
IEE
E P

ro
of1 Demonstrational

2 Interaction for
3 Data Visualization
4

5 Bahador Saket and Alex Endert
6 Georgia Institute of Technology

7 Editor: Theresa-Marie Rhyne, theresamarierhyne@gmail.com

8 Abstract—Recently, there has been an increasing trend to extend the demonstrational

9 interaction paradigm to visualization tools. Asmore analytic operations can be performed

10 by demonstration, new user tasks can be supported. In this paper, we discuss the

11 properties of tasks where the by-demonstration paradigm can be effective and describe

12 the main components needed to implement the demonstrational paradigm in visualization

13 tools.

14 & CONVEYING A PROCESS or an outcome to some-

15 one by demonstration might be one of the oldest

16 forms of communicating one’s knowledge and

17 intentions in apprenticeship-style learning con-

18 texts. People are effective in communicating their

19 intended goals and results by gesturing, drawing

20 visuals, and other forms of demonstration to

21 guide someone else through the intended results.

22 Computing has leveraged demonstration

23 metaphors for user interactions, dating back to

24 the mid-1980s where programming by demon-

25 stration was introduced in software develop-

26 ment.7 The motivation behind programming by

27 demonstration was simple and compelling: if

28 users know how the output of a program should

29 behave, they can demonstrate this intended

30behavior to create a program to generate that

31output.6,7 The benefit is that instead of learning

32how to program, systems “watch and listen” to

33user actions and generate codes and programs

34that fit the demonstration. More recently, sev-

35eral other areas of computing have seen advan-

36ces by applying the demonstrational paradigm,

37including data science, robotics, computer

38graphics, architecture, and others.

39Data visualization has seen a recent trend to

40extend the demonstrational paradigm to visualiza-

41tion construction and visual data exploration.

42This raises interesting challenges, such as: what

43are the core components needed for tools imple-

44menting the demonstrational interaction para-

45digm? How are visualization tools implementing

46the demonstration interaction paradigm different

47from existing tools? And more fundamentally,

48what user tasks arewell-suited for demonstration?Digital Object Identifier 10.1109/MCG.2019.2903711

Visualization Viewpoints

May/June 2019 Published by the IEEE Computer Society 0272-1716 ! 2019 IEEE 1



IEE
E P

ro
of

49 DEMONSTRATIONAL VISUALIZATION
50 INTERFACES

51 Overview
52 Interaction is an essential part of data visuali-

53 zation. Interactivity engages users in visualiza-

54 tion construction and data analysis processes1

55 which foster cognitive activities of understand-

56 ing data and sensemaking. For example, interac-

57 tive visualization tools might provide a set of

58 features to enable users to interactively con-

59 struct different visualizations to present stories

60 or ask specific questions. They do so through a

61 variety of operations, ranging from modifying

62 visual mappings, conditionally filtering data, to

63 changing visual representations entirely.

64 A commonly used interaction paradigm in

65 visualization tools is manual view specification.

66 As the name implies, this interaction paradigm

67 requires users to manually specify the desired

68 visualization specifications and parameters

69 through GUI operations typically designed as

70 control panels. For instance, consider the pro-

71 cess of interacting with data in a scatterplot.

72 Users must specify data attributes to map onto

73 axes, create any additional data mappings to

74 encodings such as color, size, or shape, and

75 finally set conditional filters to show only the rel-

76 evant information. For situations where users’

77 mental models contain this level of detail and

78 specificity, their tasks are well-supported by

79 manual view specification. However, there exist

80 tasks that are harder to perform using themanual

81 view specification paradigm since 1) these tasks

82 are ill-defined (it is nontrivial for users to break

83 them down into a set of lower level operations on

84 the control panel), or 2) they are repetitive or highly

85 customized (require users to go through layers of

86 menus).

87 For these ill-defined, repetitive, or highly cus-

88 tomized tasks, visualization is seeing an increase

89 in tools implementing the demonstrational inter-

90 action paradigm for visual data exploration and

91 visualization construction.2–4,11,12 Demonstra-

92 tional visualization interfaces allow users to

93 provide partial demonstrations to the visual

94 representation to convey higher level, repetitive,

95 or ill-defined goals/tasks. Using demonstrations,

96 the system first interprets users’ intended

97 changes and then applies/recommends potential

98 change(s). Demonstrational interfaces tradeoff

99requiring users to specify visualization and sys-

100tem parameters for demonstrating the visual

101goals.

