
Semantic Gaze Labeling for Human-Robot Shared Manipulation

Reuben M. Aronson
Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania

rmaronson@cmu.edu

Henny Admoni
Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania

henny@cmu.edu

ABSTRACT

Human-robot collaboration systems benefit from recognizing peo-

ple’s intentions. This capability is especially useful for collaborative

manipulation applications, in which users operate robot arms to

manipulate objects. For collaborative manipulation, systems can

determine users’ intentions by tracking eye gaze and identifying

gaze fixations on particular objects in the scene (i.e., semantic gaze

labeling). Translating 2D fixation locations (from eye trackers) into

3D fixation locations (in the real world) is a technical challenge.

One approach is to assign each fixation to the object closest to it.

However, calibration drift, head motion, and the extra dimension

required for real-world interactions make this position matching

approach inaccurate. In this work, we introduce velocity features

that compare the relative motion between subsequent gaze fixa-

tions and a finite set of known points and assign fixation position to

one of those known points. We validate our approach on synthetic

data to demonstrate that classifying using velocity features is more

robust than a position matching approach. In addition, we show

that a classifier using velocity features improves semantic label-

ing on a real-world dataset of human-robot assistive manipulation

interactions.

CCS CONCEPTS

• Human-centered computing → User models; Interaction de-

vices; • Computer systems organization→ Robotic components;

KEYWORDS

eye tracking, intention recognition, semantic gaze labeling, human-

robot interaction, assistive robotics

ACM Reference Format:

Reuben M. Aronson and Henny Admoni. 2019. Semantic Gaze Labeling for

Human-Robot Shared Manipulation. In 2019 Symposium on Eye Tracking

Research and Applications (ETRA ’19), June 25–28, 2019, Denver , CO, USA.

ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3314111.3319840

1 INTRODUCTION

Human-robot collaboration systems benefit from recognizing peo-

ple’s intentions, which can often be assessed through eye gaze. A

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ETRA ’19, June 25–28, 2019, Denver , CO, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6709-7/19/06. . . $15.00
https://doi.org/10.1145/3314111.3319840

PLATE END_EFFECTOR

ELBOW END_EFFECTOR

Figure 1: Schematic representing the semantic gaze labeling

problem.Given a gaze point of regard and the location of sev-

eral (possiblymoving) objects in the scene, determinewhich

object the participant is looking at. This problem is made

more difficult by the errors induced by the motion of scene

objects and 3D gaze calibration.

particularly promising application for human-robot collaboration

comes from the realm of assistive robotic manipulation. In this

domain, a user controls a robot arm through an operating interface

to perform a task. This scenario applies to various tasks, from fac-

tory operations to space robotics to disaster recovery, but among

the most exciting is when using assistive devices. Robot arms that

mount onto wheelchairs are already commercially available and in

use, but these devices tend to be difficult to use especially for com-

plex tasks [Herlant et al. 2016]. To improve these systems, roboti-

cists build systems to understand the user’s intentions and add

automation to the robot to help them accomplish their task [Aron-

son et al. 2018; Orlov et al. 2018]. And since eye gaze is such a useful

signal for understanding user intent, exploring its utility in this

application is particularly valuable.

In this paper we focus specifically on the problem of semantic

gaze labeling: given a scene and a gaze position within the scene,

what object is the user looking at? In this formulation, we assume

that the user is looking at one of a finite set of (possibly moving)

objects or locations, here termed keypoints. This problem is particu-

larly resonant within the manipulation task domain, as (1) there are

relatively few task-relevant objects in the scene, and their positions

may already be known due to the system requirements for the rest

https://doi.org/10.1145/3314111.3319840
https://doi.org/10.1145/3314111.3319840

ETRA ’19, June 25–28, 2019, Denver , CO, USA Reuben M. Aronson and Henny Admoni

of the system and (2) people’s gaze is particularly task-relevant

during manipulation [Brouwer and Knill 2007; Hayhoe et al. 2003;

Johansson et al. 2001; Land and Hayhoe 2001], especially robotic

manipulation [Aronson et al. 2018]. Semantic gaze labeling is one

useful preprocessing step for understanding what people are in-

tending to do; it yields information such as look-ahead fixations

indicating planning [Aronson et al. 2018; Mennie et al. 2007] and

can provide a signal for noting unexpected or problematic events

that occur [Aronson and Admoni 2018].

However, solving this semantic gaze labeling problem within

real-world domains such as robotic manipulation can present signif-

icant challenges. The interaction occurs in a complex, 3D environ-

ment, which presents a much wider error space. While significant

work has been done to investigate this problem in a real-world set-

ting [Atienza and Zelinsky 2005; Pfeiffer 2012; Pfeiffer and Renner

2014], introducing a third dimension inherently raises the thresh-

old for accuracy. When people are allowed to move their heads

freely, including the effect of head position relative to scene position

can also induce inaccuracy. Though highly calibrated systems can

compensate for these effects, it is nevertheless valuable to explore

algorithmic solutions to ease the accuracy burden of gaze collection

systems.

In this work, we present features derived from the relative mo-

tion between subsequent fixations, termed velocity features. These

features reduce the impact of slow-changing offsets (e.g. calibration

drift or tracker motion), since they consider only relative motion.

We evaluate the usefulness of these velocity features on both syn-

thetic data and real data. On synthetic data, which is generated by

randomly generating keypoint and fixation patterns and manually

adding increasing offset magnitudes, using velocity features in-

creases classification accuracy when offset size exceeds a significant

fraction of the average inter-keypoint distance. We also evaluate

these features on data collected from a collaborative manipulation

task using a robot. On this task, using the velocity features improves

overall semantic classification accuracy from 65.9% to 75.8%, with

most improvement coming from data with higher offsets.

This paper begins by summarizing related work in Sec. 2 and

defining the semantic gaze labeling problem in Sec. 3. Then, it

describes how to calculate and use velocity features in Sec. 4. We

demonstrate the usefulness of these features in both synthetic data

(Sec. 5) and on a real dataset collected from interactions with a

robot (Sec. 6). Finally, we discuss limitations of this approach and

future work.

