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Abstract— A low-cost optical sensing method for improved
measurement and control of soft pneumatic manipulator motion
is presented. The core of a soft continuum robot is embedded
with several optically-diffuse elastomer sensors which attenuate
light depending on their strain mode and degree. The optical
sensors measure local strains at the robot’s axial center, and
these strain data are combined with measured actuator chamber
pressures to determine the pose of the robot under various
gravitational and tip loading conditions. Regression analyses
using neural networks (NNs) demonstrate that when the soft
continuum robot’s base orientation is fixed, the position of its
end-effector can be estimated with 3.42 times more accuracy
(71% smaller root mean squared error) when using both optical
sensor and pressure data (~2.44mm) than when using only
pressure data (~8.3mm). When the robot’s base orientation was
varied, the combined optical sensor and pressure data provide
position estimates which are as much as 37.8 times more
accurate (~2.76mm) than pressure data alone (~104mm).

[. INTRODUCTION

The compliant nature of soft robots enables them to
perform functions that are difficult for more traditional, rigid-
body robots to accomplish, such as adaptive locomotion in
tight spaces [1, 2], and safe movement in close proximity to,
or in direct contact with, human beings [3-5]. Effective
utilization of these capabilities requires advanced modeling
techniques and control strategies which can accommodate the
continuous, often non-linear deformations of these flexible
devices [6]. The accuracy and utility of many modeling
methods and control strategies are often dependent on the
availability of real-time kinematic information, which itself
requires 1) a sensing method which is precise and can span
large motion ranges and 2) a robust method of estimating
robot poses from that sensor data.

Critical Challenge: Recent work [7, 8] on the design and
control of soft inflatable continuum robots demonstrates how
well the kinematic states of such devices can be estimated
with proper mechanistic models and pressure sensing. This
work, however, also highlights the challenges of soft robot
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Figure 1. Rendering of a soft, pneumatically-actuated continuum robot with
an optical sensor-embedded core for position sensing.

control when such devices are under external loading or
exposed to unexpected mechanical disturbances [9]. These
challenges are exacerbated further by the use of compressible
fluidic actuation media (gasses) which complicate system
dynamics and demand special control considerations.
Current Solutions: As with many multi degree of freedom
(DoF) systems having complex state-spaces, control accuracy
can be improved by augmenting sensing capabilities. Adding
sensors to soft robots helps achieve greater controllability, but
the type of sensor must be selected carefully to ensure
manufacturing feasibility and device function. Several
common sensing modalities and methods have been used in
soft robotics, each having unique benefits and drawbacks.
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o Feature and fiducial-based tracking methods such as
visual servoing and electromagnetic (EM) sensing have
been used to monitor the deformation of soft robot bodies,
and have the advantage of ease and versatility in
implementation (i.e. placement of cameras and trackers).
However, they also suffer from susceptibility to visual
occlusions and electromagnetic interference [10].

e Mechanical sensors used for actuation and control, such
as pressure/barometric sensors (pneumatic systems) and
cable encoders (tendon-driven systems), are precise,
reliable, and can provide explicit, easy-to-interpret
information on mechanical changes in soft systems. These
sensors, however, generally require special mechanical
design considerations to ensure that the large, complex
deformations of soft robots can be captured. The influence
of external forces in particular (e.g. gravitational loading
or contact with an object in the environment) may be
largely invisible to these sensors [7].

o Soft strain sensors are perhaps the most promising
solution to soft robot control as they can be fabricated
from the same material as the soft machines and, therefore,
undergo the same modes of mechanical strain. Examples
of such sensors include conductive liquid embedded
sensors (most commonly eGaln sensors) [11], FBG
sensors [12], macrobend optical waveguide sensors [13],
and optically transparent silicone waveguides [14, 15].
While many of the soft sensors reported in literature
demonstrate  high accuracy, robustness against
disturbances (e.g. undesired off-axis deformations), and
reliability in practice, the fabrication processes and signal
conditioning hardware required can make distributed
sensing approaches, with large numbers of embedded
sensors, challenging.

