10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Visualization Viewpoints

Department

Bahador Saket and Alex Endert
Georgia Institute of Technology

Demonstrational
nteraction for
Data Visualization

Editor: Theresa-Marie Rhyne, theresamarierhyne@gmail.com

Abstract—Recently, there has been an increasing trend to extend the demonstrational
interaction paradigm to visualization tools. As more analytic operations can be performed
by demonstration, new user tasks can be supported. In this paper, we discuss the
properties of tasks where the by-demonstration paradigm can be effective and describe
the main components needed to implement the demonstrational paradigm in visualization

tools.

Bl ConvEYING A PROCESS Or an outcome to some-
one by demonstration might be one of the oldest
forms of communicating one’s knowledge and
intentions in apprenticeship-style learning con-
texts. People are effective in communicating their
intended goals and results by gesturing, drawing
visuals, and other forms of demonstration to
guide someone else through the intended results.

Computing has leveraged demonstration
metaphors for user interactions, dating back to
the mid-1980s where programming by demon-
stration was introduced in software develop-
ment.” The motivation behind programming by
demonstration was simple and compelling: if
users know how the output of a program should
behave, they can demonstrate this intended

Digital Object Identifier 10.1109/MCG.2019.2903711

May/June 2019

Published by the IEEE Computer Society

behavior to create a program to generate that
output.®” The benefit is that instead of learning
how to program, systems “watch and listen” to
user actions and generate codes and programs
that fit the demonstration. More recently, sev-
eral other areas of computing have seen advan-
ces by applying the demonstrational paradigm,
including data science, robotics, computer
graphics, architecture, and others.

Data visualization has seen a recent trend to
extend the demonstrational paradigm to visualiza-
tion construction and visual data exploration.
This raises interesting challenges, such as: what
are the core components needed for tools imple-
menting the demonstrational interaction para-
digm? How are visualization tools implementing
the demonstration interaction paradigm different
from existing tools? And more fundamentally,
what user tasks are well-suited for demonstration?

30
31
32
33
34
35
36
37
38

39
40
41
42
43
44

46
47
48

0272-1716 © 2019 IEEE



49
50

51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Visualization Viewpoints

DEMONSTRATIONAL VISUALIZATION
INTERFACES

Overview
Interaction is an essential part of data visuali-

zation. Interactivity engages users in visualiza-
tion construction and data analysis processes!
which foster cognitive activities of understand-
ing data and sensemaking. For example, interac-
tive visualization tools might provide a set of
features to enable users to interactively con-
struct different visualizations to present stories
or ask specific questions. They do so through a
variety of operations, ranging from modifying
visual mappings, conditionally filtering data, to
changing visual representations entirely.

A commonly used interaction paradigm in
visualization tools is manual view specification.
As the name implies, this interaction paradigm
requires users to manually specify the desired
visualization specifications and parameters
through GUI operations typically designed as
control panels. For instance, consider the pro-
cess of interacting with data in a scatterplot.
Users must specify data attributes to map onto
axes, create any additional data mappings to
encodings such as color, size, or shape, and
finally set conditional filters to show only the rel-
evant information. For situations where users’
mental models contain this level of detail and
specificity, their tasks are well-supported by
manual view specification. However, there exist
tasks that are harder to perform using the manual
view specification paradigm since 1) these tasks
are ill-defined (it is nontrivial for users to break
them down into a set of lower level operations on
the control panel), or 2) they are repetitive or highly
customized (require users to go through layers of
menus).

For these ill-defined, repetitive, or highly cus-
tomized tasks, visualization is seeing an increase
in tools implementing the demonstrational inter-
action paradigm for visual data exploration and
Z-41L12 Demonstra-
tional visualization interfaces allow users to
provide partial demonstrations to the visual
representation to convey higher level, repetitive,
or ill-defined goals/tasks. Using demonstrations,
the system first interprets users’ intended
changes and then applies/recommends potential
change(s). Demonstrational interfaces tradeoff

visualization construction.

requiring users to specify visualization and sys-
tem parameters for demonstrating the visual
goals.

