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Abstract

This manuscript identifies a maximal system of equations which renders the classical Dar-
boux problem elliptic, thereby providing a selection criterion for its well posedness. Let f
be a symplectic form close enough to wy, , the standard symplectic form on R*™. We prove
existence of a diffeomorphism ¢, with optimal regularity, satisfying

©" (wm) = f and <dapb;wm> =0.

We establish uniqueness of ¢ when the system is coupled with a Dirichlet datum. As a
byproduct, we obtain, what we term symplectic decomposition of vector fields, that any map
u, satisfying appropriate assumptions, can be decomposed as:

u=yxo1w with ’(P* (wm) = Wm, <de§Wm> =0 and Vyx+ (VX)t > 0;

moreover there exists a closed 2—form @ such that x = (§<I>_:wm)ﬁ. Here, § is the musical
isomorphism and b its inverse. We connect the above result to an L?projection problem.

1 Introduction

In the current manuscript we pursue our discussion on the transport of differential forms (cf. [11]
and [12]). The focus here will be on Darboux Theorem for symplectic forms, which foundational
character has been recognized since the pioneer work of Darboux [13]. The current state of the
theory allows to assert that, given two smooth enough symplectic forms f and g, there exist
infinitely many diffeomorphisms that pull f back to g; at least one of these symplectomorphims can
be shown to have optimal regularity properties (cf. [3]). A natural question is: "is there a maximal
system of equations which renders Darboux problem well posed?" In this manuscript we address this
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issue by identifying additional structural properties to be satisfied by these symplectomorphims,
which allow to select a unique solution without compromising on a loss of optimal regularity.

For the sake of simplicity, let us assume that g = w,, is the standard symplectic form on R?>™
and po,, is the associated volume form

m
_ . 1
Wy = dezzﬂ Adz®  and  pgy, = poor (W)™ =dzt A - A dz®™.
i=1 ’

We shall make use of the musical isomorphism # which turns 1—forms into vector fields; while b
will denote its inverse.

We prove (in Corollary 8) that if f is a symplectic form close enough to w,, in a Hélder norm,
then there exists a difftfomorphism ¢ such that

©* (wm) =f and <d<pb;wm> =0 (1)

and, when coupled with appropriate boundary and monotonicity conditions, such a ¢ is unique.
The map ¢ is also shown to have optimal regularity properties in Holder spaces. Our uniqueness
result in Corollary 8 yields a stability property namely: if (¢®, f*) satisfy (1) and the sequence
{f*} converges to f in the Holder norm C™*, then the sequence {(*} converges in the C" T norm,
with 0 < b < a, to a ¢ € C"1:¢ that satisfy (1). This stability result with a gain of regularity of
 holds provided that f is close to wy, .

In Cartesian coordinates (x1,- -+, Zg), the identity ¢* (g), ==friSythe system of |[n (n — 1) /2]

equations

P ag’ | 0P 0 A

Z gpq(go)( ' W BT Uy ):f”, l<i<j<n
1<p<q<n Oy 0z 0z

The new complete system is obtained by adding the single equation (dy”; g) = 0, totaling [n (n — 1) /2]+

1 equations, the'latter one reading off (cf. Section 2 (ix))

> (e —vk,) g7 =0

1<i<j<n

The novelty here is that the additional requirement <d<,0b; wm> = 0 makes (1) an elliptic system of
equations (cf. Proposition 14) according to the defmition we propose in the appendix. Coinciden-
tally, as explained at the end of this introduction, the concept of ellipticity possesses an underlying
variational feature.

When €2 is contractible, Corollary 10 asserts that under appropriate boundary conditions, there
exists an unique 2—form ® = Y ®¥dx’ A da’ satisfying

((5<I> me)ﬁ)* (wm)=f and d®=0

meaning, in Cartesian coordinates, that

m  2m .
> 2 e Vel - et el = pi 1<i<j<n
=1 s,t=1

i — @i+ BIF =0 1<i<j<k<n.

Note that when n = 2 the second equation is trivially fulfiled, while the first one reduces to the
Monge-Ampeére equation.

The above considerations should be compared with a discovery made in the 903 by Brenier
[5] (cf.also [15], [19], [20]) on a given probability volume form p on a convex set €. It asserts
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that if ¢ is the ”'”LQ(pn) — projection of the identity map onto the set of maps that pull p back

to the restriction of p, to Q, then dy® = 0. Similar conclusions can be reached if one replaces the
[l £2(,, ) — projection by any ||-[|;,,,  — projection for p € [1,00) (cf.[6], [7], [14], [16]). Beside
the variational analogy between the pull-back of volume forms and that of symplectic forms, there
is a striking algebraic coincidence in the number of equations which makes either system elliptic.
Indeed, in the case of volume forms the original problem at hand (resolved in the seminal work by
Moser [21]; for an account of some of the further developments see [4], [8], [10]) was to find a map
o satisfying

det Vo = f. (2)
The equation (2) is classically augmented with dg’ = 0, which means additional [n (n — 1) /2]
equations . The final system of interest

detVo=f and dy’ =0 (3)

totals [n(n —1) /2] + 1 equations. According to the defiition in Appendix 6, it is elliptic (see
Example 31 (ii)). If we further assume that 2 is simply connected, one recovers, (since then
p = V&), the Monge-Ampére equation

det V2P = f.

The convexity condition on ® simply expresses the fact that ¢ and the identity map.are isotopic.

Our contribution includes understanding.the impaortance of ellipticity™as, a/way to address the
reqularity and uniqueness issues for Darboux problem. ASs“the notion of“éllzpticity issnot easy to
find in the literature under thegeneral form given.here, we providelit in Appendix 6. The starting
point of \the application of ‘ellipticity. in our context is the conclusion reached for the following
system: if ( being the exteriorsinit normal to 9Q)

u* (W) = v* (W) and <dub;wm> = <dvb;wm> in Q
<ub A Z/b;wm> = <vb A V";wm> on 0,

then w = v (cf. Proposition 16). In particular, we have uniqueness for the Dirichlet problem
(i.e. when u = v on 99) or for the weaker Dirichlet problem when u” A 1* = v’ A 1* on 9.

Theorem 6, the backbone of our work, interestingly enough yields Corollary 21 (while Corollary
18 provides a local version) which we refer to as the symplectic decomposition of vector fields. Our
statement is that any map u, close enough to a linear map (in particular the identity map), can
be decomposed as

u=xo1 with " (wn)=wn, <de§ wm> =0 and Vx+ (VX)t > 0. (4)

Moreover, if €2 is contractible, there exists a closed 2—form ® such that y = (6@ me)ﬁ .

The decomposition (4) can be viewed as a nonlinear Hodge decomposition (cf. Subsection 4.3)
and is reminiscent but different of the so-called polar decomposition of vector fields, a result by
Brenier [5] which has had profound inflience on many other fields of mathematics. The polar
decomposition states that a vector field u can be written as

w=yot with detVyp=1, curly=0 and Vy+ (Vy)' >O0.

The condition ¢¥* (wy,) = wyy, is suffi cient, but much stronger, to ensure thaty preserves Lebesgue
measure (i.e. det V¢ = 1 which is equivalent to ¥* ((w,)™) = (wm)™), while the condition
<dxb; wm> = 0 is necessary, but much weaker, to ensure that curl y = 0.

Observe that (4), which resulted from a system of elliptic equations, is related to an orthogonal
projection problem. Indeed, defne the 2—form f by «* (f) = w,, then Proposition 23 (with
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h = wy,) shows that, would x be a |||z — projection of the identity map onto the set of

P2m)
diffeomorphisms pulling back f to wy,, then y must satisfy Vyx + (Vx)t > 0 and <dxb;wm> =0.
Furthermore letting 1 = x =1 o u, we have ¥* (w,,) = Wy, -

We would like to end up this introduction with some questions that remain open. It would
be very enlightening to have a more geometrical proof of our results. In our theorems, which are
essentially perturbative, can the smallness assumption be removed, or, in other words, under what

more stringent conditions our results can be global?

2 Notation

We refer to [8] for this section and adopt the following notations. In the sequel the dimension is
always even, i.e.n = 2m.

(i) To any f = ZKJ. fidxt Adx? € A% (R™), we associate, in a bijective way, a skew symmetric
matrix F' € R"*™ in the natural way. We also sometimes denote it by f. Explicitly the coeffi cient
at the i—th column and the j—th row of F' (or f) is f*, i.e.