Our objective in this work is to utilize soft diffractive
optical sensors, recently developed by our group, to measure
mechanical strain in a soft, pneumatically actuated continuum
robot [16]. These sensors are similar to the aforementioned
silicone waveguide sensors [14, 15], but utilize optically
diffractive microparticles within the sensor body to facilitate
light transmission from transmitter to receiver. This partially
linearizes the bending response curve, while also requiring
only co-located optical fiber pairs at the site of strain
measurement (one for light emission, the other for light
detection). The light emitter and detector hardware can be
located away from the measurement site, eliminating the need
for any rigid or metallic components on-board the soft
devices. The diffractive optical sensors may also be fabricated
as part of the native soft material of the device, making
distributed sensing feasible. We aim to demonstrate that this
technology can provide a low-cost, viable solution to
distributed sensing on soft robots which can improve our
ability to measure their complex motions and loading
conditions and, thereby, enable greater controllability.

As a proof of concept for distributed soft optical sensing,
we embed a set of such sensors at the center of the continuum
robot to measure complex deformations over various
pneumatic actuation and loading conditions. Section II
describes the design concept and fabrication of the soft,

optical sensor-embedded continuum robot. Section III details
the experimental evaluation of the robot, and Section V
explains analysis methods, in particular neural networks
(NNs), used on the experimental data. Sections V and VI
discuss insights gleaned from the results and future work,
respectively.

II. DESIGN METHODOLOGY

The soft continuum robot used in this work is comprised of
the major components: fiber-reinforced pneumatic actuators,
a pneumatic control system, and a soft optical sensing system
(Fig. 1). The following describes the design and fabrication
method for each system component.

A. Robot body fabrication

Our robot design and fabrication process is similar to that
described in a previous work by Marchese and Rus [7]. This
design involves a multi-step casting process to create a set of
slightly-tapered, fiber-reinforced chambers. These are equally
spaced around a hollow central core, through which
pneumatic tubes and sensor leads may be passed. Our design
involves three pneumatically-actuated chambers, rather than
the common four or six associated with more redundantly-
actuated designs [17]. This configuration allows for bending
of the robot in all directions and, if inflated or deflated
concurrently, controlled extension or contraction.

The actuator chambers are hollow, with 3mm thick walls
on all sides, to permit maximal expansion of each actuator and
minimal resistance of the silicone on the opposing side.
Sections may be combined end-to-end through the use of 3D
printed locking end pieces, with pneumatic tubing for
inflating distal sections contained within the hollow core of
lower segments. In this work, we focus our testing and
analysis on a single soft continuum robot segment (Fig. 2).
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Figure 2. The design of the individual soft pneumatic actuator (left) and the
assembled soft continuum robot section, comprised of three actuators.



For fabrication, individual chambers were first cast
between a 3D-printed plug (Fablicator, KL Services Group,
Inc.) and a 2-piece external mold (for ease of removal). This
initial casting was done using DragonSkinl0 silicone
(Smooth-On), and was 2mm thick. The outer mold was
removed and each chamber was wrapped with a Kevlar thread
(McMaster-Carr) in a crossed helical pattern, with windings
spaced Smm apart [8, 18]. The three chambers were inserted
into an encapsulation mold with a Imm margin and another
plug to ensure a hollow core. This margin was filled with
opaque gray EcoFlex50 to provide an optical shield for the
core while simultaneously joining all chambers together.

The actuator assembly was placed over a 3D-printed base,
and pneumatic tubing (semi-clear rubber silicone, 1/8” ID)
was fed into each chamber through holes in the base. Silicone
(Ecoflex50, Smooth-On Inc.) was injected via syringe inside
the chamber to seal off any leaking areas (Fig. 2). Thin plastic
plates, printed to fit inside the interior of the distal end of the
chamber, were inserted into the tip of each chamber through
slots cut near the top. These provided anchors for screws
which passed through the silicone end of the robot body and
held the end cap in place. Ecoflex50 silicone was injected via
syringe into the distal end of each chamber to seal up the slot,
screw hole, and any other potential leaks.

