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Abstract—We present an end-to-end imitation learning sys-
tem for agile, off-road autonomous driving using only low-cost
on-board sensors. By imitating a model predictive controller
equipped with advanced sensors, we train a deep neural network
control policy to map raw, high-dimensional observations to
continuous steering and throttle commands. Compared with
recent approaches to similar tasks, our method requires neither
state estimation nor on-the-fly planning to navigate the vehicle.
Our approach relies on, and experimentally validates, recent imi-
tation learning theory. Empirically, we show that policies trained
with online imitation learning overcome well-known challenges
related to covariate shift and generalize better than policies
trained with batch imitation learning. Built on these insights, our
autonomous driving system demonstrates successful high-speed
off-road driving, matching the state-of-the-art performance.

I. INTRODUCTION

High-speed autonomous off-road driving is a challenging
robotics problem [17, 30, 31] (Fig. 1). To succeed in this task,
a robot is required to perform both precise steering and throttle
maneuvers in a physically-complex, uncertain environment
by executing a series of high-frequency decisions. Compared
with most previously studied autonomous driving tasks, the
robot here must reason about minimally-structured, stochastic
natural environments and operate at high speed. Consequently,
designing a control policy by following the traditional model-
plan-then-act approach [17, 20] becomes challenging, as it is
difficult to adequately characterize the robot’s interaction with
the environment a priori.

This task has been considered previously, for example,
by Williams et al. [30, 31] using model-predictive control
(MPC). While the authors demonstrate impressive results,
their internal control scheme relies on expensive and accurate
Global Positioning System (GPS) and Inertial Measurement
Unit (IMU) for state estimation and demands high-frequency
online replanning for generating control commands. Due to
these costly hardware requirements, their robot can only
operate in a rather controlled environment, which limits the
applicability of their approach.

We aim to relax these requirements by designing a reflex-
ive driving policy that uses only low-cost, on-board sensors
(e.g. monocular camera, wheel speed sensors). Building on
the success of deep reinforcement learning (RL) [15, 18],
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Fig. 1: The high-speed off-road driving task.

we adopt deep neural networks (DNNs) to parametrize the
control policy and learn the desired parameters from the
robot’s interaction with its environment. While the use of
DNNs as policy representations for RL is not uncommon, in
contrast to most previous work that showcases RL in simulated
environments [18], our agent is a high-speed physical system
that incurs real-world cost: collecting data is a cumbersome
process, and a single poor decision can physically impair the
robot and result in weeks of time lost while replacing parts and
repairing the platform. Therefore, direct application of model-
free RL techniques is not only sample inefficient, but costly
and dangerous in our experiments.

These real-world factors motivate us to adopt imitation
learning (IL) [23] to optimize the control policy instead. A
major benefit of using IL is that we can leverage domain
knowledge through expert demonstrations. This is particu-
larly convenient, for example, when there already exists an
autonomous driving platform built through classic system
engineering principles. While such a system (e.g. [30]) usu-
ally requires expensive sensors and dedicated computational
resources, with IL we can train a lower-cost robot to behave
similarly, without carrying the expert’s hardware burdens over
to the learner. Here we assume the expert is given as a black
box oracle that can provide the desired actions when queried,
as opposed to the case considered in [9] where the expert can
be modified to accommodate the learning progress.

In this work, we present an IL system for real-world high-
speed off-road driving tasks. By leveraging demonstrations



TABLE I: Comparison of our method to prior work on IL for autonomous driving

[ Methods | Tasks [ Observations [ Action [ Algorithm ] Expert [ Experiment |

[1] On-road low-speed Single image Steering Batch Human Real &simulated
[23] On-road low-speed Single image & laser Steering Batch Human Real &simulated
[24] On-road low-speed Single image Steering Batch Human Simulated
[19] Off-road low-speed Left & right images Steering Batch Human Real
[32] On-road unknown speed Single image Steering + break Online Pre-specified policy Simulated
Our . Single image + . Batch & . Real &

Method Off-road high-speed wheel speeds Steering + throttle online Model predictive controller simulated

from an algorithmic expert, our system can learn a driving
policy that achieves similar performance compared to the ex-
pert. The system was implemented on a 1/5-scale autonomous
AutoRally car. In real-world experiments, we show the Au-
toRally car—without any state estimator or online planning,
but with a DNN policy that directly inputs measurements from
a low-cost monocular camera and wheel speed sensors—could
learn to perform high-speed driving at an average speed of ~6
m/s and a top speed of ~8 m/s (equivalently 108 km/h and 144
km/h on a full-scale car), matching the state-of-the-art [31].