This tradeoff between by-demonstration and
traditional control panel interfaces has multiple
facets that designers must consider when deter-
mining if by-demonstration is suitable for the
given task, visualization, or user group. For
instance, by demonstration interfaces decrease
intermediary graphical elements between users
and systems. They reduce the need for users to
translate their high level and sometimes ill-
defined goals/tasks into a series of lower level
operations typically specified via control panels.
Despite these advantages, challenges for by-dem-
onstration include how to correctly infer user’s
intentions from the given demonstrations, and
how to make the potential space of operations
discoverable to users. For example, coloring a
data point in a scatterplot green could imply mul-
tiple meanings including coloring all data points
green, mapping a data attribute to color encod-
ing, the color that specific data point green, and
others.

Components

Demonstrational visualization interfaces gen-
erally adhere to the process shown in Figure 1.
This process includes four main components:
visual demonstrations, intent functions, transfor-
mation functions, and view update. See Figure 1
for more details.

Visual Demonstrations: Each demonstration is
a set of actions that a user takes to show parts of
the expected results visually. The demonstra-
tional interfaces enable users to provide a visual
demonstration to convey their partial intended
results [see Figure 1(a)]. Users might use one or
more input modalities (e.g., sketch and touch) to
provide demonstrations in systems implement-
ing this paradigm.

Intent Functions: When a user provides a dem-
onstration, the demonstration interface calls a
set of intent functions. Intent functions are a set
of rules that predict the potential meaning(s) of
the given demonstration (i.e., extracting the
user’s intentions from the given demonstra-
tions). For example, by dragging few points closer
together in a scatterplot, one of the potential
meanings that an intent function might predict is

IEEE Computer Graphics and Applications



148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

Demonstration Intent Functions

Transformation 1

o L4 —_ Clustering —
e o o 3

(a) (b)

Generating Potential Transformations

Updating Interface

_ nterface Recommendations
Transformation 2

se, o3

o oo 1 (U S
:: % i S oo

. o

8 s

() d)

Figure 1. Conceptual diagram of demonstrational visual interfaces. Users provide demonstrations (dragging
data points closer together), intent functions extract potential user intents or goals (clustering the data points),
and finally, transformation functions generate possible clustering layouts to recommend.

that the user is interested in clustering those data
points [see Figure 1(b)].

Transformation Functions: Transformation
functions are used to compute and rank the
potential changes (i.e., transformations) that can
be applied to the visualization given the set of
demonstrations [see Figure 1(c)]. First, a list of
transformations is computed where, if applied,
the final visual representation would match the
given demonstration. For example, when demon-
strating that two or more points should be in the
same cluster, only clustering results that meet
this constraint are shown. Then, these results are
ranked based on transformation likelihood and
fit. Transformation functions first compute all
transformations which can possibly result in
user’s intent.

View Updates: Once possible transformations
are extracted from demonstrations provided by
users, the system decides how to apply/recom-
mend possible transformations in the interface.
Depending on the type of transformation, the
system implementing the demonstrational para-
digm might use different ways to recommend
transformations. See Figure 1(d).

While these components may be implemented
in different ways, the underlying paradigm
remains the same. For example, tools might
enable users to resize a data point by dragging a
small handle on the perimeter of a glyph repre-
senting the data point or by dragging a slider
revealed upon right clicking the glyph. Regardless
of how these interactions are implemented to
enable users to provide demonstrations, the
underlying demonstrational interaction paradigm
follows the same general process.

Additionally, systems may differ in their design
of how to show the computed view updates. In
some systems, there is only one interpretation of

May/June 2019

a given demonstration. As such, upon providing a
demonstration, such systems immediately com-
pute the expected changes and update the view.
For example, sketching a scatterplot axis in
SketchStory* always indicates the user’s interest
in assigning a data attribute to the axis of the visu-
alization. Some other demonstrational visualiza-
tion interfaces use heuristics to compute a list of
potential interpretations of a given demonstra-
tion. In other words, these systems consider
multiple potential meanings of the given demon-
stration and suggest them to users. For example,
in VisExemplar,® dragging two or more data points
in a scatterplot visualization closer together indi-
cates the user’s interest in either changing the
axis or switching to a bar chart visualization.

WHEN ARE DEMONSTRATIONAL
INTERFACES BENEFICIAL?

