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Abstract

In this paper, we propose a Minimax Concave

Penalized Multi-Armed Bandit (MCP-Bandit)

algorithm for a decision-maker facing high-

dimensional data with latent sparse structure in

an online learning and decision-making process.

We demonstrate that the MCP-Bandit algorithm

asymptotically achieves the optimal cumulative

regret in the sample size T , O(log T ), and fur-

ther attains a tighter bound in both the covari-

ates dimension d and the number of significant

covariates s, O(s2(s + log d)). In addition, we

develop a linear approximation method, the 2-

step Weighted Lasso procedure, to identify the

MCP estimator for the MCP-Bandit algorithm

under non-i.i.d. samples. Using this procedure,

the MCP estimator matches the oracle estimator

with high probability. Finally, we present two ex-

periments to benchmark our proposed the MCP-

Bandit algorithm to other bandit algorithms. Both

experiments demonstrate that the MCP-Bandit al-

gorithm performs favorably over other benchmark

algorithms, especially when there is a high level

of data sparsity or when the sample size is not too

small.

1. Introduction

Individual-level data have become increasingly accessible

in the Internet era, and decision-makers have accelerated

data accumulation with extraordinary speed in a variety of

industries, such as health-care, retail, and advertising. The

growing availability of user-specific data, such as medi-

cal records, demographics, geographic, browsing/shopping

history, etc., provides decision-makers with unprecedented

opportunities to tailor decisions to individual users. For
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example, doctors (i.e., decision-makers) can personalize

treatments for patients (i.e., users) based on their medical

history, clinical tests, and biomarkers (i.e., user-specific

data). These data are often collected sequentially over time,

during which decision-makers adaptively learn to predict

users’ responses to each decision as a function of users’

covariates (i.e., the exploration phase) and optimally adjust

decisions to maximize their rewards (i.e., the exploitation

phase) – an online learning and decision-making process.

We will adopt the multi-armed bandit model (Robbins 1952)

to study this process.

Individual-level data are typically presented in a high-

dimensional fashion, which poses significant computational

and statistical challenges. In particular, traditional statistic

methods, such as Ordinary Least Squares (OLS), require a

substantial number of samples (e.g., the sample size must be

larger than the covariates dimension) in order to be deemed

computationally feasible. Yet, under the high-dimensional

data structure, learning the accurate predictive models re-

quires even more data samples, which are obtained through

costly trials or experiments. Learning algorithms, such as

Lasso (Tibshirani 1996) and Minimax Concave Penalized

(MCP) (Zhang et al. 2010), have been developed to recover

the latent sparse data structure for high-dimensional data.

Therefore, compared to traditional statistic methods, Lasso

and MCP use significantly fewer data samples and deliver

better performance in high-dimensional settings.

In this paper, we propose a new algorithm, the MCP-Bandit

algorithm, for online learning and decision-making pro-

cesses in high-dimensional settings. Our algorithm follows

the ideas of the bandit model to balance the exploration-

and-exploitation trade-off and adopts the MCP estimator

to expedite the convergence of our parameter estimations

to their true values and to improve their statistical perfor-

mances. Since we focus on the multi-arm bandit model

that mixes the exploitation and exploration phases, sam-

ples generated under the exploitation phase are typically not

i.i.d., which significantly challenges the existing MCP litera-

ture. Therefore, we adopt a matrix perturbation technique to

derive new oracle inequalities for MCP under non-i.i.d sam-

ples. To our best knowledge, our work is the first one which

applies the MCP techniques to handle non-i.i.d samples. In



MCP-bandit

addition, although it is statistically favorable to adopt the

MCP estimator, solving the MCP estimator (a NP-complete

problem) could be computationally challenging. We pro-

pose a linear approximation method, 2-step weighted Lasso

procedure (2sWL), under the bandit setting as an efficient

solution approach to tackle this challenge. It also guaran-

tees that the MCP estimator solved by the 2sWL procedure

matches the oracle estimator with high probability.

We theoretically demonstrate that the MCP-Bandit algo-

rithm can notably improve the cumulative regret bound com-

paring to existing high-dimensional bandit algorithms and

attain the optimal regret bound on the sample size dimension.

In particular, we benchmark our MCP-Bandit algorithm to

an oracle counterpart where all parameters are common

knowledge and adopt the expected cumulative regret (i.e.,

the difference in rewards achieved by the oracle case and our

MCP-Bandit algorithm) as the performance measure. We

show that the maximal cumulative regret of the MCP-Bandit

algorithm over T users (i.e., a sample size of T ) is at most

O(log T ), which is the optimal/lowest theoretical bound

for all possible algorithms (Goldenshluger et al. 2013) and

improves the O((log T )2) bound of the Lasso-Bandit algo-

rithm developed in Bastani & Bayati (2015). It is worth

noting that the sparse structure of the high-dimensional data

typically implies that the dimension of significant covari-

ates (i.e., the covariates with non-zero coefficients) is much

smaller than that of all covariates (i.e. s ≤ O(log d)). We

show that the cumulative regret of the MCP-Bandit algo-

rithm in the covariates dimension, d, and the number of

significant covariates, s, is bounded by O(s2(s + log d)),
which is a tighter bound than the Lasso-Bandit algorithm

(O(s2 log2 d)) in Bastani & Bayati (2015).