B. Sensor Fabrication

The soft optical sensors are based upon previous work [16],
where we placed optically-refractive microspheres in
otherwise clear silicone. The resulting optical properties
change in response to deformation and can be used to monitor
strain, pressure, and/or bending information about the sensor
body. A co-located optical sensor model was implemented to
ease fiber optic routing; all electrical components, including
infrared LEDs and photodiodes, were located near the base of
the robot. Sensors were placed along the inner core and
secured next to each chamber. This location was selected to
ensure that these optical sensors were more likely to undergo
linear and bending strains, with little to no deformation due to
internal pressures generated by inflation of the pneumatic
actuators.

To construct the sensors, optically-clear silicone
(SortaClear18, Smooth-On Inc.) was mixed with glass
microspheres (3M Glass Bubbles, 3M, Inc.) in a 20:1 ratio by
volume. This mixture was injected into 3D-printed cylindrical
molds (Fablicator, KL Services Group, Inc.) Smm in diameter
and 20mm long. Small holes on either end of the mold
provided guides for inserting two piano wires lengthwise
through the body of the sensor. After curing, these wires were
removed, providing the space for polished 0.75mm diameter
unjacketed fiber optic cables (Fiber Optic Products, Inc.) to
be inserted (Fig. 3).

The fiber optic strands were inserted 10mm into the sensor
and secured on the outside with silicone adhesive (Sil-Poxy,
Smooth-On, Inc.). More of the microsphere-filled silicone
was injected via syringe at the opposite side of the sensor, to
fill in the rest of the channel left by the wire and to further
secure the optical fiber in place. The floating ends of the optic
cable were then attached to an IR emitter (SFH-4350,
OSRAM Opto Semiconductors, Inc.) and an IR photodiode in

a screw-tight, connector-less package (IF-D91, Industrial
Fiber Optics, Inc.). Signal response proved to be dependent
on fiber alignment at the emitter/photodiode juncture, so ends
were firmly secured by using electrical tape to create a tighter
fit in the screw-tight photodiode housing and the custom 3D-
printed IR emitter housing (Fig. 3).

For sensor strain testing, the IR emitter was powered at
1.4V using a 0.08A current-limited external power supply.
The sensor was attached to an Instron 5540 Series system
(Instron Inc., USA) using alligator clips, which clamped onto
the leads at one end (covered with electrical tape for
protection) and a bead of Silpoxy attached to the tip of the
other. The set-up was shielded from ambient light by a draped
sheet of black-pigmented silicone (Silc-Pig, Smooth-On,
Inc.). The Instron extension profile began with the sensor
positioned vertically, under low tension; the heads pulled
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Figure 3. Sensor fabrication process. a) 20:1 mixture of SortaClear-18
silicone (Smooth-on Inc.) and glass microspheres (3M Glass Bubbles, 3M,
Inc.) is poured into a 3D-printed mold Smm in diameter and 20mm long.
Two pieces of piano wire were inserted to form parallel, hollow guide
channels. b) Silicone sensor body is removed from the mold. ¢) Piano wires
are extracted and 0.75mm fiber optics (Fiber Optic Products, Inc.) are
inserted to a depth of 10mm. More silicone mixture is injected via syringe
from the other end of the sensor to fill in any remaining gaps and secure the
fiber optics in place. Ends of fiber optics are wrapped in electrical tape for
more secure fitting in photodiode/LED housing. e) Sensor operates by
detecting light transmission between the two optical fibers inside the
silicone. When the sensor is attached to the wall of an actuator, the sensor
body stretches with the chamber wall, causing the glass microspheres to
spread apart and reflect less light back to the photodiode.
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Figure. 4. Transimpedence amplification circuit, with Rg =20 MQ, C, =1
nF. Vi, is the output of the photodiode.

away from each other at a rate of 0.1mm/s to a distance of
10mm (elongation: 150%) before returning. Twenty cycles of
extension were run, with the photodiode current being
channeled through a transimpedence amplifier (Fig. 4) to
where it was recorded by a National Instruments myDAQ.
The gain resistor for the amplifier was hand-tuned using
resistors between 5-100 MQ; the sensor used for the strain test
had adequate response levels at 20MQ.

The voltage-strain response can be seen in Fig. 5. Voltage
increases monotonically with strain, and demonstrates
reasonable consistency after the initial few cycles. During this
“breaking in” period, the stiff optical fibers shifted within the
silicone body of the sensor as the sensor body was extended
and did not fully return upon release. After three cycles, the
sensor reached a steady-state position between silicone and
fiber, and the voltage response stabilized.