A practical question that is immediately rele-
vant when considering visualization by demon-
stration is—when is it beneficial, effective, or
preferred over existing interaction paradigms?
From a review of tasks supported by systems in
the relevant literature, as well as our own experi-
ences designing by-demonstration systems, we
discuss the tradeoffs associated with the demon-
strational interaction paradigm along the follow-
ing three factors.

Task Knowledge

Data visualization tasks range from low-level to
high-level tasks, as discussed by Amar et al.’ In
general, low-level tasks require fewer parameter
specifications to perform compared to high-level
tasks. However, in determining whether by-
demonstration or manual view specification is
more effective, it is important to consider how

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214

215
216
217
218
219
220
221
222




223
224
225

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

Visualization Viewpoints

High

Efficiency

Low

Well-defined Task lll-defined

] Jf

Filter out homes with Filter out homes that
less than 3 bedrooms are similar to homes
A, B,and C

Assign Attribute A to
color encoding

High

Efficiency

High-complexity

)
Assign Attribute A to color encoding,

where specific colors map to specific
categorical values

Low-complexity Task

Figure 2. Task factors (e.g., task knowledge shown in the left or task complexity shown on the right) influence
the potential task effectiveness and may help designers decide which interaction paradigm to use to support it.

many of these parameters that must be specified
are not known to the user. In other words, if the is
task well-defined (where all the parameters and
their values are known) or ill-defined (where some
of the parameters or their values are unknown)
impacts the design decision about whether to
support it with manual view specification or by-
demonstration. See Figure 2 for more details.

For instance, consider the task of filtering
data points out of a scatterplot showing homes
for sale, where a user wants to filter out homes
with less than 3 bedrooms. In this case, there
are 2 parameters that must be specified: the
operation (filter) and the criteria (value of less
than 3 for the variable “bedrooms”). If both of
these are known, manual view specification is an
effective interaction paradigm to use. Users are
capable of breaking such tasks down into a hand-
ful of operations on the control panels.

In the context of user interface design,
Myers® also discusses the difficulties of “by-
demonstration” interfaces for cases where tasks
are very specific and well-defined. Myers men-
tions “demonstrational interfaces are harder to
use in cases where the user knows exactly the
relationship desired and could select it from a
menu.” Additionally, he discusses that demon-
strating well-defined tasks may be more time-
consuming than selecting among a predefined set
of controls in a menu.®

However, even for relatively straightforward
tasks such as filtering, more complex task alterna-
tives may create situations where users do not
know all the needed parameters. Taking the same

example from above, what if the user instead
wants to filter out homes similar to two or three
she found and was not interested in? Further-
more, she does not have enough clarity at the
time to define what her interests are, and thus
cannot specify the exact parameters by which to
filter. Instead, she could demonstrate her intent
to filter out specific points (e.g., she could demon-
strate to the system that she is not interested in
those homes by coloring or deleting them), from
which the system computes and recommends
potential filtering functions and parameters.

Task Complexity

Tasks vary in complexity, based on factors
including how many lower level operations they
can be broken down into," and how repetitive
the tasks are. These factor into the design deci-
sion about which interaction paradigm best sup-
ports them (see Figure 2).

Number of lower-level operations required: The
manual view specification paradigm can incur
extra execution and cognitive costs especially as
the number of lower level operations that a task
can be broken into increases. For example, con-
sider commonly used tasks, such as adjusting
data grouping criteria (e.g., merging two bins in
a histogram visualization). Currently, to perform
this task in tools such as Tableau, users need to
1) select the variable and then select the Edit
command from the pop-up menu. 2) In the Edit
Bins dialogue, users can input new size for bins.
3) Users might also move to the next dialogue
for further customization of binning. Sarvghad

IEEE Computer Graphics and Applications

257
258
259
260
261
262
263
264
265
266
267
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289



290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

307
308
309
310
311
312
313
314
315
316
317
318
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

et al. leveraged the demonstration paradigm to
enable users to adjust data grouping criteria.'
They showed that the by demonstration para-
digm can significantly reduce interaction time
compared to the manual view specification alter-
natives. Similarly, Schroeder and Keefe showed
that demonstrating customized color ramps for
geospatial visualizations was preferred over
manual specification by artists.!®