At last, through one synthetic-data-based experiment and

one real-data-based experiment (i.e., Warfarin Dosing ex-

periment), we evaluate the MCP-Bandit algorithm’s per-

formance compared to other state-of-the-art bandit algo-

rithms designed both in low-dimensional settings and in

high-dimensional settings. We find that the MCP-Bandit al-

gorithm performs favorably in both experiments, especially

when the data sparsity level is high. Furthermore, when the

sample size is not extremely small, the MCP-Bandit algo-

rithm appears to be the most beneficial. These observations

suggest that the MCP-Bandit algorithm delivers great per-

formance for high-dimensional data and provides a smooth

transaction from data-poor regime to data-rich regime for

decision-makers.

2. Literature

This research is closely related to the exploration-

exploitation trade off in the multi-armed bandit literature.

Generally, there are two approaches to model users’ reward

functions. The decision-maker could make no parametric as-

sumption on the reward functions (Yang et al. 2002; Rigollet

& Zeevi 2010), but these algorithms’ performances degener-

ate exponentially as the covariates’ dimension grows. There-

fore, we follow the second approach, a parametric approach,

and focus on the case where the arm rewards follow a linear

function of users’ covariates (Auer 2002; Rusmevichien-

tong & Tsitsiklis 2010; Chu et al. 2011; Agrawal & Goyal

2013). Under this approach, Dani et al. (2008), Abbasi-

Yadkori et al. (2011), and Abbasi-Yadkori et al. (2012)

show that the expected cumulative regret is bounded by

O(
√
T ) in both low-dimensional and high-dimensional set-

tings. This bound is further improved to O(log T ) by Gold-

enshluger et al. (2013) under a OLS-Bandit algorithm in a

low-dimensional setting and to O((log T )2) by Bastani &

Bayati (2015) under the Lasso-Bandit algorithm in a high-

dimensional setting. This is a significant improvement from

O(
√
T ), especially as the sample size becomes larger. Our

research closely follows Goldenshluger et al. (2013) and

Bastani & Bayati (2015) and shows that the expected cu-

mulative regret for our proposed the MCP-Bandit algorithm

is bounded by O(log T ) in both low-dimensional and high-

dimensional settings. This regret bound is essentially the

lowest theoretical bound for all possible algorithms (Gold-

enshluger et al. 2013). Besides the improved dependence on

sample size dimension T , the MCP-Bandit algorithm will

provide a better bound in the covariates dimension d. In

the literature, the dimensionality’s dependence is common

to be polynomial in d. (Auer 2002; Rusmevichientong &

Tsitsiklis 2010; Chu et al. 2011; Agrawal & Goyal 2013;

Goldenshluger et al. 2013). Such polynomial dependence

in d can be quite costly and prohibit the practical adoption

of these algorithms in high-dimensional settings. Recently

the Lasso-Bandit algorithm proposed by (Bastani & Bay-

ati, 2015) reduces the dimensionality’s dependence to be

log-polynomial in d, i.e., O(log2 d). However, the price to

pay is that the Lasso-Bandit algorithm could only attain a

suboptimal dependence in T . The proposed MCP bandit

algorithm achieves a tighter log-polynomial dependence in

d, (i.e.,O(log d)) and the optimal dependence in T , (i.e.,

O(log T )) simultaneously.

Our research is also connected to the literature of statistical

learning algorithms that have been developed to recover

the latent sparse structure and, therefore, provide a good

performance guarantee even under limited samples in high-

dimensional settings. In particular, Lasso, proposed by

Tibshirani (1996), is able to identify a sparse subset of user

covariates and produce good estimations using limited sam-

ples. However, the Lasso estimator can be biased (Fan &

Li 2001). To address this issue, MCP has been proposed

by Zhang et al. (2010) and is shown to be unbiased and

can reach near optimal statistical performance, both the-

oretically and numerically. Although the MCP estimator

has statistical performance that is more desirable, solving

the MCP estimator is an NP-Complete problem due to the
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non-convexity penalty function (Liu et al.). The literature

has since proposed various algorithms, such as MIPGO (Liu

et al. 2016) and LLA (Zou 2006; Fan et al. 2014; 2015),

to overcome this computational hurdle. We also contribute

to this line of research by establishing the MCP estimator’

convergence rate and regret bounds in the multi-armed ban-

dit setting with non-i.i.d. samples and by developing an

efficient 2sWL procedure for the MCP estimator in high-

dimensional settings.

3. Problem Formulation

Following the settings of Auer (2002) and others, we present

a standard bandit problem. Consider a sequential arrival

process t ∈ {1, 2, ..., T}. At each time step t, a single

user, prescribed by a vector of high-dimensional covariates,

xt ∈ R
1×d, arrives. All covariates vectors {xt}t≥0 are

observable to a decision-maker and are i.i.d. distributed

according to an unknown distribution Px. The decision-

maker has access to a decision/arm set K = {1, 2, ...,K},

and the reward for decision i ∈ K on a user with a covariates

vector x is defined as:

Ri(x) = xTβi + ε, (1)

where βi ∈ R
1×d is the unknown coefficient vector for

decision i ∈ K and ε follows the sub-gaussian distribution.

