
On the Local Minima of the Empirical Risk

Chi Jin∗

University of California, Berkeley
chijin@cs.berkeley.edu

Lydia T. Liu∗

University of California, Berkeley
lydiatliu@cs.berkeley.edu

Rong Ge
Duke University

rongge@cs.duke.edu

Michael I. Jordan
University of California, Berkeley

jordan@cs.berkeley.edu

Abstract

Population risk is always of primary interest in machine learning; however, learning
algorithms only have access to the empirical risk. Even for applications with
nonconvex nonsmooth losses (such as modern deep networks), the population
risk is generally significantly more well-behaved from an optimization point of
view than the empirical risk. In particular, sampling can create many spurious
local minima. We consider a general framework which aims to optimize a smooth
nonconvex function F (population risk) given only access to an approximation f
(empirical risk) that is pointwise close to F (i.e., ‖F − f‖∞ ≤ ν). Our objective
is to find the ε-approximate local minima of the underlying function F while
avoiding the shallow local minima—arising because of the tolerance ν—which
exist only in f . We propose a simple algorithm based on stochastic gradient descent
(SGD) on a smoothed version of f that is guaranteed to achieve our goal as long as
ν ≤ O(ε1.5/d). We also provide an almost matching lower bound showing that
our algorithm achieves optimal error tolerance ν among all algorithms making
a polynomial number of queries of f . As a concrete example, we show that our
results can be directly used to give sample complexities for learning a ReLU unit.

1 Introduction

The optimization of nonconvex loss functions has been key to the success of modern machine
learning. While classical research in optimization focused on convex functions having a unique
critical point that is both locally and globally minimal, a nonconvex function can have many local
maxima, local minima and saddle points, all of which pose significant challenges for optimization.
A recent line of research has yielded significant progress on one aspect of this problem—it has
been established that favorable rates of convergence can be obtained even in the presence of saddle
points, using simple variants of stochastic gradient descent [e.g., Ge et al., 2015, Carmon et al., 2016,
Agarwal et al., 2017, Jin et al., 2017a]. These research results have introduced new analysis tools
for nonconvex optimization, and it is of significant interest to begin to use these tools to attack the
problems associated with undesirable local minima.

It is NP-hard to avoid all of the local minima of a general nonconvex function. But there are some
classes of local minima where we might expect that simple procedures—such as stochastic gradient
descent—may continue to prove effective. In particular, in this paper we consider local minima that
are created by small perturbations to an underlying smooth objective function. Such a setting is
natural in statistical machine learning problems, where data arise from an underlying population, and
the population risk, F , is obtained as an expectation over a continuous loss function and is hence

∗The first two authors contributed equally.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

f

Figure 1: a) Function error ν; b) Population risk vs empirical risk

smooth; i.e., we have F (θ) = Ez∼D[L(θ; z)], for a loss function L and population distribution D.
The sampling process turns this smooth risk into an empirical risk, f(θ) =

∑n
i=1 L(θ; zi)/n, which

may be nonsmooth and which generally may have many shallow local minima. From an optimization
point of view f can be quite poorly behaved; indeed, it has been observed in deep learning that
the empirical risk may have exponentially many shallow local minima, even when the underlying
population risk is well-behaved and smooth almost everywhere [Brutzkus and Globerson, 2017,
Auer et al., 1996]. From a statistical point of view, however, we can make use of classical results in
empirical process theory [see, e.g., Boucheron et al., 2013, Bartlett and Mendelson, 2003] to show
that, under certain assumptions on the sampling process, f and F are uniformly close:

‖F − f‖∞ ≤ ν, (1)

where the error ν typically decreases with the number of samples n. See Figure 1(a) for a depiction of
this result, and Figure 1(b) for an illustration of the effect of sampling on the optimization landscape.
We wish to exploit this nearness of F and f to design and analyze optimization procedures that find
approximate local minima (see Definition 1) of the smooth function F , while avoiding the local
minima that exist only in the sampled function f .

Although the relationship between population risk and empirical risk is our major motivation, we
note that other applications of our framework include two-stage robust optimization and private
learning (see Section 5.2). In these settings, the error ν can be viewed as the amount of adversarial
perturbation or noise due to sources other than data sampling. As in the sampling setting, we hope to
show that simple algorithms such as stochastic gradient descent are able to escape the local minima
that arise as a function of ν.

