerical precision.

We consider two cases (6 > 1 or 6 < 1) to understand
the behavior of AGGREVATE. First, suppose 6 > 1.
Without loss generality, take § = 10 and z; = 1. We

4The original analysis in the stochastic case by Ross
and Bagnell (2014) only guarantees the existence of a good
policy in the sequence. The O(%) error is due to identi-
fying the best policy (Lee et al., 1998) (as the function is

strongly convex) and the O( \/’riliN) error is the generaliza-

tion error (Cesa-Bianchi et al., 2004).

can see running AGGREVATE will generate a diver-
gent sequence xo = 10,z5 = 55,24 = 220... (in this
case AGGREVATE would return x; as the best policy).
Since J(z) = (# — 1)?2?2, the performance {J(x,)} is
an increasing sequence. Therefore, we see even in this
simple case, which can be trivially solved by gradient
descent in O(2), using AGGREVATE results in a se-
quence of policies with degrading performance, though
the policy class II includes a globally optimal policy.
Now suppose on the contrary 8 < 1. We can see that
{z,} asymptotically converges to z* = 0.

This example illustrates several important properties
of AGGREVATE. It illustrates that whether AGGRE-
VATE can generate a reasonable policy sequence or not
depends on intrinsic properties of the problem (i.e. the
value of #). The non-monotonic property was also em-
pirically found in Laskey et al. (2017). In addition, it
shows that er -+ can be large while II contains an op-
timal policy.® This suggests that Assumption 1 may
be too strong, especially in the case where II does not
contain 7*.

5 THEORETICAL ANALYSIS

Motivated by the example in Section 4, we investigate
the convergence of the policy sequence generated by
AGGREVATE in general problems. We assume the pol-
icy class II consists of policies parametrized by some
parameter z € X, in which &X' is a convex set in a
normed space with norm || - || (and || - ||« as its dual
norm). With abuse of notation, we abstract the RL
problem in (4) as

QII:I.}C_IEF(.%‘,.’L') (11)

where we overload the notation F(n’, 7) defined in (5)
as F(r',7) = F(y,x) when 7,7’ € II are parametrized
by x,y € X, respectively. Similarly, we will write
fn(x) = F(xy,, ) for short. In this new notation, AG-
GREVATE’s update rule in (7) can be simply written
as Tp41 = argmingcy fin(z).

Here we will focus on the bound on F(z,z), because,
for m parameterized by x, this result can be directly
translated to a bound on J(7): by definition of F in (5)
and Lemma 1, J(7) = J(7*) + TF (7, m). For simplic-
ity, we will assume for now F is deterministic; the
convergence in stochastic problems will be discussed
at the end of the section.

5Tn this example, e, -+ can be arbitrarily large unless

X is bounded. However, even when e .+ is bounded, the
performance of the policy sequence can be non-monotonic.
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5.1 Classical Result

For completeness, we restate the structural assump-
tions made by AGGREVATE in terms of X and re-
view the known convergence of AGGREVATE (Ross
and Bagnell, 2014).

Assumption 3. Let V3 denote the derivative with
respect to the second argument.

1. F is uniformly a-strongly convex in the second
argument: Vr,y,z € X, F(z,z) > F(z,y) +
<VQF(Z,y),l‘ - y> + %”IE - y”2

2. F is uniformly Gs-Lipschitz continuous in the sec-
ond argument: Vz,y,z € X, |F(z,2) — F(z,y)| <
Gollz =y -

Assumption 4. V{z,, € X}, there exists a small
constant er - such that minge ﬁfl:N(x) < €11, 7% -

Theorem 1. Under Assumption 3 and 4, AGGRE-
VATE generates a sequence such that, for all N > 1,

N

L 1 GZIn(N) +1

< — < P Bk S —
F(zn,zn) < N nE:1fn(xn) < emn + 5, ~

where & = argmingeg, v F(2y, ).

Proof. Here we present a sketch (see Appendix A for
details). The first inequality is straightforward. To
bound the average performance, it can be shown that
Yoncy fa(rn) < mingex frn(@) + S0, frn(zn) —
fin(®ny1). Since z, minimizes fi.,—1 and f1., is
na-strongly convex , fi.,(x,) is upper bounded by

Fronoi(@n) + WE2@)IE - here |V, (20)]e < G
|

2an

This concludes the proof.