Following a standard assumption in the bandit literature

(Rusmevichientong & Tsitsiklis 2010) to avoid trivial de-

cisions, we assume that both covariates vector x and coef-

ficient vector βi are upper bounded so that the maximum

regret at every time step will also be upper bounded.

In addition, the parameter vector βi for i ∈ K is high-

dimensional with latent sparse structures (i.e., the true value

for the parameter vector βtrue
i is sparse). We denote Si =

{j : βtrue
i,j 6= 0} as the index set for significant covariates

(i.e., the covariates with non-zero coefficient parameters).

This index set is also unknown to the decision-maker, and

we define the maximum number of significant covariates

for all arms as s (i.e., s = maxi∈K |Si|), which is typically

much smaller than the dimension of the covariates vector.

Note that the decision parameter vector βi is unknown,

but through a sequential online learning opportunities, the

decision-maker could partially resolve the uncertainty and

maximize its expected reward. We denote the decision-

maker’s policy as π = {πt}t≥0, where πt ∈ K is the de-

cision prescribed by policy π at time t. To benchmark the

performance of policy π, we introduce an oracle policy

π∗ = {π∗
t }t≥0 under which the decision-maker knows the

true values of the covariates vector βtrue
i for all i ∈ K and

chooses the best decision to maximize its expected reward

π∗
t

.
= argmaxi Eε[(Ri(xt))]. Obviously, the decision-

maker’s reward is upper-bounded by the oracle policy. Ac-

cordingly, we define the decision-maker’s expected regret

at time t for the observed user covariates xt under policy π

as rt=̇Eε [maxi Ri(xt)−Rπt
(xt)], which is the expected

reward difference between the optimal oracle policy π∗ and

the decision-maker’s policy π at time t. Our goal is to ex-

plore the policy π that minimizes the cumulative regret up

to time T , RT =̇
∑T

i=1 rt.

To analyze the regret, we present two technical assumptions.

Assumption 1 There exists a C0 > 0 such that for i 6= j ∈
K , Px{|xT (βi − βj)| ∈ (0, κ]} ≤ C0κ for κ > 0.

The first assumption is often referred to as the Margin Con-

dition and is first introduced in the classification literature

by Tsybakov et al. (2004). Goldenshluger et al. (2013) and

Bastani & Bayati (2015) adopt this assumption to the linear

bandit model. The Margin Condition ensures only a fraction

of covariates can be drawn near the boundary hyperplane

xT (βi − βj) = 0 in which rewards for both decisions are

nearly equal. Clearly, if a large proportion of covariates are

drawn from the vicinity of the boundary hyperplane, then for

any bandit algorithm, a small estimation error in the decision

parameter vectors (βi and βj) will lead decision-makers to

choose the wrong decision and perform poorly.

Assumption 2 There exists a partition Ko and Ks for K.

For i ∈ Ks, we will have xTβi + h < maxj 6=i x
Tβj

for some h > 0. For i ∈ Ko, we define Ui
.
=

{

x
∣

∣xTβi > maxj 6=i x
Tβj + h

}

. There exist p∗ such that

mini∈Ko
P{x ∈ Ui} ≥ p∗ for p∗ > 0.

The second assumption is the Arm Optimality Condition

(Goldenshluger et al. 2013; Bastani & Bayati 2015) and

ensures that the decision parameter vectors for optimal deci-

sions can be eventually learned, as the sample size increases.

In particular, this Arm Optimality Condition separates deci-

sions to an optimal subset (denoted by Ko) and a suboptimal

subset (Ks): Decision i in Ko must be strictly optimal for

some users’ covariates vectors (denoted by set Ui); other-

wise, decision j in Ks must be strictly suboptimal for all

users’ covariates vectors. Therefore, even if there is a small

estimation error for decision i in Ko, decision-makers are

more likely to choose decision i for a user with a covariates

vector draw from the set Ui. Accordingly, as sample size T
increases, decision-makers could improve their estimations

for decision parameter vectors for optimal arms.

These two assumptions are directly adopted from the multi-

armed bandit literature and have been shown to be satisfied

for all discrete distributions with finite support and a very

large class of continuous distributions (see Bastani & Bayati

2015 for detailed examples and discussions).

4. MCP-Bandit Algorithm

In the big data era, one of the major challenges for online

learning is the high dimensionality coupled with a limited

sample size. The Lasso estimator is proposed to tackle
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this hurdle. Yet, the Lasso estimator could perform sub-

optimally due to the bias introduced by its penalty function,

especially when the magnitude of true parameters is not

small. One way to address this issue is to construct a new

penalty function that renders an unbiased estimator and

improves the sparse structure discovery. To this end, we will

adopt the novel MCP approach to achieve this goal.

