
Pipe-SGD: A Decentralized Pipelined SGD

Framework for Distributed Deep Net Training

Youjie Li†, Mingchao Yu*, Songze Li*, Salman Avestimehr*,
Nam Sung Kim†, and Alexander Schwing†

†University of Illinois at Urbana-Champaign
*University of Southern California

Abstract

Distributed training of deep nets is an important technique to address some of the
present day computing challenges like memory consumption and computational de-
mands. Classical distributed approaches, synchronous or asynchronous, are based
on the parameter server architecture, i.e., worker nodes compute gradients which
are communicated to the parameter server while updated parameters are returned.
Recently, distributed training with AllReduce operations gained popularity as well.
While many of those operations seem appealing, little is reported about wall-clock
training time improvements. In this paper, we carefully analyze the AllReduce
based setup, propose timing models which include network latency, bandwidth,
cluster size and compute time, and demonstrate that a pipelined training with a
width of two combines the best of both synchronous and asynchronous training.
Specifically, for a setup consisting of a four-node GPU cluster we show wall-clock
time training improvements of up to 5.4× compared to conventional approaches.

1 Introduction

Deep nets [25, 3] are omnipresent across fields from computer vision and natural language processing
to computational biology and robotics. Across domains and tasks they have demonstrated impressive
results by automatically extracting hierarchical abstractions of representations from many different
datasets. The surge in popularity pivoted in the 2010s, with impressive results being demonstrated
on the ImageNet dataset [22, 42]. Since then, deep nets have been applied to many more tasks.
Prominent examples include recognition of places [53], playing of Atari games [34, 35], and the
game of Go [45]. Common to all those methods is the use of large datasets to fuel the many layers of
deep nets.

Importantly, in the last few years, the number of layers, or more generally the depth of the computation
tree has increased significantly from a few layers for LeNet [26] to several 100s or 1000s [14, 24].
Inherent to the increasing complexity of the computation graph is an increase in training time and often
also an increase in the amount of data that is processed. Traditionally, computational performance
increases do not keep up with the desired processing needs despite the use of accelerators like GPUs.

Beyond accelerators, parallelization of computation on multiple computers is therefore popular.
However, it requires frequent communication to exchange a large amount of data among compute
nodes while the bandwidth of network interfaces is limited. This in turn significantly diminishes the
benefit of parallelization, as a substantial fraction of training time is spent to communicate data. The
fraction of time spent on communication is further increased when applying accelerators [16, 7, 38,
52, 48, 49, 44], as they decrease computation time while leaving communication time untouched.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



To take advantage of parallelization across machines, a variety of approaches have been developed
starting from the popular MapReduce paradigm [9, 51, 19, 37]. Despite their benefits, communication
heavy training of deep nets is often based on custom implementations [8, 6, 36, 20] relying on the
parameter server architecture [28, 27, 15], where the centralized server aggregates the gradients
from workers and distributes the updated weights, either in a synchronous or asynchronous manner.
Recent research proposed to use a decentralized architecture with global synchronization among
nodes [12, 33]. However, in common to all the aforementioned techniques, little is reported regarding
the timing analysis of distributed deep net training.

In this paper, we analyze the wall-clock time trade-offs between communication and computation.
To this end we develop a model to assess the training time based on a set of parameters such as
latency, cluster size, network bandwith, model size, etc. Based on the results of our model we
develop Pipe-SGD, a framework with pipelined training and balanced communication, and show its
convergence properties by adjusting proofs of [23, 15]. We also show what types of compression
can be efficiently included in an AllReduce based framework. Finally, we assess the speedups of
our proposed approach on a GPU cluster of four nodes with 10GbE network, showing wall-clock
time training improvements by a factor of 3.2 ∼ 5.4× compared to conventional centralized and
decentralized approaches without degradation in accuracy.