Much of the previous work on this problem studies relatively small values of ν, leading to “shallow”
local minima, and applies relatively large amounts of noise, through algorithms such as simulated
annealing [Belloni et al., 2015] and stochastic gradient Langevin dynamics (SGLD) [Zhang et al.,
2017]. While such “large-noise algorithms” may be justified if the goal is to approach a stationary
distribution, it is not clear that such large levels of noise is necessary in the optimization setting in
order to escape shallow local minima. The best existing result for the setting of nonconvex F requires
the error ν to be smaller than O(ε2/d8), where ε is the precision of the optimization guarantee (see
Definition 1) and d is the problem dimension [Zhang et al., 2017] (see Figure 2). A fundamental
question is whether algorithms exist that can tolerate a larger value of ν, which would imply that they
can escape “deeper” local minima. In the context of empirical risk minimization, such a result would
allow fewer samples to be taken while still providing a strong guarantee on avoiding local minima.

We thus focus on the two central questions: (1) Can a simple, optimization-based algorithm avoid
shallow local minima despite the lack of “large noise”? (2) Can we tolerate larger error ν in
the optimization setting, thus escaping “deeper” local minima? What is the largest error that
the best algorithm can tolerate?

In this paper, we answer both questions in the affirmative, establishing optimal dependencies between
the error ν and the precision of a solution ε. We propose a simple algorithm based on SGD
(Algorithm 1) that is guaranteed to find an approximate local minimum of F efficiently if ν ≤
O(ε1.5/d), thus escaping all saddle points of F and all additional local minima introduced by f .
Moreover, we provide a matching lower bound (up to logarithmic factors) for all algorithms making a
polynomial number of queries of f . The lower bound shows that our algorithm achieves the optimal

2

include simulated annealing [Kirkpatrick et al., 1983] and evolutionary algorithms [Rechenberg and
Eigen, 1973], whose convergence guarantees are less clear.

2 Preliminaries

Notation We use bold lower-case letters to denote vectors, as in x,y, z. We use ‖·‖ to denote the
`2 norm of vectors and spectral norm of matrices. For a matrix, λmin denotes its smallest eigenvalue.
For a function f : Rd → R, ∇f and ∇2f denote its gradient vector and Hessian matrix respectively.
We also use ‖·‖∞ on a function f to denote the supremum of its absolute function value over entire

domain, sup
x∈Rd |f |. We use B0(r) to denote the `2 ball of radius r centered at 0 in R

d. We use

notation Õ(·), Θ̃(·), Ω̃(·) to hide only absolute constants and poly-logarithmic factors. A multivariate
Gaussian distribution with mean 0 and covariance σ2 in every direction is denoted as N (0, σ2

I).
Throughout the paper, we say “polynomial number of queries” to mean that the number of queries
depends polynomially on all problem-dependent parameters.

Objectives in nonconvex optimization Our goal is to find a point that has zero gradient and
positive semi-definite Hessian, thus escaping saddle points. We formalize this idea as follows.

Definition 1. x is called a second-order stationary point (SOSP) or approximate local minimum
of a function F if

‖∇F (x)‖ = 0 and λmin(∇2F (x)) ≥ 0.

We note that there is a slight difference between SOSP and local minima—an SOSP as defined here
does not preclude higher-order saddle points, which themselves can be NP-hard to escape from
[Anandkumar and Ge, 2016].

Since an SOSP is characterized by its gradient and Hessian, and since convergence of algorithms to
an SOSP will depend on these derivatives in a neighborhood of an SOSP, it is necessary to impose
smoothness conditions on the gradient and Hessian. A minimal set of conditions that have become
standard in the literature are the following.

Definition 2. A function F is `-gradient Lipschitz if ∀x,y ‖∇F (x)−∇F (y)‖ ≤ `‖x− y‖.
Definition 3. A function F is ρ-Hessian Lipschitz if ∀x,y ‖∇2F (x)−∇2F (y)‖ ≤ ρ‖x− y‖.

Another common assumption is that the function is bounded.

Definition 4. A function F is B-bounded if for any x that |F (x)| ≤ B.

For any finite-time algorithm, we cannot hope to find an exact SOSP. Instead, we can define ε-
approximate SOSP that satisfy relaxations of the first- and second-order optimality conditions.
Letting ε vary allows us to obtain rates of convergence.