5.2 New Structural Assumptions

AGGREVATE can be viewed as an attempt to solve the
optimization problem in (11) without any information
(not even continuity) regarding how F'(z,x) changes
with perturbations in the first argument. Since mak-
ing even a local improvement for general Lipschitz con-
tinuous problems is known to be NP-hard (Nesterov,
2013), the classical performance guarantee of AGGRE-
VATE is made possible, only because of the additional
structure given in Assumption 4. However, as dis-
cussed in Section 4, Assumption 4 can be too strong
and is yet insufficient to determine if the performance
of the last policy can improve over iterations. There-
fore, to analyze the performance of the last policy, we
require additional structure on F'.

Here we introduce a continuity assumption.

VoF is uniformly [-Lipschitz
Ve,y,z € X

Assumption 5.
continuous in the first argument:
[V2F(z,2) = Vo F(y, 2) ||« < Bllz — yl|.

Because the first argument of F in (5) defines the
change of state distribution, Assumption 5 basically
requires that the expectation over d, changes continu-
ously with respect to w, which is satisfied in most RL
problems. Intuitively, this quantifies the difficulty of a
problem in terms of how sensitive the state distribu-
tion is to policy changes.

In addition, we relax Assumption 4. As shown in Sec-
tion 4, Assumption 4 is sometimes too strong, because
it might not be satisfied even when II contains a glob-
ally optimal policy. In the analysis of convergence, we
instead rely on a necessary condition of Assumption 4,
which is satisfied by the example in Section 4.

Assumption 6. Let 7 be a policy parametrized by .
There exists a small constant €, .« such that Vo € X,
mingex F(z,y) < émq-.

Compared with the global Assumption 4, the relaxed
condition here is only local: it only requires the exis-
tence of a good policy with respect to the state dis-
tribution visited by running a single policy. It can be
easily shown that € - < e q=.

5.3 Guarantee on the Last Policy

In our analysis, we define a stability constant 6 = g
One can verify that this definition agrees with the
0 used in the example in Section 4. This stability
constant will play a crucial role in determining the
convergence of {x,}, similar to the spectral norm of
the Jacobian matrix in discrete-time dynamical sys-
tems (Antsaklis and Michel, 2007). We have already
shown above that if # > 1 there is a problem such that
AGGREVATE generates a divergent sequence {z,}
with degrading performance over iterations. We now
show that if 6 < 1, then lim, o0 F(zpn,xn) < € -
and moreover {z,} is convergent.

Theorem 2. Suppose Assumptions 3, 5, and 6 are
satisfied. Let 0 = g Then for all N > 1 it holds

061—0G 2
F(ry,zn) < €z + @Nﬂe—l)
2a
and ||zy — Zn|| = GQGTHNH*% where Tn — %xlzN‘

In particular, if 0 < 1, then {x,}32, is convergent

Theorem 2 implies that the stability and convergence
of AGGREVATE depends solely on the problem prop-
erties. If the state distribution d, is sensitive to mi-
nor policy changes, running AGGREVATE would fail
to provide any guarantee on the last policy. Moreover,
Theorem 2 also characterizes the performance of the
average policy Zy when 6 < 1, .

The upper bound in Theorem 2 is tight, as indi-
cated in the next theorem. Note a lower bound on
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F(zn,xzn) leads directly to a lower bound on J(my)
for 7w parametrized by .

Theorem 3. There is a problem such that running
AGGREVATE for N iterations results in F(xy,zn) >
€, r+ + Q(N2O=D) " In particular, if @ > 1, the policy
sequence and performance sequence diverge.

Proof. The proof is based on analyzing the sequence
in the example in Section 4. See Appendix A. |

5.4 Proof of Theorem 2

Now we give the proof of Theorem 2. Without using
the first-order information of F' in the first argument,
we construct our analysis based on the convergence of
an intermediate quantity, which indicates how fast the
sequence concentrates toward its last element:

-1
2t 70 — @il

Sy, =
n—1

(12)

which is defined n > 2 and Sy = ||z2 — 21]].

First, we use Assumption 5 to strengthen the bound
[Zn+1 — @n]| = O(L) used in Theorem 1 by tech-
niques from online learning with prediction (Rakhlin
and Sridharan, 2013).