2 Background

General Training of Deep Nets: Training of deep nets involves finding the parameters w of a
predictor F(x,w) given input data x. To this end we minimize a loss function `(F(x,w),y) which
compares the predictor output F(x,w) for given data x and the current w to the ground-truth annotation
y. Given a dataset D = {(x,y)}, finding w is formally summarized via:

min
w

fD (w) :=
1

|D | ∑
(x,y)∈D

`(F(x,w),y). (1)

Optimization of the objective given in Eq. (1) w.r.t. the parameters w, e.g., via gradient descent using
∂ fD
∂w

, can be challenging due to not only the complexity of evaluating the predictor F(x,w) and its

derivative, but also the size of the dataset |D |. Consequently, stochastic gradient descent (SGD)
emerged as a popular technique. We randomly sample a subset B of the dataset, often also referred
to as a minibatch. Instead of computing the gradient on the entire dataset D , we approximate it using

the samples in the minibatch, i.e., we assume
∂ fD
∂w
≈ ∂ fB

∂w
. However, for present day datasets and

predictors, computation of the gradient
∂ fB
∂w

on a single machine is still challenging. Minibatch sizes

|B| of less than 20 samples are common, e.g., when training for semantic image segmentation [5].

Distributed Training of Deep Nets: To train larger models or to increase the minibatch size,
distributed training on multiple compute nodes is used [8, 15, 6, 27, 28, 36, 16]. A popular architecture
to facilitate distributed training is the parameter server framework [15, 27, 28]. The parameter server
maintains a copy of the current parameters, and communicates with a group of worker nodes, each of
which operates on a small minibatch to compute local gradients based on the retrieved parameters
w. Upon having completed its task, the worker shares the gradients with the parameter server. Once
the parameter server has obtained all or some of the gradients it updates the parameters using the
negative gradient direction and afterwards shares the latest values with the workers.

Asynchronous updates where each worker independently pulls w from the server, computes its own
local gradient, and pushes results back are available and illustrated in Fig. 1 (a). Due to the asynchrony,
minimal synchronization overhead is traded with staleness of gradients. Methods for staleness control
exist, which bound the number of delay steps [15]. However, note that stale gradients may slow down
training significantly.

Importantly, all those frameworks are based on a centralized compute topology which forms a
communication bottleneck, increasing the training time as the cluster size scales. The time taken by
pushing gradient, update, and pulling w can be linear in the cluster size due to network congestion.

Therefore, most recently, decentralized training frameworks gained popularity in both the synchronous
and asynchronous setting [30, 31]. However, those approaches assume decentralized workers are
either completely synchronous (as in Fig. 1 (b)) or completely asynchronous, which requires to either
deal with long execution time every iteration or pay for uncontrolled gradient staleness.

2



(a)

Worker 1

Iteration Dependence: K=2Update Compute CommunicateUpdate Compute Communicate

Update Compute CommunicateUpdate Compute Communicate

Update Compute CommunicateUpdate Compute Communicate

Update Compute CommunicateUpdate Compute Communicate

Worker 1

Iteration Dependence: K=2Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Time

Worker 2

Update Compute CommunicateUpdate Compute Communicate

Update Compute CommunicateUpdate Compute Communicate

Update Compute CommunicateUpdate Compute Communicate

Update Compute CommunicateUpdate Compute Communicate

Worker 2

Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Worker 1

Iteration Dependence: K=2Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Time

Worker 2

Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Update Compute CommunicateUpdate Compute Communicate Update Compute CommunicateUpdate Compute Communicate

Worker 3

Update Compute Communicate Update Compute Communicate

Worker 3

Time

Update Compute CommunicateUpdate Compute Communicate Update Compute CommunicateUpdate Compute Communicate

Worker 2

Update Compute Communicate Update Compute Communicate

Worker 2

Update Compute CommunicateUpdate Compute Communicate Update Compute CommunicateUpdate Compute Communicate