2 RELATEDWORK

Using eye gaze to understand people’s mental states has takenmany

forms depending on the task. For understanding behavior such

as reading [Just and Carpenter 1980] or driving [Braunagel et al.

2015], bottom-up analysis based on raw gaze features has proven

useful. However, for particular tasks, labeling which of a small

set of objects someone is looking at can provide valuable analysis.

One particular task that this is relevant for is object manipulation:

the relationship between people’s intentions and their gaze in this

domain is well categorized, with look-ahead fixations indicating

planned object placement [Hayhoe and Ballard 2005; Hayhoe et al.

2003; Land et al. 1999; Land and Hayhoe 2001] in tasks such as block

movement [Johansson et al. 2001] or food preparation [Land and

Hayhoe 2001]. This phenomenon extends to manipulation using

a robot rather than by hand: people illustrate similar patterns of

planning glances but also occasionally fixate on the manipulator

arm [Aronson et al. 2018]. Explicitly identifying the objects being

examined is useful for such applications as manipulation planning

and assistance [Li et al. 2017] or failure recovery [Aronson and

Admoni 2018].

Several systems have been proposed for solving the semantic

labeling problem [Hagihara et al. 2018; Li et al. 2017; Paletta et al.

2013a; Singh et al. 2018]. One recent representative example is

EyeSee3D [Pfeiffer and Renner 2014] (and its follow-up EyeSee3D

2.0 [Pfeiffer et al. 2016]). In this approach, head pose is recovered

from fiducial tags placed in the workspace, and this pose informa-

tion is used to perform ray tracing to intersect the line of sight with

given object meshes. Compared to manual labeling, this system per-

formed with 64% accuracy, indicating the difficulty of this problem.

Other approaches use alternate methods for head pose recovery

or environment modeling, but are fundamentally similar in their

approach to the semantic gaze labeling problem.

More sophisticated approaches for labeling have also been ex-

plored. Pfeiffer [2012] discusses expanding a single gaze ray to an

attention volume, a Gaussian centered around the point of regard.

Mantiuk et al. [2013] discuss a strategy for incorporating both key-

point positions and velocities at each timestep into the labeling

process. Vidal et al. [2013] uses correlations between screen-based

targets moving in different patterns and eye motion to identify

which of the targets is inducing smooth pursuit behavior. Bernhard

et al. [2014] presents a probabilistic approach to semantic gaze la-

beling, in which a gaze-to-object mapping (GTOM), or a probability

distribution over a finite set of keypoints, is generated by combin-

ing different position or velocity features with Bayesian fusion;

this work also presents several possibilities for generating prob-

abilities from local position or velocity values. Our contribution

supplements these works by presenting bulk features that work on

the time scale of fixations rather than single timesteps.

3 SEMANTIC GAZE LABELING

There are a variety of ways to use eye gaze to recover different parts

of someone’s mental state, and each task domain can have different

approaches. For tasks such as manipulation, in general there are

only a relatively small number of objects that are relevant, and

these objects can be enumerated in advance. Understanding when

people look at which objects in a scene can be a revealing signal for

what they are intending to do (via look-ahead fixations [Mennie

et al. 2007]) or if an error has occurred [Aronson and Admoni 2018].

In order to use gaze in this way, we must be able to robustly

identify a gaze or fixation location with a particular object. We can

define this semantic gaze labeling problem as follows: Within an

egocentric video, let the eye gaze position over time τ be denoted

(xτ ,yτ) = x̄τ . Choose a finite number n of keypoints (kix,τ ,kiy,τ) =
kiτ for i = 1 · · ·n that track the locations of specific objects in the

scene. (These object positions can be determined from projecting

the 3D scene positions into the camera position, through video

object tracking, or any other method). The semantic gaze labeling

problem consists of assigning to each time a label �τ , an index 1 · · ·n

Semantic Gaze Labeling for Human-Robot Shared Manipulation ETRA ’19, June 25–28, 2019, Denver , CO, USA

into the keypoints representing the object being fixated at that time.

To reduce the data complexity required, we can preprocess the gaze

signal by dividing the gaze into individual fixations with mean

locations ft , where we assume that each fixation shares a label,

and discarding the saccadic transitions between fixations. (A single

fixation index t spans a range of times [τt,0,τt,1].) Then, the labeling
problem becomes assigning a label �t to each fixation location ft .

4 APPROACH

The most straightforward approach for semantic labeling is to as-

sign to each fixation the closest object in the scene. In this paper, we

call this position matching. If the point of regard is captured accu-

rately, and the relevant scene object positions are known precisely,

the semantic labeler can simply label each fixation with the closest

object (using some appropriate metric, e.g. cosine distance between

the rays from the head position). This or similar approaches have

been used successfully for highly accurate data [Hagihara et al.

2018; Li et al. 2017; Paletta et al. 2013a; Pfeiffer and Renner 2014;

Pfeiffer et al. 2016; Singh et al. 2018].

However, this approach performs poorly in the presence of er-

rors. Inaccuracy during initial calibration can cause static errors

in the scene, where the true gaze location is somewhat off from

a computed point of regard. Moreover, and particularly when us-

ing mobile eye trackers, gradual motion of the sensor components

can cause the calibration to drift over time. This problem is ex-

acerbated when reconstructing full 3D scenes, as the increased

number of parameters and sensors needed for unrestricted gaze di-

rection reconstruction all increase the sensitivity of the calibration

to inaccuracy or drift.

To mitigate this problem, we borrow techniques from signal

processing. First, we note that these calibration drifts are usually

slow with respect to actual eye motion. Eye tracker calibration

error is constant; eye tracker slip is often slow; and object motion is

generally slow relative to eye motion. Therefore, we can expect that

relative to the time scale of individual gaze fixations, the calibration

error will stay generally constant. Furthermore, we assume that we

know the locations of all of the relevant objects in the scene (the

keypoints). Therefore, to the standard position features that encode

the distance from the gaze fixation to each keypoint, we add in

velocity features. These features compare the distance traveled from

the previous fixation to the current one with the changes between

the previous keypoint and each of the keypoints at the current time.