102This tradeoff between by-demonstration and

103traditional control panel interfaces has multiple

104facets that designers must consider when deter-

105mining if by-demonstration is suitable for the

106given task, visualization, or user group. For

107instance, by demonstration interfaces decrease

108intermediary graphical elements between users

109and systems. They reduce the need for users to

110translate their high level and sometimes ill-

111defined goals/tasks into a series of lower level

112operations typically specified via control panels.

113Despite these advantages, challenges for by-dem-

114onstration include how to correctly infer user’s

115intentions from the given demonstrations, and

116how to make the potential space of operations

117discoverable to users. For example, coloring a

118data point in a scatterplot green could imply mul-

119tiple meanings including coloring all data points

120green, mapping a data attribute to color encod-

121ing, the color that specific data point green, and

122others.

123Components

124Demonstrational visualization interfaces gen-

125erally adhere to the process shown in Figure 1.

126This process includes four main components:

127visual demonstrations, intent functions, transfor-

128mation functions, and view update. See Figure 1

129for more details.

130Visual Demonstrations: Each demonstration is

131a set of actions that a user takes to show parts of

132the expected results visually. The demonstra-

133tional interfaces enable users to provide a visual

134demonstration to convey their partial intended

135results [see Figure 1(a)]. Users might use one or

136more input modalities (e.g., sketch and touch) to

137provide demonstrations in systems implement-

138ing this paradigm.

139Intent Functions: When a user provides a dem-

140onstration, the demonstration interface calls a

141set of intent functions. Intent functions are a set

142of rules that predict the potential meaning(s) of

143the given demonstration (i.e., extracting the

144user’s intentions from the given demonstra-

145tions). For example, by dragging few points closer

146together in a scatterplot, one of the potential

147meanings that an intent function might predict is

Visualization Viewpoints

2 IEEE Computer Graphics and Applications



IEE
E P

ro
of148 that the user is interested in clustering those data

149 points [see Figure 1(b)].

150 Transformation Functions: Transformation

151 functions are used to compute and rank the

152 potential changes (i.e., transformations) that can

153 be applied to the visualization given the set of

154 demonstrations [see Figure 1(c)]. First, a list of

155 transformations is computed where, if applied,

156 the final visual representation would match the

157 given demonstration. For example, when demon-

158 strating that two or more points should be in the

159 same cluster, only clustering results that meet

160 this constraint are shown. Then, these results are

161 ranked based on transformation likelihood and

162 fit. Transformation functions first compute all

163 transformations which can possibly result in

164 user’s intent.

165 View Updates: Once possible transformations

166 are extracted from demonstrations provided by

167 users, the system decides how to apply/recom-

168 mend possible transformations in the interface.

169 Depending on the type of transformation, the

170 system implementing the demonstrational para-

171 digm might use different ways to recommend

172 transformations. See Figure 1(d).

173 While these components may be implemented

174 in different ways, the underlying paradigm

175 remains the same. For example, tools might

176 enable users to resize a data point by dragging a

177 small handle on the perimeter of a glyph repre-

178 senting the data point or by dragging a slider

179 revealed upon right clicking the glyph. Regardless

180 of how these interactions are implemented to

181 enable users to provide demonstrations, the

182 underlying demonstrational interaction paradigm

183 follows the same general process.

184 Additionally, systemsmay differ in their design

185 of how to show the computed view updates. In

186 some systems, there is only one interpretation of

187a given demonstration. As such, upon providing a

188demonstration, such systems immediately com-

189pute the expected changes and update the view.

190For example, sketching a scatterplot axis in

191SketchStory4 always indicates the user’s interest

192in assigning a data attribute to the axis of the visu-

193alization. Some other demonstrational visualiza-

194tion interfaces use heuristics to compute a list of

195potential interpretations of a given demonstra-

196tion. In other words, these systems consider

197multiple potential meanings of the given demon-

198stration and suggest them to users. For example,

199in VisExemplar,3 dragging two ormore data points

200in a scatterplot visualization closer together indi-

201cates the user’s interest in either changing the

202axis or switching to a bar chart visualization.

