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Abstract– A low-cost optical sensing method for improved 
measurement and control of soft pneumatic manipulator motion 
is presented. The core of a soft continuum robot is embedded 
with several optically-diffuse elastomer sensors which attenuate 
light depending on their strain mode and degree. The optical 
sensors measure local strains at the robot’s axial center, and 
these strain data are combined with measured actuator chamber 
pressures to determine the pose of the robot under various 
gravitational and tip loading conditions. Regression analyses 
using neural networks (NNs) demonstrate that when the soft 
continuum robot’s base orientation is fixed, the position of its 
end-effector can be estimated with 3.42 times more accuracy 
(71% smaller root mean squared error) when using both optical 
sensor and pressure data (~2.44mm) than when using only 
pressure data (~8.3mm). When the robot’s base orientation was 
varied, the combined optical sensor and pressure data provide 
position estimates which are as much as 37.8 times more 
accurate (~2.76mm) than pressure data alone (~104mm).  

I. INTRODUCTION 
  The compliant nature of soft robots enables them to 
perform functions that are difficult for more traditional, rigid-
body robots to accomplish, such as adaptive locomotion in 
tight spaces [1, 2], and safe movement in close proximity to, 
or in direct contact with, human beings [3-5]. Effective 
utilization of these capabilities requires advanced modeling 
techniques and control strategies which can accommodate the 
continuous, often non-linear deformations of these flexible 
devices [6]. The accuracy and utility of many modeling 
methods and control strategies are often dependent on the 
availability of real-time kinematic information, which itself 
requires 1) a sensing method which is precise and can span 
large motion ranges and 2) a robust method of estimating 
robot poses from that sensor data.  

Critical Challenge: Recent work [7, 8] on the design and 
control of soft inflatable continuum robots demonstrates how 
well the kinematic states of such devices can be estimated 
with proper mechanistic models and pressure sensing. This 
work, however, also highlights the challenges of soft robot 

 
 

 

control when such devices are under external loading or 
exposed to unexpected mechanical disturbances [9]. These 
challenges are exacerbated further by the use of compressible 
fluidic actuation media (gasses) which complicate system 
dynamics and demand special control considerations.  

Current Solutions: As with many multi degree of freedom 
(DoF) systems having complex state-spaces, control accuracy 
can be improved by augmenting sensing capabilities. Adding 
sensors to soft robots helps achieve greater controllability, but 
the type of sensor must be selected carefully to ensure 
manufacturing feasibility and device function. Several 
common sensing modalities and methods have been used in 
soft robotics, each having unique benefits and drawbacks.  
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Figure 1. Rendering of a soft, pneumatically-actuated continuum robot with 
an optical sensor-embedded core for position sensing. 
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• Feature and fiducial-based tracking methods such as 
visual servoing and electromagnetic (EM) sensing have 
been used to monitor the deformation of soft robot bodies, 
and have the advantage of ease and versatility in 
implementation (i.e. placement of cameras and trackers). 
However, they also suffer from susceptibility to visual 
occlusions and electromagnetic interference [10].  

• Mechanical sensors used for actuation and control, such 
as pressure/barometric sensors (pneumatic systems) and 
cable encoders (tendon-driven systems), are precise, 
reliable, and can provide explicit, easy-to-interpret 
information on mechanical changes in soft systems. These 
sensors, however, generally require special mechanical 
design considerations to ensure that the large, complex 
deformations of soft robots can be captured. The influence 
of external forces in particular (e.g. gravitational loading 
or contact with an object in the environment) may be 
largely invisible to these sensors [7]. 