In particular, when labeling a fixation ft , the velocity feature

consists of comparing the change required to transform the previous

fixation location ft−1 to ft with the n transformations that would

move the previous keypoint label to each of the current keypoints

at those appropriate times. That is, if the fixation at t − 1 had

been previously labeled i , compare this fixation velocity with the

velocity between kit−1 and k
j
t for all j . Since the static error term is

added at both the previous and the current time step, computing the

velocity features by taking their difference cancels much of it out1.

Therefore, we can expect adding in these features to improve the

1If the static term were in fact constant and the filtering were performed in 2D, all of
the error would be removed. However, the additional warping brought in by using
angular features (see below) means there will necessarily be some residual error.

classification accuracy with larger error. The position and velocity

features are represented schematically in Fig. 2.

One approach to this problem would perform the entire calcula-

tion in 2D. That is, we could compare Euclidean distances between

pixel locations representing keypoints and gaze targets. However,

for better accuracy in the 3D environment, we choose instead to

consider rays starting at a single point (represented by the posi-

tion of the egocentric camera used for eye tracking) and projected

into the environment. These rays can be identified with single

pixel locations on the egocentric video camera frame; however,

their vector representation must be preserved when calculating

differences and differences-of-differences, as is necessary for these

feature representations. Sec. 4.1 describes the appropriate calcula-

tions for determining these features in ray space, and Fig. 2c shows

a representation of these projection rays.

In addition, velocity features are not sufficient on their own. Note

that velocity features are reliant on the previous label being correct:

otherwise, the features are computed relative to the wrong point

and the data is useless. Moreover, the classification must be seeded

with a correct initial label, for which it cannot use the velocity

features. Therefore, a complete algorithm combines both position

and velocity features to perform accurate semantic labeling.

4.1 Feature definitions

Mathematically, we can compute the features as follows. Represent

each fixation average point f1 · · · fT as a unit vector indicating

the direction of gaze, and compute the average direction for each

keypoint i at each fixation time t as

kit = mean
τ=τ0,t · · ·τ1,t

kiτ ,

the average of the keypoint position over the duration of the fixation.

Both position and velocity feature can be computed from these

components.

4.1.1 Position features. For each fixation t , compute the position

features pi as the cosine distance between the fixation location and

the position feature. That is,

pit = 1 − ft · kit
is a normalized representation of the inner product between the

unit vectors representing the average fixation and keypoint rays.

4.1.2 Velocity features. To compute velocity features, we must

first compute the change over time of the fixation and each key-

point. We can represent these changes as quaternions, standard

four-parameter representations of 3D rotations that are relatively

easy to compute and compare.

The fixation change d ft is calculated by computing the rotation

axis and angle, then combining them to form a quaternion. First,

the rotation axis x̂ is computed as

x̂ = ft−1 × ft ,

the cross product of the previous and the current gaze ray directions.

The angle θ between them is then computed from their dot product,

θ = arccos(ft−1 · ft).

ETRA ’19, June 25–28, 2019, Denver , CO, USA Reuben M. Aronson and Henny Admoni

(a) Position features. (b) Velocity features. (c) Three-dimensional representation of posi-

tion features.

Figure 2: A schematic representation of the calculated features. Colored circles represent keypoints. Filled circles represent

keypoint positions at the current time. Outlined circles represent keypoint positions at the previous time, with the solid

outlined circle representing the keypoint that was assigned as label; the other previous keypoints are dashed. The filled red

star represents the average fixation location at the current time, and the outlined star the previous fixation location. Figure 2a

represents the position features at the current time; the closest keypoint to the fixation is the blue one, but the distance is

similar to the green distance due to a constant offset. Figure 2b represents the velocity features; the relative motion that the

fixation would have taken between the previous time and the current time is represented by a dashed arrow for each keypoint

and the observed relative motion by the dashed red arrow. The high similarity between the blue arrow and the red arrow leads

to a small velocity feature for the blue keypoint independent of the constant offset. Figure 2c emphasizes that while we use

simpler 2D representations for discussions, the actual feature computation is performed in 3D. Keypoints represent rays in

three dimensions originating from the participant’s head, as depicted by colored vectors in the image. Position features are

computed from a vectormetric related to the rotations between the fixation ray and each keypoint ray, as shown by the dashed

lines. Velocity features (not shown) are computed by comparing the rotations between pairs of vectors with each other.

Finally, the entire quaternion difference d ft is computed from the

axis-angle quaternion form

d ft = cos(θ/2) + sin(θ/2)
(
x1î + x2 ĵ + x3k̂

)
,

where we use the coordinate decomposition of the rotation axis

x̂ = (x1,x2,x3) as the coefficients of the quaternion unit vectors î , ĵ ,

and k̂ . We compute the n keypoint distances similarly, where dk
i j
t

is computed from kit−1 and k
j
t using the same procedure.

To put everything together, assume that ft−1 has already been

labeled as keypoint i . Then the velocity features are

v
i j
t = 1 − (d ft · dki jt),

which are again normalized representations of the inner product

between the fixation and keypoint changes over time.

4.2 Classification

To demonstrate the utility of these velocity features, we use a simple

one-parameter classifier, with aweighting parameterγ to adjudicate

between position and velocity features. Then, the semantic label �t
for a fixation ft is assigned as the label that yields the minimum

total feature value:

�t = argmin
j=1· · ·n

[
(1 − γ)p j

t + γv
�t−1 j
t

]
.

Here, the velocity features used are only the n features derived

from the previous label, as indicated by the �t−1 in the label. Note

that all features are inherently bounded to the range [0, 2], where
0 indicates complete agreement and 2 is complete disagreement;

therefore, no significant weighting adjustments are required. While

more sophisticated classifiers using this features can be developed,

demonstrating the power of even this simpler classifier shows the

usefulness of the velocity features in counteracting constant offsets.