F) = fi.

The rank of the 2—form f is the rank of the matrix F' and is therefore necessarily even. Note that

2
dgt @ (1||fm>
m.

where f = fA--- A f;in particular det F' > 0.
—_——

m—times

(ii) The standard symplectic form is
m
W = Z dz? 1 A dz?
i=1

and the associate standard symplectic matrix is

J 0 -~ 0 0
o J -~ 0 0
0 —1
Im = where J1:<1 0 )
o o --- J 0
o o0 --- 0 4

(iii) To any symplectic 2—form f, we write f~! € A2 (R") for the 2—form associated to the
skew symmetric matrix F~! € R"*". Note that
J;ll =—Jn, wt=—w, and @Wm,=Jn,.

m

(iv) If u € A' (R") and f € A? (R"), then

ulsf = zn: lzn:f”‘ u] dz? € A' (R™).
j=1 Li=1

(v) Note that if u € A* (R™), then

usf=v & Fu=v
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in particular
UIWp =V S U IWy = —U.

(vi) As classical, we denote by d the exterior derivative, by * the Hodge star operator and by
d the interior derivative (or co-differential). So that if f is a k—form then

6f = (1" x (d (=)
(vii) Let ¢ € C* (Q;R"), then
e ()= Y. fUp)de' A
1<i<j<n
In particular if ¢p (z) = Dz and f is a constant 2—form, then
eh ()= >, fID'AD
1<i<j<n
and thus the skew symmetric matrix associated to ¢}, (f) is D'FD.
(viii) Recall that for u € A* (R™), f € A* (R™) and h € AFT1(R™)
(A fih) = (f;ush) (5)

where (-;-) denotes the scalar product of forms (on the left hand side of (k + 1) —forms and on the
right hand side of k—forms).

(ix) Observesthat the musical isomorphism fr=T"M = R" x R" 5 TM = R" X*R" can be
in the current situation viewéd as/the identity map § s R? = R™. Similarly, the inverse map
b:TM — T*M will ' be viewed as thesidentity map® : R”™ — R”. Therefore throughout the article
we identify-ammiap ¢ € C! (R%;R") with its associated 1—form ¢” € C* (R™;A'), so that dy can
be seen as the 2-form dy’ €'€° (R”; A2) and therefore dp 1 f is the scalar product of the 2—forms
dp and f '€ €Y (R”; A2) . The notations # and b are used only in the introduction in order not to
burden too much the notations. In Cartesian coordinates we thus have that

doof = (dg f) = (e f) = 3 (0h = b)) 9= D @b f9 = (Vi F)
1<i<j<n i,j=1
where F' is the skew symmetric matrix associated to f.
(x) Remark (cf. Theorem 3.5 in [8]) that, for f € C* (R™;A¥) and g € C* (R™;A'), then
6(f29)= (1" df sg—f by (6)
In particular if k = 1, I = 2 and g is constant (or more generally g = 0), we have
6(fag)=—df ug.

(xi) The integration by parts formula (cf. Theorem 3.28 in [8]) says that, if 1 < k < n, f €
CH(; A1) and g € C1(Q; A¥), then

[+ [ on =] wara= [ (fw. (7)
(xii) We also let

Hy (4 A%) = {xecC* (Q;A%) :dx =0, 6x =0and v sx =0 on o0} (8)
Hr (Q;Az) ={xeC> (ﬁ;AQ) :dy =0, 5x=0and vAx =0o0n 90} . (9)

When € is contractible, then Hy (€2;A?) = Hyp (;A%) = {0}.
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3 Darboux theorem as an elliptic system

In this section we couple the classical Darboux theorems (local and global) with a natural constraint
so as to get an elliptic system. For that we first state some preliminary results and we then show
the existence and regularity of a solution for a system of first order equations of Cauchy-Riemann

type.
3.1 Some preliminary results

The proofs of the results in this subsection are straightforward to obtain and, so, will be skipped.

Proposition 1 Let n = 2m and 2 C R™ be an open set. Let f € C* (Q;AQ) be a 2—form such

that f™ # 0. Then
(f™) f71 =% (mfm ).
Therefore d [fm’l] =0 if and only if § ((*fm) ffl) =0 in Q.
Lemma 2 Let Q C R"™ be conver and u € C* (ﬁ; R”) verifying for a certain v > 0
(Vu(2)&€) > 7[Ef*, VEER™ and Vo € Q,
then u € Diff! (ﬁ; U (ﬁ)) .

Remark 8" The lemma is however falSe as'soon/as.C) is\n6t convex. Examples of the type (in the
complex plane) z' € with ¢ > 0 small or'a very simildr example written in polar coordinates as

w(r,0) = (rcos((1+¢€)0),rsin((1+¢€)0))

show that'the conclusion of the lemma is, in general, false.

3.2 Existence theorem for a linear elliptic system

Let © C R™ be a bounded connected open smooth set with exterior unit normal v. Let 7 > 0 be

an integer and 0 < a < 1 be a real number. Let g € C™* (Q) and f e C™* (Q; A2) be such that

df =0in Q and (fix) =0, Vx € Hn (4 A?).
Q

In the sequel we say that the symmetric part of A € C° (ﬁ; R”X") is definite with constant e =
e(A)>0,if

1 I€2 > (A (2) &€)| > e|é*  for every z € Q and € € R”.
e

Throughout this subsection we suppose that A € C™™1¢ (; R™ ") and B € C™ (Q;R"*") are
invertible and the symmetric part of BA™! is definite with constant e = e (BA_l). Let C €
cre (R .

The following theorem is an intermediary and central step toward the proof of Theorem 6, the
heart of Subsection 3.3. It can be expressed in terms of differential forms when A and B are skew
symmetric matrices and thus n = 2m (cf. Remark 5).
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Theorem 4 (A first order elliptic system) (1) Under the above assumptions, there evists u €
Crbae (Q; AY) such that, in €,

d(Au) = f and (B";Vu)+ (Ciu) =g (10)

and the system (10) is elliptic. Furthermore, there exists a constant ¢ = c(r,a,e, Q) such that

[ullgrire < e[ fllgra +11gllera) - (11)
(I11) If moreover [, g =0 and
div(B;) =Y (Bj), €C™(Q), 1<j<n (12)
i=1

then there exists u € C"+1:@ (ﬁ; Al) satisfying (11) and

d(Au)=f and 6(Bu)=g inQ
{ v (Bu)=0 on 09

if, in addition, Q) is simply connected then such a u is unique.

Remark 5 Further assume A and B are skew symmetric matrices_andslet & €\CTH1¢ (ﬁ; A2) ,
g e Cn® (ﬁ; A2) be, respectively the 2—forms associated te A and B S0 that wlaw= Au and
w3 = Bu. Assume that 63,6965 (€;AY)" Singe

(5(u_|,8):—dUJB—UJ(SB:<Bt;Vu>+(C;u>, (13)
where we have set C = —§/3, the theorem asserts the existence of u € C"the (ﬁ; Al) , such that
dusa)=f and 0(uisf)=ginQ.

- For example, if 3 = o or B = (*a™) a~!, then the symmetric part of BA~! is automatically
definite. Note also that, in view of Proposition 1 and (6), if 3 = (xa™)a~! and « is closed then
B is co-closed.

- The boundary condition v 4 (Bu) = 0 reads off
vi(usB)=(wAv)sf={(uAv;B)=0 on 0.

Proof (Theorem 4). Step 1. (i) Theorem 8.3 in [8] provides us with F' € C"™1* (Q;A!) and a
constant ¢ = ¢(r, a, Q) such that
AF=f inQ (14)

and
||F||cr+1~a <c ||chm .

(ii) We claim that the operator L : C? () — C° () defined by
LV = (B V (A7'VV)) +(C; A7'VV)
is elliptic. Indeed let A= = (aiv) and B = (b;) and observe that the leading term in L is

J
n
J i
g biakvmjxk

ij,k=1

Remove Watermark Now



and thus the ellipticity follows from the fact that the symmetric part of BA~! is defite.
(iii) We then set
u=A"'WV 4+ A'F

where V € C""2% (Q) (cf. Theorems 6.6 and 6.8 in [17]) is the solution of

{LVg<Bf;v(A1F)><C5A1F> n €2 (15)

V=0 on O0f2.