Worker 1

Update Compute Communicate Update Compute Communicate

Worker 1

Update Compute Communicate Update Compute Communicate

Worker 3

Time

Update Compute Communicate Update Compute Communicate

Worker 2

Update Compute Communicate Update Compute Communicate

Worker 1

p
u

sh
 g

ra
d

ComputeCommunicate CommunicateComputeCommunicate Communicate

Compute CommunicateCommunicate Compute CommunicateCommunicate

W2 W3

Worker 1

Worker 2

Worker 3

Worker 4

W4 W5

Time

Parameter

Server

p
u

ll
 w

Compute CommunicateCommunicate Compute CommunicateCommunicate

CommunicateComputeCommunicate CommunicateComputeCommunicate

W1

p
u

sh
 g

ra
d

ComputeCommunicate Communicate

Compute CommunicateCommunicate

W2 W3

Worker 1

Worker 2

Worker 3

Worker 4

W4 W5

Time

Parameter

Server

p
u

ll
 w

Compute CommunicateCommunicate

CommunicateComputeCommunicate

W1

Worker 1

Iteration Dependence: K=2Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Time

Worker 2

Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Update Compute Communicate

Update Compute Communicate Update Compute Communicate

Worker 3

Time

Update Compute Communicate Update Compute Communicate

Worker 2

Update Compute Communicate Update Compute Communicate

Worker 1

p
u

sh
 g

ra
d

ComputeCommunicate Communicate

Compute CommunicateCommunicate

W2 W3

Worker 1

Worker 2

Worker 3

Worker 4

W4 W5

Time

Parameter

Server

p
u

ll
 w

Compute CommunicateCommunicate

CommunicateComputeCommunicate

W1

(b) (c)

Figure 1: Comparison between different distributed learning frameworks: (a) parameter server with
asynchronous training, (b) decentralized synchronous training, and (c) decentralized pipeline training.

Compression in Distributed Training: As the model size increases and cluster size scales, commu-
nication overhead in distributed learning system dominates the training time, e.g., up to 80∼ 90%
even in a high-speed network environment [29, 10]. To reduce the communication time, various com-
pression algorithms have been proposed recently [43, 46, 11, 4, 50, 33, 2], some of which focus on
reducing the precision of communicated gradients through scalar quantization into 1 bit, while others
focus on reducing the quantity of gradients to be transferred. Most compression works, however,
only emphasize on achieving high compression ratio or low loss in accuracy without reporting the
wall-clock training time.

In practice, compression without knowledge of the communication process is usually counter-
productive [29], i.e., the total training time often increases. This is due to the fact that AllReduce
is a multi-step algorithm which requires transferred gradients to be compressed and decompressed
repeatedly with a worst-case complexity linear in the cluster size, as we discuss below in Sec. 3.2.

3 Decentralized Pipelined Stochastic Gradient Descent

Overview: To address the aforementioned issues (network congestion for a central server, long
execution time for synchronous training, and stale gradients in asynchronous training) we propose a
new decentralized learning framework, Pipe-SGD, shown in Fig. 1 (c). It balances communication
among nodes via AllReduce and pipelines the local training iterations to hide communication time.

We developed Pipe-SGD by analyzing a timing model for wall-clock train time under different
resource conditions using various communication approaches. We find that the proposed Pipe-SGD is
optimal when gradient updates are delayed by only one iteration and the time taken by each iteration
is dominated by local computation on workers. Moreover, we found lossy compression to further
reduce communication time without impacting accuracy.

Due to local pipelined training, balanced communication, and compression, the communication time
is no longer part of the critical path, i.e., it is completely masked by computation, leading to linear
speedup of end-to-end training time as the cluster size scales. Finally, we prove the convergence of
Pipe-SGD for convex and strongly convex objectives by adjusting the proof of [23, 15].