Definition 5. x is an ε-second-order stationary point (ε-SOSP) of a ρ-Hessian Lipschitz function
F if

‖∇F (x)‖ ≤ ε and λmin(∇2F (x)) ≥ −√ρε.

Given these definitions, we can ask whether it is possible to find an ε-SOSP in polynomial time under
the Lipchitz properties. Various authors have answered this question in the affirmative.

Theorem 6. [e.g. Carmon et al., 2016, Agarwal et al., 2017, Jin et al., 2017a] If the function
F : Rd → R is B-bounded, l-gradient Lipschitz and ρ Hessian Lipschitz, given access to the gradient
(and sometimes Hessian) of F , it is possible to find an ε-SOSP in poly(d,B, l, ρ, 1/ε) time.

3 Main Results

In the setting we consider, there is an unknown function F (the population risk) that has regularity
properties (bounded, gradient and Hessian Lipschitz). However, we only have access to a function f
(the empirical risk) that may not even be everywhere differentiable. The only information we use is
that f is pointwise close to F . More precisely, we assume

Assumption A1. We assume that the function pair (F : R
d → R, f : R

d → R) satisfies the
following properties:

1. F is B-bounded, `-gradient Lipschitz, ρ-Hessian Lipschitz.

4

Algorithm 1 Zero-th order Perturbed Stochastic Gradient Descent (ZPSGD)

Input: x0, learning rate η, noise radius r, mini-batch size m.
for t = 0, 1, . . . , do

sample (z
(1)
t , · · · , z(m)

t) ∼ N (0, σ2I)

gt(xt)←
∑m

i=1 z
(i)
t [f(xt + z

(i)
t)− f(xt)]/(mσ2)

xt+1 ← xt − η(gt(xt) + ξt), ξt uniformly ∼ B0(r)
return xT

2. f, F are ν-pointwise close; i.e., ‖F − f‖∞ ≤ ν.

As we explained in Section 2, our goal is to find second-order stationary points of F given only
function value access to f . More precisely:

Problem 1. Given a function pair (F, f) that satisfies Assumption A1, find an ε-second-order
stationary point of F with only access to values of f .

The only way our algorithms are allowed to interact with f is to query a point x, and obtain a function
value f(x). This is usually called a zero-th order oracle in the optimization literature. In this paper
we give tight upper and lower bounds for the dependencies between ν, ε and d, both for algorithms
with polynomially many queries and in the information-theoretic limit.

3.1 Optimal algorithm with polynomial number of queries

There are three main difficulties in applying stochastic gradient descent to Problem 1: (1) in order
to converge to a second-order stationary point of F , the algorithm must avoid being stuck in saddle
points; (2) the algorithm does not have access to the gradient of f ; (3) there is a gap between the
observed f and the target F , which might introduce non-smoothness or additional local minima.
The first difficulty was addressed in Jin et al. [2017a] by perturbing the iterates in a small ball; this
pushes the iterates away from any potential saddle points. For the latter two difficulties, we apply
Gaussian smoothing to f and use z[f(x+ z)− f(x)]/σ2 (z ∼ N (0, σ2I)) as a stochastic gradient
estimate. This estimate, which only requires function values of f , is well known in the zero-th order
optimization literature [e.g. Duchi et al., 2015]. For more details, see Section 4.1.

In short, our algorithm (Algorithm 1) is a variant of SGD, which uses z[f(x + z) − f(x)]/σ2 as
the gradient estimate (computed over mini-batches), and adds isotropic perturbations. Using this
algorithm, we can achieve the following trade-off between ν and ε.

Theorem 7 (Upper Bound (ZPSGD)). Given that the function pair (F, f) satisfies Assump-

tion A1 with ν ≤ O(
√

ε3/ρ · (1/d)), then for any δ > 0, with smoothing parameter σ =

Θ(
√

ε/(ρd)), learning rate η = 1/`, perturbation r = Θ̃(ε), and mini-batch size m =
poly(d,B, `, ρ, 1/ε, log(1/δ)), ZPSGD will find an ε-second-order stationary point of F with proba-
bility 1− δ, in poly(d,B, `, ρ, 1/ε, log(1/δ)) number of queries.

Theorem 7 shows that assuming a small enough function error ν, ZPSGD will solve Problem 1 within
a number of queries that is polynomial in all the problem-dependent parameters. The tolerance on
function error ν varies inversely with the number of dimensions, d. This rate is in fact optimal for all
polynomial queries algorithms. In the following result, we show that the ε, ρ, and d dependencies in
function difference ν are tight up to a logarithmic factors in d.