The map u satisfies then the conclusions of the theorem.

(iv) We now prove the ellipticity of (10), cf. Definition 26. First observe that the leading term
(in terms of derivatives) in the operator (B'; Vu) + (C;u) is of the form div (Bu) = ¢ (Bu), we
have therefore to show that the following algebraic system

EN(Ao)=0 and &, (Bo)=0.

has, for any £ # 0, 0 = 0 € R™ as the only solution. The first equation leads to the existence of
s € R such that Ac = s¢, or equivalently ¢ = sA~1'¢. Plugging this in the second equation we
obtain

s(BAT'¢€) =0
which implies, since the symmetric part of BA~! is defnite, s = 0 and hence g.=0-

Step 2. We next discuss (II) except the timiqueness thatwisydéalt with.in-Step 3. Note that
§(Bu) = div (Bu) =B ; V)4 (C; u)
where C =(C4y- - - ,C,,) with €= div (B;) . Hence the operator L takes the following form
LV =§(BA™'dV).
We then solve (14), as in Step 1 and instead of solving (15), we replace the boundary datum V =0
by (v; BA7'dV) = — (v; BA™'F) ; or in other words we find a solution of
§(BA™'dV) =g—0(BA™'F) inQ
<u; BA_ldV> =— <u; BA_1F> on J).

This is a Neumann type problem which is solvable since fQ g = 0. We then proceed exactly as in
Step 1.

Step 8. We finally deal with the uniqueness issue. So let v satisfy

d(Av) =0 and ¢6(Bv)=0 in{2
v (Bv)=0 on 0N

and set w = Av. Since  is simply connected and dw = 0, we can find W so that w = VW. The
function W therefore satisfies

div (BAT'VW) =0 inQ
<1/;BA’1VW> =0 on 09.

The divergence theorem implies

/ div (W (BA"'VW)) = / W (v; BATVW) = 0.
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We therefore have

O:/Qdiv (W (BA™'VW)) :/Q<BA’1VW;VW>27/Q|VW|2

(provided (BA™1&;€) > v [¢ |2 , if the other sign prevails, we just reverse the inequality above) and
hence VW = 0 which implies that v = 0 as claimed. m

3.3 The main theorem and some corollaries

Let Q C R™ be a bounded connected open smooth set with exterior unit normal v. Recall that
Hy (€ A?) has been defined in (8) and if €2 is contractible, then Hy (€; A%) = {0}.

Throughout this subsection » > 0 and n = 2m are integers, 0 < a < 1 and w,, is the standard
symplectic form and its associated skew symmetric matrix is J,, . Let f € C™? (ﬁ; A2) be such
that

df =0in Q and / (fix) =0, Vx € Hy (2;A%).
Q
Given a matrix D € R™"*" we denote by op the linear map which to x € R™ associates Dx € R™.

Theorem 6 (A global theorem under a smallness assumption) Let D € R"™" and B €
cre (Q;R”X”) be both invertible and such that the symmetric part of DBJ,, is definite with

constant e = e(DBJ,,). Let C € C™* (ﬁ; R”). Then there exist eyy & 0/ depending only on
(r,a,e,Q) such_thatsif
I 0B (whnttzs.a 5.2 6

then there emists ¢ € Diff T4 (Q: 0 (Q)) satisfying, in €,

¢" (wm) =f and (B';V(p—o0p))+(C;(p—0p))=0 (16)

and

{ H‘P —op| crite S C If— ) (Wm)‘ cra
ll — UD||cl,a/2 <cl|lf-op (wm)”co,am

(Ve (@) B(2) Jml )| 2 7€, VEER" andVa € Q. (18)
Furthermore the system (16), restricted to maps satisfying (18), is elliptic. If, moreover,

div (B;) zn: (Bj), €C™(Q), 1<j<n (19)
i=1

N

then there exists ¢ € Diff ™% (Q; ¢ (Q)) satisfying (17), (18) and

{cp*(wm)f and 0(B(p—op))=0 inQ
vi(B(p—o0op))=0 on 0%2;
such a ¢ is unique if Q is simply connected.

Remark 7 Theorem 6 is particularly interesting if we further assume that B is skew symmetric.
Indeed, in that case let § € C™* (Q;AQ) be the differential form associated to B and assume

op e CM® (ﬁ; Al) . If C = —§p3, then (13) holds and the theorem asserts the existence of ¢ such

that
{s@*(wm)=f and d((¢—op)sB)=0 inQ
va((p—op)apf)=0 on 9.
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Corollary 8 There exist €,7,¢ > 0 depending only on (r,a,Q) such that if
If— W'rn”Co,a/Q <e,

then there exists @ € Diff 1 (Q;0(Q)) satisfying

©* (W) =f and dpiw, =0 inQ (20)
vi((p—1id) swy,) =0 on 0%
and such that | al y |
SD - i r+1,a S (& — Wm ra
{ ) 2 : ol (21)
[{[Ve ()] &€ =>vIEl7, VEER™ andVa € Q.

Furthermore the system (20) is elliptic when restricted to maps satisfying the second inequality in
(21) and if, in addition, Q is simply connected, then such a ¢ is unique.

Remark 9 The following variant of Corollary 8 can easily be proved. There is ¢ such that
{ ©* (wm)=f and desf'1=0 inQ
va((p—id)oft)=0 on 0%.

Corollary 8, as well as Theorem 12 below, can be written as second order systems, which is the
counterpart of Monge-Ampeére equation when n = 2 and so, f is a volume form.

Corollary 10 (Second order Darbolix theorem)| Let-Q &/RY be\a bounded contractible open
smooth sets"Then there exists .= € (rga, Q)" such thab if | f-e"CT:° (Q;A2) isclosed and

o wm || ooz < e,
then there emists an unique ® € C™+22 (ﬁ; A2) satisfying the elliptic system
(0P Jwm)" (W) =f and d®=0

V(6D swy) + (V (6P swm))’ >0
vod=—-v.,H on 0f).

n

Here H is such that 0H = id Jw,, .

Remark 11 (i) Writing
® = Z ®Ydz’ A da?
i<j
and similarly for f we have that (6@ Jw,,)" (W) = f reads as (recalling that 9 = —J?)

m  2m
Z Z [@s(zl 1) q)t(2l) (I)s(2l 1)@(21)} i 1<i<j<n (22)

Tt
1=1 s,t=1
while d® = 0 means that
oY — o +®F =0, 1<i<j<k<n

Note that when n = 2 the equation d® = 0 is trivially fulfiled, while (22) is exactly Monge-Ampére
equation.

(ii) The form H can be taken, for example, as

m 2 2
H— Z (T2i-1) 2+ (z2) Az A da?

10
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Proof (Corollary 10). Step 1. Using Corollary 8, we have

©* (wm) =f, O(pawn) =0, Ve+ (V) defnite in Q
vi(pown)=vi(idiwy,) =vidH on Of).
Since  is contractible (thus Hy (2;A') = {0}) and 6 (¢ swm,) = 0, we can find @ verifying
(cf. Theorem 7.4 in [8])
00 =—(piwy) and d®=0 in{
va®d=—-v_H on 0f)
and thus ¢ = P Jw,, , showing the existence part. For the uniqueness we let ® and ¥ be two

solutions. From Proposition 16 (applied to a = 8 = wp,, u = §® Jwyy, and v = 0¥ Lw,, , recalling
that v 2 ® = v 4 U implies v 4 6P = v 14 0¥), we get that 6& = §¥ and hence

5(P—T)=0 and d(®—-T)=0 inQ
vi(®@-9)=0 on 0f)
and since Hy (Q2;A%) = {0}, we get that ¢ = V.
Step 2. We now discuss the ellipticity of the system. Strictly speaking our system does not
fit into the definition of ellipticity we give in the Appendix, because the_equatiéng are not of the

same order (some being of the second dfid $ome of the fizstworder)l To make it of the same order
we consider'the equivalent system

(6P Hwm) Awn )= f and V (d®)=0.
We first linearize the system (6 L w,,)" (wym) = f. From
(6% swm)” (W) = > [d [(5@ me)“'pﬂ Ad [(5@ ; wm)sz
p=1
we get that the algebraic system that should lead to A = 0 € A? is

>

[g A((ESN) wm)2p—1] Ad [(5@ me)ﬂ

=0.
=l +d [(5<1>me)2”*1} A [{/\ ((fJA)me)%}
This can be rewritten as
m gJA 3 m2p71d 0P 4 m2p
e (3] (Eem) 60w T\

L (€ s d (68w

or equivalently

€A (Z [(g NP A (D swn)? + (E3N)P 7 d (60 me)%—lD —0.

p=1

This last equation just means that

EN (6B swm) (E2N)] =EA [(v (60 1))’ - (€ 5 A)} —0.
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Therefore there exists s € R such that
(VP owm)) - (2N =s& & [(V(6Pawn))' Al € =s¢

where A is the skew symmetric matrix associated to A. Since the symmetric part of V (6@ Jwyy,) is
defmite, V (0P LJw,,) is invertible and we deduce that

AE=5(V (6P owy)) e

A being a skew symmetric matrix we obtain

0= (468 =5 ((V (00 swn) ' &E).