We compare all data using three different classifiers:

Position classifier. This benchmarking classifier uses only the

position features above (i.e., γ = 0). It represents the standard

approach with no velocity features.

True position/velocity classifier. To demonstrate the utility of

the velocity features while removing the error stackup problem

caused by relying on the previous classification, we used a classifier

where the velocity features were calculated from the true previous

label rather than the assigned label. Therefore, each time step was

classified in isolation. By observation, we set γ = 0.8.

Semantic Gaze Labeling for Human-Robot Shared Manipulation ETRA ’19, June 25–28, 2019, Denver , CO, USA

Sequential position/velocity classifier. This classifier represents
how these labels would be used on a real dataset where correct labels
are not available. It is identical to the true position/velocity classifier,
except that velocity features are calculated from the assigned label.
Again, γ = 0.8.

5 SYNTHETIC DATA VALIDATION
We first validated this approach on synthetic gaze fixation data.
In particular, we demonstrate that adding fixation-level velocity
features indeed improves classification accuracy for a signal of
this type before we add in the complication of real, noisy gaze
data. Therefore, we are not especially concerned that the gaze
dynamics (scanpath or fixation/saccade duration and dynamics)
perfectly model human gaze; rather, we simply show that in a
similar situation, the effect of constant error is mitigated. Using
synthetic data additionally allows us to manually control the static
error in the detection accuracy while maintaining ground-truth
labels. Therefore, we can demonstrate the usefulness of velocity
features in eliminating static error under controlled conditions.

5.1 Synthetic data generation
To build this data, we randomly generated keypoint and fixation
data that would roughly correspond to object-focused gaze behavior.
First, four keypoints were placed on an image-sized canvas. These
points were initialized uniformly randomly throughout the image
frame and at each (30 Hz) time step moved in a Gaussian random
walk throughout the frame. A simulated gaze signal was gener-
ated by concatenating fixations of randomly specified lengths, with
each fixation assigned to a uniformly randomly chosen keypoint.
The fixation center was determined by averaging its corresponding
keypoint positions over the duration of the fixation. To roughly
simulate humanlike behavior, fixation durations were drawn from
a normal distribution with mean 530 ms and standard deviation 100
ms and clipped to a minimum duration of 100 ms; these parameters
match published fixation means and histograms for manipulation
tasks[Hayhoe et al. 2003; Land et al. 1999]. Fixations were separated
by saccade-style spacing with durations drawn from an exponen-
tial distribution with mean 100 ms. Two hundred such simulated
behavior sequences were generated, each with a duration of 33.3
seconds (1000 samples).

5.2 Evaluation
We applied the three classification algorithms (as described in
Sec.4.2) to this generated data. To the true fixation locations, we
added a pixel offset of constant magnitude to all the data and ran-
domly varied the offset direction per sequence. A plot of the classifi-
cation accuracy versus induced offset magnitude for each algorithm
appears in Fig. 3. All classifiers perform nearly perfectly when no
error is present, as the fixation is much closer to its target keypoint
than to any of the alternative keypoints. Once the applied offset
nears the average inter-keypoint distance, though, the applied offset
can cause confusion for the position features, so the position classi-
fier drops in performance. However, the position/velocity classifiers
maintain their performance for higher offset values, indicating that
the velocity features successfully mitigate the effect of constant

0 100 200 300 400 500 600

Static offset (px)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

s
s
if
ic

a
ti
o

n
 a

c
c
u

ra
c
y

Classification performance versus static offset (synthetic data)

Position

Position/Velocity (True)

Position/Velocity (Sequential)

Figure 3: Plot of classification accuracy versus offset mag-
nitude for classifiers using position features only, position
plus true velocity features, and position plus estimated ve-
locity features (see Sec. 4.2). Adding the velocity features
makes the classification significantly more robust to con-
stant offsets.

errors. Therefore, this technique is promising to pursue on a real
dataset.

6 REAL DATA APPLICATION
Our eventual goal is to employ this semantic gaze labeling system
in real-world human-robot collaborations. We aim to infer people’s
intentions using their gaze fixation locations, so that a robot can
autonomously take assistive action toward their intended goal. To
determine the utility of our semantic gaze labeling approach in
this scenario, we evaluated it on a data corpus from real-world
human-robot collaborative manipulation task.

6.1 Data collection
This corpus of eye-tracking data was derived from a human partici-
pants study in which 24 people were asked to teleoperate a robot
while wearing a Pupil Labs Pupil [Pupil Labs, Inc. 2017] mobile eye
tracker. Each participant operated a robot manipulator arm using
a joystick to pick up one of three marshmallows on a plate, in a
simulation of a feeding activity (see Fig. 4). While the entire dataset
contained trails in several assistive modes, for this evaluation only
the data during full teleoperation was retained, which resulted in
five trials per user for a total of 120 trials. Full data collection details
are available in the accompanying paper [Newman et al. 2018].

6.2 Fixation detection
To ease data processing, we begin by dividing the entire eye gaze
signal into time periods during which the participant is looking at
the same object, which we here call fixations. Though the physio-
logical details of that term are ambiguous [Hessels et al. 2018], the
details of exactly when a fixation begins or ends is not especially
relevant to our algorithm. Furthermore, the distinction between

ETRA ’19, June 25–28, 2019, Denver , CO, USA Reuben M. Aronson and Henny Admoni

(a) Forward view. (b) Egocentric view.