Theorem 8 (Polynomial Queries Lower Bound). For any B > 0, ` > 0, ρ > 0 there exists

ε0 = Θ(min{`2/ρ, (B2ρ/d2)1/3}) such that for any ε ∈ (0, ε0], there exists a function pair (F, f)

satisfying Assumption A1 with ν = Θ̃(
√

ε3/ρ · (1/d)), so that any algorithm that only queries a
polynomial number of function values of f will fail, with high probability, to find an ε-SOSP of F .

This theorem establishes that for any ρ, `, B and any ε small enough, we can construct a randomized
‘hard’ instance (F, f) such that any (possibly randomized) algorithm with a polynomial number of
queries will fail to find an ε-SOSP of F with high probability. Note that the error ν here is only a
poly-logarithmic factor larger than the requirement for our algorithm. In other words, the guarantee
of our Algorithm 1 in Theorem 7 is optimal up to a logarithmic factor.

5

3.2 Information-theoretic guarantees

If we allow an unlimited number of queries, we can show that the upper and lower bounds on
the function error tolerance ν no longer depends on the problem dimension d. That is, Problem 1
exhibits a statistical-computational gap—polynomial-queries algorithms are unable to achieve the
information-theoretic limit. We first state that an algorithm (with exponential queries) is able to find
an ε-SOSP of F despite a much larger value of error ν. The basic algorithmic idea is that an ε-SOSP
must exist within some compact space, such that once we have a subroutine that approximately
computes the gradient and Hessian of F at an arbitrary point, we can perform a grid search over this
compact space (see Section D for more details):

Theorem 9. There exists an algorithm so that if the function pair (F, f) satisfies Assumption A1 with

ν ≤ O(
√

ε3/ρ) and ` >
√
ρε, then the algorithm will find an ε-second-order stationary point of F

with an exponential number of queries.

We also show a corresponding information-theoretic lower bound that prevents any algorithm from
even identifying a second-order stationary point of F . This completes the characterization of function
error tolerance ν in terms of required accuracy ε.

Theorem 10. For any B > 0, ` > 0, ρ > 0, there exists ε0 = Θ(min{`2/ρ, (B2ρ/d)1/3}) such that

for any ε ∈ (0, ε0] there exists a function pair (F, f) satisfying Assumption A1 with ν = O(
√

ε3/ρ),
so that any algorithm will fail, with high probability, to find an ε-SOSP of F .

3.3 Extension: Gradients pointwise close

We may extend our algorithmic ideas to solve the problem of optimizing an unknown smooth function
F when given only a gradient vector field g : Rd → R

d that is pointwise close to the gradient ∇F .
Specifically, we answer the question: what is the error in the gradient oracle that we can tolerate to
obtain optimization guarantees for the true function F ? We observe that our algorithm’s tolerance on
gradient error is much better compared to Theorem 7. Details can be found in Appendix E and F.

4 Overview of Analysis

In this section we present the key ideas underlying our theoretical results. We will focus on the results
for algorithms that make a polynomial number of queries (Theorems 7 and 8).

4.1 Efficient algorithm for Problem 1

We first argue the correctness of Theorem 7. As discussed earlier, there are two key ideas in the
algorithm: Gaussian smoothing and perturbed stochastic gradient descent. Gaussian smoothing

allows us to transform the (possibly non-smooth) function f into a smooth function f̃σ that has
similar second-order stationary points as F ; at the same time, it can also convert function evaluations

of f into a stochastic gradient of f̃σ. We can use this stochastic gradient information to find a

second-order stationary point of f̃σ , which by the choice of the smoothing radius is guaranteed to be
an approximate second-order stationary point of F .

First, we introduce Gaussian smoothing, which perturbs the current point x using a multivariate
Gaussian and then takes an expectation over the function value.

Definition 11 (Gaussian smoothing). Given f satisfying assumption A1, define its Gaussian smooth-

ing as f̃σ(x) = Ez∼N (0,σ2I)[f(x+ z)]. The parameter σ is henceforth called the smoothing radius.