3.1 Timing Models and Decentralized Pipe-SGD

Timing Model: We propose timing models based on decentralized synchronous SGD to analyze the
wall-clock runtime of training. Each training iteration consists of three major stages: model update,
gradient computation, and gradient communication. Classical synchronous SGD (Fig. 1 (b)) runs
local iterations on workers sequentially, i.e., each update depends on the gradient from the previous
iteration, i.e., the iteration dependency is 1. Therefore the total runtime of synchronous SGD can be
formulated easily as:

ltotal_sync = T · (lup + lcomp + lcomm), (2)

where T denotes the total number of training iterations and lup, lcomp, lcomm refer to the time taken by
update, compute, and communication, respectively. It is apparent that synchronous SGD depends on
the sum of execution time taken by all stages, which leads to long end-to-end training time.
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Algorithm 1: Decentralized Pipe-SGD training algorithm for each worker.

On the computation thread of each worker:

1: Initialize by the same model w[0], learning rate γ , iteration dependency K, and number of iterations T .

2: for t = 1, . . . ,T do

3: Wait until aggregated gradient gc
sum in compressed format at iteration [t−K] is ready

4: Decompress gradient gsum[t−K]← Decompress(gc
sum[t−K])

5: Update w[t]← w[t−1]− γ ·gsum[t−K]
6: Load a batch B of training data

7: Forward pass to compute current loss fB

8: Backward pass to compute gradient glocal[t]←
∂ fB
∂w[t]

9: Compress gradient gc
local[t]← Compress(glocal[t])

10: Denote local gradient gc
local[t] as ready

11: end for

On the communication thread of each worker:

1: Initialize aggregated gradients gc
sum of iteration [1−K,1−K +1, ...,0] as zero and mark them as ready

2: for t = 1, . . . ,T do

3: Wait until local gradient gc
local[t] is ready

4: AllReduce gc
sum[t]← ∑gc

local[t]
5: Denote aggregated gradient gc

sum[t] as ready

6: end for

where lfor and lback denote forward-pass and backward-pass time, p denotes the number of workers,
α the network latency, n the model size in bytes, β the byte transfer time, γ the byte sum reduction
time, and S the global synchronization time.

Similarly, we obtain the total runtime of Pipe-SGD with pipelined gradient communication via:

ltotal_pipe_p = T ·max

(

lup + lfor + lb, 2(p−1)L ·α +2(
p−1

p
) ·n ·β +(

p−1

p
) ·n · γ +L ·S

)

, (6)

where L denotes the number of gradient segments, and lb denotes the backward-pass time taken by
the first segment.

Based on Eq. (5) and Eq. (6) we note: if a pipelined system remains communication bound, then
sequential gradient communication is preferred over the pipelined gradient communication (Eq. (5)
is smaller than Eq. (6) due to positive L). In practice, distributed training of large models is often
communication bound, making sequential exchange the best option.

To sum up, based on our timing models, we find: Pipe-SGD is optimal for K = 2, system is compute
bound (after compression), and sequential gradient communication is used. Note that although
our model is derived based on the Ring-AllReduce, this conclusion also applies to other AllReduce
algorithms, such as recursive doubling, recursive halving and doubling, pairwise exchange, etc. [47].

Decentralized Pipeline SGD: Guided by the timing models, we develop the decentralized Pipe-SGD

framework illustrated in Fig. 1 (c) where neighboring training iterations on workers are interleaved
with a width of K = 2 while the execution within each iteration remains strictly sequential. Decentral-
ized workers perform pipelined training in parallel with synchronization on gradient communication
after every iteration. Due to the synchronous nature of our framework, the gradient update is always
delayed by K−1 iterations, which enforces a deterministic rather than an uncontrolled staleness. In
our optimal setting, the number of iterations for a delayed update is 1, as compared to O(p) where p
is the cluster size in the conventional asynchronous parameter server training [15, 31, 1]. Importantly,
our framework still enjoys the advantage of an asynchronous approach – interleaving of training
iterations to reduce end-to-end runtime. Also, different from the parameter server architecture, we
don’t congest the head node. Instead, in our case, every worker is only responsible for aggregating
part of the gradients in a balanced manner such that communication and aggregate operation time are
much more scalable.