• Soft strain sensors are perhaps the most promising 
solution to soft robot control as they can be fabricated 
from the same material as the soft machines and, therefore, 
undergo the same modes of mechanical strain. Examples 
of such sensors include conductive liquid embedded 
sensors (most commonly eGaIn sensors) [11], FBG 
sensors [12], macrobend optical waveguide sensors [13], 
and optically transparent silicone waveguides [14, 15]. 
While many of the soft sensors reported in literature 
demonstrate high accuracy, robustness against 
disturbances (e.g. undesired off-axis deformations), and 
reliability in practice, the fabrication processes and signal 
conditioning hardware required can make distributed 
sensing approaches, with large numbers of embedded 
sensors, challenging. 
Our objective in this work is to utilize soft diffractive 

optical sensors, recently developed by our group, to measure 
mechanical strain in a soft, pneumatically actuated continuum 
robot [16]. These sensors are similar to the aforementioned 
silicone waveguide sensors [14, 15], but utilize optically 
diffractive microparticles within the sensor body to facilitate 
light transmission from transmitter to receiver. This partially 
linearizes the bending response curve, while also requiring 
only co-located optical fiber pairs at the site of strain 
measurement (one for light emission, the other for light 
detection). The light emitter and detector hardware can be 
located away from the measurement site, eliminating the need 
for any rigid or metallic components on-board the soft 
devices. The diffractive optical sensors may also be fabricated 
as part of the native soft material of the device, making 
distributed sensing feasible. We aim to demonstrate that this 
technology can provide a low-cost, viable solution to 
distributed sensing on soft robots which can improve our 
ability to measure their complex motions and loading 
conditions and, thereby, enable greater controllability. 

As a proof of concept for distributed soft optical sensing, 
we embed a set of such sensors at the center of the continuum 
robot to measure complex deformations over various 
pneumatic actuation and loading conditions. Section II 
describes the design concept and fabrication of the soft, 

optical sensor-embedded continuum robot. Section III details 
the experimental evaluation of the robot, and Section V 
explains analysis methods, in particular neural networks 
(NNs), used on the experimental data. Sections V and VI 
discuss insights gleaned from the results and future work, 
respectively. 

II.   DESIGN METHODOLOGY 
The soft continuum robot used in this work is comprised of 

the major components: fiber-reinforced pneumatic actuators, 
a pneumatic control system, and a soft optical sensing system 
(Fig. 1). The following describes the design and fabrication 
method for each system component. 

A. Robot body fabrication 
Our robot design and fabrication process is similar to that 

described in a previous work by Marchese and Rus [7]. This 
design involves a multi-step casting process to create a set of 
slightly-tapered, fiber-reinforced chambers. These are equally 
spaced around a hollow central core, through which 
pneumatic tubes and sensor leads may be passed. Our design 
involves three pneumatically-actuated chambers, rather than 
the common four or six associated with more redundantly-
actuated designs [17]. This configuration allows for bending 
of the robot in all directions and, if inflated or deflated 
concurrently, controlled extension or contraction.  

The actuator chambers are hollow, with 3mm thick walls 
on all sides, to permit maximal expansion of each actuator and 
minimal resistance of the silicone on the opposing side. 
Sections may be combined end-to-end through the use of 3D 
printed locking end pieces, with pneumatic tubing for 
inflating distal sections contained within the hollow core of 
lower segments. In this work, we focus our testing and 
analysis on a single soft continuum robot segment (Fig. 2). 

 
Figure 2. The design of the individual soft pneumatic actuator (left) and the 
assembled soft continuum robot section, comprised of three actuators.  



  

For fabrication, individual chambers were first cast 
between a 3D-printed plug (Fablicator, KL Services Group, 
Inc.) and a 2-piece external mold (for ease of removal). This 
initial casting was done using DragonSkin10 silicone 
(Smooth-On), and was 2mm thick. The outer mold was 
removed and each chamber was wrapped with a Kevlar thread 
(McMaster-Carr) in a crossed helical pattern, with windings 
spaced 5mm apart [8, 18]. The three chambers were inserted 
into an encapsulation mold with a 1mm margin and another 
plug to ensure a hollow core. This margin was filled with 
opaque gray EcoFlex50 to provide an optical shield for the 
core while simultaneously joining all chambers together.   