Figure 4: Task-oriented eye gaze datawas collected frompar-

ticipants who were asked to teleoperate a robot arm to com-

plete a food acquisition task. (a) A forward view of a partic-

ipant wearing a Pupil Labs Pupil[Pupil Labs, Inc. 2017] eye

tracker. (b) A frame of the egocentric video captured by the

eye tracker, with a red dot indicating the participant’s point

of regard is on (or near) the plate.

fixations on static or dynamic objects (often termed fixations and

smooth pursuits respectively) can be collapsed. With those caveats

in mind, for fixation segmentation we use the I-BDT algorithm as

described in Tafaj et al. [2012], but without the second step for

pursuit classification. This algorithm assigns a label of either sac or

fix to each time step based on a two-component Bayesian mixture

model, then fuses sequential time steps labeled fix into a single

fixation. We re-implemented the algorithm in Python (originally in

Matlab) and our implementation is available online. 2

To validate our re-implementation of this algorithm, we com-

pared it to the manually annotated dataset published in Kasneci

et al. [2014]. The overall precision for individually labeling time

steps as sac was 0.725, and the recall 0.921. These results indicate

that our re-implementation is somewhat more conservative than

the original algorithm: it successfully labels most of the original sac

time steps (as indicated by the high recall) but also labels additional

points as sac (as indicated by the relatively low precision). However,

this conservatism is compatible with our overall goals: it is more

important to successfully subdivide time periods in which different

objects are being looked at than it is to ensure that the entire gaze

time is contained within a single fixation. In other words, we more

reliably detect transitions between objects (as saccades) at the cost

of occasionally splitting up a single fixation into multiple parts.

6.3 Semantic labeling

To determine the position of relevant objects, we developed a direct

pipeline for explicitly locating the objects of interest as keypoints

within the egocentric video. First, we calculate the extrinsic param-

eters of the camera relative to a constant frame of reference in the

scene. Next, we note that the robot and object positions relative

to this fixed frame are already available, as they are necessary for

computing the manipulation action of interest. Therefore, we can

transform the relevant object locations into the egocentric camera

frame, and then project them into the image frame.

2https://github.com/HARPLab/ibmmpy

To complete this pipeline, the main difficulty is in obtaining the

camera extrinsics. To simplify this problem, we use a pre-existing

grid of ArUcO tags [Garrido-Jurado et al. 2014] available in the

workspace, as well as a prior calibration between the ArUcO grid

and the robot base[Wu and Ren 2017]. The extrinsics were then

smoothed using a Kalman filter using the robot_localization
ROS package[Moore and Stouch 2014]. One extension to this work is

to consider alternate methods of extrinsic calibration; using monoc-

ular SLAM for gaze data has shown some success [Paletta et al.

2013b; Wang et al. 2018]. However, since in this situation the tag

grid is already present, more advanced techniques were not neces-

sary.

Fixations were manually labeled with their associated keypoints

as determined from watching the egocentric camera. Coders were

instructed to label each fixation with the scene keypoint most sim-

ilar, using clues such as proximity, history of motions, or motion

relative to the background scene. Four coders coded the data. Twelve

trials (10%) were coded by all coders, and the resulting average pair-

wise Cohen’s kappa (inter-reliability rating) was 0.645, indicating

good agreement [Hallgren 2012]. A sample image from the ego-

centric video, with keypoints, fixation, and feature values overlaid,

appears in Fig. 5.

For computing the features, the 2D (pixel) coordinates for all of

the relevant positions (fixations and keypoints) were first rectified

using to a fisheye camera distortion model which was fit from

a static calibration. Then, the undistorted pixel coordinates were

transformed into 3D (ray) coordinates using the egocentric camera

intrinsic matrix K :

⎡⎢⎢⎢⎢⎣
rx
ry
1

⎤⎥⎥⎥⎥⎦
= K−1

⎡⎢⎢⎢⎢⎣
px
py
1

⎤⎥⎥⎥⎥⎦
.

All feature computation was performed using these ray coordinates.

6.4 Results

Each of the algorithms described in Sec. 4.2 were applied to the

labeled data, which consisted of 3861 total labeled fixations. The

position classifier yielded an overall accuracy of 65.9%, the true

position/velocity an accuracy of 75.8%, and the sequential posi-

tion/velocity classifier an accuracy of 65.5%. Therefore, adding in

the velocity features has the potential to increase the labeling accu-

racy by ten percentage points; however, the error stackup induced

by the feature dependence in the sequential velocity case eliminates

the added benefit of the velocity features.

To understand the performance more deeply, we plot the accu-

racy of each classification algorithm relative to the actual offset of

the true label. That is, for each fixation, we compute the distance

between the fixation point and the keypoint assigned by the manual

labeler. These distances are binned in 0.6◦ bins (each bin having

a minimum of 20 fixations) and the resulting accuracies are show

in Fig. 6. As in the synthetic data, the position classifier performs

best at very low offsets. When the offsets exceed 5◦, the true po-
sition/velocity classifier surpasses the position classifier, and the

sequential position/velocity classifier does the same at around 7◦ of
offset. These results demonstrate that the velocity features indeed

improve the classification performance in the presence of error.

Though they may not be necessary for highly accurate datasets,

https://github.com/HARPLab/ibmmpy

Semantic Gaze Labeling for Human-Robot Shared Manipulation ETRA ’19, June 25–28, 2019, Denver , CO, USA

Figure 5: Frame of the egocentric video. The fixations
(shown as a red star) aremanually classified as one of eleven
subcategories, consisting of each of the manipulator joints
as well as the goal location. These lower-level keypoints are
then grouped into categories (robot base, robot arm, robot
end effector, fork tip, and goal morsels) for representative la-
beling; categories are indicated by color. All classification is
done by keypoint category, where the higher-level keypoint
location is determined by the mean locations of its compo-
nent lower-level keypoints.

using velocity features for classification improves accuracy in the
presence of tracking error.

7 DISCUSSION AND CONCLUSIONS
In this work, we present the idea of using velocity features to im-
prove the quality of semantic gaze labeling in the presence of errors.
To demonstrate their effectiveness, we use a simple classifier based
on these features on both synthetic data and real data collected
during a manipulation task. In both cases, the addition of these
velocity features significantly improves the quality of the labeling
process. While more sophisticated, data-intensive approaches may
yield better results, adding this relatively simple additional feature
category can mitigate the effect of systemic errors.