More formally, we outline the algorithmic structure of our implementation for each worker in Alg. 1.
To be specific, each worker has two threads: one for computation and one for communication, where
the former thread consumes the aggregated gradient of the K-th last iteration and generates the local
gradient to be communicated, and the latter thread exchanges the local gradient and buffers the
aggregated results to be consumed by the former thread.
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Figure 3: Pipelining within AllReduce: (a) block transfer in native Ring-AllReduce and pipelined
Ring-AllReduce, and (b) block transfer with light-weight compression.

3.2 Compression in Pipe-SGD

To further reduce the communication time we integrate lossy compression into our decentralized
Pipe-SGD framework. Unlike the conventional parameter server or recent decentralized framework
transferring parameters over the network [8, 6, 27, 28, 36, 16, 15, 31, 30], our approach communicates
only gradients and we justified empirically that gradients are much more tolerant to lossy compression
than the model parameters. This seems intuitive since reducing the precision of parameters in every
iteration harms the final precision of the trained model directly.

Importantly, as mentioned in Sec. 3.1, compressing the communication overhead contributes to the
optimal setting of Pipe-SGD. Once Pipe-SGD is completely computation bound, linear speedups
of end-to-end training time can be realized as the cluster size increases. Analytically, we show this
observation by deriving the scaling efficiency using the timing model given in Eq. (4). Assume that:
1) the singe-node training takes Tsingle iterations to complete with an execution time of lsingle taken
by each iteration; 2) given a Pipe-SGD cluster with p workers we use the same batch size on each
worker as the single-node [12]; 3) the single node and Pipe-SGD train the same epochs on the dataset.
From 2) and 3), we find that the total number of iterations required for Pipe-SGD is Tsingle/p, because
Pipe-SGD has a p times larger batch size while still training the same number of samples. From this
we obtain the scaling efficiency SE of Pipe-SGD via

SE =
Actual Speedup

Ideal Speedup
=

lsingle·Tsingle

ltotal_pipe

p
=

lsingle·Tsingle

max(lup+lcomp, lcomm)·
Tsingle

p

p
=

lup + lcomp

max(lup + lcomp, lcomm)
. (7)

Thus, we showed that once our system becomes compute bound with compressed communication,
Pipe-SGD can achieve linear speedup as the cluster scales, i.e., SE = 1.

To maintain applicability of Ring-AllReduce, we choose two simple compression approaches: trun-
cation and scalar quantization. Truncation drops the less significant mantissa bits of floating-point
values for each gradient. The scalar quantization discretizes each gradient value into an integer of
limited bits, with a quantization range determined by the maximal element of a gradient vector. Due
to their simplicity, we easily parallelize those compression approaches to minimize overhead.

Note that compression itself can be compute-heavy and the introduced computation overhead can
outweigh the benefit of compressed communication. Particularly when considering that AllReduce
based communication performs multiple steps to transfer and reduce the data (see Fig. 2 (c)), requiring
repeated invocation of compression and decompression, i.e., for each “transmit-and-reduce” step,
with an invocation complexity linear in cluster size. Therefore, many proposed complex compression
techniques [43, 46, 11, 4, 50, 33] often fail in the communication-optimal AllReduce setting, resulting
in longer wallclock time. For these reasons, compression embedded inside AllReduce must be light,
fast and easy to parallelize, such as a floating-point truncation or our element-wise quantization.

Indeed, pipelining within AllReduce can help alleviate the heavy overhead of complex compression.
However, its benefit might still be limited. Instead of pipelining of training iterations as in Pipe-

SGD, pipelining within AllReduce interleaves the gradient communication and reduction within
each AllReduce process, as illustrated in Fig. 3 (a). Since the communication time is often larger
than the reduction time, the latter can be hidden by the former. Once compression is used (as in
Fig. 3 (b)), the two stage pipeline becomes (decompression, sum, compression) and (compressed
communication) such that light compression overhead can be masked completely. Although complex
compression may also benefit from the pipelined AllReduce, the improvement is limited because
the time spent by complex compression often outweighs the communication time. For example,
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we implemented [50] within the pipelined AllReduce and found that the compression overhead is
1.6∼ 2.3× the uncompressed communication time and 25.6∼ 36.8× the compressed communication
time for the benchmarks in Sec. 4, in which case the heavy overhead cannot be masked. Complete
masking requires the compression overhead to be smaller than the compressed communication. In
the remainder, we only consider light compressions (truncation/quantization) with native AllReduce.