II. RELATED WORK

End-to-end learning for self-driving cars has been explored
since the late 1980s. The Autonomous Land Vehicle in a Neu-
ral Network (ALVINN) [23] was developed to learn steering
angles directly from camera and laser range measurements
using a neural network with a single hidden layer. Based on
similar ideas, modern self-driving cars [19, 1, 24] have recently
started to employ a batch IL approach: with DNN control
policies, these systems require only expert demonstrations
during the training phase and on-board measurements during
the testing phase. For example, Nvidia’s PilotNet [1, 2], a
convolutional neural network that outputs steering angle given
an image, was trained to mimic human drivers’ reactions to
visual input with demonstrations collected in real-world road
tests.

Our problem differs substantially from these previous on-
road driving tasks. We study autonomous driving on a fixed
set of dirt tracks, whereas on-road driving must perform
well in a larger domain and contend with moving objects
such as cars and pedestrians. While on-road driving in ur-
ban environments may seem more difficult, our agent must
overcome challenges of a different nature. It is required to
drive at high speed, on dirt tracks, the surface of which is
constantly evolving and highly stochastic. As a result, high-
frequency application of both steering and throttle commands
are required in our task, whereas previous work only focuses
on steering commands [19, 2, 24]. A Dataset Aggregation
(DAgger) [25] related online IL algorithm for autonomous
driving was recently demonstrated in [32], but only considered
simulated environments. A comparison of IL approaches to
autonomous driving is presented in Table I.

Our task is similar to the task considered by Williams et
al. [30, 31] and Drews et al. [5]. Compared with a DNN policy,
their MPC approach has several drawbacks: computationally
expensive optimization for planning is required to be per-
formed online at high-frequency, which becomes repetitive for
navigating the vehicle on a track after a few laps. In [30, 31],

accurate GPS and IMU feedbacks are also required for state
estimation, which may not contain sufficient information to
contend with the changing environment in off-road driving
tasks. While the requirement on GPS and IMU is relaxed
by using a vision-based cost map in [5], a large dataset
(300,000 images) was used to train the model, expensive on-
the-fly planning is still required, and speed performance is
compromised. In contrast to previous work, our approach off-
loads the hardware requirements to an expert. While the expert
may use high-quality sensors and more computational power,
our agent only needs access to cheap sensors and its control
policy can run reactively in high frequency, without on-the-fly
planning. Additionally, our experimental results match those
in [30], and are faster and more data efficient than that in [5].

ITII. IMITATION LEARNING FOR AUTONOMOUS DRIVING

In this section, we give a concise introduction to IL, and
discuss the strengths and weakness of deploying a batch or an
online IL algorithm to our task. Our presentation is motivated
by the realization that the connection between online IL and
DAgger-like algorithms [25] has not been formally introduced
in continuous domains. To our knowledge, DAgger has only
been used heuristically in these domains [26, 32]. Here we
simplify the derivation of [25] and extend it to continuous
action spaces as required in the autonomous driving task.

A. Problem Definition

To mathematically formulate the autonomous driving task,
we consider a discrete-time continuous-valued RL problem.
Let S, A, and O be the state, action, and the observation
spaces. In our setting, the state space is unknown to the agent;
observations consist of on-board measurements, including a
monocular RGB image from the front-view camera and wheel
speeds from Hall effect sensors; actions consist of continuous-
valued steering and throttle commands.

The goal is to find a stationary, reactive policy! 7 : O — A
(e.g. a DNN policy) such that 7 achieves low accumulated
cost over a finite horizon of length 7T,

J(m) =B, |Yi . clsea)|, ()

in which s; € S, 0; € O, a; € A, and p, is the distribution
of trajectory (sg, 09, ag, $1, - - -, ar—1) under policy 7. Here ¢
is the instantaneous cost, which, e.g., encourages high speed
driving while staying on the track. For notation: given a policy
m, we denote 7, as the distribution of actions given observation

min, J(7),

I'While we focus on reactive policies in this section, the same derivations
apply to history-dependent policies.



o, and a = m(o) as the (stochastic) action taken by the
policy. We denote Q! (s,a) as the Q-function at state s and
time ¢, and V!(s) = E,ur, [QL(s,a)] as its associated value
function, where Eq~r, is a shorthand of E,;E,~r, denoting
the expectation of the action marginal given state s.