A simple technique that can mitigate errors in 3D gaze analysis
is particularly valuable for collecting real-world data in general en-
vironments. While lab conditions allow for rigorous calibration pro-
cedures and frequent resets to ensure high accuracy, that standard
is difficult to achieve with untrained users or in natural situations.
Even if high accuracy were achievable, marginal gains in accuracy
comparable to those enabled by these velocity features may require
substantial resources in computation, training, or calibration to
achieve elsewhere in the gaze tracking system. In contrast, using
a relatively simple system to process this gaze data reduces the
accuracy requirements of the underlying tracker, enabling even
low-cost systems to be used for complicated tasks.

One challenge of the approach presented here is that it requires
a finite set of enumerable locations in the world that the user may

0 2 4 6 8 10 12 14 16

Position error (degrees)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
ra

c
y

Classification performance versus computed offset (real data)

Position

Position/Velocity (True)

Position/Velocity (Sequential)

Figure 6: Plot of classification accuracy versus computed de-
gree offset on real data. Colored lines indicate classification
approaches (position features only, red; position plus true
velocity features, blue; and position plus sequential velocity
features, green.) Using velocity features made the classifica-
tions more accurate when the error exceeds 7◦.

be looking at. In certain tasks, such as a simple manipulation action
when only a few objects are relevant, this assumption is likely to
be valid. Moreover, in a scenario such as robotic manipulation in
which other parts of the tasks require knowledge of object posi-
tions, these keypoints may already be present in the system. In
addition, a labeling strategy using these features that gives a score
can be thresholded to detect gaze events targeted at non-tracked
objects, which may be inherently interesting (for example, they
may represent a task failure or an unexpected state). For other tasks,
such as recognizing novel objects during driving or understanding
reading behavior, a small set of keypoints may not be relevant, so
alternate approaches (like automated object recognition [Auepan-
wiriyakul et al. 2018; Orlov et al. 2018]) may need to be used. Even
in these cases, however, applying the velocity-based classification
idea to reduce slow or constant errors may improve performance.
Furthermore, an extension of this work could consider automat-
ically learning relevant keypoints from visual saliency or object
recognition and feature clustering; for such a project, velocity fea-
tures can reduce the impact of not just calibration error but slow
frame or object motions.

Another assumption made by this approach is that a system can
accurately divide the gaze into periods of time focused on a single
semantic unit (here called fixations) and that the object is relatively
stationary during that time. If the objects move substantially during
a fixation, the features can wander. This problem may be amelio-
rated by deliberately considering the internal motion and adding
additional matching features indicating the degree of correlation of
the internal motion of a keypoint with the internal motion of the
object, as has been explored elsewhere [Bernhard et al. 2014; Vidal
et al. 2013].

One limitation to consider is, as discussed earlier, the effect of er-
ror stackup: when computing the velocity features at some specific

ETRA ’19, June 25–28, 2019, Denver , CO, USA Reuben M. Aronson and Henny Admoni

time t , if the label for the previous timestep ℓt−1 was computed
incorrectly, all of the velocity comparisons are incorrect. In this
work, we chose to fuse the position and velocity features at each
timestamp, which provides a continuous corrective signal. However,
numerous other approaches are available. For example, a system
could periodically discard the velocity labels and reset using only
the position labels. Alternatively, if an expensive but more accurate
checking process (such as asking the user to look at a known point)
is available, this sensor can be used to periodically reset the labels.

One direction for improving classification results that explic-
itly addresses the problem of error stackup is to combine the fea-
tures presented here with more sophisticated, learning-based clas-
sifiers. For example, Bernhard et al. [2014] presents a framework
for combining multiple features using Bayesian probability metrics,
and Mantiuk et al. [2013] describes using these probability updates
in a hidden Markov model. We have been careful to present the
contribution in this paper as velocity features; the classification
algorithms described in Sec. 4.2 are deliberately simplified to show
the power of the features in isolation. Future work will explore com-
bining these velocity features with sequential labeling techniques
like hidden Markov models, as well as combining them with other
featurizations for better overall recognition.

In this work, we presented a set of features to use to better solve
the semantic gaze recognition problem, especiallywhen considering
the challenges that appear when using 3-dimensional, real-world
gaze. Accurately solving this problem is one important component
to using eye gaze for real-world systems.

ACKNOWLEDGMENTS
This work was supported by the Paralyzed Veterans of America and
the National Science Foundation (IIS-1755823). Thanks to Siddharth
Girdhar, Michael Huang, and Roman A. Kaufman for assistance
in data labeling; to Robbie Paolini for assistance and code for ro-
bot calibration; and to the anonymous reviewers whose feedback
substantially improved this paper.

REFERENCES
Reuben M. Aronson and Henny Admoni. 2018. Gaze for Error Detection During

Human-Robot Shared Manipulation. In Fundamentals of Joint Action workshop,
Robotics: Science and Systems.

Reuben M. Aronson, Thiago Santini, Thomas. C. Kübler, Enkelejda Kasneci, Siddhartha
Srinivasa, and Henny Admoni. 2018. Eye-Hand Behavior in Human-Robot Shared
Manipulation. In ACM/IEEE International Conference on Human-Robot Interaction.

Rowel Atienza and Alexander Zelinsky. 2005. Intuitive Human-Robot Interaction
Through Active 3D Gaze Tracking. In Robotics Research. The Eleventh International
Symposium, Paolo Dario and Raja Chatila (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 172–181.

Chaiyawan Auepanwiriyakul, Alex Harston, Pavel Orlov, Ali Shafti, and A. Aldo Faisal.
2018. Semantic Fovea: Real-time Annotation of Ego-centric Videos with Gaze
Context. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research &
Applications (ETRA ’18). ACM, New York, NY, USA, Article 87, 3 pages. https:
//doi.org/10.1145/3204493.3208349

Matthias Bernhard, Efstathios Stavrakis, Michael Hecher, and Michael Wimmer. 2014.
Gaze-to-Object Mapping During Visual Search in 3D Virtual Environments. ACM
Trans. Appl. Percept. 11, 3, Article 14 (Aug. 2014), 17 pages. https://doi.org/10.1145/
2644812

C. Braunagel, E. Kasneci, W. Stolzmann, and W. Rosenstiel. 2015. Driver-activity recog-
nition in the context of conditionally autonomous driving. In IEEE 18th International
Conference on Intelligent Transportation Systems. IEEE, 1652–1657.