3.3 Convergence

To prove the convergence of Pipe-SGD we adapt the derivation from parameter-server based asyn-
chronous training [15, 23]. We can show that the convergence rate of Pipe-SGD for convex objectives

via SGD is 8FL

√

K
T

, where K = 2, F and L are constants for gradient distance and Lipschitz continu-

ity, respectively. We can also show the convergence of Pipe-SGD for strongly convex functions, and

find a rate of O( logT
T

) for gradient descent. These rates are consistent with [15, 23]. Due to the page
limit we defer details to the supplementary material.

4 Experimental Evaluation

In this section, we demonstrate the efficacy of our approach on four benchmarks using three datasets:
MNIST [26], CIFAR100 [21] and ImageNet [42]. We briefly review characteristics of those datasets
before discussing metrics and setup, and finally presenting experimental results and analysis.

Datasets and Deep Net Architecture

• MNIST: The MNIST dataset consists of 60,000 training and 10,000 test images, each showing one
of ten possible digits. The images are of size 28×28 pixels with digits located at the center of
the images. We use a classical 3-layer perceptron, MNIST-MLP, with both hidden layers being
500-dimensional and with a global batch size of 100.

• ImageNet: For our experiments we use 1,281,167 training and 50,000 validation examples from
the ImageNet challenge. Each example comprises a color image of 256×256 pixels and belongs to
one of 1000 classes. We use the classical AlexNet [22] and ResNet [14], both with a global batch
size of 256.

• CIFAR100: The CIFAR100 dataset is composed of 50,000 training and 10,000 test examples with
100 classes. The simple AlexNet-style CIFAR100 architecture in [32] is used for benchmarking
this datasets. It consists of 3 convolutional layers and 2 fully connected layers followed by a
softmax layer. The detailed parameters are available in [32]. Importantly, we adapt this 5 layer
CIFAR100-CNN into a convex optimization benchmark, CIFAR100-Convex, to match our proof
of convergence. The convexity is achieved by training only the last fully connected layer while
fixing the parameters of all previous layers.

Metrics and Setup

We measure the wall-clock time of end-to-end training, i.e., the same number of iterations for different
settings. For each benchmark, we evaluate the timing model we proposed using end-to-end train time
and detailed timing breakdowns. We plot the test/validation accuracy over training time to evaluate
the actual convergence. Also, final top-1 accuracies on the test/validation set are reported. For the
setup, we use a cluster of four nodes, each of which consists of a Titan XP GPU [40] and a Xeon CPU
E5-2640 [17]. We employ an additional node as the parameter server to support the conventional
centralized design. All nodes are connected by 10Gb Ethernet. We implement a distributed training
framework in C++ using CUDA 8.0 [39], MKL 2018 [18], and OpenMPI 2.0 [41], which supports
the parameter-server and Pipe-SGD approach.