In general f need not be smooth or even differentiable, but its Gaussian smoothing f̃σ will be a

differentiable function. Although it is in general difficult to calculate the exact smoothed function f̃σ ,

it is not hard to give an unbiased estimate of function value and gradient of f̃σ:

Lemma 12. [e.g. Duchi et al., 2015] Let f̃σ be the Gaussian smoothing of f (as in Definition 11),

the gradient of f̃σ can be computed as ∇f̃σ = 1
σ2Ez∼N (0,σ2I)[(f(x+ z)− f(x))z].

Lemma 12 allows us to query the function value of f to get an unbiased estimate of the gradient of

f̃σ . This stochastic gradient is used in Algorithm 1 to find a second-order stationary point of f̃σ .

To make sure the optimizer is effective on f̃σ and that guarantees on f̃σ carry over to the target

function F , we need two sets of properties: the smoothed function f̃σ should be gradient and Hessian

6

Lipschitz, and at the same time should have gradients and Hessians close to those of the true function
F . These properties are summarized in the following lemma:

Lemma 13 (Property of smoothing). Assume that the function pair (F, f) satisfies Assumption A1,

and let f̃σ(x) be as given in definition 11. Then, the following holds

1. f̃σ(x) is O(`+ ν
σ2)-gradient Lipschitz and O(ρ+ ν

σ3)-Hessian Lipschitz.

2. ‖∇f̃σ(x)−∇F (x)‖ ≤ O(ρdσ2 + ν
σ) and ‖∇2f̃σ(x)−∇2F (x)‖ ≤ O(ρ

√
dσ + ν

σ2).

The proof is deferred to Appendix A. Part (1) of the lemma says that the gradient (and Hessian)

Lipschitz constants of f̃σ are similar to the gradient (and Hessian) Lipschitz constants of F up to a
term involving the function difference ν and the smoothing parameter σ. This means as f is allowed
to deviate further from F , we must smooth over a larger radius—choose a larger σ—to guarantee the
same smoothness as before. On the other hand, part (2) implies that choosing a large σ increases the

upper bound on the gradient and Hessian difference between f̃σ and F . Smoothing is a form of local
averaging, so choosing a too-large radius will erase information about local geometry. The choice of

σ must strike the right balance between making f̃σ smooth (to guarantee ZPSGD finds a ε-SOSP of

f̃σ) and keeping the derivatives of f̃σ close to those of F (to guarantee any ε-SOSP of f̃σ is also an

O(ε)-SOSP of F). In Appendix A.3, we show that this can be satisfied by choosing σ =
√

ε/(ρd).

Perturbed stochastic gradient descent In ZPSGD, we use the stochastic gradients suggested
by Lemma 12. Perturbed Gradient Descent (PGD) [Jin et al., 2017a] was shown to converge to
a second-order stationary point. Here we use a simple modification of PGD that relies on batch
stochastic gradient. In order for PSGD to converge, we require that the stochastic gradients are
well-behaved; that is, they are unbiased and have good concentration properties, as asserted in the
following lemma. It is straightforward to verify given that we sample z from a zero-mean Gaussian
(proof in Appendix A.2).

Lemma 14 (Property of stochastic gradient). Let g(x; z) = z[f(x + z) − f(x)]/σ2, where z ∼
N (0, σ2I). Then Ezg(x; z) = ∇f̃σ(x), and g(x; z) is sub-Gaussian with parameter B

σ .

As it turns out, these assumptions suffice to guarantee that perturbed SGD (PSGD), a simple adaptation
of PGD in Jin et al. [2017a] with stochastic gradient and large mini-batch size, converges to the
second-order stationary point of the objective function.

Theorem 15 (PSGD efficiently escapes saddle points [Jin et al., 2018], informal). Suppose f(·)
is `-gradient Lipschitz and ρ-Hessian Lipschitz, and stochastic gradient g(x, θ) with Eg(x; θ) =

∇f(x) has a sub-Gaussian tail with parameter σ/
√
d, then for any δ > 0, with proper choice

of hyperparameters, PSGD (Algorithm 3) will find an ε-SOSP of f with probability 1 − δ, in
poly(d,B, `, ρ, σ, 1/ε, log(1/δ)) number of queries.

For completeness, we include the formal version of the theorem and its proof in Appendix H.
Combining this theorem and the second part of Lemma 13, we see that by choosing an appropriate

smoothing radius σ, our algorithm ZPSGD finds an Cε/
√
d-SOSP for f̃σ which is also an ε-SOSP

for F for some universal constant C.