4.1. MCP Estimation

Consider that the true parameter vector βtrue is sparse with

a significant covariates index set S = {j : βtrue
j 6= 0}, then

the oracle estimator, under which the decision-maker has

perfect knowledge of the index set S, can be presented by

setting βj = 0 for j ∈ Sc and solving

β̂O(X,y)
.
= argmin

β∈S
{ 1

2n
‖Xβ − y‖22}. (2)

It is worth noting that under the oracle estimator, the

decision-maker can directly ignore the irrelevant covari-

ates (by forcing their corresponding coefficients to be zero)

and essentially reduce the high-dimensional problem to a

low-dimensional estimation problem. Therefore, the oracle

estimator is the best estimator we can attain from the data,

and we will have the following result:

Lemma 1 Let s be the cardinality of S and XS be the

significant covariates matrix. If n ≥ s, the estimator from

(2) will satisfies the following inequality with probability

1− exp(−O(n)):

‖β̂O(X,y)−βtrue‖2 ≤
√

2σ2 · eigmax(
1
n
XT

S XS)

eigmin(
1
n
XT

S XS)2

√

s

n
,

where eigmax(·) and eigmin(·) denote the maximum and

minimum eigenvalues.

[All proofs are in the supplement file] In practice, however,

the significant covariates index set S is typically unknown.

Therefore, we introduce the MCP approach to learn and

recover this latent sparse structure. Specifically, we define

the MCP penalty function as Pλ,a(x)
.
=

∫ |x|

0
max(0, λ −

1
a
|t|)dt, where a and λ are positive parameters defined by

the decision-maker. Using this MCP penalty function, we

can present the MCP estimator as follows:

β̂M (X,y, λ)
.
= argmin

β
{ 1

2n
‖Xβ−y‖22+

d
∑

j=1

Pλ,a(βj)}

(3)

Denote the index set for non-zero coefficients solutions in

Equation (3) as J .
={j : β̂j 6= 0}. If the absolute value

of every non-zero element in the MCP estimator is greater

than aλ, then Pλ,a(·) become constant parameters for all

j ∈ J . Therefore, we will have Pλ,a(βj) =
1
2aλ

2 for j ∈
J ; and Pλ,a(βj) = 0, otherwise. In other words, solving

the MCP estimator is equivalent to the following problem:

argminβ
{

‖Xβ − y‖22
}

, where βj = 0 for j ∈ J c.

If J = S, then we conclude that the MCP estimator con-

verges to the oracle estimator. Solving the MCP problem

could be challenging. Liu et al. (2016; 2017) have shown

that it is an NP-complete problem to find the MCP estimator

by globally solving Equation (3). In the next subsection,

we propose a local linear approximation method (i.e., the

2sWL procedure) to tackle this computational challenge and

demonstrate that the estimator solved by this procedure will

match the oracle estimator with high probability.

4.2. 2-Step Weighted Lasso Procedure

Let w = {wj} be positive weights, and we define a

weighted Lasso estimator as follows:

β̂W (X,y,w)
.
= argmin

β
{ 1

2n
‖Xβ−y‖22 +

d
∑

j=1

wj |βj |}.

Then, the 2sWL procedure consists of the following two

steps. First, we solve a standard Lasso problem where all

positive weights are set to a given parameter λ0. Second, we

use the Lasso estimator obtained in the first step to update

the weights vector w by taking the first-order derivatives of

the MCP penalty function, and then applying this updated

weight vector, we solve the weighted Lasso problem to

obtain the MCP estimator. The procedures of 2sWL at time

t can be described as follows:

2-Step Weighted Lasso (2sWL) Procedure:

Require: input parameters a and λ0

Step 1: solve a standard Lasso problem

β1 = β̂W (X,y, λ0);

Step 2: update wj =

{

P
′

λ,a(|β1,j |) , for β1,j 6= 0

λ0 , for β1,j = 0

and solve a weighted Lasso Problem

β̂2sWL(X,y,w) = β̂W (X,y,w).

Note that it is equivalent to solve the Lasso problem twice in

the 2sWL procedure; therefore, the worst-case computation

complexity for 2sWL is in the same order as for the standard

Lasso problem. In practice, we can initialize the second step

procedure with a warm start from the first step of the Lasso

procedure, which further reduces the computation time.

Next, we will show that the MCP estimator identified by

the 2sWL procedure can recover the oracle estimator with

high probability. To this end, we will need the standard

Compatibility Condition for Lasso estimator (Bühlmann &

Van De Geer 2011), where we denote φ as the compatibility

constant, to handle high dimensional data with sparse struc-

ture. The Compatibility Condition for Lasso estimators is

analogous to the standard positive-definite assumption for

the OLS estimator but less restrictive (e.g., the Compatibility

Condition allows collinearity in the covariates matrix).
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Proposition 1 Let min{|βtrue
j | : βtrue

j 6= 0, j =
1, 2, .., d} > (4 s

φ2 +a)λ, then the following MCP inequality

holds with probability exp(−O(n) +O(log d)):

‖β̂2sWL(X,y, λ)−βtrue‖2 >

√

2σ2eigmax(
1
n
XT

S XS)

eigmin(
1
n
XT

S XS)2

√

s

n
.

We can further show that as the sample size increases, the

MCP estimator converges to the true parameter at the opti-

mal convergence rate (Wang et al. 2014).