Lemma 2. Under Assumptions 8 and 5, running AG-
GREVATE gives, for n > 2, ||zp41 — 2| < 252,

Proof. First, because f1., is na-strongly convex,

no
7”3:71—&-1 - anQ S fl:n(xn) - fl:n(xn+l)

no
S <vf1:n(xn)a Tpn — xn+1> - 7“-1'11 - xn+l||2~

Let f, = % f1:n- The above inequality implies

nalzn1 = zal|? <V fal@n), 20 — Tpi1)
§< ( ) an 1(Zn), Tn — Tny1)
<[V falzn) — e 1(@n)lllzn — gl
< Snuxn - xn+1||

where the second inequality is due to z, =

argmin, ¢y fi1.n—1(2) and the last inequality is due to
Assumption 5. Thus, ||z, — Zpi1|| < BaSn . |
Using the refined bound provided by Lemma 2, we can
bound the progress of S,,.

Proposition 2. Under the assumptions in Lemma 2,
forn>2,8, <e=nf718, and Sy = ||za—x1| < %

Proof. The bound on Sy = ||z2 — 1] is due to that
xp = argmin,cy f1(z) and that f; is a-strongly con-
vex and Go-Lipschitz continuous.

To bound S,,, first we bound S,,41 in terms of S,, by

1
SnJrl S (1 - Tl) Sn + ||='L'n+1 - xn”

<<1—1+9>Sn:<1—1_0>5n
n n n

in which the first in equality is due to triangu-
lar inequality (i.e. ||k — Zny1| lzw — zn| +
|z, — Znt1|]) and the second inequality is due to
Lemma 2. Let P, = lnS’ Then we can bound
Py~ P <y In(1— )<Z"1_M< —(1—
0) (Inn — 1), where we use the facts that In(1+x) < z,
Zk 1+ = In(n +1). This implies S, = exp(P,) <
9 152 [

n—1
More generally, define S,,., = w (i.e.

Sn = S1.n). Using Proposition 2, we give a bound on
Sm:n- We see that the convergence of S,,., depends
mostly on n not m. (The proof is given in Appendix.)

Corollary 1. Under the assumptions in Lemma 2, for
n>m, Spyy < O((n_me)mzfe + n1179)-

Now we are ready prove Theorem 2 by using the con-
centration of S, in Proposition 2.

Proof of Theorem 2. First, we prove the bound on
F(zn,zn). Let xf = argmin_ » f,(z) and let f, =
% f1.n. Then by a-strongly convexity of f,,

fa(@n) — min f,(x)

= Gllen = a3

< (Via(@n) = Fama (@), 2n = 3) = 5 llan — 23
< IV ) = Fi
IV fuCen) — el 8 go

2¢ - 2a

«
Mellen =3l = S llwn — 232

IN

where the second inequality uses the fact that z,, =
argming ¢y fo—1(z), the second to the last inequal-
ity takes the maximum over ||z, — z} ||, and the last
inequality uses Assumption 5. Therefore, to bound

fn(xn), we can use Proposition 2 and Assumption 6:
2

2
.

2« o

Rearranging the terms gives the bound in Theorem 2,
and that ||z, — Z,|| < S, gives the second result.

Now we show the convergence of {z,} under the
condition # < 1. It is sufficient to show that



Ching-An Cheng, Byron Boots

lim, oo > gy |26 — k41l < oo To see this, we
apply Lemma 2 and Proposition 2: for 6 < 1,
Sy lze — zpga || <l — 22|l + X5, %Sk <c+
2D pn £ 1525 < 00, where c1, ¢ € O(1). [ ]

5.5 Stochastic Problems

We analyze the convergence of AGGREVATE in
stochastic problems using finite-sample approxima-
tion: Define f(z;s) = Ex[Az-;] such that f,(z) =
Eq, [f(7;s)]. Instead of using f,(-) as the per-round
cost in the nth iteration, we take its finite samples
approximation g, (-) = Y., f(+; Sn.k), where m,, is
the number of independent samples collected in the
nth iteration under distribution d,. That is, the up-
date rule in (7) in stochastic setting is modified to
Tp+1 = arg minﬂ'GH gl:n(ﬂ')'

