
Adaptive Deep Reuse: Accelerating CNN Training
on the Fly

Lin Ning
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
lning@ncsu.edu

Hui Guan
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
hguan2@ncsu.edu

Xipeng Shen
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
xshen5@ncsu.edu

Abstract—This work proposes adaptive deep reuse, a method
for accelerating CNN training by identifying and avoiding the
unnecessary computations contained in each specific training on
the fly. It makes two-fold major contributions. (1) It empirically
proves the existence of a lot of similarities among neuron
vectors in both forward and backward propagation of CNN.
(2) It introduces the first adaptive strategy for translating the
similarities into computation reuse in CNN training. The strategy
adaptively adjusts the strength of reuse based on the different
tolerance of precision relaxation in different CNN training stages.
Experiments show that adaptive deep reuse saves 69% CNN
training time with no accuracy loss.

Keywords-CNN; neuron vector; similarity; training; adaptive;
deep reuse;

I. INTRODUCTION

Recent years have witnessed successes of Convolution
Neural Networks (CNNs) in many data mining and data
engineering domains. CNNs have given the state-of-the-art
prediction accuracy in many tasks, but are known to be
compute-expensive and subject to a long training process.

Many efforts have been taken to accelerate CNN training,
including removing weight redundancy [1]–[3], using low
precision [4], [5], hashing [6] and utilizing sparsity [7]–
[9]. Most of these techniques focus on identify the weight
redundancy and reduce the number of computations of the
convolutional layer. In this paper, we propose adaptive deep
reuse for accelerating CNN training. Instead of focusing on the
weight parameters, this paper points out new opportunities for
accelerating CNN training through computation reuse based on
properties in convolutional layers’ inputs. Here, inputs refer to
the input images for the first layer and activation maps for the
following hidden layers.

The insight comes from the common existence of simi-
larities among neuron vectors that we recently observed in
CNN executions [10]. Take the forward propagation of the
first convolutional layer of a CNN as an example. To compute
the convolution between an input image and the weight filters,
the common practice is to unfold the input image into a large
input matrix x, and then multiply x with the weight matrix W
as illustrated in Figure 1 (a). Usually, the size of x is much
larger than the size of W . So if there are many similarities in
x between neuron vectors, it could give some opportunities for
computation reuse. Here a neuron vector is any number of

×

w21 w22

w31 w32

x43 x44

x11 x12

a neuron vector
with 2 elements

x33 x34

x21 x22

x31 x32

x41 x42

= []w21

→

w31w41 = []w22

→

w32w42

= []w11

→

w11w21 = []w12

→

w12w22

= []x21

→

x21x22

= []x31

→

x31x32

= []x41

→

x41x42

= []x22

→

x23x24

= []x32

→

x33x34

= []x42

→

x43x44

= []x11

→

x11x12 = []x12

→

x13x14

group 1:

group 2:

group 3:

group 4:

,x11

→

x21

→

,x31

→

x41

→

, ,x21

→

x23

→

x24

→

x22

→

x11

→

x12

→

⋅x11

→

w11

→ + ⋅x12

→

w21

→

⋅x21

→

w11

→

⋅x31

→

w11

→

⋅x41

→

w11

→ + ⋅x42

→

w21

→

+ ⋅x32

→

w21

→

+ ⋅x22

→

w21

→

⋅x11

→

w12

→ + ⋅x12

→

w22

→

⋅x21

→

w12

→

⋅x31

→

w12

→

⋅x41

→

w12

→ + ⋅x42

→

w22

→

+ ⋅x32

→

w22

→

+ ⋅x22

→

w22

→

x31

→

x41

→

x32

→

w11

→

w12

→

w21

→

w22

→

x21

→

x22

→

Image Weight Filters

x

x13 x14

x23 x24

x

w41 w42

w11 w12

W

W

x42

→

(a) (b)

(c)

Figure 1. (a) Illustration of the common practice of computing the convolution
between an image and the weight filters for the first convolutional layer.
(b) and (c) Illustration of the basic idea of computation reuse across neuron
vectors on calculating x ·W . Instead of calculating 16 dot products, we only
need to compute 8 of them: ~x11 · ~w11, ~x11 · ~w12, ~x31 · ~w11, ~x31 · ~w12,
~x12 · ~w21, ~x12 · ~w22, ~x22 · ~w21and ~x22 · ~w22.

consecutive elements in a row of the unfolded input matrix x.
For example, as shown in Figure 1 (a) and (b), ~x41 = [x41x42]
is a neuron vector with 2 elements. If the layer is the input
layer of a CNN, the vector corresponds to the pixel values of
a segment of the input image; if the layer is a hidden layer, the
vector corresponds to the values of a segment of the activation
map at that layer.

To exploit the similarities and the reuse, we can group the
neuron vectors in x into a small number of groups. For each
group, we only need to compute the multiplications between
one neuron vector and the corresponding weight segments.
When calculating the multiplications between the same weight
segments and the remaining neuron vectors in the same group,
we could reuse previous results. For example, as shown in
Figure 1 (b) and (c), we represent x with eight neuron vectors.
These eight vectors are grouped into four groups and vectors

in the same group are similar to each other. Group one has
two vectors ~x11 and ~x21. There are four dot products using
these two vectors: ~x11 · ~w11, ~x21 · ~w11, ~x11 · ~w12 and ~x21 ·
~w12. To leverage the similarity among neuron vectors within
a group, the result of ~x11 · ~w11 can be reused for ~x21 · ~w11 and
~x11 · ~w12 for ~x21 · ~w12. With these computation reuses, only
two rather than four dot products need to be computed. Half
of the computations can be saved.

The goal of this current paper is to create ways to effec-
tively exploit the neuron vector similarities to accelerate CNN
training. To that end, we strive to answer four major questions:
• CNN training consists of both forward propagation and

backward propagation. The backward propagation partic-
ularly involves more complicated operations than forward
does. Those operations are to propagate errors from the
output layer all the way down to the input layer for guid-
ing weight updates. Do neuron vector similarity based
reuse applies to both forward and backward propagation?
How to integrate the reuse into backward propagation?
Do we need to repeat the similarity identification for the
two directions of propagation?

• Reusing cluster centers for cluster members incurs errors.
How do the errors influence CNN training quality and
convergence rate?

• Given that CNN training goes through an iterative process
with training errors decreasing gradually, does it make
sense to evolve the aggressiveness of the reuse (in terms
of allowed reuse-incurred errors) through the training
process? How to do that to shorten the training time as
much as possible while compromising no quality of the
final trained CNN?

• How much ultimate benefits can the reuse bring to real-
world CNNs?

To answer these open questions, this paper proposes adap-
tive deep reuse and systematically explores its integration in
CNN training and its effects.

We start with some brief background on CNN training and
list a set of notations used throughout the paper in Section II.
We then explain, in Section III, neuron vector similarities
that we have recently observed [10], and how they can be
recognized through Locality Sensitive Hashing (LSH), an
online clustering method.

Next, in Section IV, we analyze the key computation of the
forward and backward propagation, and explain why similarity
detection is needed to do in only forward propagation. We
explain how the computation of the backward propagation can
directly reuse the similarity and the clustering results attained
in the forward propagation. The insight lays the foundation
for efficient integration of neuron vector-level reuse in CNN
training.