4.2 Polynomial queries lower bound

The proof of Theorem 8 depends on the construction of a ‘hard’ function pair. The argument
crucially depends on the concentration of measure in high dimensions. We provide a proof sketch in
Appendix B and the full proof in Appendix C.

5 Applications

In this section, we present several applications of our algorithm. We first show a simple example of
learning one rectified linear unit (ReLU), where the empirical risk is nonconvex and nonsmooth. We
also briefly survey other potential applications for our model as stated in Problem 1.

5.1 Statistical Learning Example: Learning ReLU

Consider the simple example of learning a ReLU unit. Let ReLU(z) = max{z, 0} for z ∈ R. Let

w?(‖w?‖ = 1) be the desired solution. We assume data (xi,yi) is generated as yi = ReLU(x>
i w

?)+

7

Figure 3: Population (left) and Empirical (right) risk for learning ReLU Unit , d = 2. Sharp corners
present in the empirical risk are not found in the population version.

ζi where noise ζi ∼ N (0, 1). We further assume the features xi ∼ N (0, I) are also generated from a
standard Gaussian distribution. The empirical risk with a squared loss function is:

R̂n(w) =
1

n

n
∑

i=1

(yi − ReLU(x>
i w))2.

Its population version is R(w) = E[R̂n(w)]. In this case, the empirical risk is highly nonsmooth—in
fact, not differentiable in all subspaces perpendicular to each xi. The population risk turns out to be
smooth in the entire space R

d except at 0. This is illustrated in Figure 3, where the empirical risk
displays many sharp corners.

Due to nonsmoothness at 0 even for population risk, we focus on a compact region B = {w|w>w? ≥
1√
d
} ∩ {w|‖w‖ ≤ 2} which excludes 0. This region is large enough so that a random initialization

has at least constant probability of being inside it. We also show the following properties that allow
us to apply Algorithm 1 directly:

Lemma 16. The population and empirical risk R, R̂n of learning a ReLU unit problem satisfies:
1. If w0 ∈ B, then runing ZPSGD (Algorithm 1) gives wt ∈ B for all t with high probability.

2. Inside B, R is O(1)-bounded, O(
√
d)-gradient Lipschitz, and O(d)-Hessian Lipschitz.

3. sup
w∈B |R̂n(w)−R(w)| ≤ Õ(

√

d/n) w.h.p.
4. Inside B, R is nonconvex function, w? is the only SOSP of R(w).

These properties show that the population loss has a well-behaved landscape, while the empirical risk
is pointwise close. This is exactly what we need for Algorithm 1. Using Theorem 7 we immediately
get the following sample complexity, which guarantees an approximate population risk minimizer.
We defer all proofs to Appendix G.

Theorem 17. For learning a ReLU unit problem, suppose the sample size is n ≥ Õ(d4/ε3), and the
initialization is w0 ∼ N (0, 1

dI), then with at least constant probability, Algorithm 1 will output an
estimator ŵ so that ‖ŵ −w?‖ ≤ ε.

5.2 Other applications

Private machine learning Data privacy is a significant concern in machine learning as it creates
a trade-off between privacy preservation and successful learning. Previous work on differentially
private machine learning [e.g. Chaudhuri et al., 2011] have studied objective perturbation, that is,
adding noise to the original (convex) objective and optimizing this perturbed objective, as a way to
simultaneously guarantee differential privacy and learning generalization: f = F + p(ε). Our results
may be used to extend such guarantees to nonconvex objectives, characterizing when it is possible to
optimize F even if the data owner does not want to reveal the true value of F (x) and instead only
reveals f(x) after adding a perturbation p(ε), which depends on the privacy guarantee ε.

Two stage robust optimization Motivated by the problem of adversarial examples in machine
learning, there has been a lot of recent interest [e.g. Steinhardt et al., 2017, Sinha et al., 2018] in
a form of robust optimization that involves a minimax problem formulation: minx maxu G(x,u).
The function F (x) = maxu G(x,u) tends to be nonconvex in such problems, since G can be very
complicated. It can be intractable or costly to compute the solution to the inner maximization exactly,
but it is often possible to get a good enough approximation f , such that sup

x
|F (x)−f(x)| = ν. It is

then possible to solve minx f(x) by ZPSGD, with guarantees for the original optimization problem.

8

Acknowledgments

We thank Aditya Guntuboyina, Yuanzhi Li, Yi-An Ma, Jacob Steinhardt, and Yang Yuan for valuable
discussions. Rong Ge acknowledges funding from NSF CCF-1704656.