Proposition 2 Set λ = O(
√

log d/n). If the sample size

exceeds a certain threshold (i.e., n & O(s2 · log d)), the con-

vergence rate for the MCP estimator under the 2swL proce-

dure satisfies ‖β̂2sWL(X,y, λ)− βtrue‖1 = O(s
√

1/n),
which matches the optimal convergence rate and is faster

than that of the Lasso estimator (e.g.,O(s
√

log d/n)).

Together with the fact that the MCP estimator is an unbi-

ased estimator, we believe that adopting the MCP estimator

in multi-armed bandit model in high-dimensional settings

could improve the decision-maker’s reward and curb its

expected cumulative regret.

4.3. MCP-Bandit Algorithm

After establishing the MCP estimator’s statistical property,

we are ready to present our proposed the MCP-Bandit al-

gorithm. The proposed algorithm combines forced samples

from all decisions at a pre-determined time sequence during

which the decision-maker myopically selects a prescribed

decision. In particular, we follow the forced sampling se-

quence developed by Goldenshluger et al. (2013) for the

two-arms setting and by Bastani & Bayati (2015) for the

multi-arms setting:

Forced sampling sequences: For a given positive integer q ∈
Z
+, designed by the decision-maker, we define a sequence

of forced samples for decision i as follows: Ti=̇{(2n − 1) ·
Kq+ j|n ∈ {0, 1, 2, ...} and j ∈ {q(i− 1)+ 1, q(i− 1)+
2, ..., iq}}. At each prescribed time t ∈ Ti, the decision-

maker will myopically select decision i. Up to time t, we

define the set of forced sampling sequences for decision i as

Ti,t, where the cardinality of this forced sample set is at least

bKq log tc. We further denote the MCP estimator based on

the forced sampling sequence Ti as β̂M (Ti,t−1, λ1).

All-sample sequences: In addition to myopically select de-

cision i according to the prescribed forced sampling se-

quences, the decision-maker could choose decision i by

comparing rewards among all decisions and pick decision i
to maximize its reward. We denote Si,t as the set of times

decision i is selected, Si,t = {t′ |πt
′ = i for 1 ≤ t

′ ≤ t},

and use β̂M (Si,t−1, λ2,t) to represent the MCP estimator

based on this all sample set. Clearly, the forced sampling

set Ti,t is a subset of Si,t.

MCP-Bandit Algorithm

Require: input parameters q, h, λ1, λ2,0

Initialize β̂M (Ti,0, λ1) and β̂M (Si,0, λ2,0) for i ∈ K
for t = 1, 2.... do

Observe xt

If t ∈ Ti for i = 1, 2, ...,K
Set πt to i

Else

Update β̂M (Ti,t−1, λ1) for i ∈ K with 2sWL

K̂ = {i|xT
t β̂M (Ti,t−1, λ1) ≥

maxj∈K{xT
t β̂M (Tj,t−1, λ1)} − h/2}

Update β̂M (Si,t−1, λ2,t−1) for i ∈ K̂ with 2sWL

πt = argmax
i∈K̂

{

xT
t β̂M (Si,t−1, λ2,t−1)

}

End If

Set Sπt,t to Sπt,t−1 ∪ t and λ2,t to λ2,0

√

log t+log d
t

Play arm πt and observes yt
end for

The MCP-Bandit algorithm can be described and executed

as follows. If the current time t is prescribed in the forced

sample sequence Ti, then the decision-maker will select

decision i. Otherwise, the decision-maker will first estimate

the MCP estimator based on the forced sampling sequence

Ti before time t, β̂M (Ti,t−1, λ1), via the aforementioned

2sWL procedure, and then construct a decision subset K̂, in

which all decisions are within h/2 of the maximum possible

reward. Note that any decision that is not in this subset K̂
will be a suboptimal decision for the current user. Finally,

the decision-maker uses all samples to re-estimate the MCP

estimator β̂M (Si,t−1, λ2,t), based on which the decision-

maker will compare the reward performance for all decisions

in the subset K̂ and select the decision that generates the

highest expected reward.

The following Theorem is the main result of this paper and

establishes the expected cumulative regret upper bound for

the MCP-Bandit algorithm.

Theorem 1 When q ≥ q0, K ≥ 2, d ≥ 1, T ≥
t0 , and we take λ1 = (φ2p∗h)/(64sxmax) , λ2,0 =

φ2xmax

√

σ2(log t+ log d)/((p∗)3t)/2s, and λmin > 0.

The expected cumulative regret of the MCP-Bandit algo-

rithm is upper-bounded at time T by

RT ≤ 2(Kq)2bxmax + 2C1qKbxmax log T

+ 2Kbxmax log T

+ (4Kbxmax(C2 + 1) +
C0s

2σ2λmax

2λ2
min

p∗) log T

= O(s2 (s+ log d) log T ), (4)

where xmax and b are upper bounds for covariate X and

parameters β, C1, and C2 are positive constants independent

on T and d, q0 & O(s2 log d), and t0 & O((Kq)2).