B. Imitation Learning

Directly optimizing (1) is challenging for high-speed off-
road autonomous driving. Since our task involves a physical
robot, model-free RL techniques are intolerably sample ineffi-
cient and have the risk of permanently damaging the car when
applying a partially-optimized policy in exploration. Although
model-based RL may require fewer samples, it can lead to
suboptimal, potentially unstable results, because it is difficult
for a model that uses only on-board measurements to fully
capture the complex dynamics of off-road driving.

Considering these limitations, we propose to solve for
policy m by IL. We assume the access to an oracle policy
or expert m* to generate demonstrations during the training
phase. This expert can rely on resources that are unavailable
in the testing phase, like additional sensors and computation.
For example, the expert can be a computationally intensive
optimal controller that relies on exteroceptive sensors (e.g.
GPS for state estimation), or an experienced human driver.

The goal of IL is to perform as well as the expert with
an error that has at most linear dependency on 7'. Formally,
we introduce a lemma due to Kakade and Langford [10] and
define what we mean by an expert.

Lemma 1. Define d.(s,t) = =£d'(s) as a generalized
stationary time-state distribution, where d'. is the distribution
of state at time t when running policy 7. Let ™ and 7' be two
policies. Then

J(7) = J(7') + Eg td, Bamr, [AL/ (5, a)] 2)

where AL, (s,a) = QL (s,a) — V% (s) is the (dis)advantage
Sfunction at time t with respect to running w'.

Definition 1. A policy 7* is called an expert to problem (1)
if Crv = SUP;e(o7—1),5es Lip (Q%+ (5, -)) € O(1) independent
of T, where Lip(f(-)) denotes the Lipschitz constant of
function f and Q!. is the Q-function at time ¢ of running
policy 7*.

Because Q. (s,a) is the accumulated cost of taking some
action a at time ¢ and then executing the expert policy 7*
afterwards, the idea behind Definition 1 is that a reasonable
expert policy 7m* should perform stably under arbitrary action
perturbation, regardless of where it starts.”> As we will see in
Section III-C, this requirement provides guidance for whether
to choose batch learning vs. online learning to train a policy
by imitation.

2We define the expert here using an uniform Lipschitz constant because
the action space in our task is continuous; for discrete action spaces,
Lip (Q%.(s,-)) can be replaced by sup,c, Q. (s, a) and the rest applies.

1) Online Imitation Learning: We now present the objec-
tive function for the online learning [27] approach to IL.
Assume 7* is an expert to (1) and suppose A is a normed
space with norm || - ||. Let Dy (:,-) denote the Wasserstein
metric [7]: for two probability distributions p and ¢ defined
on a metric space M with metric d,

Dw(p,q) == sup  E,o,[f(2)] — Eunglf(z)] (3
fiLip(f(-))<1
— inf / d(z, y)dy(z, y), @)
YT (9,9) S Mx M

where I' denotes the family of distributions whose marginals
are p and q. It can be shown by the Kantorovich-Rubinstein
theorem that the above two definitions are equivalent [7].
These assumptions allow us to construct a surrogate problem,
which is relatively easier to solve than (1). We achieve this by
upper-bounding the difference between the performance of 7
and 7’ given in Lemma 1:

J(m) = J (%)
= Es7t~d7, []EarwrS [Q;* (87 a)] — Equ- ~TE [Qz—* (57 a*)H
S Cvfr"IE:s,twd,r [DW(’]TJT*)]

S CTF*ES7tNd7rEﬂN7TSElZ*NTF;[

a—a"|], &)

where we invoke the definition of advantage function
Al (s,a) = Qb (s,a) —Eq+re [QL. (s,a*)], and the first and
the second inequalities are due to (3) and (4), respectively.
Define ¢(s,a) = Eq+~r:|[[|la — a*||]. Thus, to make 7
perform as well as 7*, we can minimize the upper bound,
which is equivalent to solving a surrogate RL problem

min, B, [zle &(se, at)} . (6)