Finally, three optical sensors were attached with SilPoxy to
the inner core of the continuum robot at a height of 15 cm
from the base. Sensors were oriented vertically, one per
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Figure 5. Voltage response of optical sensor while being elongated from 10
to 20mm. Initial strain cycles show a large amount of hysteresis, caused by
the stiff optical fibers shifting within the silicone body of the sensor. After
approximately three cycles, the sensor and silicone reach a steady state and
the voltage/strain relationship gains relative consistency. Greyed cycles show
upward drift for cycles 8-15, returning to the lower response curve for cycles
16-20, possibly an aliasing effect due to electromagnetic interference.

chamber, with fiber optic leads allowed to hang freely
downward within the core.

C. Pneumatic Control System

Actuation of the soft robot was facilitated using a
pneumatic control system to maintain each chamber of the
robot at a desired pressure set-point. The control system used
pulse-width modulation (PWM) of three SMC VQ100 Series
solenoid valves to control airflow from a pressure source into
the three chambers of the robot (Fig. 6). The pressure source
used was a Parker Hannifin BTC-IIS diaphragm pump
connected to a 1-liter bottle acting as a pressure accumulator
chamber. The Soft Robotics Toolkit was used as a reference
in selecting the aforementioned pump and valve components
for the control system [18].

A PID controller was implemented on an Arduino MEGA
2560 microcontroller to modulate the PWM duty cycle of
each valve based on the corresponding pressure set-point
value and pressure transducer measurement. The control input
for each valve was updated at 10 Hz. To reduce pressure
oscillations resulting from the binary on-off behavior of the
solenoid valves, pneumatic damping was added to the system
by placing a segment of 15-inch long, “4-inch inner diameter
tubing between each valve and its respective pressure
chamber. Additionally, pressure transducer data were
sampled at 50 Hz and low-pass filtered via a 10"-order finite-
impulse response (FIR) filter with a cutoff frequency of 5 Hz.

In order to provide a relatively constant pressure source for
the valve PWM control system, bang-bang control of the
diaphragm pump was implemented on the Arduino,
maintaining the accumulator chamber pressure between 6-10
psi. The Arduino microcontroller was also used to read all
optical sensors connected inside the robot.

A Python script was used to update pressure set-point
values on the Arduino microcontroller for each robot chamber
at various time intervals, per a prescribed pressure trajectory
matrix. The script also recorded pressure transducer and
optical sensor data from the Arduino, along with data from
the ATC 3DGuidance trakSTAR electromagnetic (EM)
tracker system used to measure the robot’s tip position. All
pressure, optical sensor, and EM tracker data were recorded
at a 10 Hz sampling frequency.
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Figure 6. Soft robot pressure controller. Blue lines represent pneumatic
connections, green lines represent signal connections, black lines represent
power connections.



Figure 7. 45-degree tilt test set-up. EM tracker is inserted in the end cap,
optical sensors and pneumatic tubing are connected at base. The EM
transmitter is located approximately 10 cm away on a nonmetallic table.

Optical sensor leads were plugged into IR emitter and
receiver housings at the base of the robot. The three IR
emitters were powered in parallel using an external power
supply of 1.4V and 0.24A.

III. EXPERIMENTAL DESIGN

The objective of these experiments was to demonstrate the
utility of the optical sensors in providing an accurate estimate
of the pose of the soft continuum robot. Of particular interest
were cases in which the robot was undergoing deformation
due to external forces, which pressure sensors alone are
insufficient to capture. The external forces applied in this
work were due to gravitational loading. Gravitational
loading—the most basic external disturbance that must be
compensated for—is difficult to incorporate into kinematic
models in continuum robots, and is frequently a source of
errors when estimating spatial positioning [7, 17, 19].

In addition to gravitational loading, we also tested cases
where masses were attached to the tip of the continuum robot
segment to simulate the presence of one or more additional
sections attached serially to create a multi-segment system.
For multi-segment soft continuum robots to be controllable,
the models used to generate the control inputs have to be able
to take into account the effect of weight from distal sections
being applied on the base section. They also need to estimate
the changes in distal segment behavior due to their tilted
orientation on top of the base. The importance of these
scenarios, combined with a dearth of accurate modelling
solutions for them, suggest that if a sensor were able to
capture information about deformations due to gravity (either
from being tilted or having a weighted end), establishing this
would directly impact its relevance to the field.