203WHEN ARE DEMONSTRATIONAL
204INTERFACES BENEFICIAL?
205A practical question that is immediately rele-

206vant when considering visualization by demon-

207stration is—when is it beneficial, effective, or

208preferred over existing interaction paradigms?

209From a review of tasks supported by systems in

210the relevant literature, as well as our own experi-

211ences designing by-demonstration systems, we

212discuss the tradeoffs associated with the demon-

213strational interaction paradigm along the follow-

214ing three factors.

215Task Knowledge
216Data visualization tasks range from low-level to

217high-level tasks, as discussed by Amar et al.5 In

218general, low-level tasks require fewer parameter

219specifications to perform compared to high-level

220tasks. However, in determining whether by-

221demonstration or manual view specification is

222more effective, it is important to consider how

Figure 1. Conceptual diagram of demonstrational visual interfaces. Users provide demonstrations (dragging

data points closer together), intent functions extract potential user intents or goals (clustering the data points),

and finally, transformation functions generate possible clustering layouts to recommend.

May/June 2019 3



IEE
E P

ro
of

223 many of these parameters that must be specified

224 are not known to the user. In other words, if the is

225 task well-defined (where all the parameters and

226 their values are known) or ill-defined (where some

227 of the parameters or their values are unknown)

228 impacts the design decision about whether to

229 support it with manual view specification or by-

230 demonstration. See Figure 2 formore details.

231 For instance, consider the task of filtering

232 data points out of a scatterplot showing homes

233 for sale, where a user wants to filter out homes

234 with less than 3 bedrooms. In this case, there

235 are 2 parameters that must be specified: the

236 operation (filter) and the criteria (value of less

237 than 3 for the variable “bedrooms”). If both of

238 these are known, manual view specification is an

239 effective interaction paradigm to use. Users are

240 capable of breaking such tasks down into a hand-

241 ful of operations on the control panels.

242 In the context of user interface design,

243 Myers6 also discusses the difficulties of “by-

244 demonstration” interfaces for cases where tasks

245 are very specific and well-defined. Myers men-

246 tions “demonstrational interfaces are harder to

247 use in cases where the user knows exactly the

248 relationship desired and could select it from a

249 menu.” Additionally, he discusses that demon-

250 strating well-defined tasks may be more time-

251 consuming than selecting among a predefined set

252 of controls in amenu.6

253 However, even for relatively straightforward

254 tasks such as filtering, more complex task alterna-

255 tives may create situations where users do not

256 know all the needed parameters. Taking the same

257example from above, what if the user instead

258wants to filter out homes similar to two or three

259she found and was not interested in? Further-

260more, she does not have enough clarity at the

261time to define what her interests are, and thus

262cannot specify the exact parameters by which to

263filter. Instead, she could demonstrate her intent

264to filter out specific points (e.g., she could demon-

265strate to the system that she is not interested in

266those homes by coloring or deleting them), from

267which the system computes and recommends

268potential filtering functions and parameters.

269Task Complexity

270Tasks vary in complexity, based on factors

271including how many lower level operations they

272can be broken down into,13 and how repetitive

273the tasks are. These factor into the design deci-

274sion about which interaction paradigm best sup-

275ports them (see Figure 2).

276Number of lower-level operations required: The

277manual view specification paradigm can incur

278extra execution and cognitive costs especially as

279the number of lower level operations that a task

280can be broken into increases. For example, con-

281sider commonly used tasks, such as adjusting

282data grouping criteria (e.g., merging two bins in

283a histogram visualization). Currently, to perform

284this task in tools such as Tableau, users need to

2851) select the variable and then select the Edit

286command from the pop-up menu. 2) In the Edit

287Bins dialogue, users can input new size for bins.

2883) Users might also move to the next dialogue

289for further customization of binning. Sarvghad

Figure 2. Task factors (e.g., task knowledge shown in the left or task complexity shown on the right) influence

the potential task effectiveness andmay help designers decide which interaction paradigm to use to support it.