Theorem 4. In addition to Assumptions 5 and
6, assume f(x;8) is a-strongly conver in x and
I f(x;8)||« < Go2 almost surely. Let § = g and sup-
pose m,, = mon’” for some r > 0. For all N > 0, with
probability at least 1 — 9,

~ (92 In(1/6) +OX>

Flay,on) < me + O | g as—s0y

46 (ln(l/d) + CX>

cNmin{2,1+r}

— (]
where ¢ = Yezre

plexity of 1. ’

and Cx is a constant® of the com-

Proof. The proof is similar to the proof of Theorem 2.
To handle the stochasticity, we use a generalization of
Azuma-Hoeffding inequality to vector-valued martin-
gales (Hayes, 2005) to derive a high-probability bound
on ||Vgn(zn) — Vfnu(zpn)|« and a uniform bound on
SuPex +[|Vgin (@) = V frn(2)]«. These error bounds
allow us to derive a stochastic version of Lemma 2,
Proposition 2, and then the performance inequality in
the proof of Theorem 2. See Appendix B for the com-
plete proof. |

The growth of sample size m,, over iterations deter-
mines the main behavior of AGGREVATE in stochas-
tic problems. For r = 0, compared with Theorem 2,
Theorem 4 has an additional constant error in ON(m%))7
which is comparable to the stochastic error in select-
ing the best policy in the classical approach. However,
the error here is due to approximating the gradient
V fn rather than the objective function f,,. For r > 0,
by slightly taking more samples over iterations (e.g.

5The constant Cix can be thought as In|X/|, where |X|
measures the size of X’ in e.g. Rademacher complexity or
covering number (Mohri et al., 2012). For example, In |X|
can be linear in dim X.

r = 2—260), we see the convergence rate can get closer
to O(N?~2%) as in the ideal case given by Theorem 2.
However, it cannot be better than O(+). Therefore,
for stochastic problems, a stability constant 6 < 1/2
and a growing rate » > 1 does not contribute to faster
convergence as opposed to the deterministic case in
Theorem 2.

Note while our analysis here is based on finite-sample
approximation g,(-) = ;" f(*; $nx), the same tech-
nique can also be applied to the scenario in the bandit
setting and another online regression problem is solved
to learn f,(-) as in the case considered by Ross and
Bagnell (2014). A discussion is given in Appendix C.

The analysis given as Theorem 4 can be viewed as a
generalization of the analysis of Empirical Risk Min-
imization (ERM) to non-ii.d. scenarios, where the
distribution depends on the decision variable. For op-
timizing a strongly convex objective function with i.i.d.
samples, it has been shown by Shalev-Shwartz et al.
(2009) that = exhibits a fast convergence to the op-
timal performance in O(%) By specializing our gen-
eral result in Theorem 4 with 6,7 = 0 to recover the
classical i.i.d. setting, we arrive at a bound on the
performance of zx in O(%), which matches the best
known result up to a log factor. However, Theorem 4
is proved by a completely different technique using the
martingale concentration of the gradient sequence. In
addition, by Theorem 2, the theoretical results of xn
here can directly translate to that of the mean policy
Zn, which matches the bound for the average decision
Zn given by Kakade and Tewari (2009).

6 REGULARIZATION

We have shown that whether AGGREVATE generates
a convergent policy sequence and a last policy with
the desired performance depends on the stability con-
stant #. Here we show that by adding regularization
to the problem we can make the problem stable. For
simplicity, here we consider deterministic problems or
stochastic problems with infinite samples.

6.1 Mixing Policies

We first consider the idea of using mixing policies to
collect samples, which was originally proposed as a
heuristic by Ross et al. (2011). It works as follows:
in the nth iteration of AGGREVATE, instead of using
F(m,,-) as the per-round cost, it uses F(m,,-) which
is defined by

F(’/Tna 7T) = Ed‘frn Ex [Aﬂ*lt} (13)

The state distribution dz, (s) is generated by running
7 with probability ¢ and 7, with probability 1 — q at
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each time step. Originally, Ross et al. (2011) proposes
to set g to decay exponentially over the iterations of
AGGREVATE. (The proofs are given in Appendix A.)

Here we show that the usage of mixing policies also
has the effect of stabilizing the problem.