The actuator assembly was placed over a 3D-printed base, 
and pneumatic tubing (semi-clear rubber silicone, 1/8” ID) 
was fed into each chamber through holes in the base. Silicone 
(Ecoflex50, Smooth-On Inc.) was injected via syringe inside 
the chamber to seal off any leaking areas (Fig. 2). Thin plastic 
plates, printed to fit inside the interior of the distal end of the 
chamber, were inserted into the tip of each chamber through 
slots cut near the top. These provided anchors for screws 
which passed through the silicone end of the robot body and 
held the end cap in place. Ecoflex50 silicone was injected via 
syringe into the distal end of each chamber to seal up the slot, 
screw hole, and any other potential leaks. 

B. Sensor Fabrication  
The soft optical sensors are based upon previous work [16], 
where we placed optically-refractive microspheres in 
otherwise clear silicone. The resulting optical properties 
change in response to deformation and can be used to monitor 
strain, pressure, and/or bending information about the sensor 
body. A co-located optical sensor model was implemented to 
ease fiber optic routing; all electrical components, including 
infrared LEDs and photodiodes, were located near the base of 
the robot. Sensors were placed along the inner core and 
secured next to each chamber. This location was selected to 
ensure that these optical sensors were more likely to undergo 
linear and bending strains, with little to no deformation due to 
internal pressures generated by inflation of the pneumatic 
actuators.  

To construct the sensors, optically-clear silicone 
(SortaClear18, Smooth-On Inc.) was mixed with glass 
microspheres (3M Glass Bubbles, 3M, Inc.) in a 20:1 ratio by 
volume. This mixture was injected into 3D-printed cylindrical 
molds (Fablicator, KL Services Group, Inc.) 5mm in diameter 
and 20mm long. Small holes on either end of the mold 
provided guides for inserting two piano wires lengthwise 
through the body of the sensor. After curing, these wires were 
removed, providing the space for polished 0.75mm diameter 
unjacketed fiber optic cables (Fiber Optic Products, Inc.) to 
be inserted (Fig. 3). 

The fiber optic strands were inserted 10mm into the sensor 
and secured on the outside with silicone adhesive (Sil-Poxy, 
Smooth-On, Inc.). More of the microsphere-filled silicone 
was injected via syringe at the opposite side of the sensor, to 
fill in the rest of the channel left by the wire and to further 
secure the optical fiber in place. The floating ends of the optic 
cable were then attached to an IR emitter (SFH-4350, 
OSRAM Opto Semiconductors, Inc.) and an IR photodiode in 

a screw-tight, connector-less package (IF-D91, Industrial 
Fiber Optics, Inc.). Signal response proved to be dependent 
on fiber alignment at the emitter/photodiode juncture, so ends 
were firmly secured by using electrical tape to create a tighter 
fit in the screw-tight photodiode housing and the custom 3D-
printed IR emitter housing (Fig. 3).  

For sensor strain testing, the IR emitter was powered at 
1.4V using a 0.08A current-limited external power supply. 
The sensor was attached to an Instron 5540 Series system 
(Instron Inc., USA) using alligator clips, which clamped onto 
the leads at one end (covered with electrical tape for 
protection) and a bead of Silpoxy attached to the tip of the 
other. The set-up was shielded from ambient light by a draped 
sheet of black-pigmented silicone (Silc-Pig, Smooth-On, 
Inc.). The Instron extension profile began with the sensor 
positioned vertically, under low tension; the heads pulled 

 

 

  