Using again that the symmetric part of V (§® Jw,,) is definite and that £ # 0, we infer that s =0
and thus
AE=Eoa=0.

The equation d® = 0 (or equivalently V (d®) = 0) leads to
EANA=0

and thus, if £ # 0, we get that A = 0 and the ellipticity is proved. m

3.4 PRroof of the main theorem

We now deal with the proof of Theorem 6.
Proof Stéps 1 to 4 deal with the main statement, while Step 5 handles the extra result.
Step 1. We linearize the equation around op and we let ¢ = op + u. We immediately find

f=0" (wn) =(op+u)" (wn) =05 (Wn) +d (Dt (qum)) +u* (W) -
Step 2. We solve by fixed point (more precisely Theorem 18.1 of [8]) the problem, in §2,

{ d[D" (u swp)] = d[(D"Jm)u] = f — op (Wm) — u* (Wm)
(B Vu) + (Csu) = 0.

Let us check all the hypotheses of that theorem.
1) Set
X, = {u e ghae/? (ﬁ; R”) : <Bt;Vu> + (Csu) = 0}

Xy ={ue ™t (Q;R") : (B"; Vu) + (C;u) = 0}

Y, = {beCO’“/2 (2 A%) :db=0in Q and / (b;x) =0, VXeHN}
Q

Yz_{beC””’“(Q;AQ) :db=0in Q and / (b;x) =0, VxGHN}.
Q

It is easy to see (cf. Proposition 16.23 in [8]) that Hypothesis (Hxy) of Theorem 18.1 in [8] is
satisfied.

2) Consider next the linear operator L : X; — Y; defined by

Lu=d [(Dtjm) u] .

12
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Noting that the symmetric part of B (D*.J,,,) " is definite if and only if that of DB.J,, is definite, we
can apply Theorem 4 (with A = D%.J,,,). Therefore the operator has a right inverse L=1 : Y5 — X5
verifying, where C1 = C1 (r,a, e, Q) is a constant,

HL_leX,; < Cy[blly, for every b€ Yz and i =1,2.

The Hypothesis (H) of Theorem 18.1 in [8] is then also satisfied.

3) Let @ : Xo — Y3 be defned by Q(u) = u* (wy,) . Note that @ (0) = 0 and dQ(u) = 0 in Q.
Moreover

/Q (Qu);x) =0, VxeHn(2A?)
since Q(u) is exact independently of the topology of €. This follows from (7) and the fact that
Wm =d (Z inld:EQZ) = Qu)=d lu* (Z m21_1dx21'>‘| .
=1 i1

It is easily verified (using Theorem 16.28 in [8]) that there exists a constant Co = Cs (7, a, Q) such
that, for every u,v € C"+12(Q;R"), the following estimates hold

1Q(w) = Q(V)llgo.arz < Colllullgrare + 1vllgrare) [u = vligrare

and
[ Q(u)lEma < €5 ||| gty et ot 1o

The Hypothesis (H¢g) of Theorem 18:1 in [8]is therefore verified for p =1,
ca(rs)=Ca(r+s) and ca(r,s)=Cars.
4) Our problem then becomes
Lu=f = 0% (wm) — Q).
Step 3. Theorem 18.1 in [8] gives us the existence of a u € X5 satisfying
Lu=f—op(wm) = Q(u)

provided
1

201 max{40102 5 1} )

Moreover there exists a constant ¢ = ¢ (r, a, e, 2) such that

1f = b (Wm)llgoar: < €=

[ullgrera < ellf =op (wm)llgre  and Jullgraz < cllf =op (@m)llco.as -

Step 4. Let R > 0 be suffi ciently large S(Lthatﬁ C Bpg, the ball centered at 0 and of radius R.
Using Theorem 16.11 in [8], we extend u to Bg so that the extension u satisfies

[illor.are(Br) < €lullgrarz@) < cce

where ¢ = ¢(r,Q) > 0. From now on we ignore the difference between u and w. By choosing €
smaller, if necessary, we can also ensure that there exists a constant v > 0 such that (recall that
¢ =o0p+u)

(Ve (@) B(2) Jml 6| = 7", VEER" and Va € B,

13
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We therefore deduce (cf. Lemma 2) that ¢ € Diff" " (ER; %) (ER)) restricted to € verifies the
conclusions of the theorem; while the ellipticity follows from Proposition 14.

Step 5. The statement with boundary datum follows as before considering now the spaces
X, = {u e che/? (%R") : 6 (Bu) =0 and v (Bu) = 0}

Xy ={ue ™t (Q;R") : 6 (Bu) = 0 and v (Bu) =0}

while Y7 and Y5 are unchanged; the proof being then identical. The uniqueness is shown in
Proposition 16. m

3.5 Local Darboux theorem

We continue our analysis with the local case. The theorem is a refinement of a result of Bandyopadhyay-
Dacorogna [3] for Darboux theorem. The new statement here is that, not only there exists a solution

to ¢* (wm) = f with optimal regularity, but there is one which satisfies the additional constraint
dy swmy = 0 (which renders the system elliptic) and still preserves the optimal regularity.

In this subsection 7 > 0 and n = 2m are integers, 0 < a < 1 and zg € 2 where Q C R" is a
bounded open set. Recall that (cf. Theorem 19 in [9]) since n = 2m, the condition rank [f (x¢)] = n
is equivalent to the existence of an invertible symmetric matrix D € R™*™ such that

ap (W) = f (wo)

where op(@) = D (& — x0) + Zox
Theorem 12 Let f € C™° (Q;AZ) be closed and D € R™ ™ symmetric and invertible such that

op (wm) = f (w0) -

Let A € C™* (Q;Az) with the symmetric part of DAJ,, definite, where A is the skew symmetric

matriz associated to \. Then there exist a neighborhood U C Q of zo and ¢ € Diff ™™ (U; ¢ (U))
such that ¢ (o) = g ,
e (wn)=fimU and dpiA=0inU. (23)

Moreover there exists a constant v > 0 such that
(Vo (@) A(2) Jm] &:€) 27 [€]°, VEER" and Ve €U (24)
and the system (23) is elliptic when restricted to ¢ satisfying (24).

Remark 13 (i) The proof below will show that for every 6 > 0, we can choose the neighborhood
U depending on § so that

IVe = Dl oy <0 if DA >0
IVe + Dlcogy <8 if DAJy <O0.
(ii) If D = I (meaning that f (zg) = wy,) and A = w,, , then the theorem reads as follows
©* (wm) = f, dpown=0 and Ve+ (Ve) >0.
Recall that N
o = Vi) = 30 (8, —37) =0

j=1
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and, since w,, is a constant form, we also have
0lpswm] = —dp swy, =0.

(iii) Note that, in general, one cannot assume that dp = 0 (i.e.o = V® ) as in the case of
volume forms. Indeed a slight change in Proposition 12 of [9] shows that if

=1 +a3)det Ada® + zoda' Ada® + da® A da?,
then there exists no ® € C3(R*) such that near 0

(V®)" (wm) = f

although there exists a local C'*° diffeomorphism ¢ such that

¢ (wm) = f.

Our theorem nevertheless proves that the map ¢ can be chosen so that
1 2 3 4
oy = Pz, TPy — P2y = 0.

Proof (Theorem 12 and Remark 13 (i)). Step I (Theorem 12). We can assume, without loss of
generality, that g = 0. Let W be the unit ball centered at 0. For every 0 < e < A"suffi ciently small
define

7€ () = (ed) and W (@)="\(ez).