The problem in (6) is called the online IL problem. This
surrogate problem is comparatively more structured than the
original RL problem (1) [4], so we can adopt algorithms with
provable performance guarantees. In this paper, we use the
meta-algorithm DAgger [25], which reduces (6) to a sequence
of supervised learning problems: Let D be the training data.
DAgger initializes D with samples gathered by running 7*.
Then, in the ¢th iteration, it trains m; by supervised learning,

Ty = arg minﬂ' IE'D [é(sh at)]a (7)

where subscript D denotes empirical data distribution. Next it
runs m; to collect more data, which is then added into D to
train 7;11. The procedure is repeated for O(T') iterations and
the best policy, in terms of (6), is returned. Suppose the policy
is linearly parametrized. Since our instantaneous cost ¢&(sq, -)
is strongly convex, the theoretical analysis of DAgger applies.
Therefore, together with the assumption that 7* is an expert,
running DAgger to solve (6) finds a policy 7 with performance
J(m) < J(m*) + O(T), achieving our initial goal.

We note here the instantaneous cost ¢é(s, -) can be selected
to be any suitable norm according the problem’s property.
In our off-road autonomous driving task, we find [;-norm is
preferable (e.g. over lo-norm) for its ability to filter outliers in
a highly stochastic environment.



2) Batch Imitation Learning: By swapping the order of
7 and 7* in the above derivation in (5), we can derive
another upper bound and use it to construct another surro-

gate problem: define é,(s*,a*) = E,ur.[/la — a*||] and
Cr(s*) = Lip(Q%(s*,)), then
J(m) — J(7%)
= Bt [Bavor, [Q4(5", )]~ Ege oy [Q1 (5", 0)]]
< Ese tndpe Eaxnrr, [CL(s*)er(s*,a")]. (8)

where we use again Lemma 1 for the equality and the property
of Wasserstein distance for inequality. The minimization of the
upper-bound (8) is called the batch IL problem [24, 2]:

IniIlﬂ' ]Epw* [Zle 671'(SI> (l;k):| ) (9)

In contrast to the surrogate problem in online IL (6), batch
IL reduces to a supervised learning problem, because the
expectation is defined by a fixed policy 7*.

C. Comparison of Imitation Learning Algorithms

Comparing (5) and (8), we observe that in batch IL the
Lipschitz constant C?(s*), without 7 being an expert as in
Definition 1, can be on the order of T — ¢t in the worst
case. Therefore, if we take a uniform bound and define
Cr = supse(o r-1],5es Cx(s), we see Cr € O(T). In other
words, under the same assumption in online imitation (i.e. (8)
is minimized to an error in O(T)), the difference between
J(m) and J(7*) in batch IL actually grows quadratically in T'
due to error compounding. This problem manifests especially
in stochastic environments. Therefore, in order to achieve the
same level of performance as online IL, batch IL requires a
more expressive policy class or more demonstration samples.
As shown in [25], the quadratic bound is tight.

Therefore, if we can choose an expert policy 7* that is stable
in the sense of Definition 1, then online IL is preferred theo-
retically. This is satisfied, for example, when the expert policy
is an algorithm with certain performance characteristics. On
the contrary, if the expert is human, the assumptions required
by online IL become hard to realize in real-road driving tasks.
This is especially true in off-road driving tasks, where the
human driver depends heavily on instant feedback from the car
to overcome stochastic disturbances. Therefore, the frame-by-
frame labeling approach [26], for example, can lead to a very
counter-intuitive, inefficient data collection process, because
the required dynamics information is lost in a single image
frame. Overall, when using human demonstrations, online IL
can be as bad as batch IL [13], simply due to inconsistencies
introduced by human nature.

IV. THE AUTONOMOUS DRIVING SYSTEM

Building on the previous analyses, we design a system that
can learn to perform fast off-road autonomous driving with
only on-board measurements. The overall system architecture
for learning end-to-end DNN driving policies is illustrated in
Fig. 2. It consists of three high-level controllers (an expert, a
learner, and a safety control module) and a low-level controller,
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Fig. 2: System diagram.

which receives steering and throttle commands from the high-
level controllers and translates them to pulse-width modulation
(PWM) signals to drive the steering and throttle actuators of
a vehicle.