Figure 3. Sensor fabrication process. a) 20:1 mixture of SortaClear-18 
silicone (Smooth-on Inc.) and glass microspheres (3M Glass Bubbles, 3M, 
Inc.) is poured into a 3D-printed mold 5mm in diameter and 20mm long. 
Two pieces of piano wire were inserted to form parallel, hollow guide 
channels. b) Silicone sensor body is removed from the mold. c) Piano wires 
are extracted and 0.75mm fiber optics (Fiber Optic Products, Inc.) are 
inserted to a depth of 10mm. More silicone mixture is injected via syringe 
from the other end of the sensor to fill in any remaining gaps and secure the 
fiber optics in place. Ends of fiber optics are wrapped in electrical tape for 
more secure fitting in photodiode/LED housing. e) Sensor operates by 
detecting light transmission between the two optical fibers inside the 
silicone. When the sensor is attached to the wall of an actuator, the sensor  
body stretches with the chamber wall, causing the glass microspheres to 
spread apart and reflect less light back to the photodiode. 
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away from each other at a rate of 0.1mm/s to a distance of 
10mm (elongation: 150%) before returning. Twenty cycles of 
extension were run, with the photodiode current being 
channeled through a transimpedence amplifier (Fig. 4) to 
where it was recorded by a National Instruments myDAQ. 
The gain resistor for the amplifier was hand-tuned using 
resistors between 5-100 MΩ; the sensor used for the strain test 
had adequate response levels at 20MΩ.  

The voltage-strain response can be seen in Fig. 5. Voltage 
increases monotonically with strain, and demonstrates 
reasonable consistency after the initial few cycles. During this 
“breaking in” period, the stiff optical fibers shifted within the 
silicone body of the sensor as the sensor body was extended 
and did not fully return upon release. After three cycles, the 
sensor reached a steady-state position between silicone and 
fiber, and the voltage response stabilized. 

Finally, three optical sensors were attached with SilPoxy to 
the inner core of the continuum robot at a height of 15 cm 
from the base. Sensors were oriented vertically, one per 

chamber, with fiber optic leads allowed to hang freely 
downward within the core.  

C. Pneumatic Control System 
Actuation of the soft robot was facilitated using a 

pneumatic control system to maintain each chamber of the 
robot at a desired pressure set-point. The control system used 
pulse-width modulation (PWM) of three SMC VQ100 Series 
solenoid valves to control airflow from a pressure source into 
the three chambers of the robot (Fig. 6). The pressure source 
used was a Parker Hannifin BTC-IIS diaphragm pump 
connected to a 1-liter bottle acting as a pressure accumulator 
chamber. The Soft Robotics Toolkit was used as a reference 
in selecting the aforementioned pump and valve components 
for the control system [18].  

A PID controller was implemented on an Arduino MEGA 
2560 microcontroller to modulate the PWM duty cycle of 
each valve based on the corresponding pressure set-point 
value and pressure transducer measurement. The control input 
for each valve was updated at 10 Hz. To reduce pressure 
oscillations resulting from the binary on-off behavior of the 
solenoid valves, pneumatic damping was added to the system 
by placing a segment of 15-inch long, ½-inch inner diameter 
tubing between each valve and its respective pressure 
chamber. Additionally, pressure transducer data were 
sampled at 50 Hz and low-pass filtered via a 10th-order finite-
impulse response (FIR) filter with a cutoff frequency of 5 Hz.  

In order to provide a relatively constant pressure source for 
the valve PWM control system, bang-bang control of the 
diaphragm pump was implemented on the Arduino, 
maintaining the accumulator chamber pressure between 6-10 
psi. The Arduino microcontroller was also used to read all 
optical sensors connected inside the robot. 

A Python script was used to update pressure set-point 
values on the Arduino microcontroller for each robot chamber 
at various time intervals, per a prescribed pressure trajectory 
matrix. The script also recorded pressure transducer and 
optical sensor data from the Arduino, along with data from 
the ATC 3DGuidance trakSTAR electromagnetic (EM) 
tracker system used to measure the robot’s tip position. All 
pressure, optical sensor, and EM tracker data were recorded 
at a 10 Hz sampling frequency. 