Section V explores the relations between reuse aggressive-
ness and computation accuracy. Based on the progressive trend
of training accuracy in CNN training, we introduce two strate-
gies for dynamically adjusting the strength of computation
reuse. They try to align the aggressiveness of the reuse with
the evolving degree of error tolerance in CNN training. One

strategy adjusts the resolution of hashing functions and the
number of clusters, the other strategy changes the scope of
clustering (across input batches or not). The dynamic nature
equips adaptive deep reuse the capability to detect and exploit
the reuse in each specific CNN training on the fly.

Section VI reports our experimental results. On three com-
monly used CNNs, adaptive deep reuse saves up to 69%
training time while giving the same training accuracy as the
original CNN training does. The significant savings come from
two properties of adaptive deep reuse. By clustering neuron
vectors at runtime, it finds the redundant computations in each
specific run of a CNN; by adapting to the progressive trajectory
of the CNN through the training process, it strikes a balance
between the aggressiveness in computation savings and the
training accuracy.

Overall, this work makes the following main contributions:
• To our best knowledge, this work is the first study

that systematically explores neuron vector similarities for
speeding up CNN training.

• This work proves that the backward propagation could
benefit directly from the neuron vector similarity detected
in the forward propagation, which is the key point for
efficient computation reuse in the backward propagation.

• The proposed adaptive deep reuse is the first method
that adaptively and effectively turns the similarities into
substantial savings of CNN training times.

II. BACKGROUND AND NOTATIONS

CNN training contains two parts: the forward propagation
and the backward propagation.

For the forward pass, the formula that a convolutional layer
uses to compute the output for a given input x and model
parameters W, b is as follows:

y = x ·W + b, (1)

where x is the unfolded input matrix, y is the output matrix,
W is the weight matrix and b is the bias.

When performing the computation, the convolutional layer
takes an input tensor with size Nb× Iw × Ih× Ic and outputs
an output tensor with size Nb×Ow×Oh×M . Here, Nb is the
batch size. Iw, Ih and Ic are the width, height and the number
of channels of the input to the convolutional layer. The input
could be an input image or an activation map. Ow, Oh and
M are the width, height and the number of channels of the
corresponding output.

The input is unfolded into a large input matrix x with a
dimension of N ×K using a stride size of s, a kernel width
of kw and a kernel height of kh. When the stride s is 1, N =
Nb·(Iw−kw+1)·(Ih−kh+1) is the number of rows for a batch
of inputs and K = Ic · kh · kw is the size of a weight kernel.
The number of rows corresponding to one input is Nimg =
N
Nb

. The weight of the convolutional layer is represented as
a matrix W with size K ×M , where M is the number of
weight filters. The output y has a dimension of N ×M and
is computed using Equation 1. The main computation comes

Table I
NOTATIONS USED IN THIS PAPER

NOTATION MEANING

Nb BATCH SIZE
Iw WIDTH OF AN INPUT CHANNEL
Ih HEIGHT OF AN INPUT CHANNEL
Ic # OF CHANNELS OF THE INPUTS
Ow WIDTH OF AN OUTPUT CHANNEL
Oh HEIGHT OF AN OUTPUT CHANNEL
N # OF ROWS FOR A BATCH OF INPUTS
K THE SIZE OF A WEIGHT KERNEL
M # OF WEIGHT KERNELS
s STRIDE
kw THE KERNEL WIDTH
kh THE KERNEL HEIGHT

Nimg # OF ROWS CORRESPONDING TO ONE IMAGE
L THE LENGTH OF A sub-vector
H # OF HASHING FUNCTIONS
|C| # OF CLUSTERS

rc THE REMAINING RATIO |C|
N

from the matrix-matrix multiplication, which has a complexity
of O(N ·K ·M).

For the backward pass, there are two key computations to
perform: one is computing the gradient of the weight ∇W ;
the other is computing the deltas of the inputs δx. Let L be
the loss function, δy = ∂L

∂y , δx = ∂L
∂x and ∇W = ∂L

∂W . Given
the chain rule, formulas of the two key computations are

∂L
∂W

=
∂L
∂y
· ∂y
∂W

= xT · δy, (2)

∂L
∂x

=
∂L
∂y
· ∂y
∂x

= δy ·WT . (3)

The main computations are two matrix multiplications. Since
the dimension of δy is the same as y, the complexity of the
backward pass is O(2 · N ·K ·M).

Table I gives a list of all the notations that are mentioned
in this paper.

III. SIMILARITY IDENTIFICATION AND DEEP REUSE

This section explains the basic relation between neuron
vector similarity and computation reuse in CNN forward
propagation, and how to identify it through online clustering.
The knowledge offers the foundation for adaptive deep reuse
for CNN training.

A. Overview

Fig. 2 illustrates the basic idea of how to employ neuron
vector similarity for deep reuse. The way to identify the
similarities is to group the neuron vectors into clusters. Neuron
vectors in the same group are similar to each other. Then we
use the cluster centroid to represent all the neuron vectors
in that cluster for the computation. In Fig. 2, the four input
row vectors are first grouped into two clusters. Vectors ~x1
and ~x3 are in cluster one while vectors ~x2 and ~x4 are in
cluster two. The centroid matrix is xc = [~xTc1 ~xTc2]T , where

x1
→

x2
→

x3
→

x4
→

w1

→
w2

→
w3

→
w4

→

y1
→

y2
→

y3
→

y4
→

x
W

y

group the four
neuron vectors
into two clusters

cluster 1:

cluster 2:

,x1
→

x3
→

,x2
→

x4
→

construct
using

y
y

c

= =y1
→

y3
→

yc1

→

= =y2
→

y4
→

yc2

→

xc1

→

w1

→
w2

→
w3

→
w4

→ yc1

→

xc

W

y
c

yc2

→
xc2

→

Figure 2. The basic idea of employing neuron vector similarity for deep
reuse. In matrix x, vectors in the same color belong to a same cluster.

~xc1 and ~xc2 are the cluster centroids of cluster 1 and cluster
2. To compute y = x · W , we first calculate the output of
the centroids (yc = [~yTc1 ~yTc2]T) using yc = xc ·W . Then
we could reconstruct y = [~yT1 ~yT2 ~yT3 ~yT4]T using ~y1 = ~yc1,
~y2 = ~yc2, ~y3 = ~yc1 and ~y4 = ~yc2.

Computation Savings: For an input matrix x with a
dimension of N × K, the original computation complexity
of the forward pass y = x ·W is O(N ·K ·M). If we could
group all the neuron vectors into |C| clusters, we only need to
compute the matrix multiplication between the centroid matrix
xc and the weight matrix W . The computation complexity
becomes O(|C|·K·M). The remaining fraction of computation
is |C|N . We use rc to represent this ratio. It is defined as

Remaining ratio: rc = |C|
N .

The smaller rc is, the less computations are left and the more
theoretical speedups we could achieve. If |C| << N , we could
save almost all computations.

For deep reuse to generate actual benefits, the following
conditions must hold:
• There is a large amount of similarities among neuron

vectors.
• The overhead of detecting and leveraging these similari-

ties should be much smaller than the time saving it brings
to the CNN training. Since the inputs, especially the
activation maps, change during the runtime, the clustering
method we use to identify the similarities must be light
weighted.

To verify our assumption on neuron vector similarity, we
take the trained model of CifarNet, AlexNet and VGG-19 and
run their inferences on two datasets (Cifar10 and ImageNet).
Our empirical study shows that with K-means clustering
(which helps produce high-quality clustering results), we con-
sistently find strong similarities among neuron vectors within
a batch of images for each convolutional layer. Section VI
provides the results.