Results and Analysis

We evaluate the performance of three different frameworks: parameter server with synchronous SGD
(PS-Sync), decentralized synchronous SGD (D-Sync), and Pipe-SGD. Our compression schemes,
i.e., 16-bit truncation (T) and 8-bit quantization (Q), are also applied to AllReduce communication in
D-Sync and Pipe-SGD. Evaluation results are summarized in Fig. 4 where the first two columns show
the convergence performances and the third column shows detailed timing breakdowns with final
accuracies labeled.
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Accuracy: Considering the potential drawback of the 1-iteration staled update and lossy compression
in Pipe-SGD, we also evaluate the final test/validation accuracies after end-to-end training, as shown
in Fig. 4. Interestingly, in our optimal settings “PipeSGD +T/Q,” we find that only AlexNet drops
top-1 accuracy by 0.005 compared to baseline D-Sync while all other benchmarks show slightly
improved accuracies. To obtain the best accuracies for the two large non-convex models such as
AlexNet and ResNet, we employ a similiar warm-up scheme as in [33], i.e., we don’t turn on the
pipelined training until the 5-th epoch, before which we still stick to D-Sync training to avoid the
undesirable gradient change in the initial stage. Since the warm-up period is marginal compared to
total number of epochs, the system performance benefits from Pipe-SGD most of the time. Note that
for smaller models, especially convex ones (e.g., CIFAR100-Convex), no warm-up is required.

5 Related Work

Li et al. [27, 28] proposed a parameter server framework for distributed learning and a few approaches
to reduce the cost of communication among compute nodes, such as exchanging only nonzero
parameter values, local caching of index list, and random skip of messages to be transmitted.
Abadi et al. [1] also proposed a centralized framework, TensorFlow, which incorporates model and
data parallelism for training deep nets. Both works support the asynchronous setting to improve
communication efficiency but without controlling the staleness of the gradient update. Ho et al. [15]
proposed SSP, another centralized asynchronous framework but with bounded staleness for gradients.
The key idea of SSP: 1) each worker has its own iteration index, 2) the slowest and fastest worker
must be within S iterations, otherwise, the fastest worker is forced to wait until the slowest worker
catches up. However, this bound S applies to the iteration drift among workers instead of directly on
the stale updates of the parameter server. As a result, each worker within the bound can still commit
their updates to the server asynchronously, making the last gradient update staled heavily. In the
worst case, the staleness is linear in the cluster size.

Lin et al. [33] employed AllReduce as the gradient aggregation method in their synchronous frame-
work, but little is reported regarding wallclock time benefits, especially considering that the full
synchronous design suffers from the longest execution time among all workers. Besides, Lian et
al. proposed AD-PSGD [31] which parallelizes the SGD process over decentralized workers in a
completely asynchronous fashion. Workers run completely independently, and only communicate
with a set of neighboring nodes to exchange trained weights, i.e., neighboring models are averaged to
replace each worker’s local model in each iteration. However, this approach suffers from uncontrolled
staleness, which in practice increases with cluster size and the time taken by each iteration. In
addition, such a communication method requires each worker to act as the center node of a local
graph, which results in a local communication bottleneck. As a result, each worker suffers from
long iteration time which further increases the staleness of weight updates. Although Lian et al. [31]
compared their framework with the full synchronous design in wall-clock time, the performance turns
out to be similar when network speeds are roughly equal.

Recently, independent work [13] also proposed a distributed pipelined system for DNN training.
Different from Pipe-SGD, [13] focuses on pipelining with model parallelism, partitioning the DNN
layers onto different machines and pipelining the execution of the machines by injecting consecutive
mini-batches into the first one. This approach reduces communication load since only activations and
gradients of a subset of layers are communicated between machines. However, complex mechanisms
(such as profiling, partitioning algorithm, and replicated stages) are necessary to balance the workload
among different machines, otherwise compute resources turn idle. Furthermore, [13] may suffer from
staleness of the weight update, which is linear in the number of stages. This limits the effectiveness
of model pipelining and throttles speedups.

6 Conclusion

We developed a rigorous timing model for distributed deep net training which takes into account
network latency, model size, byte transfer time, etc. Based on our timing model and realistic resource
assumptions, e.g., limited network bandwidth, we assessed scalability and developed Pipe-SGD, a
pipelined training framework which is able to mask the faster of computation or communication time.
We showed efficacy of the proposed method on a four-node GPU cluster connected with 10Gb links.
Rigorously assessing wall-clock time for Pipe-SGD, we are able to achieve improvements of up to
5.4× compared to conventional approaches.
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