 
Figure 5. Voltage response of optical sensor while being elongated from 10 
to 20mm. Initial strain cycles show a large amount of hysteresis, caused by 
the stiff optical fibers shifting within the silicone body of the sensor. After 
approximately three cycles, the sensor and silicone reach a steady state and 
the voltage/strain relationship gains relative consistency. Greyed cycles show 
upward drift for cycles 8-15, returning to the lower response curve for cycles 
16-20, possibly an aliasing effect due to electromagnetic interference. 

 
Figure. 4. Transimpedence amplification circuit, with RG = 20 MΩ, C1 = 1 
nF. Vin is the output of the photodiode. 

 

 
Figure 6. Soft robot pressure controller. Blue lines represent pneumatic 
connections, green lines represent signal connections, black lines represent 
power connections. 
 



  

 Optical sensor leads were plugged into IR emitter and 
receiver housings at the base of the robot. The three IR 
emitters were powered in parallel using an external power 
supply of 1.4V and 0.24A.  

III. EXPERIMENTAL DESIGN 
The objective of these experiments was to demonstrate the 

utility of the optical sensors in providing an accurate estimate 
of the pose of the soft continuum robot. Of particular interest 
were cases in which the robot was undergoing deformation 
due to external forces, which pressure sensors alone are 
insufficient to capture. The external forces applied in this 
work were due to gravitational loading. Gravitational 
loading—the most basic external disturbance that must be 
compensated for—is difficult to incorporate into kinematic 
models in continuum robots, and is frequently a source of 
errors when estimating spatial positioning [7, 17, 19].  

In addition to gravitational loading, we also tested cases 
where masses were attached to the tip of the continuum robot 
segment to simulate the presence of one or more additional 
sections attached serially to create a multi-segment system. 
For multi-segment soft continuum robots to be controllable, 
the models used to generate the control inputs have to be able 
to take into account the effect of weight from distal sections 
being applied on the base section. They also need to estimate 
the changes in distal segment behavior due to their tilted 
orientation on top of the base. The importance of these 
scenarios, combined with a dearth of accurate modelling 
solutions for them, suggest that if a sensor were able to 
capture information about deformations due to gravity (either 
from being tilted or having a weighted end), establishing this 
would directly impact its relevance to the field. 

Our test set-up involved the pneumatic control system 
described Section II.C, with pressure transducers and optical 
sensors connected to an Arduino, which also operated the 
pressure control valves. The robot segment was placed 
approximately 10 cm from the EM tracker base, on top of a 
non-metallic table (to reduce electromagnetic interference). A 
hollowed, plastic screw (size M5) was inserted into the plastic 
end-cap of the robot; this provided an insertion location for 
the EM tracking sensor to monitor the ground-truth location 
of the robot’s tip (Fig. 7). 

A. Pressure Variation 
A set of pressure profiles were generated in to move the 

end effector in a series of widening circles. Recordings of EM, 
optical, and pressure sensor data were taken simultaneously 
via Arduino at a 10Hz frequency. Initial pressures were set to 
be either 1psi, 2psi, or 3psi, which produced the baseline 
extension of the soft robot; the initial circle was created by 
varying the pressure in each chamber sinusoidally with a 
0.25psi amplitude, with each chamber at a 120-degree phase 
offset from the others. After each complete circle, the 
sinusoid’s amplitude increased by 0.25psi, widening the next 
circle. The test continued until it reached the maximum 
pressure safety limit of 4psi, or until buckling occurred 
(generally for tests which started at lower initial pressures, 
when opposing chambers dropped down to 0psi). Any 
buckling cases were excluded from the data. 

The speed of movement was one 360-degree traversal per 
minute, a speed slow enough to consider continuously-
acquired sensor data to correspond to an approximately static 
kinetic model. To check this assumption, a separate test with 
discrete combinations of pressure commands was taken for 
comparison. There was a 4mm average discrepancy observed 
between static and slow dynamic EM-tracker coordinates at 
the same combination of pressures. However, the discrepancy 
between coordinates on duplicate dynamic tests was 1.5mm 
apart, likely due to pressure jitter from the PWM valves. The 
remaining difference is a potential source of error when using 
the model to predict static postures. 