Anne-Marie Brouwer and David C. Knill. 2007. The role of memory in visually guided
reaching. Journal of Vision 7, 5 (06 2007), 6–6. https://doi.org/10.1167/7.5.6

S. Garrido-Jurado, R. Muñoz Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez. 2014.
Automatic Generation and Detection of Highly Reliable Fiducial Markers Under
Occlusion. Pattern Recogn. 47, 6 (June 2014), 2280–2292. https://doi.org/10.1016/j.
patcog.2014.01.005

Kakeru Hagihara, Keiichiro Taniguchi, Irshad Abibouraguimane, Yuta Itoh, Keita
Higuchi, Jiu Otsuka, Maki Sugimoto, and Yoichi Sato. 2018. Object-wise 3D Gaze
Mapping in Physical Workspace. In Proceedings of the 9th Augmented Human
International Conference (AH ’18). ACM, New York, NY, USA, Article 25, 5 pages.
https://doi.org/10.1145/3174910.3174921

Kevin A Hallgren. 2012. Computing Inter-Rater Reliability for Observational Data: An
Overview and Tutorial. Tutorials in quantitative methods for psychology 8, 1 (2012),
23–34. http://www.ncbi.nlm.nih.gov/pubmed/22833776

Mary Hayhoe and Dana Ballard. 2005. Eye movements in natural behavior. Trends in
Cognitive Sciences 9, 4 (2005), 188–194. https://doi.org/10.1016/j.tics.2005.02.009

Mary M. Hayhoe, Anurag Shrivastava, Ryan Mruczek, and Jeff B. Pelz. 2003. Visual
memory and motor planning in a natural task. Journal of Vision 3, 1 (02 2003), 6–6.
https://doi.org/10.1167/3.1.6

Laura Herlant, Rachel Holladay, and Siddhartha Srinivasa. 2016. Assistive Teleopera-
tion of Robot Arms via Automatic Time-Optimal Mode Switching. In ACM/IEEE
International Conference on Human-Robot Interaction.

Roy S. Hessels, Diederick C. Niehorster, Marcus Nyström, Richard Andersson, and
Ignace T. C. Hooge. 2018. Is the eye-movement field confused about fixations and
saccades? A survey among 124 researchers. Royal Society Open Science 5, 8 (aug
2018), 180502. https://doi.org/10.1098/rsos.180502

Roland S Johansson, Gö Ran Westling, Anders Bäckström, and J Randall Flanagan.
2001. Eye–Hand Coordination in Object Manipulation. The Journal of Neuroscience
21, 17 (2001), 6917–6932.

Marcel A. Just and Patricia A. Carpenter. 1980. A theory of reading: From eye fixations
to comprehension. (1980), 329–354.

Enkelejda Kasneci, Gjergji Kasneci, Thomas C. Kübler, and Wolfgang Rosenstiel. 2014.
The applicability of probabilistic methods to the online recognition of fixations
and saccades in dynamic scenes. In Proceedings of the Symposium on Eye Tracking
Research and Applications - ETRA ’14. ACM Press, New York, New York, USA,
323–326. https://doi.org/10.1145/2578153.2578213

Michael Land, Neil Mennie, and Jennifer Rusted. 1999. The Roles of Vision and Eye
Movements in the Control of Activities of Daily Living. Perception 28, 11 (1999),
1311–1328. https://doi.org/10.1068/p2935 PMID: 10755142.

Michael F. Land and Mary Hayhoe. 2001. In what ways do eye movements contribute
to everyday activities? Vision Research 41, 25 (2001), 3559–3565.

S. Li, X. Zhang, and J. D. Webb. 2017. 3-D-Gaze-Based Robotic Grasping Through
Mimicking Human Visuomotor Function for People With Motion Impairments.
IEEE Transactions on Biomedical Engineering 64, 12 (Dec 2017), 2824–2835. https:
//doi.org/10.1109/TBME.2017.2677902

R. Mantiuk, B. Bazyluk, and R. K. Mantiuk. 2013. Gaze-driven Object Tracking for
Real Time Rendering. Computer Graphics Forum 32, 2pt2 (2013), 163–173. https:
//doi.org/10.1111/cgf.12036

Neil Mennie, Mary Hayhoe, and Brian Sullivan. 2007. Look-ahead fixations: anticipa-
tory eye movements in natural tasks. Experimental Brain Research 179, 3 (01 May
2007), 427–442. https://doi.org/10.1007/s00221-006-0804-0

T. Moore and D. Stouch. 2014. A Generalized Extended Kalman Filter Implementation
for the Robot Operating System. In Proceedings of the 13th International Conference
on Intelligent Autonomous Systems (IAS-13). Springer.

Benjamin A. Newman, Reuben M. Aronson, Siddhartha S. Srinivasa, Kris Kitani, and
Henny Admoni. 2018. HARMONIC: A Multimodal Dataset of Assistive Human-
Robot Collaboration. ArXiv e-prints (July 2018). arXiv:cs.RO/1807.11154

Pavel Orlov, Ali Shafti, Chaiyawan Auepanwiriyakul, Noyan Songur, and A. Aldo Faisal.
2018. A Gaze-contingent Intention Decoding Engine for Human Augmentation. In
Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications
(ETRA ’18). ACM, New York, NY, USA, Article 91, 3 pages. https://doi.org/10.1145/
3204493.3208350

Lucas Paletta, Katrin Santner, Gerald Fritz, Albert Hofmann, Gerald Lodron, Georg
Thallinger, and Heinz Mayer. 2013a. FACTS - A Computer Vision System for 3D
Recovery and Semantic Mapping of Human Factors. In Computer Vision Systems,
Mei Chen, Bastian Leibe, and Bernd Neumann (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 62–72.