On the basis of the analysis in Section III-C, we assume
the expert is algorithmic and has access to expensive sensors
(GPS and IMU) for accurate global state estimates® and re-
sourceful computational power. The expert is built on multiple
hand-engineered components, including a state estimator, a
dynamics model of the vehicle, a cost function of the task,
and a trajectory optimization algorithm for planning (see
Section IV-A). By contrast, the learner is a DNN policy that
has access to only a monocular camera and wheel speed
sensors and is required to output steering and throttle com-
mand directly (see Section IV-B). In this setting, the sensors
that the learner uses can be significantly cheaper than those
of the expert; specifically on our experimental platform, the
AutoRally car (see Section IV-C), the IMU and the GPS
sensors required by the expert in Section IV-A together cost
more than $6,000, while the sensors used by the learner’s DNN
policy cost less than $500. The safety control module has the
highest priority among all three controllers and is used prevent
the vehicle from high-speed crashing.

The software system was developed based on the Robot
Operating System (ROS) in Ubuntu. In addition, a Gazebo-
based simulation environment [12] was built using the same
ROS interface but without the safety control module; the
simulator was used to evaluate the performance of the software
before real track tests.

A. An Algorithmic Expert: Model-Predictive Control

We use an MPC expert [22] based on an incremental Sparse
Spectrum Gaussian Process (SSGP) [14] dynamics model
(which was learned from 30 minute-long driving data) and
an iISAM?2 state estimator [8]. To generate actions, the MPC
expert solves a finite horizon optimal control problem for every
sampling time: at time ¢, the expert policy 7* is a locally
optimal policy such that

" ~ argming E, Zii?‘ c(sr,ar)|st

(10)
where T}, is the length of horizon it previews.

3Global position, heading and roll angles, linear velocities, and heading
angle rate.
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Fig. 3: The DNN control policy.

The computation is realized by Differential Dynamic Pro-
gramming (DDP) [29]: in each iteration of DDP, the system
dynamics and the cost function are approximated quadratically
along a nominal trajectory; then the Bellman equation of the
approximate problem is solved in a backward pass to compute
the control law; finally, a new nominal trajectory is generated
by applying the updated control law through the dynamics
model in a forward pass. Upon convergence, DDP returns a
locally optimal control sequence {a;,...,a; 7, _;}, and the
MPC expert executes the first action in the sequence as the
expert’s action at time ¢ (i.e. a; = ay). This process is repeated
at every sampling time (see [21] for details).

In view of the analysis in Section III-B, we can assume that
the MPC expert satisfies Definition 1, because it updates the
approximate solution to the original RL problem (1) in high-
frequency using global state information. However, because
MPC requires replanning for every step, running the expert
policy (10) online consumes significantly more computational
power than what is required by the learner.

B. Learning a DNN Control Policy

The learner’s control policy 7 is parametrized by a DNN
containing ~10 million parameters. As illustrated in Fig. 3,
the DNN policy, consists of two sub-networks: a convolu-
tional neural network (CNN) with 6 convolutional layers, 3
max-pooling layers, and 2 fully-connected layers, that takes
160 x 80 RGB monocular images as inputs,* and a feedforward
network with a fully-connected hidden layer that takes wheel
speeds as inputs. The convolutional and max-pooling layers
are used to extract lower-dimensional features from images.
The DNN policy uses 3 x 3 filters for all convolutional layers,
and rectified linear unit (ReLLU) activation for all layers except
the last one. Max-pooling layers with 2 x 2 filters are integrated
to reduce the spatial size of the representation (and therefore
reduce the number of parameters and computation loads).
The two sub-networks are concatenated and then followed
by another fully-connected hidden layer. The structure of this
DNN was selected empirically based on experimental studies
of several different architectures.

In construction of the surrogate problem for IL, the action
space A is equipped with || - ||; for filtering outliers, and the

4The raw images from the camera were re-scaled to 160 x 80.

optimization problem, (7) or (9), is solved using ADAM [11],
which is a stochastic gradient descent algorithm with an
adaptive learning rate. Note while s; or s} is used in (7) or (9),
the neural network policy does not use the state, but rather the
synchronized raw observation o; as input. Note that we did not
perform any data selection or augmentation techniques in any
of the experiments. > The only pre-processing was scaling and
cropping of raw images.