The location of the base of the robot was acquired, also 
using the EM tracker. This allowed for a coordinate 
transformation of the EM tracker’s ground-truth XYZ 

 

Figure 7. 45-degree tilt test set-up. EM tracker is inserted in the end cap, 
optical sensors and pneumatic tubing are connected at base. The EM 
transmitter is located approximately 10 cm away on a nonmetallic table. 

 

Figure 8. Variation in path trajectory due to baseline pressure and loading of 
end-effector. The soft robot is initially vertical with equal pressure in all 
chambers (between 1-3psi). Position, pressure, and optical-sensor data is 
collected as it moves through a sequence of widening circles; the test end 
when a max pressure of 4psi is reached (high pressure limit) or buckling 
occurs (low pressures limit). Higher baseline pressures produce more 
extension in the robot (yellow trajectory), while weights can induce buckling 
when two pressurized chambers oppose a single low-pressure chamber. 



  

coordinates into a coordinate frame which was localized to 
the body of the robot, with the origin at its base (Fig. 8). 

B. End Effector Payload Variation 
A similar set of tests was run—with slow, widening 

circular trajectories and the same set of baseline pressures—
but with the additional variable of weights added at the end-
effector. The weights used were made from silicone, cast into 
cylindrical molds, which allowed them to be placed around 
the screw containing the EM tracker without causing 
electromagnetic interference (though this was at the cost of 
reducing the regularity in masses that could be produced). 
Data was taken with weights of 24.0g and 58.7g. These tests 
using weight variation were used to supplement the unloaded, 
0g weight tests generated in the previous section.  

C. Tilt variation 
For the last set of tests, the robot was moved onto a tilting 

platform. The same circular trajectories were used, with a 
consistent load weight of 0g and initial pressure of 2psi. The 
base was then adjusted to tilt away from the EM tracker at 
angles of 0, 45, and 90-degrees, using acrylic side-plates with 
slots appropriate for securing the tilt platform at the correct 
angle. Coordinate transformations were applied as before to 
create a tilt-invariant frame of reference, localized to the body 
of the robot (Fig. 9). 

D. Regression Analysis 
Regression analysis was conducted to study the 

significance of the information provided by the optical 
sensors. Given pressure sensors and/or optical sensors as 
inputs, kinematic models were trained to predict the soft 
robot’s end-effector position. Two types of model 
architecture were considered: 1) a linear model and 2) a fully-
connected neural network. The linear model serves as a 
baseline. The neural network was a standard piecewise linear 
model, comprising two hidden layers connected through 
ReLU (rectified linear unit) activation functions (Fig. 10). 
The first hidden layer contains 200 neurons and the second 
contains 100 neurons; the size of the neural network was 

chosen to roughly match the order of the dataset to prevent 
over or under-fitting.  

To validate the performance of each model, a dataset was 
first sampled without replacement into a training set (90%) 
and a testing set (10%). Before training, the training set was 
whitened such that each dimension has zero mean and unit 
variance. Then each model was trained minimize the square 
loss on the training set by AdaGrad [20] (implemented in 
TensorFlow [21]) with minibatch size 128 for 5,000 
iterations. Finally, the root-mean-square error (RMSE) on the 
testing set was computed. This process was repeated 20 times 
for each dataset and the statistics of testing error are reported.  
The regression analysis was performed on two datasets. The 
first dataset was collected in the experiments described 
Section III-A and Section III-B, containing 24,086 samples 
and spanning all possible combinations of baseline pressures 
and weights. The second dataset was collected in the 
experiments described in Section III-C, containing 12,741 
samples with fixed pressure and weight but various tilt angles. 