Visualization Viewpoints

4 IEEE Computer Graphics and Applications



IEE
E P

ro
of

290 et al. leveraged the demonstration paradigm to

291 enable users to adjust data grouping criteria.14

292 They showed that the by demonstration para-

293 digm can significantly reduce interaction time

294 compared to the manual view specification alter-

295 natives. Similarly, Schroeder and Keefe showed

296 that demonstrating customized color ramps for

297 geospatial visualizations was preferred over

298 manual specification by artists.15

299 Repetition: One potential use of the demon-

300 strational paradigm is for automating repetitive

301 specification tasks and operations.7 Imagine

302 users are interested in assigning a specific color

303 to all data points shown in a scatterplot or

304 increasing the width of all bars in a bar chart. To

305 perform such tasks in many existing tools, users

306 have to go through several steps. For example,

307 in Tableau, to change the size of all data points

308 shown in a scatterplot, users first select all the

309 data points shown on the visualization. They

310 then need to right click and select the “format”

311 option. A new window pops up that contains a

312 variety of options including a slider to change

313 the size of all data points. A demonstrational

314 visualization interface could enable the users to

315 perform the same task by resizing one or more

316 data points. As a result of this demonstration,

317 the system could then recommend the transfor-

318 mation of adjusting the size of all data points

319 automatically.

320 Visual Analogy for Demonstration
321 Demonstrations are performed within visual

322 metaphors. The ability for demonstrations to

323 serve as visual analogies for the intended task

324 will influence how effective they are. For exam-

325 ple, previous work showed that dragging the tall-

326 est bar in a bar chart to the extreme left or right

327 of an axis is an intuitive way for users to demon-

328 strate their interest in sorting the bar chart.8,9

329 However, there exist tasks that would be

330 more difficult to demonstrate or have more

331 ambiguity in the system’s interpretation. For

332 instance, we recently found that users had diffi-

333 culties in finding an appropriate visual analogy

334 to demonstrate their interest in assigning a new

335 data attribute to the axes of scatterplots.10 With-

336 out intuitive and easy visual analogies to demon-

337 strate an intended task or goal, the effectiveness

338 of by-demonstration may suffer, and other

339interaction paradigms may be better suited (e.g.,

340manual view specification).

341Alternatively, there may be demonstrations

342that are too ambiguous (i.e., the system could

343interpret the demonstration to mean too many

344different tasks). For instance, if a user moves

345only one data point in a scatterplot, what task

346does that demonstrate? It may reflect a desire to

347shift all points, change the scale on the axis,

348cluster similar points, etc. In these situations,

349more demonstrations can incrementally help the

350system correctly interpret the demonstration

351and recommend potential transformations.

352OPEN CHALLENGES
353While there are examples and initial guidelines

354for how to design and implement by-demonstra-

355tion interfaces, open challenges exist for the con-

356tinued maturation of this design space. For

357example, the mapping between demonstrations

358and tasks is not clearly defined. A given demon-

359stration could imply multiple meanings and

360multiple demonstrations might imply the same

361meaning. In practice, one of the main challenges

362confronting the demonstrational interfaces is

363how to infer the user’s intent. We encouragemore

364studies to investigate how systems should inter-

365pret user intentions from their demonstrations.

366Another challenge is discoverability. How do

367users know the set of visualization tasks available

368to them? Unlike control panels that expose the

369functionality directly, by-demonstration interfa-

370ces rely on users knowing these tasks exist. Fur-

371thermore, users need to understand the partial

372visual demonstrations that trigger these tasks.

373Going forward, one solution may include provid-

374ing signifiers or visual aids that indicate which

375visualization components are interactive and

376how users can interact with them.

377CONCLUSION
378We are in the nascent stages of designing and

379building by-demonstration interfaces for data

380visualization. In comparison, the design space of

381control panels and interface design has evolved

382over many years to reach the effectiveness seen

383today. The importance of user interaction to

384exploratory data analysis and visualization con-

385tinues to drive innovation in this area. As the

May/June 2019 5



IEE
E P

ro
of

386 choice of interaction paradigms to support

387 increases, the field will continue to mature and

388 understand the tradeoffs between each of these

389 approaches. In this paper, we discuss the exciting

390 opportunity of by-demonstration for data visuali-

391 zation, and how it can benefit people in visual

392 data exploration.

393 & REFERENCES

394 1. J. Soo Yi, Y. A. Kang, J. Stasko, and J. Jacko, “Toward

395 a deeper understanding of the role of interaction in

396 information visualization,” IEEE Trans. Vis. Comput.