Observe that A€ € C"* (W; A2) with the symmetzie part of DA€J,, defmite, f¢ € C™* (W; AQ) ,
dfc =0, f<(0)= f (0) and
”f6 —f (O)HCO,a/Q(W) —0 ase—0.

Applying Theorem 6 (to B! = A€ and C' = 0) we find, for € small enough, . € Diff™™*(W; ¢, (W))
satisfying
7/}: (W) = fin W, (ASV (e —0op))=0in W

and
(Ve (2) A (2) Tmn] & E)] > 7[€]*, VEER™ and Vo € W.

Since D is symmetric and A€ is skew symmetric, we obtain
0=(A%V (e —op)) = (A% Vipe = D) = (A% Vipe) = dipe 1 A"

Let "
Xe(@)== and ¢ =€ 0 x..
€

The map  — ¢ (x) — ¢ (0) and the set U = ¢ W have all the desired properties with (24) replaced
by
([Ve (@) A(2) Jm] €| = v[€]*, VEER" and Vo €U

Finally note that, since U is connected, we have either (Vo (2) A (z) Jpn] &§€) > 0or (Ve () A (x) Jn] &)
0. In the first case we have right away the claim, while in the second one we let

P () = —¢(2)

and observe that @ has all the properties claimed in the theorem. The ellipticity following from
Proposition 14.
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Step 2 (Remark 13 (i)). Tt is clearly enough to prove only the case DAJ,, > 0. Theorem 6 also
gives that

[be = opllgrarz(wy < clf* = b (W)l cowarz(wy -

Note that
Ve = Dllgo(awy = IV¥e = Dllcowy < ellf = b (W)l go.erz(wy -

and therefore, since
1F¢ =0 (@m)llcoarz ) = 1S = FO)llgo.asz () = 0 as e =0,

we have proved Remark 13 (i). m

3.6 Ellipticity and uniqueness

We now prove that the system considered in Darboux theorem, cf. Theorems 6 and 12, is indeed
elliptic (see the appendix).

Proposition 14 (Ellipticity of the Darboux system) Let n = 2m and @ C R"™ be a con-
nected open set. Let a € C! (R”;Az) be such that the associated skew symmetric matriz A is
invertible. Let B € C' (Q;R"*") be invertible and C € C' (4 R™). Let f € C (A?) and
g€ C (). Let S be the set of maps u € C (;R™) satisfying

([Vu (z) B(z) A7 (u ()] §&) A0, YGERMN {0} andvz € Q.

Then the system
w' (@) = fo"land" (B Vu)+ (Ciu) =g

is elliptic| (over Q and over §).

Remark 15 (i) Let 8 € C' (R";A?) be such that the associated skew symmetric matrix B is
invertible. The proposition then includes as special cases the following two systems

v (a)=f and d[usf]l=g
v ()=f and du.f=g.
(i) When « = 3 are constant forms, then BA~! = I and we require therefore that
(Vu(x) &€ #0 VE€R™\ {0} and Vz € Q.
Proof (Proposition 14). Our system is
u* (o) =2, P (u)duP Ndu? = f
{ (B';Vu) = g — (C;u).

Differentiating with respect to xj the first equation we get, up to lower order terms that we write
as h (u, Vu),
{ qu aP? (u) [dugk A du? + duP A dugk] = fu, +h(u,Vu)

(B Vu)),, = (g —(Ciu)),,

and therefore the algebraic problem becomes (recalling that a4 = —qP)

{ 6 {2y @77 (w) WPE A dut = X1 A duP]} = & (€A [u” (Asa)]} = 0
& (BEA® ) =0,
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where A € Al. Noting that (B;A®€) = (£, B)), we get after simplification by & (recall that

§£#0),
EN[u"(Aoa)]=0 and (& BA) =0.

Step 2. Note that
(A sa) = [Va (@) (Asa (u (@) = [Va @) A (@) X

The equation £ A [u* (A sa)] = 0 and the fact that £ # 0 lead to the existence of s € R\ {0} such
that
&= s[Vu (@) A(u(x)

Therefore the equation (§; BA) = 0 implies that
s <[Vu (@)]' A (u(2)) \: B (z) >\> = s (A (u(2)) \; Vau () B (z) \) = 0.

Since s # 0 and the symmetric part of Vu (z) B (z) A~! (u(z)) is definite, we deduce that indeed
A =0 and the ellipticity is proved. m

Proposition 16 (An uniqueness result) Let n = 2m and Q C R" be a bounded open smooth
simply connected set. Let o be a constant 2—form and B € C! (Q;AQ). Let Ate R™ ™ and

Be(C! (ﬁ; R”X") be the associated skew symmetric matrices to o and Bewhieh are assumed to be
invertible. Let u,v.€C* (ﬁ; R”) satisfy, ¥ € #£0 and Vo €0

([Vu(@) B@) A ']& &) (fNafz) Bz) A &€) >0 (25)

and such that
{ u* (a)y=v*(a) and Susfl=0wif] inQ

vi(usB)=vi(wip) on 09Q.

Then
u = .

Remark 17 (i) The condition v 4 (v 18) = v 4 (v 1) is equivalent (cf. Proposition 2.16 in [8]) to
(wAv)ap=wAv)1f < (uAvy;B)=vAv;f).

Therefore the uniqueness is obtained under a much weaker hypothesis than the Dirichlet condition
u A v =v Av; which is precisely the condition under which uniqueness is obtained for the Monge-
Ampeére equation (written under a system of first order equations, cf. Example 31 (ii)).

(ii) In fact the hypothesis (25) can be weakened, it suffi ces to require that, ifz = v 4 v, then
[([Vz(z)B(z) A" &€)] >0, VE#0and Va € Q.
This is interesting, because we get then uniqueness if, for example,
([VuBA7'&¢) >0 and ([VoBAT'&¢) >0.

Proof (Proposition 16). Step 1. Set

V—U v+u
and z = .
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The equation u* (o) = v* () becomes then
> art[(dzP — dwP) A (dz? — dw)] =Y P [(dzP + dwP) A (dz? + dw?)].
p<q p<q
After simplification we obtain
Zapq [(dzP A dw?) + (dwP Adz?)] =0
p<q

and thus, since aP? = —afP, we find

0=> a’ (dw’ Adz") =d

p,q

=d [(vZ)t (uua)} =d [(vZ)t Aw} .

Z apqudqu =d [Z apquzgrdxrl

p,q p,q,T

Step 2. The problem under consideration is then
d [(Vz)t Aw} =0 and d[Bw]=0 inQ
vi(Bw)=0 on 0N.

Observe next.thatssince (25) holds, then |<[VzB AN | & §>‘ > 0 and thus

K [B A (Vz)_t} §;§>) > 0.

The uniqueness follows then from Theorem 4. m

4 Corollaries: the symplectic decomposition

Recall that the polar decomposition (cf. [5] or [15]) tells us that if u is a map satisfying some non-
degeneracy condition, then w can be written as the composition of x = V®, where ® is a convex
function, with a measure preserving map 1, i.e.

u=xo1.

A natural question is to see if such a decomposition exists in the symplectic context (we then call
it the symplectic decomposition), i.e.try to prove that a map u : R?™ — R?*™ with appropriate
regularity assumptions can be written as u = x o ¢ where

VX + (VX)t > Oa dXme = 07 1/1* (wm) = Wm
where wy, is the standard symplectic form, namely
m ) )
W = Z dx¥ =1 A dz?.
i=1

Or, more generally, replacing w,, by any general symplectic form w try to write u as u = xy o ¢
where (note that w,,! = —w,,)

Vx+ (V) >0, dysw =0 and ¢*(w)=uw.
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We indeed give some evidences of the existence of the symplectic decomposition. We prove it
in two cases (cf. Corollaries 18 and 21) and formally in Remark 24 (i). We also formally show that
the symplectic decomposition implies the Hodge decomposition.

But before entering into details, we would like to point out that in the linear case, i.e. when
u(x) = Az for some constant matrix A, the situation is better, since (cf. Theorem 20 in [9]) for
any invertible matrix A € R"*" there exists S € R™*" such that SJ,,,S = J,, (i.e. S preserves
the standard symplectic matrix J,;,) and a symmetric matrix B such that

A=SB.