Under a low-dimensional multi-armed bandit model setting,
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Goldenshluger et al. (2013) show that the lower-bound on

the expected cumulative regret is O(log T ), which is also

applicable (i.e., is the lower-bound) to our high-dimensional

setting. Theorem 1 demonstrates that the maximal expected

cumulative regret of the MCP-Bandit algorithm over T users

is upper-bounded by O(log T ). Therefore, the MCP-Bandit

algorithm achieves the optimal expected cumulative regret

in sample size T . This result comes from the fact that we can

ensure O(log T ) forced samples at time T , and therefore

the MCP estimator will match the oracle estimator with

high probability, which leads to the log T dependence. In

addition, when compared to the Lasso-Bandit algorithm

proposed by Bastani & Bayati (2015) in high-dimensional

settings, the MCP-Bandit algorithm reduces the regret upper-

bound from O(log2 T ) to O(log T ).

Theorem 1 also shows that the expected cumulative regret

of the MCP-Bandit algorithm in the covariates dimension d
is upper-bounded by O(log d), which is also a tighter bound

than that of the Lasso-Bandit algorithm O(log2 d) and other

classic bandit algorithms (e.g., OLS bandit in Goldenshluger

et al. 2013 or OFUL in Abbasi-Yadkori et al. 2011), which

typically yield polynomial dependence in d.

5. Key Steps of Regret Analysis for the

MCP-Bandit Algorithm

In this session, we will brief key steps in establishing the ex-

pected cumulative regret upper-bound for the MCP-Bandit

algorithm in Theorem 1. We first highlight the influence of

the non-i.i.d. data, inherited from the multi-armed Bandit

model, on statistical convergence properties of the MCP

estimator and further prove a general oracle MCP inequality

for these non-i.i.d. data. Then, we will apply this result to

establish the convergence properties for both forced-sample

and all-sample estimators and to provide the corresponding

cumulative regret. Finally, the total expected cumulative

regret can be established by adding up the regret in these

estimators. The main structure and sequence of our proving

steps described above are first introduced by Bastani & Bay-

ati (2015), who present their analysis for the expected regret

for the LASSO-Bandit algorithm in this sequence. We will

follow their presentation structure, but with different prov-

ing techniques and convergence properties, to illustrate the

key steps in analyzing the MCP-Bandit algorithm.

5.1. Oracle Inequality for Non-i.i.d. Data

We first show a general result for the MCP estimator under

non-i.i.d. data. Consider a linear model: y = Xβ + ε,

where Xn×d is the design matrix, yn×1 is the response

vector and εn×1 is the i.i.d σ−subgaussians. Denote A
as the index set for a sub-sample in X and y. The

MCP estimator for this linear model is β̂M (A, λ)
.
=

argmin
{

1
|A|‖XAβ − yA‖22 + Pλ(β)

}

, where XA is the

covariate matrix with sample indexed by A. Note that if

samples in A are not i.i.d, then standard MCP convergence

results (Fan et al., 2014; 2015) can not be directly applied.

Yet, as there are samples generated via the forced sample

sequences (e.g., Ti for i = 1, ...,K), there must exists a

subset A′ ⊆ A such that all samples in this subset are i.i.d

from distribution PX , that is, {Xt|t ∈ A′} ∼ PX × ...PX .

The next step is to show that when the cardinality of A′

(i.e., |A′ |) is large enough, β̂M (A, λ) will not be far away

from an all i.i.d. sample estimator and converge to the true

parameter. We formally summarize this result in Proposition

3:

Proposition 3 If |A′ |/|A| ≥ c0/2 > 0, ‖βtrue
min ‖min >

(4s/φ2 + a)λ, |A| ≥ 1024sz3

max
log d

c0φ2 , eigminE[x
T
SxS ] =

λmin > 0 and eigmax(
1

|A| (X
A
S )TXA

S ) ≤ λmax, then the

oracle inequality ‖β̂M (A, λ)− βtrue‖2 >
√

λmaxσ2

2λ2

min

√

s
|A|

holds for t > 0 with probability exp(−O(|A|) +O(log d)),
where XA

S is the significant covariates matrix with sample

indexed by A.

5.2. Oracle Inequality for Forced-sample Estimator

In the forced sample set Ti,t, each sample is drawn i.i.d

from the whole population. Denote T ′

i,t = Ti,t ∪ Ui, where

Ui is the set that decision i is the optimal choice. First,

we need to show that up to time t, |T ′

i,t| and |Ti,t| are

not too small with high probability. By the design of the

forced sampling sequence, we will have |Ti,t| ≥ q0 log t,
q ≥ d4q0e, and t ≥ (Kq)2. If we define an indicator

zi,t to indicate whether xi,t ∈ T ′

i,t, then zi,t will be i.i.d

Bernoulli random variable and E[zi,t] ≥ p∗. Thus |T ′ |
follows Binomial(|Ti,t|, E[zi,t]), from the Chernoff bound

for Binomial random variable: P

{

|T
′

i,t|

|Ti,t|
≥ p∗

i

2

}

≥ 1 − 1
t
.