IV. RESULTS 
Tables I and II show the RMSE associated with the linear 

and neural network models generated, organized by the type 
of sensors used to inform the model. Table I shows error 
associated with the model spanning variations in both 
baseline pressures and weights; Table II shows the error 
associated with the variable tilt, fixed pressure/weight model. 
Linear models are used as a baseline comparison for the 
neural network model; the greatly improved neural network 
performance is evidence of the underlying nonlinear 
complexity of the system.  

The results suggest that pressure alone is a useful predictor 
of end-effector position when the tilt angle is zero; 
predictably, this is especially true for cases in which a large 
amount of the variation in position is due to modifications in 
pressure. Supplementing pressure data with optical sensor 
information does improve the model: in the case containing 
both pressure and weight variation, accuracy improved from 
approximately 9mm to less than 2mm along any given axis. 
Optical sensors on their own showed less predictive value 
than pressure sensors; this is likely due in part to the 
sensitivity limits associated with measuring the small changes 
in strain that occur at lower pressures, particularly with the 
standard 10-bit ADC resolution of the Arduino.   

Figure 9. Variation in path trajectory due to tilt, as seen in the frame where 
the origin is at the base of the robot and the Z-axis extends perpendicular to 
the base. Gravity causes the end of the robot to sag, leading to the off-center 
trajectory seen above.  
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Figure 10. The architecture of the fully-connected neural network 



  

Another important contributing factor was variation in 
baseline optical sensor voltages, most likely due to subtle 
changes in alignment of fiber optics within the IR emitter and 
photodiode housings. Close examination of optical sensor 
data showed that within 7-minute test runs, as well as with 
many back-to-back tests, optical sensor data was centered 
around a consistent baseline. However, if housings were 
jostled between tests or otherwise directly handled, shifts in 
baseline voltage could result. While the method of securing 
fiber optic leads was sufficiently sturdy to withstand the 
natural movement of fiber optics associated with robot 
motion, future sensors will need to opt for more robust and 
probably more permanent methods of attachment. 

However, for the constant-pressure, variable-tilt test, the 
optical sensors proved to have much more predictive ability 
than the pressure sensors. This type of deformation is 
primarily due to external forces, which can be expected to 
greatly influence robot shape, yet have a relatively minimal 
effect on chamber pressures. The combined pressure/optical 
sensory input again had the greatest predictive ability, 
reaching an error of close to 2mm again along any given axis.  

V.  DISCUSSION  
In this work, we outlined the fabrication methods for a 

novel soft optical sensor which is capable of measuring 
complex deformation within a soft robot body. Experimental 
results highlighted several promising aspects of this novel 
sensing approach, as well as several caveats/disadvantages.  

The sensor is capable of measuring strains reliably if 
prepared properly; that is, with all fiber optic ends securely 
fastened, and following a “breaking in” period of 2-3 strain 
cycles. Sensors show a linear response to robot bend angle 
over the ranges measured, although the magnitude of the 
voltage response varies between sensors (Fig. 11). It should 
be noted that in this experiment, optical sensors were placed 
near the axial center of the robot for convenience of fiber optic 
routing, an area where strain is minimized. Sensor 
responsiveness can be expected to improve with more 
peripheral placement. The soft optical sensor can be attached 
or even embedded within the soft robot, allowing it to 
measure actual deformation, which provides advantages over 