By inversion, one directly obtains the decomposition in the reverse order. Using the language of
differential forms, the previous result reads as follows: any map wu(x) = Az can be written as
u = x o1 where ¢ (x) = Sx preserves w,, and where y () = Bz is the gradient of the function

(Bz;x) '
2

xr —

4.1 The local case

We have the following local result. In this subsection we let » > 1 and n = 2m be integers,
0<a<l1, QCR” beopen and xg € 2. We recall that for any invertible skew syminetric matrix
F there exists an invertible symmetric matrix D € Ry*"™ (cf. Theorem 19.in [9))"such that

£ = DI D,
We also recall that ”
dx J@m = (VX; Jm) = Z (Xiij,l - Xﬁj_l) =0.
j=1

Corollary 18 (Local symplectic decomposition) Let D € R"*™ be symmetric and definite.
Let u € Diff™* (Q;u () be such that

(™) (@) (u(20)) = 0 (W) with op (y) = D (y = u (o)) +u (o).
Then there exist a neighborhood U of xg ,
¢ € DIt (U; 9 (U))  and  x € DUt (4 (U) 5 x (¢ (U)))
such that ¥ (o) = u (zo) and for x € U
P (wm) (2) = wm, - [dxawm] ($(2)) =0 and u=xo1.
Moreover there exists a constant v > 0 such that

(Vx (¥ (2) &€ >v[¢?, YEER" and VY € UL
Remark 19 (i) The condition (u’l)* (wm) (u(z0)) = 0}, (W) is equivalent to

(UD o ’LL)* (Wm) (1’()) = Wm -

So, in particular, if
u* (W) (o) = Wm

we can take D = I and the decomposition holds.
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(ii) In a completely analogous way, we can prove the symplectic decomposition in the reverse
order, namely there exist a neighborhood U of xg,

x € Diff™* (U; x (U)) and ¢ € Dift™* (x (U) ;¢ (x (U)))
such that x (z¢) = zo and for x € U
P (wm) (X (2)) =wm,  [dxawm] () =0 and w=1ox.
Moreover there exists a constant v > 0 such that
(VX (2)&€) = 7", VEER and Vo e U
Proof (Corollary 18). With no loss of generality we can assume that D > 0, since
op (wm) = o p (Wm) -

Welet f(y) = (u‘l)* (wm) (y) (and F be its associated skew symmetric matrix) which is a C"~1:¢
symplectic form. Note that

op (wm) = f (u(z0))
and therefore
DF =Y (u(20)) Jm = D [DJpD] " Jp = JE, D, .

Moreover DF~! (u(zg)) Jm > 0, since the right-hand side is positive definite/Sificer D > 0 (and
thus D~! > 0). Hence, by continuityywé have that D&%, %> 0 fin=a small enough neigh-
borhoodgef®i(Zg) . Appealing to Theoreni"12;" we find a=neighborhood Wl u () of u (xp) and
¢ € DIt 5 (V50 (V) such that @ (u(zo)) =w(xe) and, forgy €'V,

o wn) (W) =f ), [deaf () =0

and, in view of Remark 13 (i) restricting, if necessary, the neighborhood V, we have that V¢ +
(V)" > 0 on V. We then claim that x = ¢, ¢ = g ou and U = v~ (V) have all the desired
properties. Indeed we immediately have ¥* (w,,) = wy, . The condition dy Jw,, = 0 follows from
Lemma 20, since

0=[doaf "] (y) = [de (" (wWm) ] (W) =—[d(¢™") 2wy'] (¢ (1))
= [dx swnm] (X" (1)) -

Finally the conclusion Vx 4 (Vx)* > 0 holds, since Vo + (V)" > 0. This completes the proof. m
In the above considerations, as well as in (30) of Proposition 23, we use the following lemma.

Lemma 20 Let n =2m and w € C° (R";A?) be such that
rank [w (z)] =n, for every x.
Let o € C* (R™;R™). Then, for every x € R™, the following holds
[do 5 (0" (W) (2) = = [d (p7") sw™] (¢ (2)).

Proof (Lemma 20). We let @ € R™ ™ be the skew symmetric matrix associated to w € A2. On
one hand we have

[dp (0" 7] (0) = (Vo @) {(79)' (@) - Blo (@) - Vo (@)} )
= (Vo ()i (Vo) (2) - @) e () - (Vo) " (@)
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On the other hand we get

[ (™) 5w (9 (@) = (V (7)) (0 (2): @) " ( (2)))
= (V) (@)@ (e (@)
Observe that, for any invertible matrices 4, B € R"*" with B skew symmetric, we have
(ABA“ A™") = (4; A7'AB"Y = — (4; B) .

Taking A = (V) ' (z) and B = (@)~ " (¢ (z)), we obtain the lemma. m

4.2 The global case for small data

We now show the symplectic decomposition under a smallness assumption. We let » > 1 and
n = 2m be integers, 0 < a < 1, 2 C R™ be a bounded connected open smooth set and w,, be the
standard symplectic form. For D € R™"*" we set

op () = Dzx.

Corollary 21 (Global symplectic decomposition for small data) Let D € R™*™ be sym-
metric and positive defmite. Then there exists 6 =gd (r,a,D,Q) > 0_suchyihiat for every u €
Diff™® (ﬁ; U (ﬁ)) with

it =00 ook |56

there exist

v € Diff"e(€%, ) (Q)) and y € Diff™® (v () ;u ()
such that'w = x o ¢ and
VX + (VX)t > 0’ dX JWm = 07 ¢* (wm) = Wm -

Moreover if Q) is contractible, there exists a closed 2—form ® such that x = d® Jw,, .

Remark 22 (Reverse order symplectic decomposition) The proof below can be adapted to
prove a variant of the above symplectic decomposition in the reverse order, namely u = 1oy where

VX + (VX)t > Oa dX JWm = 07 ¢* (wnL) = Wm -

Proof (Corollary 21). Step 1. Let f be the C"~1¢ symplectic form defined on u (ﬁ) by f =
(ufl)* (wm,) and let I be its associated skew symmetric matrix. Observe that

—t

Fo (@) = [(Vu (@) T (Tu" (w(@))] = (T (@) Jon (Tu (@)’
and thus (recalling that D is symmetric)
D7 F ], = D7 (V) Jp (V) T = Jn DV + O (6)

where we used the fact that [|[Vu — D| o0 < 6 with ¢ small.

Step 2. We apply Theorem 6 to D!, Bt = F~!, C' = 0 and f. Choosing § small enough, we
can ensure (by Step 1) that the symmetric part of D=1 B.J,, is definite (since D > 0) and

1 =051 @nllcoars = || (™) @) = 0p1 @n)|| ., <
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where ¢ is as in Theorem 6 (note that the condition of orthogonality with the harmonic forms is
here automatically satisfied since f is exact). We therefore find ¢ € Diff™* (Q; %) (Q)) satisfying

©* (wm) = f, <F_1; V(e — O'D—1)> =0
which implies, since D! is symmetric and F~' is skew symmetric, that

¢ (wm) =f, doaf =0
We furthermore have
o —op-1llgrae <cllf —op-1 (Wm)ll o -

Choosing § even smaller if necessary, we deduce from the previous inequality that Vo + (ch)t >0,
since D=1 > 0. Letting xy = ¢! and ¢ = ¢ o u we have shown the corollary (appealing to Lemma
20). m

4.3 Hodge decomposition via symplectic decomposition

We now prove that whenever the symplectic decomposition is true, we can then derive, at least
formally, the classical Hodge decomposition (cf., for example, [8]) by linearization. Indeed, let
h be any regular map. Formally at least, for any real €, the symplectic decomposition reads off
id +€e h = xc o0 1 where

P! (W) S wp _and_ dx ey, = O (26)

We can assume (since we arelonly dt the formallevel) that y. land™), can be written as
Xe =id+ev+o(e) and Y =id+ew+ o(e)
for some regular maps v and w. Note that
id4+eh = xc0ot =1 +€evory. +o(e)
=id+4e(v+w)+o(e)
which implies h = v 4+ w or equivalently
h oWy =V 2wy, + W 2wy, (27)

An immediate calculation (as in Step 1 of the proof of Theorem 6) tells us that the first equation
in (26) reads as
d(wswy) = 0. (28)

Moreover the second equation in (26) directly gives dv sw,, = 0, or, which amounts to the same

(ct. (6)),
0 (vawy) =0. (29)

Combining (27), (28) and (29) we obtain (here we assume that  is contractible) the Hodge
decomposition for h Jw,, , namely

how, =da+ 6.