References

Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with multi-point
bandit feedback. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), 2010.

Naman Agarwal, Zeyuan Allen Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approximate local
minima faster than gradient descent. In Proceedings of the 49th Annual ACM Symposium on Theory of
Computing, pages 1195–1199. ACM, 2017.

Animashree Anandkumar and Rong Ge. Efficient approaches for escaping higher order saddle points in non-
convex optimization. In Proceedings of the 29th Annual Conference on Learning Theory (COLT), volume 49,
pages 81–102, 2016.

Peter Auer, Mark Herbster, and Manfred K Warmuth. Exponentially many local minima for single neurons. In
Advances in Neural Information Processing Systems (NIPS), pages 316–322. 1996.

Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural
results. J. Mach. Learn. Res., 3, 2003.

Alexandre Belloni, Tengyuan Liang, Hariharan Narayanan, and Alexander Rakhlin. Escaping the Local Minima
via Simulated Annealing: Optimization of Approximately Convex Functions. In Proceedings of the 28th
Conference on Learning Theory (COLT), pages 240–265, 2015.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A Nonasymptotic Theory
of Independence. Oxford University Press, 2013.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian inputs.
In Proceedings of the International Conference on Machine Learning (ICML), volume 70, pages 605–614.
PMLR, 2017.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for non-convex optimization.
arXiv preprint arXiv:1611.00756, 2016.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical risk minimiza-
tion. J. Mach. Learn. Res., 12:1069–1109, July 2011. ISSN 1532-4435.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for deep nets.
arXiv preprint arXiv:1703.04933, 2017.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal rates for zero-order
convex optimization: The power of two function evaluations. IEEE Trans. Information Theory, 61(5):
2788–2806, 2015.

Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex optimization in the
bandit setting: Gradient descent without a gradient. In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 385–394, 2005.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic gradient for
tensor decomposition. In Proceedings of the 28th Conference on Learning Theory (COLT), 2015.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape saddle points
efficiently. In Proceedings of the International Conference on Machine Learning (ICML), pages 1724–1732,
2017a.

Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. Accelerated gradient descent escapes saddle points faster
than gradient descent. CoRR, abs/1711.10456, 2017b.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. SGD escapes saddle points
efficiently. Personal Communication, 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On
large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836,
2016.

9

Scott Kirkpatrick, C. D. Gelatt, and Mario Vecchi. Optimization by simulated annealing. Science, 220(4598):
671–680, 1983.

Robert Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does SGD escape local minima?
CoRR, abs/1802.06175, 2018.

Po-Ling Loh and Martin J Wainwright. Regularized M-estimators with nonconvexity: Statistical and algorithmic
theory for local optima. In Advances in Neural Information Processing Systems (NIPS), pages 476–484, 2013.

Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for non-convex losses. arXiv preprint
arXiv:1607.06534, 2016.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o(1/k2). Soviet
Mathematics Doklady, 27:372–376, 1983.

Yurii Nesterov. Introductory Lectures on Convex Programming. Springer, 2004.

Ingo Rechenberg and Manfred Eigen. Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien
der Biologischen Evolution. Frommann-Holzboog, Stuttgart, 1973.

Andrej Risteski and Yuanzhi Li. Algorithms and matching lower bounds for approximately-convex optimization.
In Advances in Neural Information Processing Systems (NIPS), pages 4745–4753. 2016.

Ohad Shamir. On the complexity of bandit and derivative-free stochastic convex optimization. In Proceedings of
the 26th Annual Conference on Learning Theory (COLT), volume 30, 2013.

Yaron Singer and Jan Vondrak. Information-theoretic lower bounds for convex optimization with erroneous
oracles. In Advances in Neural Information Processing Systems (NIPS), pages 3204–3212. 2015.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with principled
adversarial training. International Conference on Learning Representations, 2018.

Jacob Steinhardt, Pang W. Koh, and Percy Liang. Certified defenses for data poisoning attacks. In Advances in
Neural Information Processing Systems (NIPS), 2017.

Max Welling and Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In Proceedings
of the International Conference on Machine Learning (ICML), pages 681–688, 2011.

Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time analysis of stochastic gradient Langevin
dynamics. Proceedings of the 30th Conference on Learning Theory (COLT), pages 1980–2022, 2017.

10