As for the second condition, we have tried several clustering
methods and found LSH the one that fulfills our requirement.

The remaining of this section will describe how to use LSH
to detect the similarities, and describe several designs related
to the selection of clustering parameters.

B. Design of Similarity Detection for Deep Reuse

It is important to choose an appropriate clustering method
for similarity identification. First, it needs to be able to give
good clustering results so that the optimization of adaptive
deep reuse does not cause accuracy loss of the training.
Second, the clustering method should not introduce too much
overhead during the training so that the computation savings
could be efficiently converted into time savings.

Clustering Method (LSH): After a thorough exploration of
several different methods, we identified LSH as the clustering
method for the adaptive deep reuse. LSH is widely used for
solving the approximate or exact Nearest Neighbor problem
in high dimension space [11]–[15]. With a random vector v,
we could use the following equations to determine a hashing
function h for each input vector x

hv(x) =

{
1 if v · x > 0

0 if v · x ≤ 0.
(4)

If we have a number of random vectors, say H , we will have H
hashing functions according to Equation 4. With these hashing
functions, LSH could map an input vector into a bit vector with
a length of H . A property of LSH is that the input vector with
smaller distances have a high probability to be hashed into the
same bit vector. Therefore, it is a good candidate algorithm
for clustering in our context. When applying it, we use each
hashed bit vector as a cluster ID and all the neuron vectors
mapped to the same bit vector form a cluster.

To measure the effectiveness of LSH, we run LSH on the
neuron vectors during the inference runs of trained CNN
models. Experiment results (Section VI) show that when
choosing an appropriate number of hashing functions, LSH
can be applied to vectors with different lengths and achieve
good inference accuracy. With LSH applied, the operations of
a convolutional layer now consist of two parts: hashing and
the centroid-weight multiplication. The hashing itself takes
some time. If having H hashing functions, the computation
complexity is O(N ·K ·H+|C|·K ·M). The first item N ·K ·H
is the hashing overhead. Comparing to the original complexity
of O(N ·K ·M), LSH brings benefit only if H << M(1−rc),
where rc is the remaining ratio |C|/N .

Similarity Metric: The metric we use to measure the
similarity between any two neuron vectors is the angular
cosine distance. The input vectors are first normalized as
x̂i = xi

‖xi‖ . Then the distance is measured with ‖x̂i − x̂j‖.
Therefore, the input to LSH is x̂ instead of x.

Cluster Scope: Adaptive deep reuse supports the detection
of similarities among neuron vectors in three levels of clus-
tering scopes: the neuron vectors in a run on one CNN input
(single-input level), those in the runs on a batch of inputs
(single-batch level), and those across batches (across-batch
level). With a larger scope, the pool in which the neuron
vectors being clustered is larger and there are more reuse

opportunities among neuron vectors. The default scope setting
is the single-batch level. The user could change the setting into
a single-input or across-batch level according to their demands.

For the single-input or single-batch level, we can simply
apply the clustering algorithm to all the neuron vectors within
an input or within a batch directly. Some further complexity
exists when the scope goes across batches. Since inputs from
different batches come at different times, it is impractical to
wait until all the inputs arrive to do clustering.

We address the complexity with cluster reuse by leveraging
the properties of LSH. The idea is to allow neuron vectors
from different input batches to be assigned to the same cluster
and to share the value and computation result of the same
cluster centroid. With LSH, we can reuse an existing cluster if
a new neuron vector is hashed to a bit vector that has appeared
before. No matter which batches two neuron vectors belong to,
if they are mapped to the same bit vector, they are assigned
with a same cluster ID and thus to the same cluster. To do
that, the same family of hash functions H has to be used for
all batches.

Algorithm 1 Cluster Reuse
1: Input: input matrix x with dimension N × K; the set
IDX contains the bit vectors representing the cluster ID;
the set of outputs Y corresponding to IDX .

2: Algorithm:
3: Initialize with IDX = {}, Y = {}
4: for each iteration do
5: take a batch of input with a batch size of Nb

6: for each row vectors xi do
7: ID(xi) = H(xi)
8: if ID(xi) ∈ IDX then
9: y(xi) = Yid=ID(xi)

10: else
11: IDX = IDX ∪ ID(xi)
12: y(xi) = xi ·W
13: Y = Y ∪ y(xi)
14: end if
15: end for
16: end for

Algorithm 1 illustrates how to reuse the clusters and the
corresponding results with LSH. A set IDX is used to store
all previously appeared bit vectors (the cluster IDs) and a
set Y is used to store all the outputs computed with those
cluster centroids. When a new batch of inputs comes, we map
each neuron vector to a bit vector using LSH. For neuron
vectors being mapped to existing clusters, we could reuse the
corresponding outputs. If a neuron vector is mapped to a new
cluster, we calculate the output as y(xi) = xi · W . After
that, we could update IDX and Y accordingly. The average
cluster reuse rate for each batch is represented as R. The
computation complexity when using cluster reuse becomes
O(N · K · H + (1 − R) · |C| · K · M) if using the whole
row vector for clustering. Therefore, a larger cluster reuse rate
could help saving more computations.

x

W

cluster 3:

cluster 4:

, ,x12
→

x22
→

x42
→

x32
→ y = +y(1) y(2)

w21
→

w22
→

w23
→

x12
→

x22
→

x32
→

x42
→

cluster 1:

cluster 2:

,x11
→

x31
→

,x21
→

x41
→

w11
→

w12
→

w13
→

x31
→

x41
→

x11
→

x21
→

y

y1
→

y2
→

y3
→

y4
→

y(1)

yc1
→

yc2
→

yc1
→

yc2
→

yc1
→

yc2
→

x
(1)
c

y
(1)
c

xc1
→

xc2
→

W

w11
→

w12
→

w13
→

y
(2)
c

W

w21
→

w22
→

w23
→

yc4
→

yc3
→

x
(2)
c

xc3
→

xc4
→

y(2)

yc3
→

yc3
→

yc4
→

yc3
→

Figure 3. Illustration of adaptive deep reuse when clustering over sub-vectors.

Cluster Granularity: In the basic scheme shown in Fig-
ure 2, each row vector in matrix x is taken as a neuron
vector. Our experiments indicate that a smaller clustering
granularity with a shorter neuron vector length can often
expose more reuse opportunities. We refer the neuron vector
which is a consecutive segment of a row vector as a sub-vector.
Our design allows a flexible adjustment of the clustering
granularity by changing the length (L) of the sub-vector.

Fig. 3 illustrates the procedures of adaptive deep reuse
while clustering over sub-vectors. The input matrix x is
divided into two sub-matrices x(1) and x(2). Where x(1) =
[~xT11 ~x

T
21 ~x

T
31 ~x

T
41]T and x(2) = [~xT12 ~x

T
22 ~x

T
32 ~x

T
42]T . For each

sub-matrix, adaptive deep reuse groups the neuron vectors
into clusters, computing the centroid matrices x

(i)
c and the

corresponding outputs y
(i)
c . Then it reconstructs the partial

output y(i) for each sub-matrix. To compute the final output
y, it adds the partial result together as y = y(1) + y(2).

As clustering algorithms usually work better on low dimen-
sion data, we see better clustering results when a smaller
clustering granularity is used. However, a smaller neuron
vector length results more neuron vectors, and hence more
adding operations. Therefore, it does not always save more
computations. Assume each input row vector is divided into
Nnv neuron vectors and the length of each neuron vector is L.
We have Nnv ·L = K; the computation introduced by all the
adding operations is O(N · KL ·M), where K,M,N are the
size of a weight filter, the number of weights filters and the
number of rows for a batch of inputs. The average number of
clusters is |C|nv,avg = 1

Nnv

∑Nnv

j=1 |C|nv,j . For simplicity of
notations, we use rc to also represent the average remaining
ratio in this part of discussion (rc = rc,avg =

|C|nv,avg

N).
The computation complexity of clustering over sub-vectors

becomes O((rc + 1
L) ·N ·K ·M). With a smaller clustering

granularity, we are more likely to have a smaller rc but a larger
1
L . A balance between these two parts is needed to minimize
the overall computations.

Adaptive deep reuse exposes the clustering granularity as
a user-definable parameter. Its default value is the channel
size of the corresponding activation map, but users can set
it differently to attain a desired cost-benefit trade-off.

C. Overall Computation Complexity

Now taking everything into consideration, the overall com-
putation complexity of using LSH clustering method on sub-
vectors without cluster reuse is

Cf = O((
H

M
+ rc +

1

L
) ·N ·K ·M). (5)

If using cluster reuse, the complexity becomes

Cf,cr = O((
H

M
+ (1−R) · rc +

1

L
) ·N ·K ·M). (6)

The expected execution time is proportional to the computation
complexities.

IV. REUSE OF SIMILARITY DETECTION RESULTS FOR
BACKWARD PROPAGATION

The previous section describes how to use LSH to detect
similarities among neuron vectors in the forward propagation.
The other part of the CNN training is the backward propaga-
tion. The backward propagation accounts for around 2/3 of the
computations for each convolutional layer as shown in Section
II. Speeding up backward propagation is hence essential for
accelerating the CNN training.

To apply adaptive deep reuse to the backward propagation,
a question we need to answer is whether we can reuse the
similarity detection results from the forward propagation. This
question arises because of two concerns:

• The neuron vector similarity based computation reuse on
the forward propagation already introduces approxima-
tion errors to the CNN training process. If we apply LSH
to the backward propagation again, it would introduce
even more approximation errors, which may make it
harder to recover the original training accuracy.

• The LSH clustering method itself introduces computation
overhead. As shown in Section II, the main computation
of the backward pass includes two matrix multiplications.
Applying LSH twice for these two matrix multiplications
will bring even more overhead.

A close examination of the computations of backward pass
shows that the clustering results attained in the forward pass
could be applied directly for computing the weights gradient
∇W and the deltas of the inputs δx. The remaining part of
this section explains how it works.

F or w ar d Pr o p o g ati o n:

y = x ⋅ W

W

= ⋅ Wy c x c

x c

W
x y

y c

(a)

(b)

B a c k w ar d Pr o p o g ati o n (U p d ati n g W ei g ht):

δ y ⃗4

δ y ⃗2

δ y ⃗1

δ y ⃗3 δ y ⃗2, s

δ y ⃗1, s∇ W = ⋅ δ yx T

x T

δ y ∇ W x T
c

δ y c ,s
∇ W

δ = δ + δy ⃗1, s y ⃗1 y ⃗3

δ = δ + δy ⃗2, s y ⃗2 y ⃗4

δ y δ x

B a c k w ar d Pr o p o g ati o n (U p d ati n g I n p ut):

δ x = δ y ⋅ W T

δ y ⃗4

δ y ⃗2

δ y ⃗1

δ y ⃗3

W T δ y c

δ y ⃗2, s a

δ y ⃗1, s a

δ x cW T

(c)

δ = (δ + δ)y ⃗1, s a

1

2
y ⃗1 y ⃗3

δ = (δ + δ)y ⃗2, s a

1

2
y ⃗2 y ⃗4

Fi g ur e 4. A n ill ustr ati o n of t h e r e us e s c h e m e o n t h e f or w ar d a n d b a c k w ar d pr o p a g ati o n. (b) a n d (c) s h o w h o w t o r e us e t h e si mil arit y r es ults f o u n d i n t h e
f or w ar d pr o p a g ati o n t o c o m p ut e t h e w ei g ht gr a di e nt a n d t h e d elt a of t h e i n p ut.

A. Wei g ht Gr a di e nt

L et L b e t h e l oss f u n cti o n. T h e d elt a of t h e o ut p ut is δ y =
∂ L
∂ y , w hi c h h as a di m e nsi o n of N × M . T h e c e ntr oi d m atri x
of t h e i n p ut o bt ai n e d fr o m t h e f or w ar d pr o p a g ati o n is x c as
s h o w n i n Fi g ur e 4 (a). T h e w ei g ht gr a di e nt is c o m p ut e d usi n g
E q u ati o n 2. T h er ef or e, w e h a v e

∂ L

∂ W i j
=

N

k = 1

x i k δ y k j =

|C |

l= 1

x il

k ∈ l

δ y k j . (7)

F or e a c h cl ust er l, w h er e l = 1 , . . . , |C |, l et

δ y l, s =
k ∈ l

δ y k (8)

t o r e pr es e nt t h e r es ulti n g v e ct or of a d di n g t h e v al u es of all
c orr es p o n di n g r o w v e ct ors i n δ y . All t h e s u m m e d v e ct ors
δ y l, s f or m a m atri x δ y c, s as s h o w n i n Fi g ur e 4 (b). T h e n
t h e pr e vi o us f or m ul a b e c o m es

∂ L

∂ W
= x T · δ y = x T

c · δ y c, s , (9)

w h er e δ y c, s h as a di m e nsi o n of |C | × M .
Fi g ur e 5 gi v es a n ill ustr ati o n of c al c ul ati n g t h e w ei g ht

gr a di e nt w h e n cl ust eri n g o n s u b- v e ct ors wit h l e n gt h L = K / 2 .
First, t h e i n p ut m atri x x is di vi d e d i nt o t w o s u b- m atri c es,
d e n ot e d as x 1 a n d x 2 . T h e c e ntr oi d m atri c es of e a c h i n p ut s u b-
m atri c es ar e x c, 1 a n d x c, 2 . T h e c orr es p o n di n g w ei g ht gr a di e nt
m atri x c a n als o b e s plitt e d i nt o t w o bl o c ks ∇ W 1 a n d ∇ W 2 .
S e c o n d, w e c o m p ut e t h e c orr es p o n di n g δ y c, 1 , s a n d δ y c, 2 , s

a c c or di n g t o E q u ati o n 8. Fi n all y, f or e a c h bl o c k, t h e w ei g ht
gr a di e nt m atri x is c o m p ut e d s e p ar at el y as

∂ L

∂ W I
= x T

I · δ y = x T
c, I · δ y c, I , s . (1 0)

H er e I = 1 , 2 ar e t h e bl o c k I Ds.

C o m p ut ati o n C o m pl e xit y: If usi n g t h e w h ol e r o w v e ct or
f or cl ust eri n g, t h e c o m p ut ati o n c o m pl e xit y of c al c ul ati n g δ y c, s

is O ((N − | C |) · M) a n d t h e c o m pl e xit y of c o m p uti n g x T
c ·

δ y c, s is O (K · |C | · M). C o m bi ni n g t h e m gi v es us t h e o v er all
c o m pl e xit y of O ((1 − r c) · N · M + r c · N · K · M), w h er e

r c = |C |
N is t h e r e m ai ni n g r ati o. Gi v e n a s u b- v e ct or l e n gt h

of L , t h e a v er a g e c o m p ut ati o n c o m pl e xit y of c al c ul ati n g t h e
w ei g ht gr a di e nt usi n g t h e f or w ar d p ass cl ust eri n g r es ults is

C b, w = O (

K / L

I = 1

(N − | C I |) · M + L · |C I | · M)) (1 1)

= O ((
1 − r c

L
+ r c) · N · K · M), (1 2)

h er e, f or si m pli cit y, w e us e r c t o r e pr es e nt t h e a v er a g e d
r e m ai ni n g r ati o a cr oss all s u b- m atri c es of x .

B. D elt a of t h e I n p ut

L et l b e t h e cl ust er I D, w h er e l = 1 , . . . , |C | a n d N l b e t h e
n u m b er of v e ct ors i n cl ust er l. T o c o m p ut e t h e d elt a of t h e
i n p ut, We first p oi nt o ut t h at f or all i ∈ l, x i = x l . T h er ef or e,

∂ L

∂ x l, j
=

1

N l
i ∈ l

∂ L

∂ x i, j

∂ x i, j

∂ x l, j
=

1

N l
i ∈ l

∂ L

∂ x i, j
. (1 3)

N o w w e h a v e

∂ L

∂ x l, j
=

1

N l
i ∈ l

(

M

k = 1

δ y i k · W k j) (1 4)

=
M

k = 1

(
1

N l
i ∈ l

δ y i k) · W k j . (1 5)

x
T

2

x
T

1

x
T

δy

∇W

x
T

c,1
δy

c,1,s ∇W1

∇W1

∇W2

K × N
N ×M K ×M

| | ×MC1

K/2 ×MK/2 × | |C1

δy
c,2,s

x
T

c,2

K/2 × | |C2

| | ×MC2

∇W2

K/2 ×M

Figure 5. An illustration of calculating the weight gradient when clustering
on sub-vectors. The length of each sub-vector is L = K/2 where K is the
size of a weight kernel.

δx2δx1

W
T

1

δxδy
W

δxc,2

δxc,1δy
c,1,sa

W
T

1

δy
c,2,sa

N × KN ×M

M × K

| | × K/2C1M × K/2| | ×MC1

| | ×MC2

W
T

2

| | × K/2C2

W
T

2

M × K/2

Figure 6. An illustration of calculating the delta of the input x when clustering
on sub-vectors. The length of each sub-vector is L = K/2 where K is the
size of a weight kernel.

Let δyl,k,sa = 1
Nl

∑
i∈l δyik, the formula becomes

∂L
∂xl,j

=
M∑
k=1

δyl,k,sa ·Wkj . (16)

Therefore,
∂L
∂xc

= δyc,sa ·WT , (17)

where calculating δyc,sa is based on the calculation of δyc,s

for weight gradient computation. The gradient of the centroid
is then used for all the neuron vectors in the same cluster.

When clustering over sub-vectors, as shown in Figure 6,
both δx and W are divided into two sub-matrices. They are

δx1, δx2 and W1, W2. The sub-matrices of the input delta are
computed as

δxc,I = δyc,I,sa ·WT
I . (18)

Computation Complexity: When clustering over the row
vectors of the input, as shown in Figure 4 (c), the computation
complexity is O(|C| ·M · K). When using sub-vectors, the
complexity becomes

Cb,i = O(

K/L∑
I=1

|CI | ·M · L)) (19)

= O(rc ·N ·K ·M), (20)

where rc is again the averaged remaining ratio across all sub-
matrices of x.

Using Equation 10 and Equation 18, we could directly use
the clustering results attained in the forward propagation to
compute the weight gradient and input delta. It is easy to see
that when clustering over sub-vectors, for each sub-matrix of
δy, we need to compute multiple copies of δyc,s. Grouping
these output deltas introduces extra overhead. Therefore, even
though smaller granularities could lead to better clustering
results, it also brings larger computation overhead. It again
leads to a trade-off between the reuse-caused accuracy loss
and computation overhead.

V. ADAPTIVE DEEP REUSE FOR TRAINING

This section gives a discussion on how to adaptively adjust
the clustering designs for different training stages. With these
adaptive adjustment, we could leverage the similarities for
CNN training more efficiently and achieve more computation
savings.

Different CNN training stages have different degrees of
tolerance of precision relaxation. Usually at early training
iterations, since the model is very rough, the training of the
model is hence less sensitive to approximation errors than in
later stages. In later training stages when the model gets close
to convergence, the model is well learned. A small change of
the input matrix may lead to substantial errors in the model
updates, causing the training slow to converge. Therefore, the
basic idea of adaptive deep reuse is to be more aggressive
on computation reuse in early stages and adjust the clustering
parameters gradually so that we have less computation reuse
but better precision in later stages.

There are three clustering parameters to adjust given the
description in Section III. They are the clustering granularity
(the sub-vector length L), the number of hashing functions (H)
and the flag of cluster reuse (CR, CR = 1 for turning on the
cluster reuse). To study how these clustering parameters affect
the strength of reuse and the reuse-caused accuracy loss, we
experiment with different combination of parameters and gain
the following observations (the detailed experiment results is
shown in Section VI):
• When H and CR stay unchanged, a smaller granularity

(smaller L) always leads to smaller reuse-caused accuracy
loss.

• When L and CR stay unchanged, more hashing functions
(larger H) gives smaller reuse-caused accuracy loss.
Meanwhile, a larger H gives a larger number of clusters,
thus a larger rc.

• Assume that center reuse is not turned on (CR = 0).
When L is large, H affects the reuse-caused accuracy
loss and rc more than L does. When L is small, the
change of L affects the reuse-caused accuracy loss and
rc more than H does.

• The convolutional layers that are close to the output
layer could use larger L and smaller H while achieving
the same reuse-caused accuracy loss comparing to the
convolutional layers that are close to the input images.

• In the selection of an appropriate combination of L
and H , turning on the cluster reuse flag (CR = 1)
always reduces the remaining ratio rc. However, it also
introduces more errors and larger reuse-caused accuracy
loss.

Given these observations, we propose two adaptive strate-
gies. The first one adjusts the combination of clustering
granularity and the number of hashing functions. It uses large
L and small H at the beginning of the training process. In
theory, this setting may lead to large amounts of computation
savings but also large clusters and hence approximation errors.
As the model learns from the input images, this strategy
gradually decreases the value of L and increases H . The reuse
becomes less aggressive, computation savings become less,
but the perturbance to the learning quality also decreases. The
second strategy is about clustering scopes. It sets the cluster
reuse flag CR to either 0 or 1 for different training stages.

A. Strategy of Adjusting L and H

To make this strategy work effectively, there are several
questions to be answered. We list these questions and our
solutions as follows.

a) How to determine the ranges of L and H we are going
to use during the training?

At the beginning of CNN training, the adaptive strategy
needs to be more aggressive in order to save more computa-
tions when the training process could tolerate large precision
relaxation. Therefore, we should use the largest L and the
smallest H for the initial setting. At the end of the training,
we need to have little reuse-caused accuracy loss. Thus we use
the smallest L and the largest H at this stage. We empirically
set the ranges of L and H based on the following policies:

Policy 1: For each layer, set the lower bound of L as
Lmin = kw and the upper bound as Lmax = d

√
Ice · kw.

kw is the width of the weight kernel and Ic is the number of
input channels.

Amendment 1: For layers other than the first convolutional
layer, if kw is very small (e.g. 3), and kw · kw < 10, set
Lmin = kw · kw.

Policy 2: Given the observation that the remaining ratio rc
is always larger than 0.01, we set the lower bound of H by
finding the minimum H that 2Hmin > 0.01N and the upper
bound of H by 2Hmax < N .

Given these two policies, the actual ranges of L and H are
determined by the size of a convolutional layer. Therefore,
even at the same training stage, different convolutional layers
may have different ranges of L and H.

b) When switching from one combination to the other, how
to decide the combination of L and H to use next?

There are two factors that affect the choice of the clustering
parameters. One is the expected computation time, the other is
the corresponding reuse-caused accuracy loss. When switching
from one set of parameters to the other, we always expect to
choose the one that gives the minimum expected execution
time and the smallest reuse-caused accuracy loss.

Because the expected computation time is proportional to
the computation complexity, Equations 5, 10 and 18 could help
us determine the expected computation time E(t). Since the
similarity detection only happens in the forward propagation,
we only use Equation 5 at this stage. We have

Ef (t) ∼ (
H

M
+ rc +

1

L
). (21)

Given {L1, H1}, if we only change the clustering granularity
from L1 to L2, the change of the expected computation time
would be

∆Ef (t, {L1, H1} → {L2, H1}) =
1

L2
− 1

L1
. (22)

On the other hand, if we only change the number of hashing
functions from H1 to H2, we have

∆Ef (t, {L1, H1} → {L1, H2}) =
H2 −H1

M
. (23)

With Equations 22 and 23 and the ranges of L and H , we can
place all possible sets of {L,H} into an ordered candidate list
[{L,H}] based on the following policy:

Policy 3: Given the ranges of L and H , create two lists
[L] and [H], where [L] is sorted with an decreasing order
and [H] is sorted with an ascending order. After using the
parameter setting of {Li, Hj}, the next possible setting is
either {Li+1, Hj} or {Li, Hj+1}. Putting the one that gives a
smaller ∆E(t) according to Equation 22 and Equation 23 as
the next candidate into [{L,H}].

This is an offline process and it gives the candidates for
runtime examination. The runtime selection of the parameters
follows the following strategy. When finishing training with
the current set of parameters {Lcur, Hcur} = {Li, Hi}, where
i is the position of {Lcur, Hcur} in the candidate list, the
strategy runs inference on a batch of inputs with {Lcur, Hcur}
as the parameters to get an accuracy value Acur. It then
applies {Li+1, Hi+1} to the same batch of inputs for inference
and get another accuracy Ai+1. It selects the next candidate
{Li+1, Hi+1} to use as {Lcur+1, Hcur+1} for the next stage
based on the following conditions:

Amendment 3.1: When the training accuracy is less
than 0.5, if Ai+1/Acur ≥ 1.5, {Li+1, Hi+1} is chosen
as {Lcur+1, Hcur+1}. Otherwise, apply the same checking
process for the next candidate parameter set {Li+2, Hi+2}.

Amendment 3.2: When the training accuracy is larger
than 0.5, if Ai+1 − Acur ≥ 0.1, {Li+1, Hi+1} is chosen as
{Lcur+1, Hcur+1}. Otherwise, check {Li+2, Hi+2}.

Amendment 3.3: If all settings after {Li, Hi} cannot
satisfy the conditions in the previous two amendments, we
simply chose {Li+1, Hi+1} as {Lcur+1, Hcur+1} as long as
Ai+1/Acur ≥ 1.1. If Ai+1/Acur < 1.1, skip this set of
parameters and go to the next one.

c) how to determine when to switch the clustering parame-
ters?

Given a set of {Lcur, Hcur}, we train the network until the
loss value stops decreasing. Then we begin to find the next
set of parameters to continue training the network.

B. Strategy Based on Cluster Reuse

This second strategy is much simpler than the first one. It
only adjusts the decision on turning on or off cluster reuse.
We start the training with cluster reuse. When the loss value
stops dropping, we set CR = 0 and continue training without
cluster reuse. It leaves L and H unchanged; they are set as
certain manually tuned values (more details in Section VI-B)
and stay unchanged throughout the training process.

VI. EVALUATION

To validate the hypothesis on neuron vector similarity and to
evaluate the efficacy of the adaptive deep reuse, we experiment
with three different networks: CifarNet, AlexNet [16] and
VGG-19 [17]. Table II gives the details of the networks and
datasets. These three networks have a range of sizes and
complexities. The number of convolutional layers ranges from
2 to 16. The first network works on small images of size
32 × 32 while the other two work on images of 224 × 224.
For all the experiments, the input images are randomly shuffled
before being fed into the network.

The baseline network implementation we use to measure
the speedups comes from the slim model 1 in the TensorFlow
framework 2. We implement our adaptive deep reuse opti-
mization by incorporating the clustering and reuse strategies
into the TensorFlow code. Both the original and our optimized
CNNs automatically leverage the state-of-the-art GPU DNN
library cuDNN 3 and other libraries that TensorFlow uses in
default.

We use policy 1, policy 2 and amendment 1.1 in Section
V-A(a) to determine the ranges of adaptive deep reuse parame-
ters L and H for each convolutional layer. During the training,
we follow policy 3 and amendment 3.1, 3.2, 3.3 in Section
V-A(b) to determine how to change the values of L and H for
each convolutional layer. The same rules are applied to all the
two datasets and three networks in our experiments.

All the experiments are done on a machine with an Intel(R)
Xeon(R) CPU E5-1607 v2 and a GTX1080 GPU.

The metric we use to evaluate the influence on the CNN
from the clustering based reuse is reuse-caused accuracy loss.

1https://github.com/tensorflow/models/tree/master/research/slim
2https://github.com/tensorflow/tensorflow
3https://developer.nvidia.com/cudnn

As adaptive deep reuse uses the centroid of a cluster of neuron
vectors as the representative of other neuron vectors in the
same cluster in computations, there could be a loss on the
inference accuracy of the neural network compared to the
inference accuracy of the default network. This loss is referred
as the “reuse-caused accuracy loss”. If the resulting inference
accuracy is close to the original inference accuracy, the reuse-
caused accuracy loss is small. Then the corresponding cluster-
ing method, together with the set of parameters, is considered
to have given good clustering results.

In the remaining of this section, we first verify our assump-
tion of neuron vector similarity by applying the K-means clus-
tering method to the inputs neuron vectors on CNN inference.
This set of experiments takes a CNN model trained by the
default training method, and applies our optimization only to
the inference process. The results on the three networks show
similar trends, confirming that there are strong similarities
among neuron vectors across inputs when CNN runs on real-
world datasets. Details are discussed in Section VI-A.

We then apply LSH to CNN inference to study the relation-
ship between the clustering parameters, the remaining ratio
and the inference accuracy. Similarly, the experiments only
apply our optimization to the inference process. Section VI-B1
gives a more detailed discussion on these relations on all three
networks.

Finally, we evaluate the efficiency of different deep reuse
strategies in Section VI-B. This set of experiments applies our
technique to both the training and the inference processes.

A. Verification of Neuron Vector Similarity

Figure 7 shows the rc−accuracy relationships when k-
means clustering is applied to CifarNet. We use k-means
for this measurement because this slower clustering method
produces better clustering results and hence can more fully
expose the potential. The results on the three networks show
simliar trends. Figure 7(a) shows the result for the first convo-
lutional layer of CifarNet, while Figure 7(b) gives the result
on the third convolutional layer of AlexNet. The results of
two different scopes (single-input level and single-batch level)
are shown. The inference accuracy of the original CifarNet
is around 0.81 while the inference accuracy of the original
AlexNet is around 0.54.

We could see that, by grouping the row vectors into clusters
and reusing the computation results of the centroid vectors, we
can reach an accuracy close or equal to the original accuracy
with a relatively small remaining ratio rc. If only applying
k-means to the first convolutional layer of CifarNet, as shown
in Figure 7(a), the accuracy reaches 0.76 with rc = 0.5
when using single-input level clustering. As for the third
convolutional layer of AlexNet, the accuracy reaches close to
the original one with rc ∼ 0.5 for single-input level clustering
and rc ∼ 0.15 for single-batch level clustering (Figure 7(b)).
This observation verifies that there is a large amount of
similarities among neuron vectors, hence the potential for
computation savings.

Table II
BENCHMARK NETWORKS

NETWORK DATASET # CONVLAYERS K M IMAGE ORDER IMAGE SIZE

CIFARNET CIFAR10 2 75 ∼ 1600 64 RANDOM 32× 32
ALEXNET IMAGENET 5 363 ∼ 3456 64 ∼ 384 RANDOM 224× 224
VGG-19 IMAGENET 16 27 ∼ 4068 64 ∼ 512 RANDOM 224× 224

0.0 0.2 0.4 0.6 0.8 1.0
rc (remaining ratio)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

single-input-level
single-batch-level

(a) CifarNet conv1

0.0 0.2 0.4 0.6 0.8 1.0
rc (remaining ratio)

0.1

0.2

0.3

0.4

0.5

ac
cu

ra
cy

single-input-level
single-batch-level

(b) AlexNet conv3

Figure 7. The rc−accuracy relationship of applying k-means clustering to
CifarNet and AlexNet. Two clustering scopes are used: the single-input-level
clustering and the single-batch-level clustering.

Comparing the curve of the single-batch level clustering and
that of the single-input level clustering, it is easy to see that,
with a larger clustering scope, the optimized network could
recover the original accuracy with a smaller rc. For the first
convolutional layer of CifarNet (Figure 7 (a)), the curve of the
single-batch level clustering are shorter than the single-input
level one because there are no data when rc exceeds 0.1 in
the single-batch case. The reason is that K-means clustering
at batch level requires a large amount of memory, causing
memory errors on the machine.

B. Efficiency of the Adaptive Strategies

This part reports the relationship among the clustering
parameters of LSH, the remaining ratio rc, and the inference
accuracy. It also reports the comparison between the com-
putation time savings of adaptive strategies and analyzes the
influence of adaptive deep reuse on CNN convergence rate.

Table III
COMPARISON OF ACCURACY BETWEEN INFERENCES WITH CLUSTER

REUSE (CR=1) AND WITHOUT CLUSTER REUSE (CR=0).

LAYER L H ACCURACY

CR=0 CR=1

CONV1 5 15 0.813 0.799
CONV2 10 10 0.816 0.784

1) Relation between Clustering Parameters, Remaining Ra-
tio, and Inference Accuracy: There are three clustering param-
eters for LSH clustering: the sub-vector length L, the number
of hashing functions H and the flag of turning on cluster reuse
CR.

Figure 8 illustrates the rc−accuracy relationship of using
different sub-vector lengths and different numbers of hashing
functions. Each curve in the Figure corresponds to a sub-vector
length. For example, in Figure 8 (a), the length varies from 5
to 1600 for the second convolutional layer of CifarNet. Each
dot on the curve corresponds to a certain number of hashing
functions. In Figure 8 (a), it varies from 5 to 60.

The results show that LSH is effective in identifying the
neuron vector similarities. It can recover the original inference
accuracy with a very small remaining ratio rc. We can also
tell that with the same remaining ratio rc, a smaller sub-vector
length L tends to give higher accuracy. For a fixed sub-vector
length, a larger number of hashing functions are necessary to
provide a higher accuracy, which incurs large remaining ratio
rc and hence many remaining computations.

Table III shows the effects of cluster reuse. The results
are from the experiments performed on the two convolutional
layers of CifarNet. For each layer, the selected set of {L,H}
is the one that performs the best in the previous experiments
of studying the relation between clustering parameters and
the inference accuracy. Results in Table III show that, for the
optimal sets of {L,H}, using cluster reuse results in a lower
accuracy for both of the two convolutional layers. However,
based on our experiments result, cluster reuse helps remove
most of the computations when processing later batches. For
example, the reuse rate R increases from 0 to around 0.98 after
processing 20 batches when applying cluster reuse on CifarNet
[10]. It shows a trade-off between computation savings and
inference accuracy.

2) Comparison of Computation Time Savings between
Three Different Strategies: In this section, we compare the
computation savings of using three different strategies.

0.0 0.2 0.4 0.6 0.8 1.0
r_c

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

sub-vec size: 1600
sub-vec size: 320
sub-vec size: 160
sub-vec size: 80
sub-vec size: 40
sub-vec size: 20
sub-vec size: 10
sub-vec size: 8
sub-vec size: 5

(a) conv2 in CifarNet

0.0 0.2 0.4 0.6 0.8
r_c

0.1

0.2

0.3

0.4

0.5

ac
cu

ra
cy

sub-vec size: 1600
sub-vec size: 320
sub-vec size: 160
sub-vec size: 80
sub-vec size: 40
sub-vec size: 20
sub-vec size: 10
sub-vec size: 8
sub-vec size: 5

(b) conv2 in AlexNet

0.0 0.2 0.4 0.6 0.8
r_c

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

sub-vec size: 576
sub-vec size: 192
sub-vec size: 64
sub-vec size: 16
sub-vec size: 9
sub-vec size: 3

(c) conv2 in VGG-19

Figure 8. The rc−accuracy relationship of applying LSH to CifarNet,
AlexNet and VGG-19. Each curve corresponds to a certain sub-vector length.
Each dot on a curve reflects the result of using a certain number of hashing
functions.

The first strategy uses a fixed set of clustering parameters
{L,H} and it doesn’t enable the cluster reuse. The {L,H}
set is the optimal one chosen from experiments result shown
in previous section. With this strategy, we could save up to
49% CNN training time.

The second strategy is described in Section V-A. It automat-
ically adjusts the parameter set {L,H} for different training
stages. It turns out that this strategy is very effective. For all
the three networks, it could save more than 60% training time.
The largest time saving is on AlexNet, which is 69%.

Comparing these two strategies, we find that the second one
is more effective, giving larger speedups. For the first strategy,
since it uses only one set of parameters, this set of {L,H}
must introduce little reuse-caused accuracy loss in order to

Table IV
END-TO-END FULL NETWORK SPEEDUPS

NETWORK
SAVINGS OF THE CNN TRAINING TIME

STRATEGY 1 STRATEGY 2 STRATEGY 3

CIFARNET 38% 63% 46%
ALEXNET 49% 69% 58%
VGG-19 45% 68% 54%

reach the same training accuracy as the original network does.
Therefore, the computation saving is limited. For the second
strategy, the initial set of {L,H} used at the beginning of
the training actually gives large reuse-caused accuracy loss.
However, it saves a huge amount of computations for the
early training iterations. After several training iterations, the
adjustment to {L,H} gradually leads to smaller reuse-caused
accuracy loss, but also less computation savings. Overall, the
computation savings for the whole training process is larger
than that of using the first strategy. This results in larger
savings of computation time. We also experimented with the
strategy of adjusting cluster reuse (Sec V-B); it is not as
effective as the second strategy as Table IV shows.