To apply the results in Proposition 3, we need to show

that |T ′

i,t| ≥ 211sx3

max
log d

c0φ2 =
212sx3

max
log d

p∗

i
φ2 . As |T ′

i,t| ≥
q0 log t holds, if q0 ≥ 212sx3

max
log d

p∗

i
φ2 and log t ≥ 1, then

the sample size requirement will be satisfied. If we set

q0 ≥ 8σ2λmaxs
2x2

max

λ2

min
h2 , for log t ≥ 1 the following inequality

will hold with probability exp(−O(log d log t)):

‖β̂M (Ti,t, λ)− βtrue‖1 >
h

4xmax
. (5)

5.3. Oracle inequality for All-sample estimator

Next, to show the oracle inequality for all-sample MCP

estimator, we will start with the following Proposition (i.e.

Proposition 3 in Bastani & Bayati (2015)) to establish the

oracle inequality for the Lasso estimator:

Proposition 4 (Proposition 3 of Bastani & Bayati (2015))

The all-sample estimator satisfies the oracle inequality,

‖β̂L(Si,t)−βtrue‖1 > 16xmax

√

log t+log d
(p∗

i
)3c1t

, with probabil-
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ity 1
t
+2 exp

(

− (p∗

i )
2(c2∧

1

2
)

16 t
)

, where c1 and c2 are positive

constants.

Let λ = φ2xmax

2s0

√

log t+log d
(p∗)3c1t

. Then, for a given minimum

signal strength ‖βtrue‖min > ( 32s
φ2 + a)λ, Proposition 4

directly suggests that ‖β̂M−βtrue‖∞ ≤ ‖β̂M−βtrue‖1 ≤
32s
φ2 λ .

Therefore, the first-order derivatives for the MCP penalty

function with respect to the parameters of significant co-

variates will be zero. On the other hand, for non-significant

covariates, the first-order derivatives for the MCP penalty

function will be large numbers:

∂Pλ(β̂S) = 0 , if |β̂S |min > aλ

∂Pλ(β̂Sc) ≥ ∂Pλ(
32s
φ2 λ) , if |β̂Sc |max ≤ 32s

φ2 λ

Accordingly, we use these first-order derivatives as the

weights to the weighted Lasso problem, and its oracle in-

equality can be stated as in the following proposition.

Proposition 5 When t ≥ (Kq)2 and q & O(s2 log d),

the all sample estimator β̂2sWL(Si,t, λ), where λ =
φ2xmax

2s0

√

log t+log d
(p∗)3c1t

, is an oracle solution and satisfies the

oracle inequality: P
{

‖β̂M − βtrue‖2 ≥
√

σ2λmaxs
2λ2

min
p∗t

}

≤ ζ ,

where ζ = exp(−O(t) +O(log d)) +O(1/t).

5.4. Bounding the Cumulative Expected Regret

We now bound the cumulative regret for the MCP-Bandit

algorithm by dividing our time periods [T ] into three groups

and providing a upper bound for each group.

The first group contains all samples with t ≤ (Kq)2 and

all forced samples. When t ≤ (Kq)2, we do not have suf-

ficient samples to accurately estimate covariates parameter

vectors, the decision performance under the MCP-Bandit

algorithm will be sub-optimal comparing to that of the

oracle case. Combined with the fact that forced sample

size up to time T is on the order of O(log T ), we can

bound the cumulative regret by their worst case performance:

2(Kq)2bxmax+2C1 log TKqbxmax. Next, we segment the

t > (Kq)2 without forced samples case into two groups,

depending on whether we can accurately estimate covariates

parameter vectors by using only forced samples.

The second group includes scenarios where t >
(Kq)2 and forced sample based estimators are not

accurate enough. In particular, we define At
.
=

{

‖β̂M (Ti,t, λ)− βtrue‖1 ≤ h
4xmax

}

. When At doesn’t

hold, the forced sample based estimator vector β̂M (Ti,t, λ)
is not near the true parameter vector βtrue. Under those

scenarios, our decisions will be sub-optimal with high prob-

ability. Note that the size of forced samples increases in t,
so the probability of event At not occurring decreases in

time t. Through Equation (5), we can bound the cumulative

regret for the second group by 2Kbxmax log T .

The third group includes cases where t > (Kq)2 and

forced sample based estimators are accurate (i.e., event At

holds). Note that under these scenarios, we can improve

our estimation accuracy by using the all sample estima-

tor (O(
√

1/t) in Proposition 5), instead of relying only

on the forced sample estimator (O(
√

1/ log t) in Proposi-

tion 3). Benefiting from the improved estimation accuracy,

we can bound the cumulative regret for the third group by

(4Kbxmax +
C0s

2σ2λmax

2λ2

min

p∗) log T .

6. Experiments

We benchmark the MCP-Bandit algorithm to two ban-

dit algorithms that are not specifically designed for high-

dimensional settings (i.e., OLS-Bandit by Goldenshluger

et al. 2013 and OFUL by Abbasi-Yadkori et al. 2011) and

one bandit algorithm that is developed for high-dimensional

problems (i.e., Lasso-Bandit by Bastani & Bayati 2015).