We therefore have obtained the same decomposition for any form g, choosing h = —g Jw,, in the
above equation and recalling that g = (—g Jwy,) JWn, .
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5 Optimal transport and the symplectic decomposition

Let n = 2m,  be a bounded connected smooth open set in R2™ and u € Diff’ (ﬁ; U (ﬁ)) . Let
h € C! (ﬁ; A2) be a symplectic form on Q and f be the symplectic form on u (ﬁ) defmed by

u* (f) = h. Set -
S= {XGDiffl (Qu () : x* (f) =h}
and consider

@) ] [ - o o)

XES

where p is the volume form (which, by abuse of notations, is identified with a function) associated

to hi.e. . 1
pdml/\'--/\dxzm:—'hm & p=—(xh").
m! m!

Proposition 23 Assume that there exists a minimizer x € S of (P). Then

dy h™' =0, inQ (30)

and

([Vx (2)]&€) >0, VEER" andVa €. (31)

Remark 24 (i) Proposition 23 is then relatéd to the discussionmade in thedntroduction of Section
4. Indeed-wethave our desired decompesition (with semi-defmiteness of the.symmetric part of Vyx
instead of definiteness), nanfely, letting ¥ = x''o u,we obtdin

Sy =h, dyoh™ =0 and u=you. (32)
(ii) Note that, by (6) and Proposition 1,
0 [X J h_lp} = —dyxJh7'p.

Hence (30) means that y Jh~!p is co-closed. In particular, assuming that €2 is contractible, we

have if h = w,,, since w;bl = —wy, and p = 1, that there exists a closed 2—form ® such that

X = 0P Jw,, - By (31), (32) and the above remark, we get
w=(6® swm) 01, V* (Wm) =wm, d®=0 and V(0P swy)+ (V(6® wy))" > 0.

(iii) We could have proceeded in a completely analogous way considering the minimization
problem

@t { [0 =@ i)

PYESH

where

Sp = {¢ € Diff" (4, Q) : " (h) = h}.
Note that every ¢ € Sy, satisfies
P* (K™) = h™ or equivalently p(¢)det Vi = p.

We would have found that y = u o~ € S and satisfies (31) and (32).
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Proof (Proposition 23). Step 1. For every v : Q — R"™ of the form
v=Vash!

where a € C§° () define S? by
d .
asz’:v(Sf) and Sj =id.
Since v € C§° (Q2; R™) classical results show that
Sy € Diff* (€;Q) and supp (S} —id) C Q.

Moreover noticing that
d(vsh)=0 in$

then, again by classical methods (cf. Theorems 12.5 and 12.7 in [8]),
(S9)" (h) =h, for every t.
This in turn implies that, for every t,

(S (R™) =h" & p(S))det VS) = p.

(33)

Let x be a minimizer of (P) . Since, for évery ¢, (x o.57)" (#)=H, the funetional J : R\— R defined

by
hoe Pices! i
Q

attains its minimum at ¢ = 0. Changing the variables and using (33) we get

v 2 3 v
10 = [ =5t o= [ (W +aP) o= [ 206570
Q Q Q
Hence J is smooth and thus J' (0) = 0 and J” (0) > 0. A direct computation leads to
J’(t)=2/Q<x;v(Sﬁt)>p=2/9<x(52’);v>p

and

J7 () =2 /Q (Vx (87) v (8Y)0) p

Therefore J' (0) = 0 and J” (0) > 0 read as

/(X;v>p:0 and /(me;v}pZO
Q Q

Step 2. We now prove (30). From the defmition of v, J' (0) = 0 can be rewritten as

/ <X;VaJh_1>p =0.
Q

Since h—! is skew-symmetric the above equation is equivalent to
/ {(x sph~";Va) =0,
Q
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yielding, since a € C§° (£2) is arbitrary,
0 (X_lph_l) =0.

Using (6) and Proposition 1 we directly deduce (30) since p > 0 in €.
Step 3. We finally show (31). From J” (0) > 0 we know that, for every a € C§° (Q2),

/ (Vx-Vash™;Va h™')p>0
Q

and get at once (31) from Lemma 25. This ends the proof. m

In the proof of the previous proposition we have used the following lemma.

Lemma 25 Letn = 2m, Q C R" be a bounded open set, p € C° (ﬁ) with p >0, A € C° (ﬁ; R”X")
and w € C° (ﬁ; AQ) be such that

rank [w (2)] =n, for every x € Q.

Assume that
<A. (Va_,w_l); VCLJLU_1> p >0, foreveryae C5(Q).
Q

Then
(A(z) ££)2 0, mV&aR" fandVx € Q. (34)

Proof Let B = (W)_1 e C? (ﬁ; ]R"X") ; where wwisthe skew symmetric matrix associated to w.
We have by assumption that

/Q ((B'-A-B)Va;Va)p >0, forevery a€ Cg° (). (35)

Fix a € C5° () and zg € Q. Using the test functions (extending a by 0 outside 2 and taking e
small enough)

ac (z) = L a(zo+ (x — x0) /e)

e71171

in (35) and letting € tend to 0, a simple calculation gives

(1B 4-B) (0] - Va): Va ) p(ao) dy > 0.
Finally using test functions of the form

ay(z) = g (z)sin (v (§ 7))

in the previous inequality where £ € R™ and g € C§° () is not identically 0 are both fixed, a direct
calculation gives that, for v large enough,

([(B"-A-B) (20)] &) > 0.
Since £ is arbitrary and B (zg) is invertible, the last inequality implies directly that
(A(zo) §€) 20, for every { € R”

which implies (34) up to the boundary by continuity. m
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6 Appendix: on the definition of ellipticity

Although the defmition of ellipticity that we use is standard (see [1], [2], [17] and [18]) and is, in
some more geometrical context, called right-ellipticity, we think that, for the ease of the reader
and for fixing the notations, it might be appropriate to recall it. We proceed in three steps, first
discussing the linear case, then the quasilinear one and finally the fully nonlinear case.

6.1 The linear case

Let us first introduce some notations.
(i) Let n, N,m and M be integers and let 2 C R™ be open and connected.
(ii) Let
uw:Q— RV, u=u(x)=u(z1, - ,T,) = (u1,~~ 7uN)

and thus Vu € RN*"™ (seen as a vector) i.e.

1<j<N . o
) where u)
1

m, __ 7
V™y = (“wlrm g

1<t im<n mo Qg -0y,

(iii) Let A € RM*(Nxn"™) he a matrix, that can also depend on z, be such that

1<GSNAI<k<M

A=A@) g (4, @)

]-Silx"';inLSn
with A
ATk (z) #0, | for'every1'< j < N,1 < k < M and for every z € Q.

Consider the linear operator
A:C™ (RY) — C° (4 RM)
be defined, for = € 2, by

n n

N N
j51 j js M j
Aw) @)= S Sl e S A

i1, i =1 j=1 i1, im =1 j=1

which we write, for z € Q, as
A(u) () = A(z) - V™u (2)
where the right-hand side can be seen as a [M x (N x n™)] matrix A applied to the [N x n™]
vector V™u leading to a M vector.
(iv) We denote by
§® ={®---Q¢= (fil o 'fim)gil,... Jim<n
m times

where ® stands for the tensor product of vectors in R™; for example

(&)? G& o G
&6 (8)° - &,
f®f:(fz‘§j)1gi,jgn: 1;2 (2) - 21
G160 &b - (&)
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To the differential operator A we associate in a natural way a linear (algebraic) operator.
Namely for x € Q2 and £ € R" fixed, we define

Age : RN — RM
through
Ave(\) = A(z) - (A ® 5®’") .
Definition 26 We say that the system
Aw) (z) =Ax) - VT™u(z)=f(z), xz€Q
is elliptic (over Q) if Vo € Q and V& € R\ {0}, then A = 0 € RY is the only solution of
Age (N)=0.

Remark 27 In other words, the defmition states that, for every x € Q and £ # 0, the operator
Ay ¢ is one to one. This defiition is, sometimes, called " right-ellipticity". Classically one also
specifies the range of the operator, which is usually the whole of R as in Example 28 (i) and
(ii); however this is not always the case as seen in Example 28 (iii).