Lucas Paletta, Katrin Santner, Gerald Fritz, Heinz Mayer, and Johann Schrammel. 2013b.
3D Attention: Measurement of Visual Saliency Using Eye Tracking Glasses. In CHI
’13 Extended Abstracts on Human Factors in Computing Systems (CHI EA ’13). ACM,
New York, NY, USA, 199–204. https://doi.org/10.1145/2468356.2468393

Thies Pfeiffer. 2012. Measuring and Visualizing Attention in Space with 3D Attention
Volumes. In Proceedings of the Symposium on Eye Tracking Research and Applications
(ETRA ’12). ACM, New York, NY, USA, 29–36. https://doi.org/10.1145/2168556.
2168560

Thies Pfeiffer and Patrick Renner. 2014. EyeSee3D: A Low-cost Approach for An-
alyzing Mobile 3D Eye Tracking Data Using Computer Vision and Augmented
Reality Technology. In Proceedings of the Symposium on Eye Tracking Research and
Applications (ETRA ’14). ACM, New York, NY, USA, 369–376. https://doi.org/10.
1145/2578153.2628814

Thies Pfeiffer, Patrick Renner, and Nadine Pfeiffer-Leßmann. 2016. EyeSee3D 2.0:
Model-based Real-time Analysis of Mobile Eye-tracking in Static and Dynamic
Three-dimensional Scenes. In Proceedings of the Ninth Biennial ACM Symposium

https://doi.org/10.1145/3204493.3208349
https://doi.org/10.1145/3204493.3208349
https://doi.org/10.1145/2644812
https://doi.org/10.1145/2644812
https://doi.org/10.1167/7.5.6
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1145/3174910.3174921
http://www.ncbi.nlm.nih.gov/pubmed/22833776
https://doi.org/10.1016/j.tics.2005.02.009
https://doi.org/10.1167/3.1.6
https://doi.org/10.1098/rsos.180502
https://doi.org/10.1145/2578153.2578213
https://doi.org/10.1068/p2935
https://doi.org/10.1109/TBME.2017.2677902
https://doi.org/10.1109/TBME.2017.2677902
https://doi.org/10.1111/cgf.12036
https://doi.org/10.1111/cgf.12036
https://doi.org/10.1007/s00221-006-0804-0
http://arxiv.org/abs/cs.RO/1807.11154
https://doi.org/10.1145/3204493.3208350
https://doi.org/10.1145/3204493.3208350
https://doi.org/10.1145/2468356.2468393
https://doi.org/10.1145/2168556.2168560
https://doi.org/10.1145/2168556.2168560
https://doi.org/10.1145/2578153.2628814
https://doi.org/10.1145/2578153.2628814

Semantic Gaze Labeling for Human-Robot Shared Manipulation ETRA ’19, June 25–28, 2019, Denver , CO, USA

on Eye Tracking Research & Applications (ETRA ’16). ACM, New York, NY, USA,
189–196. https://doi.org/10.1145/2857491.2857532

Pupil Labs, Inc. 2017. Pupil Labs - Pupil. Retrieved Jan 5, 2018 from https://pupil-labs.
com/pupil/

Karishma Singh, Mahmoud Kalash, and Neil Bruce. 2018. Capturing Real-world Gaze
Behaviour: Live and Unplugged. In Proceedings of the 2018 ACM Symposium on Eye
Tracking Research & Applications (ETRA ’18). ACM, New York, NY, USA, Article 20,
9 pages. https://doi.org/10.1145/3204493.3204528

Enkelejda Tafaj, Gjergji Kasneci, Wolfgang Rosenstiel, and Martin Bogdan. 2012.
Bayesian Online Clustering of Eye Movement Data. In Proceedings of the Sym-
posium on Eye Tracking Research and Applications (ETRA ’12). ACM, New York, NY,
USA, 285–288. https://doi.org/10.1145/2168556.2168617

Mélodie Vidal, Andreas Bulling, and Hans Gellersen. 2013. Pursuits: Spontaneous
Interaction with Displays Based on Smooth Pursuit Eye Movement and Moving
Targets. In Proceedings of the 2013 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp ’13). ACM, New York, NY, USA, 439–448.
https://doi.org/10.1145/2493432.2493477

Haofei Wang, Jimin Pi, Tong Qin, Shaojie Shen, and Bertram E. Shi. 2018. SLAM-based
Localization of 3D Gaze Using a Mobile Eye Tracker. In Proceedings of the 2018
ACM Symposium on Eye Tracking Research & Applications (ETRA ’18). ACM, New
York, NY, USA, Article 65, 5 pages. https://doi.org/10.1145/3204493.3204584

L. Wu and H. Ren. 2017. Finding the Kinematic Base Frame of a Robot by Hand-Eye
Calibration Using 3D Position Data. IEEE Transactions on Automation Science and
Engineering 14, 1 (Jan 2017), 314–324. https://doi.org/10.1109/TASE.2016.2517674

https://doi.org/10.1145/2857491.2857532
https://pupil-labs.com/pupil/
https://pupil-labs.com/pupil/
https://doi.org/10.1145/3204493.3204528
https://doi.org/10.1145/2168556.2168617
https://doi.org/10.1145/2493432.2493477
https://doi.org/10.1145/3204493.3204584
https://doi.org/10.1109/TASE.2016.2517674

	Abstract
	1 Introduction
	2 Related Work
	3 Semantic Gaze Labeling
	4 Approach
	4.1 Feature definitions
	4.2 Classification

	5 Synthetic Data Validation
	5.1 Synthetic data generation
	5.2 Evaluation

	6 Real Data Application
	6.1 Data collection
	6.2 Fixation detection
	6.3 Semantic labeling
	6.4 Results

	7 Discussion and Conclusions
	Acknowledgments
	References