Our test set-up involved the pneumatic control system
described Section II.C, with pressure transducers and optical
sensors connected to an Arduino, which also operated the
pressure control valves. The robot segment was placed
approximately 10 cm from the EM tracker base, on top of a
non-metallic table (to reduce electromagnetic interference). A
hollowed, plastic screw (size M5) was inserted into the plastic
end-cap of the robot; this provided an insertion location for
the EM tracking sensor to monitor the ground-truth location
of the robot’s tip (Fig. 7).

A. Pressure Variation

A set of pressure profiles were generated in to move the
end effector in a series of widening circles. Recordings of EM,
optical, and pressure sensor data were taken simultaneously
via Arduino at a 10Hz frequency. Initial pressures were set to
be either 1psi, 2psi, or 3psi, which produced the baseline
extension of the soft robot; the initial circle was created by
varying the pressure in each chamber sinusoidally with a
0.25psi amplitude, with each chamber at a 120-degree phase
offset from the others. After each complete circle, the
sinusoid’s amplitude increased by 0.25psi, widening the next
circle. The test continued until it reached the maximum
pressure safety limit of 4psi, or until buckling occurred
(generally for tests which started at lower initial pressures,
when opposing chambers dropped down to Opsi). Any
buckling cases were excluded from the data.

The speed of movement was one 360-degree traversal per
minute, a speed slow enough to consider continuously-
acquired sensor data to correspond to an approximately static
kinetic model. To check this assumption, a separate test with
discrete combinations of pressure commands was taken for
comparison. There was a 4mm average discrepancy observed
between static and slow dynamic EM-tracker coordinates at
the same combination of pressures. However, the discrepancy
between coordinates on duplicate dynamic tests was 1.5mm
apart, likely due to pressure jitter from the PWM valves. The
remaining difference is a potential source of error when using
the model to predict static postures.

The location of the base of the robot was acquired, also
using the EM tracker. This allowed for a coordinate
transformation of the EM tracker’s ground-truth XYZ
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Figure 8. Variation in path trajectory due to baseline pressure and loading of
end-effector. The soft robot is initially vertical with equal pressure in all
chambers (between 1-3psi). Position, pressure, and optical-sensor data is
collected as it moves through a sequence of widening circles; the test end
when a max pressure of 4psi is reached (high pressure limit) or buckling
occurs (low pressures limit). Higher baseline pressures produce more
extension in the robot (yellow trajectory), while weights can induce buckling
when two pressurized chambers oppose a single low-pressure chamber.



coordinates into a coordinate frame which was localized to
the body of the robot, with the origin at its base (Fig. 8).

B. End Effector Payload Variation

A similar set of tests was run—with slow, widening
circular trajectories and the same set of baseline pressures—
but with the additional variable of weights added at the end-
effector. The weights used were made from silicone, cast into
cylindrical molds, which allowed them to be placed around
the screw containing the EM tracker without causing
electromagnetic interference (though this was at the cost of
reducing the regularity in masses that could be produced).
Data was taken with weights of 24.0g and 58.7g. These tests
using weight variation were used to supplement the unloaded,
Og weight tests generated in the previous section.

C. Tilt variation

For the last set of tests, the robot was moved onto a tilting
platform. The same circular trajectories were used, with a
consistent load weight of Og and initial pressure of 2psi. The
base was then adjusted to tilt away from the EM tracker at
angles of 0, 45, and 90-degrees, using acrylic side-plates with
slots appropriate for securing the tilt platform at the correct
angle. Coordinate transformations were applied as before to
create a tilt-invariant frame of reference, localized to the body
of the robot (Fig. 9).

D. Regression Analysis

Regression analysis was conducted to study the
significance of the information provided by the optical
sensors. Given pressure sensors and/or optical sensors as
inputs, kinematic models were trained to predict the soft
robot’s end-effector position. Two types of model
architecture were considered: 1) a linear model and 2) a fully-
connected neural network. The linear model serves as a
baseline. The neural network was a standard piecewise linear
model, comprising two hidden layers connected through
ReLU (rectified linear unit) activation functions (Fig. 10).
The first hidden layer contains 200 neurons and the second
contains 100 neurons; the size of the neural network was
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Figure 9. Variation in path trajectory due to tilt, as seen in the frame where
the origin is at the base of the robot and the Z-axis extends perpendicular to
the base. Gravity causes the end of the robot to sag, leading to the off-center
trajectory seen above.
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Figure 10. The architecture of the fully-connected neural network

chosen to roughly match the order of the dataset to prevent
over or under-fitting.

To validate the performance of each model, a dataset was
first sampled without replacement into a training set (90%)
and a testing set (10%). Before training, the training set was
whitened such that each dimension has zero mean and unit
variance. Then each model was trained minimize the square
loss on the training set by AdaGrad [20] (implemented in
TensorFlow [21]) with minibatch size 128 for 5,000
iterations. Finally, the root-mean-square error (RMSE) on the
testing set was computed. This process was repeated 20 times
for each dataset and the statistics of testing error are reported.
The regression analysis was performed on two datasets. The
first dataset was collected in the experiments described
Section III-A and Section III-B, containing 24,086 samples
and spanning all possible combinations of baseline pressures
and weights. The second dataset was collected in the
experiments described in Section III-C, containing 12,741
samples with fixed pressure and weight but various tilt angles.

IV. RESULTS

Tables I and II show the RMSE associated with the linear
and neural network models generated, organized by the type
of sensors used to inform the model. Table I shows error
associated with the model spanning variations in both
baseline pressures and weights; Table II shows the error
associated with the variable tilt, fixed pressure/weight model.
Linear models are used as a baseline comparison for the
neural network model; the greatly improved neural network
performance is evidence of the underlying nonlinear
complexity of the system.

The results suggest that pressure alone is a useful predictor
of end-effector position when the tilt angle is zero;
predictably, this is especially true for cases in which a large
amount of the variation in position is due to modifications in
pressure. Supplementing pressure data with optical sensor
information does improve the model: in the case containing
both pressure and weight variation, accuracy improved from
approximately 9mm to less than 2mm along any given axis.
Optical sensors on their own showed less predictive value
than pressure sensors; this is likely due in part to the
sensitivity limits associated with measuring the small changes
in strain that occur at lower pressures, particularly with the
standard 10-bit ADC resolution of the Arduino.



TABLE
ROOT-MEAN-SQUARE ERROR OF PREDICTIVE MODELS WHICH SPAN

TABLE II
ROOT-MEAN-SQUARE ERROR OF PREDICTIVE MODELS WHICH SPAN

VARIATION IN BOTH PRESSURES AND WEIGHTS VARIATION IN TILT

LINEAR Optical and Pressure Optical LINEAR Optical and Pressure Optical
MODEL Pressure Sensors Sensors Sensors MODEL Pressure Sensors Sensors Sensors
RMSE RMSE RMSE RMSE RMSE RMSE

X (cm) 1.239 1.310 3.022 X (cm) 0.702 2.507 1.898

Y (cm) 1.059 1.384 2.542 Y (cm) 0.539 0.670 1.101

Z (cm) 1.509 1.523 1.599 Z (cm) 0.851 1.011 1.007
NEURAL Optical and Pressure Optical NEURAL Optical and Pressure Optical
NETWORK | Pressure Sensors Sensors Sensors NETWORK | Pressure Sensors Sensors Sensors
MODEL RMSE RMSE RMSE MODEL RMSE RMSE RMSE

X (cm) 0.241 0.835 1.777 X (cm) 0.098 2.517 0.711

Y (cm) 0.170 0.858 1.418 Y (cm) 0.072 0.640 0.420

Z (cm) 0.159 0.967 0.833 Z (cm) 0.045 0.676 0.283

Another important contributing factor was variation in
baseline optical sensor voltages, most likely due to subtle
changes in alignment of fiber optics within the IR emitter and
photodiode housings. Close examination of optical sensor
data showed that within 7-minute test runs, as well as with
many back-to-back tests, optical sensor data was centered
around a consistent baseline. However, if housings were
jostled between tests or otherwise directly handled, shifts in
baseline voltage could result. While the method of securing
fiber optic leads was sufficiently sturdy to withstand the
natural movement of fiber optics associated with robot
motion, future sensors will need to opt for more robust and
probably more permanent methods of attachment.