397 Graph., vol. 13, no. 6, pp. 1224–1231, Nov./Dec. 2007.

398 2. B. A. Myers, J. Goldstein, and M. A. Goldberg,

399 “Creating charts by demonstration,” in Proc. SIGCHI

400 Conf. Hum. Factors Comput. Syst., 1994, pp. 106–111.

401 3. B. Saket, H. Kim, E. T. Brown, and A. Endert,

402 “Visualization by demonstration: An interaction

403 paradigm for visual data exploration,” IEEE Trans.

404 Vis. Comput. Graph., vol. 23, no. 1, pp. 331–340,

405 Jan. 2017.

406 4. B. Lee, R. H. Kazi and G. Smith, “SketchStory: Telling

407 more engaging stories with data through freeform

408 sketching,” IEEE Trans. Vis. Comput. Graph., vol. 19,

409 no. 12, pp. 2416–2425, Dec. 2013.

410 5. R. Amar, J. Eagan, and J. Stasko, “Low-level

411 components of analytic activity in information

412 visualization,” in Proc. IEEE Symp. Inf. Vis., 2005.Q1

413 6. B. A. Myers, “Demonstrational interfaces: A step

414 beyond direct manipulation,” Computer, vol. 25, no. 8,

415 pp. 61–73, 1992.

416 7. A. Cypher and D. C. Halbert, Watch What I Do:

417 Programming by Demonstration. Cambridge, MA,

418 USA: MIT Press, 1993.

419 8. R. Sadana, M. Agnihotri, and J. Stasko, “Touching Data:

420 Adiscoverability-based evaluation of a visualization

421 interface for tablet computers,” arXiv:1806.06084, 2018.

422 9. D. L. Maulsby, I. H. Witten, and K. A. Kittlitz,

423 “Metamouse: Specifying graphical procedures by

424 example,” in Proc. 16th Annu. Conf. Comput. Graph.

425 Interact. Techn., 1989, pp. 127–136.

426 10. B. Saket and A. Endert, “Evaluation of visualization by

427 demonstration and manual view specification,”

428 arXiv:1805.02711, 2018.

42911. B. Kondo and C. Collins, “DimpVis: Exploring

430time-varying information visualizations by direct

431manipulation,” IEEE Trans. Vis. Comput. Graph.,

432vol. 20, no. 12, pp. 2003–2012, Dec. 2014.

43312. H. Kim, J. Choo, H. Park, and A. Endert, “InterAxis:

434Steering scatterplot axes via observation-level

435interaction,” IEEE Trans. Vis. Comput. Graph., vol. 22,

436no. 1, pp. 131–140, Jan. 2016.

43713. M. Brehmer and T. Munzner, “A multi-level typology

438of abstract visualization tasks,” IEEE Trans. Vis.

439Comput. Graph., vol. 19, no. 12, pp. 2376–2385,

440Dec. 2013.

44114. A. Sarvghad, B. Saket, A. Endert, and N. Weibel,

442“Embedded merge & split: Visual adjustment of data

443grouping,” IEEE Trans. Vis. Comput. Graph., 2018. Q2

44415. D. Schroeder and F. K. Daniel, “Visualization-by-

445sketching: An artist’s interface for creating multivariate

446time-varying data visualizations,” IEEE Trans. Vis.

447Comput. Graph., vol. 22, no. 1, pp. 877–885,

448Jan. 2016.

449Bahador Saket is currently working toward the

450Ph.D. degree at Georgia Institute of Technology,

451Atlanta, GA, USA. His research focuses on the design

452of interaction techniques for visual data exploration.

453He is also interested in conducting experiments as a

454method to understand how visualizations can be

455used to support data analysis. Contact him at

456saket@gatech.edu.

457AlexEndert is anAssistant Professorwith the School
458of Interactive Computing, Georgia Tech, Atlanta,

459GA, USA. He directs the Visual Analytics Lab,

460where he and his students explore novel user

461interaction techniques for visual analytics. His lab

462often applies these fundamental advances to

463domains including text analysis, intelligence analy-

464sis, cyber security, decision-making, and others.

465He received the Ph.D. degree in computer sci-

466ence from Virginia Tech, Blacksburg, VA, USA, in

4672012. Contact him at endert@gatech.edu.

468Contact department editor Theresa-Marie Rhyne at

469theresamarierhyne@gmail.com.

Visualization Viewpoints

6 IEEE Computer Graphics and Applications

mailto:
mailto:

