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Abstract— Modeling individual-specific gait dynamics based
on kinematic data could aid development of gait rehabilitation
robotics by enabling robots to predict the user’s gait kinematics
with and without external inputs, such as mechanical or electri-
cal perturbations. Here we address a current limitation of data-
driven gait models, which do not yet predict human responses
to perturbations. We used Switched Linear Dynamical Systems
(SLDS) to model joint angle kinematic data from healthy
individuals walking on a treadmill during normal gait and
during gait perturbed by functional electrical stimulation (FES)
to the ankle muscles. Our SLDS models were able to predict
the time-evolution of joint kinematics in each of four gait
phases, as well as across an entire gait cycle. Because the SLDS
dynamics matrices encoded significant coupling across joints,
we compared the SLDS predictions to that of a kinematic model,
where the joint angles were independent. Gait kinematics
predicted by SLDS and kinematic models were similar over
time horizons of a few milliseconds, but SLDS models provided
better predictions of gait kinematics over time horizons of up to
a second. We also demonstrated that SLDS models can infer and
predict individual-specific responses to FES during swing phase.
As such, SLDS models may be a promising approach for online
estimation and control of and human gait dynamics, allowing
robotic control strategies to be tailored to an individual’s
specific gait coordination patterns.

I. INTRODUCTION

Gait rehabilitation robotics, particularly exoskeletons, have
used reference trajectories to guide joint angles of the lower
limbs [1]. Reference trajectories are typically obtained by
averaging the gait patterns of multiple healthy individuals
together, or by recording the gait of a user, either healthy
or impaired, beforehand. In the case of impaired gait, the
reference can be taken from the unimpaired leg and mir-
rored to form a complete specification for both legs, under
the assumption that joint kinematics can be independently
specified. Robot controllers then attempt to follow each
joint trajectory in the reference independently, either through
position or impedance control.

Recent work using model-predictive control of exoskele-
tons based on reference trajectories have shown that con-
troller performance suffers when human gait dynamics are
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not taken into account [2]. Controlling around a reference
trajectories assumes that the human behaves passively; as
a result, human limb dynamics and interjoint coupling are
treated as disturbances that cannot be completely rejected.
However, human joints are not independently controlled ei-
ther within or between limbs [3,4,5], and interjoint coupling
can be even more pronounced in impaired populations [6].
Further, in the case of asymmetric impairments, the dynamics
of the impaired leg also affects the coordination of the less
impaired leg, allowing compensation via mechanical and/or
neural coupling [4]. Estimating predictive models of human
limb dynamics online could substantially improve human-
robot interactions in gait. Improved models should predict
the limb kinematics based on joint coupling, as in [7], but
also predict the individual’s response to dynamic interactions
with the robot. Explicitly modeling dynamic human-robot
interactions could help the robot predict how changing joint
torques affects all of the joints through the individual’s coor-
dination dynamics, allowing robot controllers to be tailored
to individual-specific behaviors and responses [8].

Switched linear dynamical systems (SLDS) have been
used in the machine learning community for recognizing
different gaits, and may be a useful model for predicting
human gait. SLDS model nonlinear behavior, such as gait, as
a piecewise linear system; each of the linear systems governs
only a part of the overall system, and a set of discrete modes
determine which linear system is active. The linear system
parameters of an SLDS can either be specified from physical
knowledge, as in [9], or estimated from data, as in [10-14].
Each linear system of an SLDS can be designed to repre-
sent different gaits, such as running, walking, and limping
[10,11], or to represent other whole-body behaviors like sit-
to-stand [12]. Previously, we demonstrated that individual
autonomous linear systems in a SLDS model can identify
single and double-limb support gait phases [13].

While SLDS models are typically used to recognize differ-
ent gait behaviors, they can also generate gait patterns that
are qualitatively similar to human gait [14]. Because each
part of an SLDS is linear, the behavior of the original system
can be quickly predicted using linear forecasting techniques.
However, the performance of SLDS in predicting human
gaits has yet to be quantitatively measured. SLDS models
to date also have not included control terms to model the
effects on gait of mechanical forces and torques from an
exoskeleton or electrical stimulation to the muscles.

Our goal was to demonstrate that an SLDS model of
gait, trained on an individual’s specific gait kinematics in
both unperturbed and in perturbed walking, can reproduce



the individual’s normal walking pattern and their unique
response to a perturbation. Here, we focused on evaluating
the dynamics of each phase-specific linear system in an
SLDS; specifically, we hypothesized that each of our linear
systems could predict joint angle trajectories for the corre-
sponding gait phase by including information about interjoint
coordination. We compared simulated gait trajectories to the
measured trajectories in each phase for unperturbed gait.
Then, we compared simulations with and without simulated
inputs to the perturbed gait to assess the model’s ability
to predict individual responses to gait perturbations. We
also compared the SLDS model’s performance to a simple
kinematic model based on independent joint trajectories. Our
results show that, while the SLDS behaves locally like a
kinematic model, SLDS can also predict both unperturbed
gait kinematics and individual responses to perturbations in
different gait phases, and across an entire gait cycle.

II. METHODS

A. Gait Data

Data was collected from five healthy participants (all
female, 24-25 years old) while walking at constant speed
on a split-belt treadmill instrumented with force platforms
embedded within each belt. All participants provided writ-
ten informed consent prior to participating according to
protocols approved by the institutional review boards at
both Emory University and Georgia Institute of Technology.
Three-dimensional kinematics from both legs were captured
at 100Hz using a seven-camera motion capture system
and the Vicon Plug-In Gait model. Ground reaction forces
(GRFs) were recorded at 1000Hz. Vertical GRFs were used
to identify gait events using a 50N threshold. Specifically,
we defined heel-strikes as when the force first exceeds 50N
and toe-offs as when the force first drops below 50N.

Subjects were given 3-5 minutes to acclimate to treadmill
walking. Afterwards, each subject walked at two conditions
for 45s each at matched walking speeds in the following
order: (1) baseline walking and (2) perturbed walking. In the
perturbed walking condition, functional electrical stimulation
(FES) was delivered to the right ankle dorsiflexor muscles
during the right swing phase and the right plantarflexors
during right terminal double support phase. Two footswitches
were attached under the sole of the shoe of the right leg to
determine gait events for closed-loop control of FES [15].

B. Gait as a Switching Linear Dynamical System

We modeled the joint kinematics of the lower legs during
gait as a switching linear dynamical system. An SLDS is of
a set of linear dynamical systems with discrete modes that
govern when to switch between the individual linear models.
The equation for an SLDS in discrete-time can be written as:

xk+1 = Azkxk +Bzkuk + wk(zk) (1)

where zk is the discrete mode index at time k, zk ∈ {1, , N},
xk the observed state at time k, Azk and Bzk are the linear
system parameters associated with the discrete mode zk,
and wk(zk) is a zero-mean, Gaussian noise term whose

covariance matrix Σzk is also associated with the discrete
mode zk. The probability of starting in each discrete mode
is given by the initial state distribution, π , and transitioning
between hidden states is governed by a transition probability:

p(zk+1 = j|zk = i) = Tij (2)

The model parameters Θ = (A,B,Σ, T, π) were esti-
mated from data X = (x1, u1), (x2, u2), , (xK , uK) fol-
lowing a variant of the Baum-Welch algorithm for Hidden
Markov Models [16]. In the expectation step, we calculated
the probability of being in discrete mode i at time k:

γk(i) = p(zk = i|X,Θ) (3)

and the probability of transitioning from discrete mode i to
discrete mode j:

ξk(i, j) = p(zk = i, zk+1 = j|X,Θ) (4),

where both probabilities are estimated using the forwards-
backwards algorithm [13]. In the maximization step, we
updated the model parameters according to:

πi = γ1(i) (5)

aij = (
K−1∑
k=1

ξk(i, j))/(
K−1∑
k=1

γk(i)) (6)

[Ai, Bi] = [
K∑

k=1

γk(i)xkx̂
>
k−1][

K∑
k=1

γk(i)x̂k−1x̂
>
k−1 + λI]−1

(7)

Σi = (

K∑
k=1

γk(i)wk(i)w>k (i))/(
K∑

k=1

γk(i)) (8)

where wk(i) = xk+1 − Aixk − Biuk and x̂k = [x>k , u
>
k ]>.

Given a set of initial parameters, we iterated between expec-
tation and maximization steps until the absolute difference in
log-likelihood between consecutive iterations was less than
a pre-defined threshold. To initialize the models, we used a
procedure previously described to estimate gait phases based
on kinematic features [13]. In brief, we initialized heel strikes
from the time of the minimum in knee flexion over a gait
cycle, and toe-offs as the time of the minimum in ankle
flexion. We then initialized each LDS model in the SLDS
based on the kinematically determined gait events.

Here, we have introduced a regularization term λ into
the estimation of the linear system parameters [Ai, Bi] that
was not present in our previous work [13]. This term is
analogous to a penalty on the regression coefficients [A,B]
in a linear regression cost function and serves to drive
unnecessary elements in the dynamics towards zero. With
the addition of the regularization term, we are no longer
guaranteed a monotonic increase in likelihood by iterating
between expectation and maximization, as is guaranteed by
the traditional Baum-Welch algorithm. However, our models
converged even with nonzero regularization values.

To model individual-specific gait dynamics, we trained
a four-state SLDS on each individual’s gait data in both
constant speed walking and walking with FES perturbations.



We formulated a second-order model using generalized co-
ordinates for our state vector, xk = [θk, θk−1], where k is a
vector of measured joint angles at time k. We included hip
flexion and adduction, knee flexion, and ankle flexion and
adduction angles of both left and right legs in our model.
We also modeled the perturbation as an input square wave
with magnitude 1 from left heel strike to right heel strike,
and 0 otherwise - i.e. the input is on in double support phase
with left leg forward and right leg swing phase. Transitions
between discrete modes were constrained to form a cycle,
with only one mode following after another.

We trained the models on a bout of constant speed walking
(no input) and a bout of walking with FES perturbation
(square wave input). To set the regularization parameter,
we trained on the first 75% of the data in each bout, and
then validated the model on the remaining 25%. We tested
10 values of the regularization parameter, logarithmically
spaced between 0.1 and 100. For each individual, we chose
the value of λ that minimized the average normed error,
1/K

∑
k ‖wk‖, on the validation data.

We also trained a single SLDS on constant speed walking
and walking with FES perturbation from all five participants,
using the same cross-validation procedure described for each
of the individual-specific models. The group SLDS model
was trained on the first 75% of each individual’s walking data
in both conditions; the remaining 25% from each participant
in each condition was used to select the regularization
parameter based on the minimizing the average normed error.

C. Verifying SLDS modes are gait phases

Using the gait events obtained from the force platforms,
we constructed a ground-truth gait phase sequence to validate
that the SLDS discrete modes correspond to gait phase
dynamics. We defined left swing phase from left toe-off until
left heel-strike, left double support phase from left heel-strike
to right toe-off, right swing phase from right toe-off to right
heel-strike, and right double support phase from right heel-
strike to left toe-off. We labeled each point in the joint angle
trajectories with its corresponding gait phase.

We used the Viterbi Algorithm [17] to infer the gait
phases associated with the kinematics, based on the SLDS
model. Using both the model-predicted gait phases and the
gait phases determined by force plates, we calculated the
accuracy as the fraction of all labeled phases that matched
the phases determined by the ground reaction forces. We
calculated the confusion matrix, recall, precision, and accu-
racy for each participant using their individual-specific SLDS
model, and calculated the mean and standard deviation across
participants. We repeated this procedure with the SLDS
model trained on data from all participants, and compared
the results to those obtained from individual-specific model.

D. Comparing SLDS locally to a kinematic model of gait

To demonstrate the importance of joint coupling in gait
dynamics, we compared the SLDS model to a velocity-based
kinematic model of the form:

x(t+ dt) = x(t) + v(t)dt (12)

We implemented this as a second-order discrete-time model:

xk+1 = 2xk − xk−1 (13)

comparable to the second-order models in our SLDS.
For individual-specific SLDS, the group SLDS, and kine-

matic models, we calculated the local fitness of each model
for each joint angle as:

fitj = 1−

√√√√ K∑
k=1

(θk(j)− θ̂k(j))2/
K∑

k=1

(θk(j)− θ̄(j))2

(14)
where θ(j) is the jth measured joint angle, θ̂k(j) is the value
of the jth joint angle predicted from the previous measured
values, θk−1(j) and θk−2(j), and θ̄(j) is the average value
of θ(j). A fitness score of 1 indicates a perfect fit, while
scores less than 0 indicate the model performs worse than
the mean. We calculated the fitness score on both gait with
no FES (no inputs) and with FES (with square wave inputs).

E. Using SLDS to generate gait kinematics

We compared the kinematic and SLDS models’ ability to
simulate gait kinematics from initial conditions. For each
gait cycle in the training data, we simulated the kinematics
in each gait phase from the first two joint angles in that
phase using both the kinematic model and the SLDS. For
simulations with the SLDS, we simulated the kinematics of
each phase using only the linear models corresponding to the
given phase. For each model, we quantified the simulation
quality using a fitness score similar to Eq (14), except we
used θ̂k(j) as the generated trajectory over multiple time
steps instead of over one time step. As before, a fitness of
1 indicates the model perfectly simulates the gait trajectory,
while a fitness less than 0 indicates the simulation is worse
than using the mean. We repeated the simulation with both
the individual-specific and the group SLDS models.

Finally, we also used the SLDS to predict entire gait
cycles, given only the initial conditions and the measured
gait phases; we gave the SLDS the measured gait phases to
avoid errors arising from stochastically switching between
linear models in the SLDS. We simulated multiple gait cycles
in walking with and without FES, where the input term
u was provided during walking with FES simulations. All
simulations started at the left toe-off gait event, as measured
by the force plates, and initial conditions were the current
and previous joint angle measurements at the gait event.
We computed the average fitness for each joint angle across
multiple simulated gait cycles for each individual, using both
the individual-specific and the group SLDS models.

III. RESULTS

A. SLDS identifies gait phases from joint kinematics

The discrete modes of the individual-specific SLDS corre-
sponded to measured gait phases with 84±11% and 82±9%
average accuracy across individuals in walking without and
with FES, respectively. Precision and recall scores for the
indivdiual-specific models are listed in Table 1. In contrast,



the discrete modes of the group SLDS corresponded to
measured gait phases with 42 ± 3% and 39 ± 4% average
accuracy in walking without and with FES, respectively.

B. SLDS dynamics matrices encode joint coupling

Comparing individual-specific SLDS dynamics to a kine-
matic model with independent joints qualitatively suggested
that the SLDS model approximated a kinematic model but
with interjoint coupling (Figure 1). Inter-joint coupling el-
ements withing gait phases were the most variable across
individuals, with different couplings exhibiting the most vari-
ance across individuals in different gait phases (Maximum
Variance Element in (a) left swing: left hip flexion to left
ankle flexion, σ2 = 1.94; (b) left double support: right ankle
adduction to left knee flexion, σ2 = 1.19; (c) right swing:
left ankle flexion to right ankle flexion, σ2 = 0.31; (d) right
double support: left ankle adduction to right knee flexion,
σ2 = 0.92). However, across individuals and gait phases,
the SLDS dynamics matrices shared a common structure: all
joint angles appeared strongly coupled to their own history,
and many were coupled to the histories of other joints.

C. SLDS is locally similar to a kinematic model

Across individuals, the individual-specific SLDS model’s
one-step predictions accounted for 93-99% of the deviations
in joint angle trajectories from their mean values for walking
without FES. Likewise, the kinematic models also accounted
for 89-98% of the deviation in joint angles, and the group
SLDS model accounted for 92-99% of the deviation. We
found no statistically significant difference in local fitness
among the kinematic, individual-specific, and group SLDS
models in any of the joint angles (Kruskal-Wallis one-way
analysis of variance, medians and interquartiles ranges in
Table II, 14 DoF, χ2 < 74, p > 0.005 for all joint angles,
Bonferroni corrected for multiple comparisons). We found
similar results on walking with FES.

TABLE I
CONFUSION MATRICES FOR INFERRED GAIT PHASES

Unperturbed Gait
Force Plate Measured Phases

L.Swing L.Support R.Swing R.Support
L.Swing 28± 3% 0± 0% 0± 0% 1± 1%
L.Support 5± 1% 16± 2% 1± 1% 0± 0%
R.Swing 0± 0% 1± 1% 26± 11% 1± 2%
R.Support 1± 1% 0± 0% 7± 12% 14± 1%

Recall 81± 6% 97± 4% 77± 33% 90± 13%
Precision 97± 4% 73± 4% 93± 9% 74± 24%

Perturbed Gait
Force Plate Measured Phases

L.Swing L.Support R.Swing R.Support
L.Swing 27± 4% 0± 0% 0± 0% 1± 2%
L.Support 6± 2% 14± 1% 2± 1% 0± 0%
R.Swing 0± 0% 0± 1% 26± 9% 1± 2%
R.Support 1± 1% 0± 0% 7± 10% 15± 2%

Recall 81± 7% 97± 6% 75± 26% 90± 16%
Precision 96± 5% 67± 9% 94± 8% 73± 24%

D. SLDS can generate individual responses to perturbations

Using kinematic, individual-specific SLDS, and group
SLDS models to generate joint angle trajectories in each
gait phase, we found SLDS generated trajectories were
qualitatively similar to the trajectories in the training data,
while trajectories generated by the kinematic model followed
straight lines and quickly diverged from the measured tra-
jectories (Figure 2). Median fitness values for the kinematic
model were less than 0 for all joint angles except left and
right hip flexion in both perturbed and unperturbed walking.
In contrast, median fitness values for the SLDS generated
trajectories were greater than 0 across simulation conditions.
Kruskal-Wallis analysis of variance indicated that fitness
scores from kinematic, individual-specific, and group SLDS
models were significantly different (medians in Figure 2,
χ2 > 100, 14 DoF, p < 0.005, corrected for multiple
comparisons) for all joint angles except left knee flexion,
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Fig. 1. Mean and standard deviation of the individual-specific SLDS left
double support dynamics, compared to a kinematic model. SLDS models
contain substantial off-diagonal terms, which indicate joint coupling.



TABLE II
KINEMATIC AND SLDS LOCAL FITNESS ON UNPERTURBED GAIT

SLDS
Joint Angle Kinematic Individual Group
L. Hip Flexion 0.98± 0.00 0.99± 0.00 0.99± 0.00
L. Hip Adduction 0.93± 0.02 0.95± 0.01 0.95± 0.01
L. Knee Flexion 0.98± 0.03 0.99± 0.02 0.98± 0.01
L. Ankle Flexion 0.94± 0.06 0.96± 0.04 0.95± 0.04
L. Ankle Adduction 0.90± 0.03 0.93± 0.03 0.92± 0.02
R. Hip Flexion 0.99± 0.01 0.99± 0.01 0.99± 0.01
R. Hip Adduction 0.92± 0.03 0.95± 0.02 0.94± 0.01
R. Knee Flexion 0.98± 0.03 0.99± 0.01 0.99± 0.01
R. Ankle Flexion 0.89± 0.04 0.93± 0.03 0.92± 0.02
R. Ankle Adduction 0.95± 0.01 0.96± 0.01 0.95± 0.00

which approached significance (χ2 = 105, DoF = 14, p =
0.0052). A subsequent one-tailed Wilcoxon Rank-Sum test
revealed that both the individual-specific and group SLDS
fitness values were statistically greater than those for the
kinematic model (medians in Figure 2, RankSum = 15,
p < 0.005 for all comparisons) for all joint angles. Fitness of
the individual-specific models was also statistically greater
than that of the group model for left ankle flexion, left
ankle adduction, right hip flexion, and right ankle flexion
(one-tailed Rank-Sum test, RankSum = 40, p < 0.005), and
approached significance for all other angles (one-tailed Rank-
Sum Test, RankSum> 34, p < 0.08). All medians were
calculated within a joint angle, but across individuals.

SLDS models without input terms predicted gait kine-
matics in walking without FES well, but underestimated
gait kinematics for walking with FES in right swing phase
(Figure 2). Across individuals, the SLDS models improved
their prediction of right swing kinematics when the input was
provided to model the FES perturbation. Modeling the input
as a squarewave improved the individual-specific model’s
generated right ankle flexion trajectory (one tailed Wilcoxon
Rank-Sum Test, without input median fitness = 0.57, with
input median fitness = 0.71, RankSum = 15, p < 0.005).
Model fitness with the group SLDS was not statistically
greater with the input for any of the joint angles. Overall, the
individual-specific models had statistically greater median
fitness values for simulated gait with FES perturbations for
all joints (one tailed Rank Sum Test, medians in Figure 2,
RankSum = 40, p < 0.005) except Left Knee Flexion, which
approached significance (RankSum = 37, p = 0.027).

E. SLDS can generate trajectories for an entire gait cycle

Starting from left swing phase, individual-specific SLDS
models generated gait kinematics that were similar to the
kinematics in the training data for both walking without and
with FES when the input was provided to model the FES
perturbation (Figure 3). Median fitness scores across indi-
viduals for individual-specific models ranged from -0.02 for
left ankle adduction to 0.79 for left hip flexion for both FES
conditions. We found no statistically significant difference in
median fitness between indivdiual-specific simulations and
group SLDS simulations of walking without FES, although
several joints approached significance (one-tailed Rank Sum
Test, medians in Figure 3, 35 < RankSum < 39, p < 0.05).
Likewise, only the fitness for Left Hip Flexion was signif-

icantly greater for individual-specific models compared to
group models (Rank-Sum Tesst, RankSum = 40, p < 0.005),
while several other joint angles approached significance.

IV. DISCUSSION

Our work demonstrating that SLDS can generate gait
trajectories is an important step towards developing data-
driven gait models for use in rehabilitation robotics. One
advantage of our SLDS approach over a reference trajectory
or a statistical model of joint kinematics is that the SLDS
can predict changes in gait resulting from a perturbation,
such as the mechanical interaction between an exoskeleton
and its user. Here we showed that SLDS can generate the
gait kinematics and the individual-specific responses to per-
turbations across all joints within a gait phase. Because the
SLDS model represents gait dynamics as a linear systems, it
may be useful for quickly forecasting future gait patterns, as
is required for real-time control by rehabilitative robotics.

Our current and prior results show that SLDS can ro-
bustly identify gait phases in the presence of modeled and
unmodeled gait perturbations. Identifying gait phases in the
presence of disturbances is important for gait rehabilitation
robotics, as robotic controllers are often designed for specific
gait phases [2]. In our previous work, we demonstrated the
relationship between SLDS discrete modes and gait phases
for SLDS models without inputs [12]. Here we further
showed that the inference of gait phases also holds when the
perturbation is treated as an input to the model. The precision
and recall values for gait phases we obtained in this work
closely matched those of prior autonomous models.

Off-diagonal terms in each block of the SLDS dynamics
matrices enabled long time horizon forecasting of gait kine-
matics. Here we showed that by explicitly including inter-
joint coupling, SLDS models can forecast human gait using
a small set of linear systems. Furthermore, the individual-
specific joint coupling and responses to perturbation can
be estimated and used to predict responses to perturbations
affecting joint torques; in our case FES affected the joints,
but our results could likely be generalized to the effects of
applied torques from robotic exoskeletons. For longer time-
horizons we showed the importance of including inter-joint
coupling, which allowed joint kinematic trajectories to be
forecasted over an entire gait cycle if gait event information
is available. As such, the SLDS approach may be useful for
controlling gait in real-time, allowing robot controllers to
predict and adapt to interactions with the human.

SLDS provide a compact model of an individual’s gait
dynamics that can generate their response to perturbations.
We showed that, within each gait phase, the SLDS can
generate kinematic trajectories that match both an individ-
ual’s unperturbed gait pattern and their unique response to a
perturbation. While the perturbation was applied to directly
affect right ankle flexion, its effects propagated multiple
joints due to inter-joint coupling. Because SLDS models
include joint coupling, they can capture and predict the inter-
joint effects of single- or multi-joint perturbations. Purely
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Fig. 2. SLDS predicts individual responses to FES perturbations to gait. Examples of time-normalized right ankle flexion from two of the five participants
are given for comparison, and shaded regions indicate one standard deviation. Vertical bars indicate left heel-strike (red), right toe-off (yellow), and right heel-
strike (purple) gait events. All traces start from left-toe off. (a) Inputs to the simulation include gait events, initial joint angles, and perturbation waveforms.
(b) Gait trajectories generated by the kinematic model (yellow) compared to unperturbed gait measurements (blue). (c-d) Gait trajectories simulated by the
SLDS model (red) without (c,d) and with input (e) compared to measured gait kinematics (blue) without (c) and with FES (d,e) perturbations, and to the
group SLDS model (purple). Median fitness scores and the interquartile range for each condition are given for each joint angle.

statistical models of gait, which often do not include inputs
[7], would be unable to generate such predictions.

Another advantage of our approach is that the SLDS
models can be trained on a relatively small amount of gait
data. We used approximately 1.5 minutes per individual, and
while performance and generalizability may improve with
more training data, the limited amount we used indicates that
SLDS may be suitable for quickly modeling an individual’s
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simulations of a complete gait cycle compared to measured kinematics
(blue) for one participant. (a) Generated trajectories start from left toe-off,
and end at the left toe-off of the next gait cycle. Only initial conditions
from left swing phase and the gait events were provided to the model. (b,c)
Traces of time-normalized kinematics averaged over multiple gait cycles
with standard deviations for both generating unperturbed (b) and perturbed
(c) gait trajectories. Median fitness values with interquartile ranges for each
joint angle across individuals are indicated for both models.

gait while using rehabilitative robotics. In practice, an SLDS
model could be trained to represent the individual’s gait
dynamics and responses to robotic assistance from a short
segment of data. The model could then be used to design
individual-specific interactions while the device is in use.

Modeling the dependence of gait phase on gait kinematics
could improve the predictive performance of gait models
based on SLDS by predicting the next ground contact event
and smoothing out the gait kinematics near the transition
point. When predicting across multiple gait phases, our
SLDS model still requires the gait events to be specified
beforehand; this is the case for other SLDS models of gait
as well [9,10], because SLDS assumes the future gait phases
will be independent of the future kinematics.

More work is required to generalize our results to account
for different gait types, for the effects of different pertur-
bations on gait, and for gait impairments. Our results were
based on treadmill walking with electrical stimulation, and
our models were trained on single speed walking in healthy
young adults with only one type of perturbation. We also
only modeled one amplitude of perturbation, which limited
our ability to test the range of perturbations that could be
modeled with SLDS. While these conditions could be used
with treadmill-based rehabilitation robots [18,19], we do not
yet know how the SLDS model would need to be modified
to accommodate overground walking for robotic systems
[20,21] where gait speed varies. Moreover, gait dynamics
and individual responses to perturbations may become more
complex with gait impairment. Currently, the ability of SLDS
to model such gaits, and the range of the type and size of
perturbations it can successfully predict, are unknown.
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