control-related signals that are unable to capture position 
errors due to external forces. Our experiments with pressure 
and optical sensors in a segment of a soft continuum robot 
show that pressure (i.e. control-related) sensors are unable to 
capture much important information about the trajectory of 
even a simple soft robot under the influence of gravity—an 
undeniably relevant scenario. However, with both pressure 
and optical sensors, the predictive ability of our kinematic 
models increased substantially, in some cases even by orders 
of magnitude. The predictive accuracy of the combined 
optical/pressure sensors for the pressure/weight NN model is 
shown in Figure 12. 
 The soft optical sensors include other advantages, such as 
resistance to electromagnetic interference, independence of 
bulky camera or EM-tracker set-ups, and minimal reduction 
of the soft characteristics of the attached robot. Conceivably, 
a larger array of sensors could be applied to or embedded 
within a soft robot body, enabling more detailed 
characterization of a robot’s configuration. However, for this 
to be achieved, more work must be done to characterize the 
behavior of the sensor when undergoing multimodal 
deformation, as the effects of pressure, bending, and torsion 
are likely to be coupled with the strain response it is intended 
to capture. Furthermore, for the sensors to have true predictive 

TABLE I 
ROOT-MEAN-SQUARE ERROR OF PREDICTIVE MODELS WHICH SPAN 

VARIATION IN BOTH PRESSURES AND WEIGHTS 

LINEAR 
MODEL 

Optical and 
Pressure Sensors 

RMSE  

Pressure 
Sensors 
RMSE  

Optical 
Sensors 
RMSE  

X (cm) 1.239 1.310 3.022 

Y (cm) 1.059 1.384 2.542 

Z (cm) 1.509 1.523 1.599 
 

NEURAL 
NETWORK 

MODEL 

Optical and 
Pressure Sensors 

RMSE  

Pressure 
Sensors 
RMSE  

Optical 
Sensors 
RMSE  

X (cm) 0.241 0.835 1.777 

Y (cm) 0.170 0.858 1.418 

Z (cm) 0.159 0.967 0.833 
 

TABLE II 
ROOT-MEAN-SQUARE ERROR OF PREDICTIVE MODELS WHICH SPAN 

VARIATION IN TILT 

LINEAR 
MODEL 

Optical and 
Pressure Sensors 

RMSE  

Pressure 
Sensors 
RMSE  

Optical 
Sensors 
RMSE  

X (cm) 0.702 2.507 1.898 

Y (cm) 0.539 0.670 1.101 

Z (cm) 0.851 1.011 1.007 
 

NEURAL 
NETWORK 

MODEL 

Optical and 
Pressure Sensors 

RMSE  

Pressure 
Sensors 
RMSE  

Optical 
Sensors 
RMSE  

X (cm) 0.098 2.517 0.711 

Y (cm) 0.072 0.640 0.420 

Z (cm) 0.045 0.676 0.283 
 

 
Figure 11. The light attenuation associated with bending the soft robot in the 
primary direction measured by each sensor. The amount by which each 
sensor extends falls within its linear range, although sensors are not 
identically responsive due to variation in the fabrication process and discrete 
options for manually tuning amplifier gains. 



  

ability, they must be built to require less frequent calibration. 
This can likely be ensured by using more secure attachments 
at the photodiode and IR emitter junctions.  

VI. CONCLUSION AND FUTURE WORK 
Besides the refinement and full characterization of the soft 

optical sensors, we see opportunities for greater predictive 
models where neural networks and extensive sensor networks 
are combined. Additional sensor/EM-tracker tests would be 
useful for expanding and refining the pressure-weight-tilt 
model. Data could also be gathered at faster speeds, to allow 
generation of dynamic as well as kinematic models. With a 
larger optical sensor network, it may be possible eventually to 
remove reliance on pressure sensors, or to predict orientation 
of the tip in addition to its location in three-dimensional space. 
(This information would inform the tilt of a subsequent 
segment, so that an entire soft continuum robot could be 
modeled). Eventually, we look forward to creating networks 
that operate in reverse, predicting necessary control signals 
based off of desired kinematic states despite gravitational 
perturbations.  
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Figure 12. Predicted XYZ coordinates of the end effector in the variable 
pressure/weight NN model, generated using both pressure and optical sensor 
inputs. The size and hue of the points shows the spatial error in prediction, 
where larger/darker points represent greater deviation from actual XYZ 
coordinates measured by the EM-tracker. 
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