Lemma 3. Let ||py — p2||1 denote the total varia-
tional distance between distributions p; and py. As-
sume’ for any policy 7,7 parameterized by x,vy it sat-
isfies 7Y i—g ey — durplli < 525 @ — yll and as-
sume ||V Ex[Ar-1](s)|l« < Go.Then Vo F' is uniformly
(1—q™)B-Lipschitz continuous in the second argument.

By Lemma 3, if # > 1, then choosing a fixed ¢ >
(1 — 5)Y/T ensures the stability constant of F to be
6 < 1. However, stabilizing the problem in this way
incurs a constant cost as shown in Corollary 2.

Corollary 2. Suppose Ex[Az«;)] < M for all w. De-

- 1le N
fine Ay = WN“G*U, Then under the as-
sumptions in Lemma 3 and Assumption 5.1, running
AGGREVATE with F in (13) and a mizing rate q gives

Fzn,zn) < AN + €m0+ +2M min(1,79q)

6.2 Weighted Regularization

Here we consider another scheme for stabilizing the
problem. Suppose F satisfies Assumption 3 and 5.
For some A > 0, define

F(z,z) = F(z,z) + A\R(x) (14)

in which® R(z) is an a-strongly convex regulariza-
tion term such that R(z) > 0, V@ € X and
mingex F(z,y) + AR(y) = (1 + A)O(€r»+). For ex-
ample, R can be F(n*,-) when 7* is (close) to op-
timal (e.g. in the case of DAGGER), or R(z) =
Es t~d, . EaorBEqson=[d(a,a*)], where 7 is a policy
parametrized by x and d(-,-) is some metric of space
A (i.e. it uses the distance between 7 and 7* as regu-
larization).

It can be seen that F is uniformly (1 4+ A)a-strongly
convex in the second argument and V,F is uniformly
B-continuous in the second argument. That is, if we
choose A\ > 6 — 1, then the stability constant 6 of F
satisfies 6 < 1.

Corollary 3. Define Ay = WNQ@’U. Run-
ning AGGREVATE with F in (14) as the per-round
cost has performance satisfies: for all N > 0,

F(I’N,$N) < (1 + )\) (O(gnm*) + AN)

"These two are sufficient to Assumption 3.2 and 5.
8See Appendix D for discussion of the case where R(+) =
F(n*,-) regardless of the condition R(z) > 0.

Proof. Because F(xy,zn) = F(xy,zn) — AR(zN),
the inequality can be proved by applying Theorem 2
to F(zn,zN). [ ]

By Corollary 3, using AGGREVATE to solve a weighted
regularized problem in (14) would generate a conver-
gent sequence for A large enough. Unlike using a mix-
ing policy, here the performance guarantee on the last
policy is only worsened by a multiplicative constant on
€11,7+, wWhich can be made small by choosing a larger
policy class.

The result in Corollary 3 can be strengthened partic-
ularly when R(z) = Egud, . EounEqsnr=[d(a,a®)] is
used. In this case, it can be shown that CR(z) >
F(z,z) for some C' > 0 (usually C > 1) (Pan et al.,
2017). That is, F(x,z) + AR(z) > (1 + A\/C)F(z, x).
Thus, the multiplicative constant in Corollary 3 can be
reduced from 1+ X to 1_}_‘;;‘0. It implies that simply
by adding a portion of demonstrations gathered under
the expert’s distribution so that the leaner can an-
chor itself to the expert while minimizing F'(z, x), one
does not have to find the best policy in the sequence
{mn}N_| asin (8), but just return the last policy 7.

7 CONCLUSION

We contribute a new analysis of value aggregation,
unveiling several interesting theoretical insights. Un-
der a weaker assumption than the classical result, we
prove that the convergence of the last policy depends
solely on a problem’s structural property and we pro-
vide a tight non-asymptotic bound on its performance
in both deterministic and stochastic problems. In ad-
dition, using the new theoretical results, we show that
the stability of the last policy can be reinforced by ad-
ditional regularization with minor performance loss.
This suggests that under proper conditions a practi-
tioner can just run AGGREVATE and then take the
last policy, without performing an additional statis-
tical test to find the best policy, as required by the
classical analysis. Finally, as our results concerning
the last policy are based on the perturbation of gradi-
ents, we believe this provides a potential explanation
as to why AGGREVATE has demonstrated empirical
success in non-convex problems with neural-network
policies.
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