- Let us first examine this particular example. Indeed in this last case the range of the operator
cannot be the whole of RM ~ A*1 x A*=1_Since dd = 0 and 6J.=0%it/S Tieessaty that

dft =0 and.d fA =7,
The range of the operator is then
X = {u: (,ul,uz) e AFL s AR e A pt =0 and € L2 :O}.

- More generally when there are natural conditions that restricts the space, this should be taken
into account. Indeed if we consider the system

A-V'u=f

where the data satisfy the constraint
B-Vif=0

where B € RLX(MX”l), the range of the operator is then
x={uer" B (noe) =0}
Therefore we require that V¢ € R™ \ {0} and V uu € X, there exists a unique A € RY such that
A ()\ ® §®"") -

But in order not to burden too much the technicalities, we have adopted the less restrictive defin-
ition of ellipticity where we do not specify the range.

Here are some examples showing that the definition corresponds to the classical ones. We start
with a single equation.
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Example 28 (i) The equation (here N = M =1 and m = 2)

n
§ a’ij uziz_,- = f

i,5=1

is elliptic if, for every £ # 0,

Z aij flgj 7& 0
ij=1
(ii) Let (here N = M and m = 2)

Zzaaﬂuwawngja .7:17aN
i=1 a,f=1

our definition of ellipticity gives (which is essentially the Legendre-Hadamard condition)

Zj}ja '’ €as #0, VEER\{0}, Ve RV\{0}.

t,j=1a,8=1

( ii) Let u be a k—form, d denotes the exterior derivative and 4 the co-differential (hete N = (7),
= k+1) ( ) and m = 1). Consider the system

du=f' and oJu =.f>

which is indeedreasily seen to be elliptic.

6.2 The nonlinear case
We now turn to quasilinear systems. Besides the above notations we adopt the following ones.
(i) Let S C C™ (Q;RN) , for instance
S={ueC"(Q%u(Q): (Vu(z)&E) #0, VEER\ {0}, Va € Q}
as in Proposition 14 (when A = B are constant matrices) or, as in Example 31 (i),
S={ueC?(Q): (Vu(z)&E) #0, VEER"\ {0}, Vo € Q}.

(ii) For u € C™1 (Q;RY) | we let

m—1

U(z) = (z,u(z),Vu(z), -, V" ru(2)) € Qx RV x RV*" 5. x RNX™

(iii) Let A € RM*(VX7) he such that

1<GSN;I<Sk<M

[ARER

A= AW @) = (4lE, (U @)

1<i1, - im<n
with, for every x € Q and u € S,
ATF (U (2)) #0, forevery 1<j< N, 1<k<M.
We then let
A(u) (x) = AU (2)) - V"™u ().
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Note that
A (u) (x) € RM.

(iv) We let f € RM that may also depend on U (x) and

flu](x) = £ (U (2)) € RM.

(v) To the differential operator A we associate, as above, a linear (algebraic) operator. Namely
forx € Q, £ € R" and u € S fixed, we define

Az RY - RM

through
Avea V) =AU (@) - (A0 ").

Definition 29 The system
Au) (z) = flu](z), zeQ

is said to be elliptic (over Q and over S) if Vo € Q, V¢ € R*\ {0} and Vu € S, then A =0 € RY
is the only solution of
Az eu(N)=0.

In the fully nonlinear case we proceed in the classical way. We reduce the system, toa quasilinear
one by differentiating with respect to allwariables according tethe/defilition below. Here we add
the followingsnotations.

(i) Let
F 1 Q X RYx RNSEAS "0 RN*n™ 7 RNxn™ _, M
with
F=(F'(Uz2), - ,FM(U,z))
where U € R” x RN x RVXn 5 ... x RN*xn™ 7! gnd 2 = (zj ) c RNxn™

i
(ii) Let, for k=1,--- M and a=1,--- ,n,

- _ ok
F(z,2)=F(U(z),2) and Fr = gf .

(iii) We consider the system
Flul(z)=F (U (z),V™u(x)) =0, z¢€.

Differentiating the system with respect to z,, (in case one of the equations is already in a quasilinear
form, there is no need to differentiate it, since the algebraic system is the same before or after
differentiation), we get

n N ;

FE (U (), V™ o = —FF (2,V™

Y X W@ ) g | = E e V(@)
11, iy =17=1 m

foreveryk=1,--- ,M and o = 1,--- ,n. It is therefore a quasilinear problem of the type considered

in Defnition 29. Hence the algebraic problem for which we have to prove that A = 0 is the only

solution is

n N
S O3[r  we e 6] o

i1, im=1 j=1
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Since € # 0, we deduce that the algebraic problem has been reduced to

n N
SR DI LRI L PUCHIE B

i1, sim=1j=1
for every 1 < k < M.
(iv) We then set A = A (U (x),V™u (z)) be defined by

:ij e]RM><(N><nm)

11 tm i

A= (Aﬂf?’“

1<GSN;1Sk<M
)1§i1,.~ im<n
and we make the hypothesis that
Aj;k:szj #£0, forevery1<j< Nandl1l<k<M.
(v) We fmally defme, for z € Q, £ € R" and u € S fixed,
Apgn: RY - RM
through
Aveu(N=A- ().
Definition 30 The system,
Flu] (%) =03 2 € Q

is said togheelliptic (over Qland over S) if Vo € Q, V& € R*\ {0} andVu € S, then A =0 € RY
is the only solution of
Az e (X)=0.

We now give two examples, starting with the Monge-Ampeére equation in dimension 2.
Example 31 (i) Consider (here N =M =1and n =m = 2)

Uz zq Uzozy — (u-”ﬂl-”ﬂz)Z = f

We find that the algebraic system is reduced to

A (uIQZEQg% - 2ux1m2£1§2 + lexlfg) =0

which has A = 0 as the unique solution, for every £ # 0, if and only if

Upyws €T = 2y 0,6160 + Upy 0, &5 70 & (VZu(2)§€) #0. (36)
Therefore if
S={ueC?(Q): (V’u(z)&E) #0, VE€ R\ {0}, Vo e Q}

we see that the equation is elliptic (over 2 and over S). Note that on S the functions are either
strictly convex or strictly concave.

(ii) It is interesting to make again the above computation but considering the problem as a
first order system, namely

1,2 1,2 _ _ 1 2 _
det Vo =v, vy, —v,, vz, =f and curlv=v,, —v; =0.
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After differentiation we get (here N =n = M = m = 2) that the algebraic problem is then

& [N (Gog, — &3, ) + A2 (&g, — &ivg,)] =0
& [N (Go, — &l ) + A2 (&uy, — &ivg,)] =0
&1 (M& =A%) =& (A& — M%) =0,
We therefore obtain that
A [Ehl, — &6 (v2, +ug,) +&vg, ] =0 and N [€807, — &6 (07, +uy,) + Evy, ] = 0.
The system thus has A = 0 as a unique solution, for every £ # 0, if and only if
o, — 08 (07, +og,) $8vu, #0 & (Vo (@)§€) #0.
Therefore if
S={veC" (UR?) : (Vv(z)§E) #0, VEER\ {0}, Yz € Q}

we see that the system is elliptic (over Q and over S). Note that on S the symmetric part of the
gradient of the map is defmite (either positive or negative).

We now turn to the most general nonlinear equation.

Example 32 Consider a single equation (here N = M = 1)
Flul(z) =8 (U(z), VU (z))e= 070 Q2

where

m—1

U ()=, (B Vg, S T i) ST R xR o xR

The condition A, ¢ ., (A) = 0 becomes now

n
A Z inl---im §i1 f’bm =0 where inl---qzm :FZil---im (U(x),vmu(m))

i1, im =1

It has A = 0, for £ # 0, as the only solution if and only if

> Fe bihcbi, £0, Vo eQand VE € R\ {0}, (37)

i1, im =1
Therefore if
S ={ue C™(Q) verifying (37)}
we see that the equation is elliptic (over Q and over §). In the special case m = 2 (which is the
one of Monge-Ampére equation, in this case F'(z) = det z) we get that (37) reads as

i,j=1
Vz e Qand VE € R™\ {0}. This is indeed the classical defmition of ellipticity for fully nonlinear

equations of the second order. When we consider Monge-Ampére equation in dimension 2, we see
that (38) is nothing else than (36).
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