C. The Autonomous Driving Platform

To validate our IL approach to off-road autonomous
driving, the system was implemented on a custom-built,
1/5-scale autonomous AutoRally car (weight 22 kg; LWH
Imx0.6mx0.4m), shown in the top figure in Fig. 4. The car
was equipped with an ASUS mini-ITX motherboard, an Intel
quad-core i7 CPU, 16GB RAM, a Nvidia GTX 750 Ti GPU,
and a 11000mAh battery. For sensors, two forward facing
machine vision cameras,® a Hemisphere Eclipse P307 GPS
module, a Lord Microstrain 3DM-GX4-25 IMU, and Hall
effect wheel speed sensors were instrumented. In addition, an
RC transmitter could be used to remotely control the vehicle
by a human, and a physical run-stop button was installed to
disable all motions in case of emergency.

In the experiments, all computation was executed on-board
the vehicle in real-time. In addition, an external laptop was
used to communicate with the on-board computer remotely
via Wi-Fi to monitor the vehicle’s status. The observations
were sampled and action were executed at 50 Hz to account
for the high-speed of the vehicle and the stochasticity of
the environment. Note this control frequency is significantly
higher than [2] (10 Hz), [24] (12 Hz), and [19] (15 Hz).

V. EXPERIMENTAL SETUP
A. High-speed Driving Task

We tested the performance of the proposed IL system in
Section IV in a high-speed driving task with a desired speed
of 7.5 m/s (an equivalent speed of 135 km/h on a full-scale
car). The performance index of the task was formulated as the

SData collection or augmentation techniques such as [6, 1] can be used in
conjunction with our method.
SIn this work we only used one of the cameras.



Fig. 4: The AutoRally car and the test track.

cost function in the finite-horizon RL problem (1) with

(8¢, a¢) = 01 Cpos(S¢) + acepa(Se) + 3caip(5¢) + azcace(ar),

Y

in which c,os favors the vehicle to stay in the middle of the
track, cspq drives the vehicle to reach the desired speed, cgip
stabilizes the car from slipping, and ¢, inhibits large control
commands (see [21] for details).

The goal of the high-speed driving task to minimize the
accumulated cost function over one-minute continuous driving.
That is, under the 50-Hz sampling rate, the task horizon was
set to 60 seconds (T' = 3000). The cost information (11)
was given to the MPC expert in Fig. 2 to perform online
trajectory optimization with a two-second prediction horizon
(T, = 100). In the experiments, the weighting in (11) were
set as a1 = 2.5, ag = 1, ag = 100 and a4 = 60, so that the
MPC expert in Section IV-A could perform reasonably well.
The learner’s policy was tuned by online/batch IL in attempts
to match the expert’s performance.

B. Test Track

All the experiments were performed on an elliptical dirt
track, shown in the bottom figure of Fig. 4, with the AutoRally
car described in Section IV-C. The test track was ~3m wide
and ~30m long and built with fill dirt. Its boundaries were
surrounded by soft HDPE tubes, which were detached from the
ground, for safety during experimentation. Due to the changing
dirt surface, debris from the track’s natural surroundings, and
the shifting track boundaries after car crashes, the track condi-
tion and vehicle dynamics can change from one experiment to
the next, adding to the complexity of learning a robust policy.

C. Data Collection

Training data was collected in two ways. In batch IL, the
MPC expert was executed, and the camera images, wheel
speed readings, and the corresponding steering and throttle
commands were recorded. In online IL, a mixture of the expert
and learner’s policy was used to collect training data (camera
images, wheel speeds, and expert actions): in the ith iteration
of DAgger, a mixed policy was executed at each time step
#; = Bia* + (1 — BY)m;_1, where m;_; is learner’s DNN
policy after i — 1 DAgger iterations, and 3! is the probability
of executing the expert policy. The use of a mixture policy was
suggested in [25, 3] for better stability. A mixing rate 3 = 0.6
was used in our experiments. Note that the probability of using
the expert decayed exponentially as the number of DAgger
iterations increased. Experimental data was collected on an

Learned to
avoid crash

(c) Online IL.

Fig. 5: Examples of vehicle trajectories, where online IL
avoids the crashing case encountered by batch IL. (b) and
(c) depict the test runs after training on 9,000 samples.

outdoor track, and consisted of changing lighting conditions
and environmental dynamics. In the experiments, the rollouts
about to crash were terminated remotely by overwriting the
autonomous control commands with the run-stop button or
the RC transmitter in the safety control module; these rollouts
were excluded from the data collection.

D. Policy Learning

In online IL, three iterations of DAgger were performed.
At each iteration, the robot executed one rollout using the
mixed policy described above (the probabilities of executing
the expert policy were 60%, 36%, and 21%, respectively). For
a fair comparison, the amount of training data collected in
batch IL was the same as all of the data collected over the
three iterations of online IL.

At each training phase, the optimization problem (7) or (9)
was solved by ADAM for 20 epochs, with mini-batch size
64, and a learning rate of 0.001. Dropouts were applied at all
fully connected layers to avoid over-fitting (with probability
0.5 for the firstly fully connected layer and 0.25 for the rest).
See Section IV-B for details. Finally, after the entire learning
session of a policy, three rollouts were performed using the
learned policy for performance evaluation.

VI. EXPERIMENTAL RESULTS

A. Empirical Performance

We first study the performance of training a control policy
with online and batch IL algorithms. Fig. 5 illustrates the
vehicle trajectories of different policies. Due to accumulating
errors, the policy trained with batch IL crashed into the lower-
left boundary, an area of the state-action space rarely explored
in the expert’s demonstrations. In contrast to batch IL, online
IL successfully copes with corner cases as the learned policy
occasionally ventured into new areas of the state-action space.

Fig. 6 shows the performance in terms of distance traveled
without crashing’ and Table II shows the statistics of the
experimental results. Overall, DNN policies trained with both

7We used the safe control module shown in Fig. 2 to manually terminate
the rollout when the car crashed into the soft boundary.



TABLE II: Test statistics. Total loss denotes the imitation loss in (6), which is the average of the steering and the throttle
losses. Completion is defined as the ratio of the traveled time steps to the targeted time steps (3,000). All results here represent
the average performance over three independent evaluation trials.

[ Policy | Avg. speed | Top speed | Training data | Completion ratio | Total loss | Steering/Throttle loss |
Expert 6.05 m/s 8.14 m/s N/A 100 % 0 0
Batch 4.97 m/s 5.51 m/s 3000 100 % 0.108 0.092/0.124
Batch 6.02 m/s 8.18 m/s 6000 51 % 0108 0.162/0.055
Batch 5.79 m/s 7.78 m/s 9000 53 % 0.123 0.193/0.071
Batch 5.95 m/s 8.01 m/s 12000 69 % 0.105 0.125/0.083
Online (1 iter) 6.02 m/s 7.88 m/s 6000 100 % 0.090 0.112/0.067
Online (2 iter) 5.89 m/s 8.02 m/s 9000 100 % 0.075 0.095/0.055
Online (3 iter) 6.07 m/s 8.06 m/s 12000 100 % 0.064 0.073/0.055
online and batch IL algorithms were able to achieve speeds oo ——eremenes sronine snd beh caming

similar to the MPC expert. However, with the same amount
of training data, the policies trained with online IL in general
outperformed those trained with batch IL. In particular, the
policies trained using online IL achieved better performance
in terms of both completion ratio and imitation loss.

In addition, we found that, when using online IL, the
performance of the policy monotonically improves over it-
erations as data are collected, which is opposed to what
was found by Laskey et al. [13]. The discrepancy can be
explained with a recent theoretical analysis by Cheng and
Boots [3], which provides a necessary and sufficient condition
for the convergence of the policy sequence. In particular, the
authors show that adopting a non-zero mixing (as used in our
experiment) is sufficient to guarantee the convergence of the
learned policy sequence. Our autonomous driving system is a
successful real-world demonstration of this IL theory.

Finally, it is worth noting that the traveled distance of the
batch learning policy, learned with 3,000 samples, was longer
than that of other batch learning policies. This is mainly
because this policy achieved better steering performance than
throttle performance (cf. Steering/Throttle loss in Table II).
That is, although the vehicle was able to navigate without
crashing, it actually traveled at a much slower speed. By con-
trast, the other batch learning policies that used more data had
better throttle performance and worse steering performance,
resulting in faster speeds but also higher chances of crashing.

B. Generalizability of the Learned Policy

To further analyze the difference between the DNNs trained
using online and batch IL, we embed the data in a two-
dimensional space using t-Distributed Stochastic Neighbor
Embedding (t-SNE) [16], as shown in Fig. 7 and Fig. 8.
These figures visualize the data in both batch and online IL
settings, where “train” denotes the data collected to train the
policies and “test” denotes the data collected to evaluate the
performance of the final policies after the learning phase.’