It is worth noting that the speedups from adaptive deep
reuse are significant, but not as significant as the computations
savings it brings. The reason is that the reuse could lead to
more epochs in training for reaching the same accuracy as the
default training does: 28K versus 24K iterations for CifarNet,
820K versus 700K for AlexNet, and 500K versus 400K for
VGG-19. The speedups we have reported have already taken
into consideration of these extra training epochs.

VII. RELATED WORK

Training DNN with SGD involves a large number of com-
putations for each training iteration and also many training
iterations to converge. Prior works have adopted two main
strategies to accelerate DNN training: 1) reducing the number
of computations per iteration such as stochastic depth to
remove some layers during training [18], randomized hashing
to reduce the number of multiplications [6], approximate com-
putations [19]; 2) reducing the number of iterations required
to converge such as large-batch data parallelism [20], batch
normalization to reduce internal covariate shift [21], impor-
tance sampling to reduce variance of gradient estimates [22],
[23], adaptive learning rate [24]. We focus on the first strategy
as our proposed adaptive deep reuse falls into this category.

Several recent works take advantage of the sparsity of
activation maps to reduce computation cost in the forward
and backward propagation. In [6], randomized hashing is
combined with adaptive dropout [25] to predict the important
neurons and conduct multiplications only for those important
ones. Another work [8] uses the sparsity of ReLUs to avoid
calculating zero-valued neurons. The most recent work [9]
uses random projection to predict important neurons. These
approaches usually require a high level of sparsity in activation
maps to achieve speedups.

Approximate tensor operations are also able to speed up
DNN training. One way for approximation is to use low
precision. In [4], deep networks can be trained using only
16-bit wide fixed-point number representation using stochastic
rounding, and incur little to no degradation in the inference
accuracy. Speedups are also expected using mixed precision
training proposed in [5]. Another popular approximation is
to enforce a low-rank structure on the layers [2], [3]. These
methods are all different from ours and can potentially be
combined with adaptive deep reuse.

LSH, as a clustering method, has been used in some prior
CNN studies [26]–[28]. But their purposes of using LSH differ
from ours. For example, in the Scalable and Sustainable Deep
Learning work [26], the authors apply LSH to both the weight
vector and the input vector and find the collision between a
pair of weight and input vectors. In this way they estimate
the weight-input pairs that give the highest activation. In our
work, we use the collision of hashing results of neuron vectors
to figure out similarities among neuron vectors, and reuse the
computing results of the neuron vector-weight vector products
across similar neuron vectors to save computations.

VIII. CONCLUSION

This paper presents adaptive deep reuse as a technique to
reduce the computation cost of the CNN training process.
Experiments show that there is a large amount of similarities
existing among neuron vectors across the inputs of each con-
volutional layer. By identifying these similarities using LSH
in the forward prorogation and reusing the similarity results
in the backward propagation, adaptive deep reuse efficiently
leverages the similarities and enables deep computation reuses
between neuron vectors that are similar to each other. Adaptive
deep reuse also introduces adaptive strategies that adjust the
clustering parameters throughout the CNN training to strike a
good balance between computation savings and training errors.
Experiments show that adaptive deep reuse can save up to
69% training time while causing no accuracy loss to the final
training results.

ACKNOWLEDGEMENT

This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. CCF-1525609,
CNS-1717425, CCF-1703487. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of NSF.

REFERENCES

[1] S. V. Kamarthi and S. Pittner, “Accelerating neural network training
using weight extrapolations,” Neural networks, vol. 12, no. 9, pp. 1285–
1299, 1999.

[2] F. Mamalet and C. Garcia, “Simplifying convnets for fast learning,” in
International Conference on Artificial Neural Networks. Springer, 2012,
pp. 58–65.

[3] H. Bagherinezhad, M. Rastegari, and A. Farhadi, “Lcnn: Lookup-based
convolutional neural network,” in Proc. IEEE CVPR, 2017.

[4] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference
on Machine Learning, 2015, pp. 1737–1746.

[5] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaev, G. Venkatesh et al., “Mixed
precision training,” arXiv preprint arXiv:1710.03740, 2017.

[6] R. Spring and A. Shrivastava, “Scalable and sustainable deep learning
via randomized hashing,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2017, pp. 445–454.

[7] X. Sun, X. Ren, S. Ma, and H. Wang, “meprop: Sparsified back
propagation for accelerated deep learning with reduced overfitting,”
arXiv preprint arXiv:1706.06197, 2017.

[8] S. Shi and X. Chu, “Speeding up convolutional neural networks by ex-
ploiting the sparsity of rectifier units,” arXiv preprint arXiv:1704.07724,
2017.

[9] L. Liu, L. Deng, X. Hu, M. Zhu, G. Li, Y. Ding, and Y. Xie,
“Dynamic sparse graph for efficient deep learning,” arXiv preprint
arXiv:1810.00859, 2018.

[10] N. Lin and S. Xipeng, “Similarities in Neuron Vectors and The Impli-
cations to CNN Inferences,” Tech. Rep. TR-2018-2.

[11] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing, 1998, pp. 604–613.

[12] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
Twentieth Annual Symposium on Computational Geometry. New York,
NY, USA: ACM, 2004, pp. 253–262.

[13] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approxi-
mate nearest neighbor in high dimensions,” in Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, 2006, pp.
459–468.

[14] K. Terasawa and Y. Tanaka, “Spherical lsh for approximate nearest
neighbor search on unit hypersphere,” in Workshop on Algorithms and
Data Structures, 2007, pp. 27–38.

[15] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal lsh for angular distance,” in Proceedings of
the 28th International Conference on Neural Information Processing
Systems - Volume 1. Cambridge, MA, USA: MIT Press, 2015, pp.
1225–1233.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1. USA: Curran Associates Inc., 2012, pp. 1097–1105.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference on
Learning Representations, 2015.

[18] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in European Conference on Computer
Vision. Springer, 2016, pp. 646–661.

[19] M. Adelman and M. Silberstein, “Faster neural network training with
approximate tensor operations,” arXiv preprint arXiv:1805.08079, 2018.

[20] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “Imagenet
training in minutes,” in Proceedings of the 47th International Conference
on Parallel Processing. ACM, 2018, p. 1.

[21] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[22] A. Katharopoulos and F. Fleuret, “Biased importance sampling for deep
neural network training,” arXiv preprint arXiv:1706.00043, 2017.

[23] ——, “Not all samples are created equal: Deep learning with importance
sampling,” arXiv preprint arXiv:1803.00942, 2018.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[25] J. Ba and B. Frey, “Adaptive dropout for training deep neural networks,”
in Advances in Neural Information Processing Systems, 2013, pp. 3084–
3092.

[26] R. Spring and A. Shrivastava, “Scalable and sustainable deep learning
via randomized hashing,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
Halifax, NS, Canada: ACM, 2017, pp. 445–454.

[27] S. Vijayanarasimhan, J. Shlens, R. Monga, and J. Yagnik, “Deep
networks with large output spaces,” arXiv preprint arXiv:1412.7479,
2014.

[28] R. Spring and A. Shrivastava, “A New Unbiased and Efficient Class of
LSH-Based Samplers and Estimators for Partition Function Computation
in Log-Linear Models,” arXiv preprint arXiv:1703.05160, 2017.