Repetition: One potential use of the demon-
strational paradigm is for automating repetitive
specification tasks and operations.” Imagine
users are interested in assigning a specific color
to all data points shown in a scatterplot or
increasing the width of all bars in a bar chart. To
perform such tasks in many existing tools, users
have to go through several steps. For example,
in Tableau, to change the size of all data points
shown in a scatterplot, users first select all the
data points shown on the visualization. They
then need to right click and select the “format”
option. A new window pops up that contains a
variety of options including a slider to change
the size of all data points. A demonstrational
visualization interface could enable the users to
perform the same task by resizing one or more
data points. As a result of this demonstration,
the system could then recommend the transfor-
mation of adjusting the size of all data points
automatically.

Visual Analogy for Demonstration
Demonstrations are performed within visual
metaphors. The ability for demonstrations to
serve as visual analogies for the intended task
will influence how effective they are. For exam-
ple, previous work showed that dragging the tall-
est bar in a bar chart to the extreme left or right
of an axis is an intuitive way for users to demon-
strate their interest in sorting the bar chart.®?
However, there exist tasks that would be
more difficult to demonstrate or have more
ambiguity in the system’s interpretation. For
instance, we recently found that users had diffi-
culties in finding an appropriate visual analogy
to demonstrate their interest in assigning a new
data attribute to the axes of scatterplots.!® With-
out intuitive and easy visual analogies to demon-
strate an intended task or goal, the effectiveness
of by-demonstration may suffer, and other

May/June 2019

interaction paradigms may be better suited (e.g.,
manual view specification).

Alternatively, there may be demonstrations
that are too ambiguous (i.e., the system could
interpret the demonstration to mean too many
different tasks). For instance, if a user moves
only one data point in a scatterplot, what task
does that demonstrate? It may reflect a desire to
shift all points, change the scale on the axis,
cluster similar points, etc. In these situations,
more demonstrations can incrementally help the
system correctly interpret the demonstration
and recommend potential transformations.

OPEN CHALLENGES

While there are examples and initial guidelines
for how to design and implement by-demonstra-
tion interfaces, open challenges exist for the con-
tinued maturation of this design space. For
example, the mapping between demonstrations
and tasks is not clearly defined. A given demon-
stration could imply multiple meanings and
multiple demonstrations might imply the same
meaning. In practice, one of the main challenges
confronting the demonstrational interfaces is
how to infer the user’s intent. We encourage more
studies to investigate how systems should inter-
pret user intentions from their demonstrations.

Another challenge is discoverability. How do
users know the set of visualization tasks available
to them? Unlike control panels that expose the
functionality directly, by-demonstration interfa-
ces rely on users knowing these tasks exist. Fur-
thermore, users need to understand the partial
visual demonstrations that trigger these tasks.
Going forward, one solution may include provid-
ing signifiers or visual aids that indicate which
visualization components are interactive and
how users can interact with them.

CONCLUSION

We are in the nascent stages of designing and
building by-demonstration interfaces for data
visualization. In comparison, the design space of
control panels and interface design has evolved
over many years to reach the effectiveness seen
today. The importance of user interaction to
exploratory data analysis and visualization con-
tinues to drive innovation in this area. As the

339
340
341
342
343
344
345
346
347
348
349
350
351

352
353

355
356
357
358
359
360

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

377
378
379
380
381
382
383
384
385




386
387
388
389
390
391
392

393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
Qn
413
414
415
416
417
418
419
420

422
423
424
425
426
427
428

Visualization Viewpoints

choice of interaction paradigms to support
increases, the field will continue to mature and
understand the tradeoffs between each of these
approaches. In this paper, we discuss the exciting
opportunity of by-demonstration for data visuali-
zation, and how it can benefit people in visual
data exploration.

B REFERENCES

1. J.SooYi, Y. A. Kang, J. Stasko, and J. Jacko, “Toward
a deeper understanding of the role of interaction in
information visualization,” IEEE Trans. Vis. Comput.
Graph., vol. 13, no. 6, pp. 1224-1231, Nov./Dec. 2007.