We first observe in Fig. 7 that, while the wheel speed
data have similar training and testing distributions, the image

8For the online setting, the train data include the data in all DAgger
iterations; for the batch setting, the train data include the same amount of
data but collected by the expert policy. The figures plot a subset of 3,000
points from each data set.
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Fig. 6: Performance of online and batch IL in the distance
(meters) traveled without crashing. The policy trained with a
batch of 3,000 samples was used to initialize online IL.

distributions are fairly misaligned. The raw images are subject
to changing lighting conditions, as the policies were executed
at different times and days, and to various trajectories the
robot stochastically traveled. Therefore, while the task (driving
fast in the same direction) is seemingly monotone, it actually
is not. More importantly, the training and testing images
were collected by executing different policies, which leads
to different distributions of the neural networks inputs. This
is known as the covariate shift problem [28], which can
significantly complicate the learning process.

The policy trained with online IL yet still demonstrated
great performance in the experiments. To further understand
how it could generalize across different image distributions,
we embed its feature distribution in Fig. 8 (a) and (b).” Inter-
estingly, despite the difference in the raw feature distributions
in Fig. 7 (a) and (b), the DNN policy trained with online
IL are able to map the train and test data to similar feature
distributions, so that a linear combination (the last layer) of
those features is sufficient to represent a good policy. On the
contrary, the DNN policy trained with batch IL fails to learn
a coherent feature embedding, as shown in Fig. 8 (c) and (d).
This could explain the inferior performance of batch IL, and
its inability to deal with the corner case in Fig. 5 (b). This
evidence shows that our online learning system can alleviate
the covariate shift issue caused by executing different policies
at training and testing time.

9The feature here are the last hidden layer of the neural network. The output
layer is a linear function of the features.
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Fig. 7: The distributions (t-SNE) of the raw images and wheel
speed used as DNN policy’s inputs (details in Section VI-B).
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Fig. 9: The input RGB image and the averaged feature maps
for each max-pooling layer.
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Fig. 8: The distributions (t-SNE) of the learned DNN feature
in the last fully-connected layer (details are in Section VI-B).

C. The Neural Network Policy

Compared with hand-crafted feature extractors, one main
advantage of a DNN policy is that it can learn to extract both
low-level and high-level features of an image and automati-
cally detect the parts that have greater influence on steering
and throttle. We validate this idea by showing in Fig. 9 the
averaged feature map at each max-pooling layer (see Fig. 3),
where each pixel represents the averaged unit activation across
different filter outputs. We can observe that at a deeper level,
the detected salient features are boundaries of the track and
parts of a building. In contrast, grass and dirt contribute little.

We also analyze the importance of incorporating wheel
speeds in our task. We compare the performance of the policy
based on our DNN policy and a policy based on only the CNN
subnetwork (without wheel-speed inputs) in batch IL. The data
was collected in accordance with Section V-C. Fig. 10 shows
the batch IL loss in (9) of different network architectures.
The full DNN policy in Fig. 3 achieved better performance

0.064

0.062

Imitation los:

0.060

0.058

0.056

9000
Training data size

Fig. 10: Performance comparison between our DNN policy
and its CNN sub-network in terms of batch IL loss, where
the horizontal axis is the size of data used to train the neural
network policies.

consistently. While images contain position and orientation
information, it is insufficient to infer velocities, which are a
part of the (hidden) vehicle state. Therefore, we conjecture
state-of-the-art CNNs (e.g. [2]) cannot be directly used to
perform both lateral and longitudinal controls, as we do here.
By contrast, while without a recurrent architecture, our DNN
policy learned to combine wheel speeds in conjunction with
CNN to infer hidden state and achieve better performance.

VII. CONCLUSION

We introduce an end-to-end system to learn a deep neural
network control policy for high-speed driving that maps raw
on-board observations to steering and throttle commands by
mimicking a model predictive controller. In real-world experi-
ments, our system was able to perform fast off-road navigation
autonomously using a low-cost monocular camera and wheel
speed sensors. We also provide an analysis of both online and
batch IL frameworks, both theoretically and empirically and
show that our system, when trained with online IL, learns
generalizable features that are more robust to covariate shift
than features learned with batch IL.
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