6.1. Synthetic Data

In the synthetic data experiment, we present a two-arm

bandit setting with decision parameter βi, i = 1, 2. To

simulate different sparsity level, we generate four possi-

ble covariates dimensions, d = 10, 102, 103, and 104, and

keep the dimension for significant covariates unchanged

s = 5. Other parameter combinations exhibit similar pat-

tern and observations, and therefore omitted. In addition,

we share the same parameter λ in both the Lasso-Bandit

algorithm and the MCP-Bandit algorithm and select the

unique parameter for the MCP-Bandit algorithm a at 2. We

arbitrarily set the coefficients for significant covariates for

the first arm to be β1 = (1, 2, 3, 4, 5) and for the second

arm to be β2 = 1.1 ·β1 . The covariates are generated from

N(0,Σ), where Σij = 0.5|i−j| and the random error ε fol-

lows N(0, 1). For each covariates dimension, we generate

an average of 10, 000 trials. Figure 1 shows the influence

of the covariates dimension d and the sample size T on the

cumulative regret for OFUL, OLS-Bandit, Lasso-Bandit,

and MCP-Bandit algorithms.

We observe that the MCP-Bandit algorithm outperforms

all other three benchmarks and has the lowest cumulative

regret. The cumulative regret for all four algorithms in-

creases in the covariates dimension d, but at different rate

(see the left-hand-side of Figure 1). Comparing to OLS-

Bandit (Goldenshluger et al., 2013) and OFUL algorithm

in (Abbasi-Yadkori et al., 2011), Lasso-Bandit (Bastani &

Bayati, 2015) and MCP-Bandit algorithms, both of which

are designed for high-dimensional problems, have lower cu-

mulative regret that increases in d at a slower rate. Further,

the benefits of adopting the MCP-Bandit algorithm seem to

increase in d, which confirms our theoretical findings: The
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Figure 1. The influence of the covariates dimension d and the sample size T on the expected cumulative regret.

MCP-Bandit algorithm has a better dependence in d (e.g.,

log d), than Lasso-Bandit (e.g., log2 d), OFUL, and OLS-

Bandit (the last two algorithms have polynomial bounds in

d).

The right-hand-side of Figure 1 reports the influence of sam-

ple size T on the cumulative regret. As MCP-Bandit pro-

vides the optimal time dependence under high-dimensional

settings, MCP-bandit is guaranteed to strictly improve from

Lasso-Bandit, especially when T is not too small. When

there are insufficient samples, all algorithm fails to accu-

rately learn covariates parameters vectors. As a result, all

four algorithm perform equally poor under limited samples.

As the sample size increases, the MCP-bandit algorithm

immediately outperforms all other benchmarks. In the right-

hand-side of Figure 1, the regret reduction of MCP-Bandit

over Lasso-Bandit is significant (> 1%) when T is larger

than 35; the regret reduction improves in T and is stabilized

around 16% after 175 samples. This observation also echoes

our theoretical findings that the MCP-Bandit algorithm at-

tains the optimal regret bound in sample size dimension

(O(log T )).

6.2. Warfarin Dosing Patient Data

The second experiment considers a health-care decision-

making process in which physicians determine the opti-

mal warfarin dosage for every incoming patient. The war-

farin dosing patient data (Consortium et al. 2009), which is

known to be dense (e.g., log T is not necessarily larger

than s), contains approximately 100 detailed covariates

for 5, 700 patients. Under this dataset, Bastani & Bayati

(2015) demonstrate that the Lasso-Bandit algorithm outper-

forms many existing bandit algorithms, including OFUL LS

(Abbasi-Yadkori et al. 2011), OFUL-EG (Abbasi-Yadkori

et al. 2012), and OLS-Bandit (Goldenshluger et al. 2013).

We apply the MCP-Bandit algorithm to the same warfarin

dosing patient data to evaluate its performance in practi-

cal decision-making contexts where technique assumptions

specified early may not hold. Figure 2 compares the aver-

age percentage of correct dosing decisions under the MCP-

Bandit algorithm to those under the oracle case, OLS-Bandit,

Lasso-Bandit, OFUL, and actual physicians’ decisions. We

observe that when the number of patients is not too small

(i.e., great than 370 patients), the MCP-Bandit algorithm

always outperforms all other benchmarks (e.g., the regret

reduction ranges from 0% to 22.1%).

Figure 2. The percentage of optimal warfarin dosing decisions.

7. Conclusion

In this paper, we propose the MCP-Bandit algorithm for

online learning and decision-making processes in high-

dimensional data settings. To overcome the computational

and statistical challenges associated with solving the MCP

estimator under non-i.i.d. samples, we propose the 2sWL

procedure and show that the MCP estimator solved by the

2sWL procedure matches the oracle estimator with high

probability. We demonstrate that the cumulative regret of

the MCP-Bandit algorithm over sample size T is bounded

by O(log T ), which is lowest theoretical bound for all pos-

sible algorithms. On the covariates dimension d and the

number of significant covariates dimension s, the cumu-

lative regret of the MCP-Bandit algorithm is bounded by

O(s2(s + log d)), which is also a tighter bound than the

other existing bandit algorithms. We show that the MCP-

Bandit algorithm performs favorably in all our experiments,

especially when the data sparsity level is high or when the

sample size is not too small.
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