However, for the constant-pressure, variable-tilt test, the
optical sensors proved to have much more predictive ability
than the pressure sensors. This type of deformation is
primarily due to external forces, which can be expected to
greatly influence robot shape, yet have a relatively minimal
effect on chamber pressures. The combined pressure/optical
sensory input again had the greatest predictive ability,
reaching an error of close to 2mm again along any given axis.

V. DISCUSSION

In this work, we outlined the fabrication methods for a
novel soft optical sensor which is capable of measuring
complex deformation within a soft robot body. Experimental
results highlighted several promising aspects of this novel
sensing approach, as well as several caveats/disadvantages.

The sensor is capable of measuring strains reliably if
prepared properly; that is, with all fiber optic ends securely
fastened, and following a “breaking in” period of 2-3 strain
cycles. Sensors show a linear response to robot bend angle
over the ranges measured, although the magnitude of the
voltage response varies between sensors (Fig. 11). It should
be noted that in this experiment, optical sensors were placed
near the axial center of the robot for convenience of fiber optic
routing, an area where strain is minimized. Sensor
responsiveness can be expected to improve with more
peripheral placement. The soft optical sensor can be attached
or even embedded within the soft robot, allowing it to
measure actual deformation, which provides advantages over

control-related signals that are unable to capture position
errors due to external forces. Our experiments with pressure
and optical sensors in a segment of a soft continuum robot
show that pressure (i.e. control-related) sensors are unable to
capture much important information about the trajectory of
even a simple soft robot under the influence of gravity—an
undeniably relevant scenario. However, with both pressure
and optical sensors, the predictive ability of our kinematic
models increased substantially, in some cases even by orders
of magnitude. The predictive accuracy of the combined
optical/pressure sensors for the pressure/weight NN model is
shown in Figure 12.

The soft optical sensors include other advantages, such as
resistance to electromagnetic interference, independence of
bulky camera or EM-tracker set-ups, and minimal reduction
of the soft characteristics of the attached robot. Conceivably,
a larger array of sensors could be applied to or embedded
within a soft robot body, enabling more detailed
characterization of a robot’s configuration. However, for this
to be achieved, more work must be done to characterize the
behavior of the sensor when undergoing multimodal
deformation, as the effects of pressure, bending, and torsion
are likely to be coupled with the strain response it is intended
to capture. Furthermore, for the sensors to have true predictive
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Figure 11. The light attenuation associated with bending the soft robot in the
primary direction measured by each sensor. The amount by which each
sensor extends falls within its linear range, although sensors are not
identically responsive due to variation in the fabrication process and discrete
options for manually tuning amplifier gains.
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Figure 12. Predicted XYZ coordinates of the end effector in the variable
pressure/weight NN model, generated using both pressure and optical sensor
inputs. The size and hue of the points shows the spatial error in prediction,
where larger/darker points represent greater deviation from actual XYZ
coordinates measured by the EM-tracker.

ability, they must be built to require less frequent calibration.
This can likely be ensured by using more secure attachments
at the photodiode and IR emitter junctions.

VI. CONCLUSION AND FUTURE WORK

Besides the refinement and full characterization of the soft
optical sensors, we see opportunities for greater predictive
models where neural networks and extensive sensor networks
are combined. Additional sensor/EM-tracker tests would be
useful for expanding and refining the pressure-weight-tilt
model. Data could also be gathered at faster speeds, to allow
generation of dynamic as well as kinematic models. With a
larger optical sensor network, it may be possible eventually to
remove reliance on pressure sensors, or to predict orientation
of'the tip in addition to its location in three-dimensional space.
(This information would inform the tilt of a subsequent
segment, so that an entire soft continuum robot could be
modeled). Eventually, we look forward to creating networks
that operate in reverse, predicting necessary control signals
based off of desired kinematic states despite gravitational
perturbations.
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