2. B. A. Myers, J. Goldstein, and M. A. Goldberg,
“Creating charts by demonstration,” in Proc. SIGCHI
Conf. Hum. Factors Comput. Syst., 1994, pp. 106-111.

3. B. Saket, H. Kim, E. T. Brown, and A. Endert,
“Visualization by demonstration: An interaction
paradigm for visual data exploration,” IEEE Trans.

Vis. Comput. Graph., vol. 23, no. 1, pp. 331-340,
Jan. 2017.

4. B. Lee, R. H. Kazi and G. Smith, “SketchStory: Telling
more engaging stories with data through freeform
sketching,” IEEE Trans. Vis. Comput. Graph., vol. 19,
no. 12, pp. 2416-2425, Dec. 2013.

5. R. Amar, J. Eagan, and J. Stasko, “Low-level
components of analytic activity in information
visualization,” in Proc. IEEE Symp. Inf. Vis., 2005.

6. B. A. Myers, “Demonstrational interfaces: A step
beyond direct manipulation,” Computer, vol. 25, no. 8,
pp. 61-73, 1992.

7. A. Cypher and D. C. Halbert, Watch What | Do:
Programming by Demonstration. Cambridge, MA,
USA: MIT Press, 1993.

8. R. Sadana, M. Agnihotri, and J. Stasko, “Touching Data:
A discoverability-based evaluation of a visualization
interface for tablet computers,” arXiv: 1806.06084, 2018.

9. D. L. Maulshby, I. H. Witten, and K. A. Kittlitz,
“Metamouse: Specifying graphical procedures by
example,” in Proc. 16th Annu. Conf. Comput. Graph.
Interact. Techn., 1989, pp. 127-136.

10. B. Saket and A. Endert, “Evaluation of visualization by
demonstration and manual view specification,”
arXiv:1805.02711, 2018.

11. B. Kondo and C. Collins, “DimpVis: Exploring
time-varying information visualizations by direct
manipulation,” IEEE Trans. Vis. Comput. Graph.,
vol. 20, no. 12, pp. 2003-2012, Dec. 2014.

12. H. Kim, J. Choo, H. Park, and A. Endert, “InterAxis:
Steering scatterplot axes via observation-level
interaction,” IEEE Trans. Vis. Comput. Graph., vol. 22,
no. 1, pp. 131-140, Jan. 2016.

13. M. Brehmer and T. Munzner, “A multi-level typology
of abstract visualization tasks,” IEEE Trans. Vis.
Comput. Graph., vol. 19, no. 12, pp. 2376-2385,
Dec. 2013.

14. A. Sarvghad, B. Saket, A. Endert, and N. Weibel,
“Embedded merge & split: Visual adjustment of data
grouping,” IEEE Trans. Vis. Comput. Graph., 2018.

15. D. Schroeder and F. K. Daniel, “Visualization-by-
sketching: An artist’s interface for creating multivariate
time-varying data visualizations,” IEEE Trans. Vis.
Comput. Graph., vol. 22, no. 1, pp. 877-885,

Jan. 2016.

Bahador Saket is currently working toward the
Ph.D. degree at Georgia Institute of Technology,
Atlanta, GA, USA. His research focuses on the design
of interaction techniques for visual data exploration.
He is also interested in conducting experiments as a
method to understand how visualizations can be
used to support data analysis. Contact him at
saket@gatech.edu.

Alex Endert is an Assistant Professor with the School
of Interactive Computing, Georgia Tech, Atlanta,
GA, USA. He directs the Visual Analytics Lab,
where he and his students explore novel user
interaction techniques for visual analytics. His lab
often applies these fundamental advances to
domains including text analysis, intelligence analy-
sis, cyber security, decision-making, and others.
He received the Ph.D. degree in computer sci-
ence from Virginia Tech, Blacksburg, VA, USA, in
2012. Contact him at endert@gatech.edu.

Contact department editor Theresa-Marie Rhyne at
theresamarierhyne@gmail.com.

IEEE Computer Graphics and Applications

429
430
431
432
433
434
435
436
437
438
439
440
441
442
102
444
445
446
447
448

449
450
451
452
453
454
455
456

457
458
459
460
461
462
463
464
465
466
467

468
469


mailto:
mailto:

