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Abstract
Convolutional Neural Networks (CNN) are widely used for
Deep Learning tasks. CNN pruning is an important method to
adapt a large CNN model trained on general datasets to fit a
more specialized task or a smaller device. The key challenge
is on deciding which filters to remove in order to maximize the
quality of the pruned networks while satisfying the constraints.
It is time-consuming due to the enormous configuration space
and the slowness of CNN training.

The problem has drawn many efforts from the machine
learning field, which try to reduce the set of network con-
figurations to explore. This work tackles the problem dis-
tinctively from a programming systems perspective, trying
to speed up the evaluations of the remaining configurations
through computation reuse via a compiler-based framework.
We empirically uncover the existence of composability in the
training of a collection of pruned CNN models, and point
out the opportunities for computation reuse. We then propose
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composability-based CNN pruning, and design a compression-
based algorithm to efficiently identify the set of CNN layers
to pre-train for maximizing their reuse benefits in CNN prun-
ing. We further develop a compiler-based framework named
Wootz, which, for an arbitrary CNN, automatically gener-
ates code that builds a Teacher-Student scheme to materialize
composability-based pruning. Experiments show that network
pruning enabled by Wootz shortens the state-of-art pruning
process by up to 186X while producing significantly improved
pruning results.

CCS Concepts • Computing methodologies Neural net-
works; • Software and its engineering Compilers;
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1 Introduction
As a major class of Deep Neural Networks (DNN), Convo-
lutional Neural Networks (CNN) are important for a broad
range of deep learning tasks, from face recognition [36], to
image classification [32], object detection [53], human pose
estimation [61], sentence classification [29], and even speech
recognition and time series data analysis [37]. The core of a
CNN usually consists of many convolutional layers, and most
computations at a layer are convolutions between its neuron
values and a set of filters on that layer. A filter consists of a
number of weights on synapses, as Figure 1 (a) illustrates.

CNN pruning is a method that reduces the size and com-
plexity of a CNN model by removing some parts, such as
weights or filters, of the CNN model and then retraining the
reduced model, as Figure 1 (b) illustrates. It is an important
approach to adapting large CNNs trained on general datasets
to meet the needs of more specialized tasks [60, 66]. An exam-
ple is to adapt a general image recognition network trained on
a general image set (e.g., ImageNet [54]) such that the smaller
CNN (after retraining) can accurately distinguish different
bird species, dog breeds, or car models [41, 43, 47, 66]. Com-
pared to designing a CNN from scratch for each specific task,
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Figure 1. CNN and CNN Pruning. Conv1 and Conv2 are the first two consecutive convolutional layers in the CNN.

CNN pruning is an easier and more effective way to achieve
a high-quality network [15, 41, 47, 51, 60]. Moreover, CNN
pruning is an important method for fitting a CNN model on a
device with limited storage or computing power [16, 65].

The most commonly used CNN pruning is filter-level prun-
ing, which removes a set of unimportant filters from each
convolutional layer. The key problem for filter-level pruning
is how to determine the set of filters to remove from each
layer to meet users’ needs: The entire configuration space is
as large as 2 |W | (W for the entire set of filters) and it often
takes hours to evaluate just one configuration (i.e., training
the pruned network and then testing it).

The problem is a major barrier for timely solution deliv-
ery in Artificial Intelligence (AI) product development. The
prior efforts have been, however, mostly from the machine
learning community [19, 25, 39, 43, 47]. They leverage DNN
algorithm-level knowledge to reduce the enormous configura-
tion space to a smaller space (called promising subspace) that
is likely to contain a good solution, and then evaluate these
remaining configurations to find the best.

Although these prior methods help mitigate the problem,
network pruning remains a time-consuming process. One
reason is that, despite their effectiveness, no prior techniques
can guarantee the inclusion of the desirable configuration in a
much reduced subspace. As a result, to decrease the risk of
missing the desirable configuration, practitioners often end
up with a still quite large subspace of network configurations
that takes days for many machines to explore. It is also quite
often true that modifications need to make to the CNN models,
datasets, or hardware settings throughout the development
process of an AI product; each of the changes could make the
result of a CNN pruning obsolete and call for a rerun of the
entire pruning process. Our conversations with AI product
developers indicate that the long pruning process is one of the
major hurdles for shortening the time to market AI products.

This study distinctively examines the problem from the
programming systems perspective. Specifically, rather than
improving the attainment of promising subspace as all prior
work focuses on, we try to drastically speed up the evaluations
of the remaining configurations in the promising subspace
through cross-network computation reuse via a compiler-
based framework, a direction complementary to prior solu-
tions. We achieve the goal through three-fold innovations.

First, we empirically uncover the existence of composabil-
ity in the training of a collection of pruned CNN models,
and reveal the opportunity that the composability creates for
saving computations in CNN pruning. The basic observation
that leads to this finding is that two CNN networks in the
promising subspace often differ in only some layers. In the
current CNN pruning methods, the two networks are both
trained from scratch and then tested for accuracy. A question
we ask is whether the training results of the common layers
can be reused across networks to save some training time.
More generally, we view the networks in a promising sub-
space as compositions of a set of building blocks (a block is a
sequence of CNN layers). The question is if we first pre-train
(some of) these building blocks and then assemble them into
the to-be-explored networks, can we shorten the evaluations
of these networks and the overall pruning process? Through
a set of experiments, we empirically validate the hypothe-
sis, based on which, we propose composability-based CNN
pruning to capture the idea of reusing pre-trained blocks for
pruning (§ 3).

Second, we propose a novel hierarchical compression-
based algorithm, which, for a given CNN and promising
subspace, efficiently identifies the set of blocks to pre-train
to maximize the benefits of computation reuse. We prove
that identifying the optimal set of blocks to pre-train is NP-
hard. Our proposed algorithm provides a linear-time heuristic
solution by applying Sequitur [49], a hierarchical compres-
sion algorithm, to the CNN configurations in the promising
subspace (§ 5).

Finally, based on all those findings, we developed Wootz1,
the first compiler-based framework that, for an arbitrary CNN
(in Caffe Prototxt format) and other inputs, automatically
generates TensorFlow code to build Teacher-Student learning
structures to materialize composability-based CNN pruning
(§ 4,§ 6).

We evaluate the technique on a set of CNNs and datasets
with various target accuracies. For ResNet-50 and Inception-
V3, it shortens the pruning process by up to 186.7X and 30.2X
respectively. Meanwhile, the models it finds are significantly
more compact (up to 70% smaller) than those by the default
pruning scheme for the same target accuracy (§ 7).

1The name is after Wootz steel, the legendary pioneering steel alloy devel-
oped in the 6th century BC; Wootz blades give the sharpest cuts.
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2 Background on CNN Pruning
This section gives some background important for follow-
ing the rest of the paper. For a CNN with L convolutional
layers, let Wi = {W j

i } represent the set of filters on its i-th
convolutional layer, andW denote the entire set of filters (i.e.,
W = ∪L

i=1Wi .) For a given training dataset D, a typical ob-
jective of CNN pruning is to find the smallest subset of W ,
denoted asW ′, such that the accuracy reachable by the pruned
network f (W ′,D) (after being re-trained) has a tolerable loss
(a predefined constant α) from the accuracy by the origi-
nal network f (W ,D). Besides space, the pruning may seek
for some other objectives, such as maximizing the inference
speed [67], or minimizing the amount of computations [19]
or energy consumption [65].

The optimization problem is challenging because the en-
tire network configuration space is as large as 2 |W | and it is
time-consuming to evaluate a configuration, which involves
the re-training of the pruned CNN. Previous work simplifies
the problem as identifying and removing the least important
filters. Many efficient methods on finding out the importance
of a filter have been proposed [20, 25, 39, 42, 43, 47].

The pruning problem then becomes to determine how many
least important filters to remove from each convolutional
layer. Let γi be the number of filters removed from the i-th
layer in a pruned CNN and γ = (γ1, · · · ,γL). Each γ specifies
a configuration. The size of the configuration space is still
combinatorial, as large as

∏L
i=1 |Γi |, where Γi is the number

of choices γi can take.
Prior efforts have concentrated on how to reduce the config-

uration space to a promising subspace [4, 19, 23]. But CNN
training is slow and the reduced space still often takes days to
explore. This work focuses on a complementary direction, ac-
celerating the examinations of the promising configurations.

3 Composability-Based CNN Pruning: Idea
and Challenges

The fundamental reason for Wootz to produce large speedups
for CNN pruning is its effective capitalization of computation
reuse in CNN pruning, which is built on the composability in
CNN pruning empirically unveiled in this study. Two pruned
networks in a promising subspace often differ in only some
of the layers. The basic idea of composability-based CNN
pruning is to reuse the training results of the common layers
across the pruned networks. Although the idea may look
straightforward, to our best knowledge, no prior CNN pruning
work has employed such reuse, probably due to a series of
open questions and challenges:

• First, there are bi-directional data dependencies among
the layers of a CNN. In CNN training, for an input
image, there is a forward propagation that uses a lower
layer’s output, which is called activation maps, to com-
pute the activation maps of a higher layer; it is followed
by a backward propagation, which updates the weights

of a lower layer based on the errors computed with
the higher layer’s activation maps. As a result of the
bi-directional dependencies, even just one-layer differ-
ences between two networks could cause very different
weights to be produced for a common (either higher or
lower) layer in the two networks. Therefore, it remains
unclear whether the training results of a common layer
could help with the training of different networks.

• Second, if a pre-trained layer could help, it is an open
question how to maximize the benefits. A pre-trained
sequence of consecutive layers may have a larger im-
pact than a single pre-trained layer does on the whole
network, but it may also take more time to produce
and has fewer chances to be reused. How to determine
which sets of layers or sequences of layers to pre-train
to maximize the gains has not been explored before.

• Third, how to pre-train just a piece of a CNN? The
standard CNN back propagation training algorithm uses
input labels as the ground truth to compute errors of the
current network configurations and adjust the weights.
If we just want to train a piece of a CNN, what ground
truth should we use? What software architecture should
be built to do the pre-training and do it efficiently? g

• Fourth, existing DNN frameworks support only the
standard DNN training and inference. Users have to
write code to do CNN pruning themselves, which is
already complicated for general programmers. It would
add even more challenges to ask them to additionally
write the code to pre-train CNN pieces, and then reuse
the results during the evaluations of the networks.

For the first question, we conduct a series of experiments
on 16 large CNNs (four popular CNN models trained on four
datasets). Section 7.2 reports the details; here we just state
the key observations. Pre-trained layers bring a network to a
much improved starting setting, making the initial accuracies
of the network 50-90% higher than the network without pre-
trained layers. That leads to 30-100% savings of the training
time of the network. Moreover, it helps the network converge
to a significantly higher level of accuracy (by 1%-4%). These
findings empirically confirm the potential of composability-
based CNN pruning.

To effectively materialize the potential, we have to address
the other three challenges. Wootz offers the solution.

4 Overview of Wootz Framework
This section gives an overview of Wootz. Wootz is a software
framework that automatically enables composability-based
CNN pruning. As Figure 2 shows, its input has four parts:

• The to-be-pruned CNN model, written in Caffe Prototxt
(with a minor extension), which is a user-friendly text
format (from Caffe) for CNN model specifications [27].

• The promising subspace that contains the set of pruned
networks configurations worth exploring, following the
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Figure 2. Overview of Wootz Framework.

''' An example of a promising subspace specification that contains two
configurations. Each number is a pruning rate for a convolutional
layer. For example, the first configuration means the first and third
layers are pruned with pruning rate 0.3, the second and fourth layers
are not pruned. '''
configs=[[0.3, 0, 0.3, 0], [0.5, 0, 0.3, 0]]
 
''' The configurations should be either a Numpy array or a python list
that can be serialized using Pickle as below. Users only need to
provide configs_path to the compiler. '''
pickle.dump(configs, open(configs_path, "wb"))

(a) Promising subspace specifications.

# Format:
[min, max] [ModelSize, Accuracy]
constraint [ModelSize, Accuracy] [<, >, <=, <=] [Value]
 
# Example:
min ModelSize
constraint Accuracy > 0.8

(b) Pruning objectives specifications.

Figure 3. Formats for the specifications of promising sub-
spaces (a) and pruning objectives (b).

format in Figure 3 (a). The subspace may come from
the user or some third-party tools that reduce the con-
figuration space for CNN pruning [4, 19, 23].

• The dataset for training and testing, along with some
meta data on the training (e.g., learning rates, maxi-
mum training steps), following the format used in Caffe
Solver Prototxt [1].

• The objectives of the CNN pruning, including the con-
straints on model size or accuracy, following the format
shown in Figure 3 (b).

The Wootz framework consists of four main components as
shown in Figure 2. (1) The hierarchical tuning block identifier
tries to define the set of tuning blocks. A tuning block is a se-
quence of pruned consecutive CNN layers taken as a unit for
pre-training. Suitable definitions of tuning blocks help maxi-
mize reuse while minimizing the pre-training overhead. (2)

From the given CNN model specified in Prototxt, the Wootz
compiler generates a multiplexing model, which is a func-
tion written in TensorFlow that, when invoked, specifies the
structure of the full to-be-pruned CNN model, the network
structure—which implements a Teacher-Student scheme—
for pre-training tuning blocks, or pruned networks assembled
with pre-trained tuning blocks, depending on the arguments
the function receives. (3) The pre-training scripts are some
generic Python functions that, when run, pre-train each tun-
ing block based on the outputs from the first two components
of Wootz. (4) The final component, exploration scripts, ex-
plores the promising pruned networks assembled with the
pre-trained tuning blocks. The exploration of a network in-
cludes first fine-tuning the entire network and then testing it
for accuracy. The exploration order is automatically picked
by the exploration scripts based on the pruning objectives
to produce the best network as early as possible. Both the
pre-training scripts and the exploration scripts can run on one
machine or multiple machines in a distributed environment
through MPI.

Wootz is designed to help pruning methods that have their
promising subspace known at front. There are methods that
do not provide the subspace explicitly [68]. They, however,
still need to tune the pruning rate for each layer and the explo-
ration could also contain potentially avoidable computations.
Extending Wootz to harvest those opportunities is a direction
worth future exploration.

Next, we explain the hierarchical tuning block identifier in
§ 5, and the other components in § 6.

5 Hierarchical Tuning Block Identifier
Composability-based CNN pruning faces a trade-off between
the pre-training cost and the time savings the pre-training
results bring. The tradeoff depends on the definitions of the
unit for pre-training, that is, the definition of tuning blocks. A
tuning block is a unit for pre-training; it consists of a sequence
of consecutive CNN layers pruned at certain rates. It can have
various sizes, depending on the number of CNN layers it
contains. The smaller it is, the less pre-training time it takes
and the more reuses it tends to have across networks, but at
the same time, its impact to the training time of a network
tends to be smaller.

So for a given promising subspace of networks, a question
for composability-based CNN pruning is how to define the
best sets of tuning blocks. The solution depends on the appear-
ing frequencies of each sequence of layers in the subspace,
their pre-training times, and the impact of the pre-training
results on the training of the networks. For a clear under-
standing of the problem and its complexity, we define optimal
tuning block definition problem as follows.

Optimal Tuning Block Definition Problem LetA be a CNN
consisting of L layers, represented as A1 · A2 · A3 · . . . · AL ,
where · stands for layer stacking and Ai stands for the i-th
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layer (counting from input layer). C = {A(1),A(2), . . . ,A(N )}

is a set of N networks that are derived from filter pruning
of A, where A(n) represents the n-th derived network from A,
and Ai

(n) stands for the i-th layer of A(n), i = 1, 2, . . . ,L.
Optimal tuning block definition problem is to come up with

a set of tuning blocks B = {B1,B2, . . . ,BK } such that the
following two conditions are met:

1. Every Bk , k = 1, 2, · · · ,K , is part of a network in C—
that is, ∀ Bk , ∃ A(n),n ∈ {1, 2, · · · ,N }, such that Bk =
Al

(n) ·Al+1
(n) · . . . ·Al+bk−1

(n), 1 ≤ l ≤ L−bk +1, where
bk is the number of layers contained in Bk .

2. B is an optimal choice—that is, argmin
B

(
∑K

k=1T (Bk ) +∑N
n=1T (A

(n,B))), where, T (Bk ) is the time taken to pre-
train block Bk , and T (A(n,B)) is the time taken to train
A(n,B) to reach the accuracy objective2; A(n,B) is the
blocked-trained version of A(n) with B as the tuning
blocks.

A restricted version of the problem is that only a predefined
set of pruning rates (e.g., {30%, 50%, 70%}) are used when
pruning a layer in A to produce the set of pruned networks in
C—which is a common practice in filter pruning.

Even this restricted version is NP-hard, provable through a
reduction of the problem to the classic knapsack problem [22]
(detailed proof omitted for sake of space.) A polynomial-time
solution is hence in general hard to find, if ever possible. The
NP-hardness motivates our design of a heuristic algorithm,
which does not aim to find the optimal solution but to come
up with a suitable solution efficiently. The algorithm does not
use the training time as an explicit objective to optimize but
focuses on layer reuse. It is a hierarchical compression-based
algorithm, described next.

Hierarchical Compression-Based Algorithm Our algorithm
leverages Sequitur [49] to efficiently identify the frequent se-
quences of pruned layers in the network collection C. As
a linear-time hierarchical compression algorithm, Sequitur
infers a hierarchical structure from a sequence of discrete sym-
bols. For a given sequence of symbols, it derives a context-
free grammar (CFG), with each rule in the CFG reducing a
repeatedly appearing string into a single rule ID. Figure 4
gives an example. Its top part shows the concatenated se-
quence of layers of four networks pruned at various rates; the
subscripts of the numbers indicate the pruning rate, that is,
the fraction of the least important filters of a layer that are
removed. The lower part in Figure 4 shows the CFG produced
by Sequitur on the string. A full expansion of rule r0 would
give the original string. The result can also be represented as a
Directed Acyclic Graph (DAG) as the right graph in Figure 4
shows with each node corresponding to one rule.

2In our framework,T (x ) is not statically known or approximated, but instead
explicitly computed (via training) for each x (i. e, Bk or A(n,B)).

1(.3)2(.3)3(.3)4(.5)5(0) ❶ 1(.3)2(.3)3(.5)4(.5)5(0) ❷ 1(.5)2(.3)3(.3)4(.5)5(0) ❸ 1(0)2(.3)3(.5)4(.5)5(0) ❹

r0   ! r1 r2 ❶ r1 r3 ❷ r6 r8 r2 ❸ r7 r8 r3 ❹ 
r1   ! r5 r8                         
r2   ! r9 r4                                           
r3   ! r10 r4                                           
r4   ! r11 r12
r5   ! 1(.3)
r6   ! 1(.5)
r7   ! 1(0)
r8   ! 2(.3)
r9   ! 3(.3)
r10  ! 3(.5)
r11  ! 4(.5)
r12  ! 5(0)                                          

Freq. Rule ID Rule body

Four networks concatenated into a string  

CFG by Sequitur on the above string

1
2
2
2
4
2
1
1
4
2
2
4
4

Notations:
N(d) : the Nth convolution module pruned by a d fraction of filters 

❶ : the ending marker of the first network sequence

r0

r1 r2

r8 r9r5
r4

r11
r12

r3

r10

r6

r7

1(.3) 2(.3) 3(.3) 4(.5)
5(0)

3(.5)

1(.5)

1(0)

❶ ❷

❸

❹DAG

2 4 2

2 2

4

4
4

2
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1

Figure 4. Sequitur applies to a concatenated sequence of
layers of four networks pruned at rates: 0%, 30%, 50%.

Applying Sequitur to the concatenated sequence of all net-
works in the promising subspace, our hierarchical compression-
based algorithm gets the corresponding CFG and the DAG.
Let R be the collection of all the rules in the CFG, and S be
the solution to the tuning block identification problem which
is initially empty. Our algorithm then heuristically fills S with
subsequences of CNN layers (represented as rules in the CFG)
that are worth pre-training.

It does it based on the appearing frequencies of the rules
in the promising subspace and their sizes (i.e., the number of
layers a rule contains). It employs two heuristics: (1) A rule
cannot be put into S if it appears in only one network (i.e.,
its appearing frequency is one); (2) a rule is preferred over
its children rules only if that rule appears as often as its most
frequently appearing descendant.

The first heuristic is to ensure that the pre-training result of
the sequence can benefit more than one network. The second
heuristic is based on the following observation: A pre-trained
sequence typically has a larger impact than its subsequences
all together have on the quality of a network; however, the
extra benefits are usually modest. For instance, a ResNet
CNN network assembled from 4-block long pre-trained se-
quences has an initial accuracy of 0.716, 3.1% higher than the
same network but assembled from 1-block long pre-trained
sequences. The higher initial accuracy helps save extra train-
ing steps (epochs) for the network, but the saving is limited
(up to 20% of the overall training time). Moreover, a longer
sequence usually has a lower chance to be reused. For these
reasons, we employ the aforementioned heuristics to help
keep S small and hence the pre-training overhead low while
still achieving a good number of reuses.

Specifically, the algorithm takes a post-order (children be-
fore parent) traversal of the DAG that Sequitur produces.
(Before that, all edges between two nodes on the DAG are
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combined into one edge.) At a node, it checks its frequency.
If it is greater than one, it checks whether its frequency equals
the largest frequency of its children. If so, it marks itself as
a potential tuning block, unmarks its children, and continues
the traversal. Otherwise, it puts a "dead-end" mark on itself,
indicating that it is not worth going further up in the DAG
from this node. When the traversal reaches the root of the
DAG or has no path to continue, the algorithm puts all the
potential tuning blocks into S as the solution and terminates.

Note that a side product from the process is a composite
vector for each network in the promising subspace. As a
tuning block is put into S , the algorithm, by referencing the
CFG produced by Sequitur, records the ID of the tuning block
in the composite vectors of the networks that can use the block.
Composite vectors will be used in the global fine-tuning phase
as described in the next section.

The hierarchical compression-based algorithm is designed
to be simple and efficient. More detailed modeling of the time
savings and pre-training cost of each sequence for various
CNNs could potentially help yield better definitions of tuning
blocks, but it would add significant complexities and runtime
overhead. Our exploration in § 7.3 shows that the hierarchical
compression-based algorithm gives a reasonable trade-off.

6 Mechanisms for Composability-Based
Pruning and Wootz Compiler

The core operations in Composability-based CNN pruning in-
cludes pre-training of tuning blocks, and global fine-tuning of
networks assembled with the pre-trained blocks. This section
first explains the mechanisms we have designed to support
these operations efficiently, and then describes the imple-
mentation of Wootz compiler and scripts that automatically
materializes the mechanisms for an arbitrary CNN.

6.1 Mechanisms
Pre-Training of Tuning Blocks The standard CNN back
propagation training algorithm uses input labels as the ground
truth to compute errors of the current network and adjusts
the weights iteratively. To train a tuning block, the first ques-
tion is what ground truth to use to compute errors. Inspired
by Teacher-Student networks [5, 7, 21], we adopt a similar
Teacher-Student mechanism to address the problem.

We construct a network structure that contains both the
pruned block to pre-train and the original full CNN model.
They are put side by side as shown in Figure 5 (a) with the
input to the counterpart of the tuning block in the full model
also flowing into the pruned tuning block as its input, and
the output activation map of the counterpart block flowing
into the pruned tuning block as the "ground truth" of its out-
put. When the standard back propagation algorithm is applied
to the tuning block in this network structure, it effectively
minimizes the reconstruction error between the output ac-
tivation maps from the pruned tuning block and the ones

from its unpruned counterpart in the full network. (In CNN
pruning, the full model has typically already been trained
beforehand to perform well on the datasets of interest.) This
design essentially uses the full model as the "teacher" to train
the pruned tuning blocks. Let Ok and O ′

k be the vectorized
output activation maps from the unpruned and pruned tuning
block, andW ′

k be the weights in the pruned tuning block. The
optimization objective in this design is:

min
W ′
k

1
|Ok |

∥Ok −O ′
k ∥

2
2 . (1)

Only the parameters in the pruned tuning block are updated
in this phase to ensure the pre-trained blocks are reusable.

This Teacher-Student design has three appealing properties.
First, it addresses the missing "ground truth" problem for
tuning block pre-training. Second, as the full CNN model runs
along with the pre-training of the tuning blocks, it provides
the inputs and "ground truth" for the tuning blocks on the
fly; there is no need to save to storage the activation maps
which can be space-consuming considering the large number
of input images for training a CNN. Third, the structure is
friendly for concurrently pre-training multiple tuning blocks.
As Figure 5 (b) shows, connections can be added between
the full model and multiple pruned blocks; the pre-training of
these blocks can then happen in one run, and the activation
maps produced by a block in the full model can be seamlessly
reused across the pre-training of multiple pruned blocks.

Global Fine-Tuning The local training phase outputs a bag
of pre-trained pruned tuning blocks, as shown in Figure 5 (c)
(tuning blocks in the original network could also be included).
At the beginning of the global fine-tuning phase is an assem-
bly step, which, logically, assembles these training blocks into
each of the networks in the promising subspace. Physically,
this step just needs to initialize the pruned networks in the
promising subspace with the weights in the corresponding
tuning blocks. We call the resulting network a block-trained
network. Recall that one of the side products of the tuning
block identification step is a composite vector for each net-
work which records the tuning blocks the network can use;
these vectors are used in this assembly step. Figure 5 (d) gives
a conceptual illustration; three networks are assembled with
three different sets of pre-trained tuning blocks.

As a pruned block with only a subset of parameters has a
smaller model capacity, a global fine-tuning step is required to
further recover the accuracy performance of a block-trained
network. This step runs the standard CNN training on the
block-trained networks. All the parameters in the networks
are updated during the training. Compared with training a
default pruned network, fine-tuning a block-trained network
usually takes much less training time as the network starts
with a much better set of parameter values as shown in § 7.
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Figure 5. Illustration of composability-based network prun-
ing. Eclipses are pruned tuning blocks; rectangles are original
tuning blocks; diamonds refer to the activation map recon-
struction error. Different colors of pruned tuning blocks cor-
respond to different pruning options.

6.2 Wootz Compiler and Scripts
Wootz compiler and scripts offer an automatic way to ma-
terialize the mechanisms for an arbitrary CNN model. The
proposed method is not restricted to a particular DNN frame-
work, though we demonstrate its ability using TensorFlow.

We first provide brief background on TensorFlow [2] that
is closely relevant to this part. TensorFlow offers a set of APIs
for defining, training, and evaluating a CNN. To specify the
structure of a CNN, one needs to call APIs in a Python script,
which arranges a series of operations into a computational
graph. In a TensorFlow computational graph, nodes are opera-
tions that consume and produce tensors, and edges are tensors
that represent values flowing through the graph. CNN model
parameters are held in TensorFlow variables, which represent
tensors whose values can be changed by operations. Because
a CNN model can have hundreds of variables, it is a com-
mon practice to name variables in a hierarchical way using
variable scopes to avoid name clashes. A popular option to
store and reuse the parameters of CNN model is TensorFlow
checkpoints. Checkpoints are binary files that map variable
names to tensor values. The tensor value of a variable can be
restored from a checkpoint by matching the variable name.

TensorFlow APIs with other assistant libraries (e.g., Slim [57])
offer conveniences for standard CNN model training and
testing, but not for CNN pruning, let alone composability-
based pruning. Asking a general programmer to implement
composability-based pruning in TensorFlow for each CNN
model would add tremendous burdens on the programmer.
She would need to write code to identify tuning blocks, create
TensorFlow code to implement the customized CNN struc-
tures to pre-train each tuning block, generate checkpoints,
and use them when creating the block-trained CNN networks
for global fine-tuning.

Wootz compiler and scripts mitigate the difficulty by au-
tomating the process. The fundamental motivating observa-
tion is that the codes for two different CNN models follow the
same pattern. Differences are mostly on the code specifying
the structure of the CNN models (both the original and the

extended for pre-training and global fine tuning). The idea is
to build code templates and use the compiler to automatically
adapt the templates based on the specifications of the models.

Multiplexing Model An important decision in our design
of Wootz is to take Prototxt as the format of an input to-
be-pruned CNN model. Because our tool has to derive code
for pre-training and fine-tuning of the pruned models, our
compiler would need to analyze the TensorFlow code from
users, which could be written in various ways and complex
to analyze. Prototxt has a clean fixed format. It is easy for
programmers to write and simple for our compiler to analyze.

Given a to-be-pruned CNN model specified in Prototxt, the
compiler first generates the multiplexing model, which is a
piece of TensorFlow code defined as a Python function. It is
multiplexing in the sense that an invocation of the code speci-
fies the structure of the original CNN model, or the structure
for pre-training, or the global fine tuning model; which of the
three modes is used at an invocation of the multiplexing model
is determined by one of its input arguments, mode_to_use.
The multiplexing design allows easy code reuse as the three
modes share much common code for model specifications.
Another argument, prune_info, conveys to the multiplexing
model the pruning information, including the set of tuning
blocks to pre-train in this invocation and their pruning rates.

The compiler-based code generation needs to provide mainly
two-fold support. It needs to map CNN model specifications
in Prototxt to TensorFlow APIs. Our implementation, specif-
ically, generates calls to TensorFlow-Slim API [55] to add
various CNN layers based on the parsing results of the Pro-
totxt specifications. The other support is to generate the code
to also specify the derived network structure for pre-training
each tuning block contained in prune_info. Note that the lay-
ers contained in a tuning block are the same as a section of the
full model except for the number of filters in the layers and
the connections flowing into the block. The compiler hence
emits code for specifying each of the CNN layers again, but
with connections flowing from the full network, and sets the
"depth" argument of the layer-adding API call (a TensorFlow-
Slim API [55]) with the info retrieved from prune_info such
that the layer’s filters can change with prune_info at differ-
ent calls of the multiplexing model. In addition, the com-
piler encloses the code with condition checks to determine,
based on prune_info, at an invocation of the multiplexing
model whether the layer should be actually added into the
network for pre-training. The code generation for the global
fine-tuning is similar but simpler. In such a form, the gener-
ated multiplexing model is adaptive to the needs of different
modes and the various pruning settings.

Once the multiplexing model is generated, it is registered
at the nets factory in Slim Model Library [57] with its unique
model name. The nets factory is part of the functional pro-
gramming Slim Model Library is based on. It contains a
dictionary mapping a model name to its corresponding model
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function for easy retrieval and use of the models in other
programs.

Pre-Training Scripts The pre-training scripts contain a generic
pre-training Python code and a wrapper that is adapted from
a Python template by the Wootz Compiler to the to-be-pruned
CNN model and meta data. The pre-training Python code re-
trieves the multiplexing model from nets factory based on the
registered name, and repeatedly invokes the model function
with the appropriate arguments, with each call generating one
of the pre-train networks. After defining the loss function, it
launches a TensorFlow session to run the pre-training process.

The wrapper calls the pre-training Python code with re-
quired arguments such as model name and the set of tuning
blocks to train. As the tuning blocks coexisting in a pruned
network cannot have overlapping layers, one pruned network
can only enable the training of a limited set of tuning blocks.
We design a simple algorithm to partition the entire set of
tuning blocks returned by the Hierarchical Tuning Block Iden-
tifier into groups. The pre-training Python script is called to
train only one group at a time. The partition algorithm is as
follows:

Inputs: B {the entire set of tuning blocks}
Outputs: G {the set of groups of tuning blocks}
B.sort() {sort by the contained lowest conv layers}
G = {{B[0]}}
for b ∈ B[1 :] do

for д ∈ G do
any([overlap(b, e) for e in д])? G.add({b}):д.add(b)

The meta data contains the training configurations such
as dataset name, dataset directory, learning rate, maximum
training steps and batch size for pre-training of tuning blocks.
The set of options to configure are predefined, similar to the
Caffe Solver Prototxt [1]. The compiler parses the meta data
and specifies those configurations in the wrapper.

Executing the wrapper produces pre-trained tuning blocks
that are stored as TensorFlow checkpoints. The mapping be-
tween the checkpoint files and trained tuning blocks are also
recorded for the model variable initialization in the global
fine-tuning phase. The pre-training script can run on a sin-
gle node or multiple nodes in parallel to concurrently train
multiple groups through MPI.

Exploration Scripts Exploration scripts contain a generic
global fine-tuning Python code and a Python-based wrapper.
The global fine-tuning code invokes the multiplexing model
to generate the pruned network according to the configura-
tion to evaluate. It then initializes the network through the
checkpoints produced in the pre-train process and launches a
TensorFlow session to train the network.

In addition to feeding the global fine-tuning Python code
with required arguments (e.g. the configuration to evaluate),

the Python-based wrapper provides code to efficiently ex-
plore the promising subspace. The order of the exploration is
dynamically determined by the objective function.

The compiler first parses the file that specifies the objective
of pruning to get the metric that needs to be minimized or
maximized. The order of explorations is determined by the
corresponding MetricName. In case the MetricName is Mod-
elSize, the best exploration order is to start from the smallest
model and proceed to larger ones. If the MetricName is Ac-
curacy, the best exploration order is the opposite order as a
larger model tends to give a higher accuracy.

To facilitate concurrent explorations on multiple machines,
the compiler generates a task assignment file based on the
order of explorations and the number of machines to use
specified by the user in the meta data. Let c be the number of
configurations to evaluate and p be the number of machines
available, the i-th node will evaluate the i + p ∗ j-th smallest
(or largest) model, where 0 ≤ j ≤ ⌊c/p⌋.

7 Evaluations
We conduct a set of experiments to examine the efficacy of the
Wootz framework. Our experiments are designed to answer
the following three major questions: 1) Whether pre-training
the tuning blocks of a CNN helps the training of that CNN
reach a given accuracy sooner? We refer to it as the compos-
ability hypothesis as its validity is the prerequisite for the
composability-based CNN pruning to work. 2) How much
benefits we could get from composability-based CNN pruning
on both the speed and the quality of network pruning while
counting the pre-training overhead? 3) How much extra bene-
fits we could get from hierarchical tuning block identifier?

We first describe the experiment settings (datasets, learning
rates, machines, etc.) in § 7.1, then report our experiment
results in § 7.2 and § 7.3 to answer each of the three questions.

7.1 Experiment Settings
Models and Datasets Our experiments use four popular
CNN models: ResNet-50 and ResNet-101, as representatives
of the Residual Network family [18], and Inception-V2 and
Inception-V3, as representatives of the Inception family [59].
They have 50, 101, 34, 48 layers respectively. These models
represent a structural trend in CNN designs, in which, sev-
eral layers are encapsulated into a generic module of a fixed
structure—which we call convolution module—and a network
is built by stacking many such modules together. Such CNN
models are holding the state-of-the-art accuracy in many chal-
lenging deep learning tasks. The structures of these models
are described in input Caffe Prototxt3 files and then converted
to the multiplexing models by the Wootz compiler.

For preparation, we adapt the four CNN models already
trained on a general image dataset ImageNet [54] (ILSVRC

3We add to Prototxt a new construct "module" for specifying the boundaries
of convolution modules.
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2012) to each of four specific image classification tasks with
the domain-specific datasets, Flowers102 [50], CUB200 [63],
Cars [31], and Dogs [28]. It gives us 16 trained full CNN
models. The accuracy of the trained ResNets and Inceptions
on the test datasets are listed in columns Accuracy in Table 1.

The four datasets for CNN pruning are commonly used
in fine-grained recognition [14, 24, 30, 47, 69], which is a
typical usage scenario of CNN pruning. Table 1 reports the
statistics of the four datasets, including the data size for train-
ing (Train), the data size for testing (Test), and the number
of classes (Classes). For all experiments, network training
is performed on the training sets while accuracy results are
reported on the testing sets.

Baseline for Comparison In CNN pruning, the full CNN
model to prune has typically been already trained on the
datasets of interest. When filters in the CNN are pruned, a
new model with fewer filters is created, which inherits the
remaining parameters of the affected layers and the unaffected
layers in the full model. The promising subspace consists of
such models. The baseline approach trains these models as
they are. Although there are prior studies on accelerating
CNN pruning, what they propose are all various ways to
reduce the configuration space to a promising subspace. To
the best of our knowledge, when exploring the configurations
in the promising subspace, they all use the baseline approach.
As our method is the first for speeding up the exploration of
the promising space, we compare our results with those from
the baseline approach.

We refer to a pruned network in the baseline approach
a default network while the one initialized with pre-trained
tuning blocks in our method a block-trained network.

Promising Subspace The 16 trained CNNs contain up to
hundreds of convolutional layers. A typical practice is to use
the same pruning rate for the convolutional layers in one con-
volution module. We adopt the same strategy. The importance
of a filter is determined by its ℓ1 norm as previous work [39]
proposes. Following prior CNN pruning practice [39, 43], the
top layer of a convolution module is kept unpruned; it helps
ensure the dimension compatibility of the module.

There are many ways to select the promising subspace,
i.e., the set of promising configurations worth evaluating.
Previous works select configurations either manually [39, 43]
or based on reinforcement learning with various rewards or
algorithm design [4, 19]. As that is orthogonal to the focus of
this work, to avoid bias from that factor, our experiment forms
the promising spaces through random sampling [6] of the
entire pruning space. A promising space contains 500 pruned
networks, whose sizes follow a close-to-uniform distribution.
In the experiments, the pruning rate for a layer can be one of
Γ = {30%, 50%, 70%}.
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Figure 6. Accuracy curves of the default and block-trained
networks on dataset CUB200. Each network has 70% least
important filters pruned at all convolution modules.

Objective of Pruning There are different pruning objectives
including minimizing model size, computational cost, mem-
ory footprint or energy consumption. Even though an objec-
tive of pruning affects the choice of the best configuration,
all objectives require the evaluation of the set of promising
configurations. Our composability-based CNN pruning aims
at accelerating the training of a set of pruned networks and
thus can work with any objective of pruning.

For the demonstration purpose, we set the objective of
pruning as finding the smallest network (min ModelSize) that
meets a given accuracy threshold (Accuracy <= thr_acc). We
get a spectrum of thr_acc values by varying the accuracy
drop rate α from that of the full model from -0.02 to 0.08. We
include negative drop rates because it is possible that pruning
makes the model more accurate.

Meta Data on Training The meta data on the training in
both the baseline approach and our composability-based ap-
proach are as follows. Pre-training of tuning blocks takes
10,000 steps for all ResNets, with a batch size 32, a fixed
learning rate 0.2, and a weight decay 0.0001; it takes 20,000
steps for all Inceptions, with batch size 32, a fixed learning
rate 0.08, and a weight decay 0.0001. The global fine-tuning
in the composability-based approach and the network training
in the baseline approach uses the same training configura-
tions: max number of steps 30,000, batch size 32, weight
decay 0.00001, fixed learning rate 0.0014.

All the experiments are performed with TensorFlow 1.3.0
on machines each equipped with a 16-core 2.2GHz AMD
Opteron 6274 (Interlagos) processor, 32 GB of RAM and
an NVIDIA K20X GPU with 6 GB of DDR5 memory. One
network is trained on one GPU.

7.2 Validation of the Composability Hypothesis
We first present empirical validations of the composability
hypothesis (i.e., pre-training tuning blocks helps CNN reach

4We experimented with other learning rates and dynamic decay schemes. No
single choice works best for all networks. We decided on 0.001 as it gives
the overall best results for the baseline approach.
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Table 1. Dataset statistics.

Dataset Size Classes Accuracy
Total Train Test ResNet-50 ResNet-101 Inception-V2 Inception-V3

General ImageNet [54] 1,250,000 1,200,000 50,000 1000 0.752 0.764 0.739 0.780

Special

Flowers102 [50] 8,189 6,149 2,040 102 0.973 0.975 0.972 0.968
CUB200 [63] 11,788 5,994 5,794 200 0.770 0.789 0.746 0.760
Cars [31] 16,185 8,144 8,041 196 0.822 0.845 0.789 0.801
Dogs [28] 20,580 12,000 8,580 120 0.850 0.864 0.841 0.835

Table 2. Median accuracies of default networks (init, final)
and block-trained networks (init+, final+).

Models
Accuracy
Type Flowers102 CUB200 Cars Dogs

ResNet-50

init 0.035 0.012 0.012 0.010
init+ 0.926 0.662 0.690 0.735
final 0.962 0.707 0.800 0.754
final+ 0.970 0.746 0.821 0.791

ResNet-101

init 0.048 0.021 0.009 0.028
init+ 0.932 0.698 0.663 0.733
final 0.968 0.741 0.832 0.785
final+ 0.977 0.767 0.844 0.814

Inception-V2

init 0.030 0.011 0.011 0.010
init+ 0.881 0.567 0.552 0.630
final 0.960 0.705 0.785 0.732
final+ 0.966 0.725 0.806 0.771

Inception-V3

init 0.029 0.011 0.009 0.012
init+ 0.866 0.571 0.542 0.563
final 0.959 0.711 0.796 0.728
final+ 0.965 0.735 0.811 0.755
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Figure 7. Accuracies of pruned networks of ResNet-50 after
training. The model size of full ResNet-50 is 25.6 million.

an accuracy sooner) as its validity is the prerequisite for the
composability-based CNN pruning to work.

Table 2 reports the median of the initial and final accuracies
of all 500 block-trained networks and their default counter-
parts for each of the models on every dataset. The mean is
very close (less than 1%) to the median in all the settings.
In this experiment, the tuning blocks are simply the CNN
modules in each network. Overall, block-trained networks
yield better final accuracies than default networks do with
one-third less training time.

To show details, the two graphs in Figure 6 give accuracy
curves attained during the trainings of one of the pruned net-
works in ResNet-50 and Inception-V3 respectively. Dataset
CUB200 is used. The initial accuracies (init) are close to zero

for the default version, while 53.4% and 40.5% for the block-
trained version (init+). Moreover, the default version gets
only 65.3% and 67.3% final accuracies (final) respectively,
while the block-trained version achieves 72.5% and 70.5%
after only two-thirds of the training time. Results on other
pruned networks show a similar trend.

The results offer strong evidence for the composability
hypothesis, showing that pre-training the tuning blocks of a
CNN can indeed help the training of that CNN reach a given
accuracy sooner. The benefits do not come for free; overhead
is incurred by the pre-training of the tuning blocks. We next
report the performance of Wootz as a whole.

7.3 Results of Wootz
We first evaluate the performance of composability-based
network pruning and then report the extra benefits from the
hierarchical tuning blocks identifier.

Basic Benefits To measure the basic benefits from the
composability-based method, these experiments use every
convolution module in these networks as a tuning block. The
extra benefits from hierarchical tuning block identification
are reported later.

Figure 7 shows the final accuracies of all the 500 ResNet-
50 variants trained with or without leveraging composability
on the Flower102 and CUB200 datasets. For reference, we
also plot the accuracies of the well-trained full ResNet-50 on
the two datasets. The block-trained network gives a clearly
better final accuracy overall, which echoes the results reported
in the previous subsection.

Table 3 reports the comparisons between the block-trained
version and the default version, in both speeds and network
sizes, at various levels of tolerable accuracy drop rates α (neg-
ative means higher accuracy than the large network gives).
The results are collected when 1, 4, or 16 machines are used
for concurrent training for both the baseline and our method
(indicated by the "#nodes" column). The time of the block-
trained version already takes the pre-training time of tuning
blocks into account ("overhead" in Table 3 shows the per-
centage in overall time). For the objective of pruning, the
exploration order Wootz adopts is to start from the smallest
models and proceed to larger ones.

The results show that the composability-based method
avoids up to 99.6% of trial configurations and reduces the
evaluation time by up to 186X for pruning ResNet-50; up to
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96.7% reduction and 30X speedups for Inception-V3. The re-
duction of trial configurations is because the method improves
the accuracy of the pruned networks as Figure 7 shows. As a
result, the exploration meets a desirable configuration sooner.
For instance, in Flower102 (α = 0), the third smallest network
can already reach the target accuracy in the block-trained ver-
sion, while the 297th network meets the target in the default
version. This not only shortens the exploration time, but also
yields more compact (up to 70% smaller) networks as the
"model size" columns in Table 3 show. Another reason for
the speedup is that the training of a block-trained network
takes fewer iterations to reach its final accuracy level than
the default version, as Figure 6 has illustrated. So even when
configurations are not reduced (e.g., Flower102, α = −1), the
block-trained exploration finishes sooner.

Table 4 shows the speedups by composability-based prun-
ing with different subspace sizes. The speedups are higher
as the number of configurations to explore increases. It is
because the time for pre-training tuning blocks weights less
as the total time increases and the reduction of configurations
becomes more significant for a larger set. Another observation
is that, when the number of configurations is only four, there
is still a significant speedup in most of cases. The block train-
ing time is the time spent on pre-training all the tuning block
variants (48 for ResNet-50 and 27 for Inception-V3). The
speedup could be higher if tuning block identifier is applied,
as shown next.

Extra Benefits from Tuning Blocks Identification Hierar-
chical tuning block identifier balances the overhead of train-
ing tuning blocks and the time savings they bring to the fine-
tuning of pruned networks. Table 5 reports the extra speedups
brought when it is used.

For datasets Flowers102 and CUB200, we experiment with
two types of collections of configurations with N = 8. The
first type, “collection-1”, is a randomly sampled collection
as mentioned earlier, and the second type, “collection-2”, is
attained by setting one pruning rate for a sequence of con-
volution modules, similar to the prior work [39] to reduce
module-wise meta-parameters. For each type, we repeat the
experiments five times with a new collection created each
time. Each tuning block identified from the first collection
tends to contain only one convolution module due to the in-
dependence in choosing the pruning rate for each module.
But the average number of tuning blocks is less than the total
number of possible pruned convolution modules (41 versus
48 for ResNet-50 and 27 versus 33 for Inception-V3) because
of the small collection size. The latter one has tuning blocks
that contain a sequence of convolution modules as they are
set to use one pruning rate.

The extra speedups from the algorithm are substantial for
both, but more on the latter one for the opportunities that some
larger popular tuning blocks have for benefiting the networks
in that collection. Because some tuning blocks selected by

the algorithm are a sequence of convolution modules that
frequently appear in the collections, the total number of tuning
blocks becomes smaller (e.g., 27 versus 23 on Inception-V3.)

8 Related Work
Recent years have seen many studies on speeding up the train-
ing and inference of CNN, both in software and hardware. For
the large volume, it is hard to list all; some examples are work
on software optimizations [16, 26, 44, 70] and work on spe-
cial hardware designs [8, 11, 13, 45, 48, 52, 56]. These studies
are orthogonal to this work. Although they can potentially
apply to the training of pruned CNNs, they are not specifi-
cally designed for CNN pruning. They focus on speeding up
the computations within one CNN network. In contrast, our
work exploits cross-network computation reuse, exploiting
the special properties of CNN pruning—many configurations
to explore, common layers shared among them, and most
importantly, the composability unveiled in this work. We next
concentrate on prior work closely related to CNN pruning.

Deep neural networks are known to have many redundant
parameters and thus could be pruned to more compact archi-
tectures. Network pruning can work at different granularity
levels such as weights/connections [3, 17, 38], kernels [64]
and filters/channels [39, 43, 47]. Filter-level pruning is a nat-
urally structured way of pruning without introducing sparsity,
avoiding creating the need for sparse libraries or specialized
hardware. Given a well-trained network, different metrics to
evaluate filters importance are proposed such as Taylor expan-
sion [47], ℓ1 norm of neuron weights [39], Average Percent-
age of Zeros [25], feature maps’ reconstruction errors [20, 43],
and scaling factors of batch normalization layers [42]. These
techniques, along with general algorithm configuration tech-
niques [6, 23, 58] and recent reinforcement learning-based
methods [4, 19], show promise in reducing the configuration
space worth exploring. This work distinctively aims at reduc-
ing the evaluation time of the remaining configurations by
eliminating redundant training.

Another line of work in network pruning conducts pruning
dynamically at runtime [12, 40, 46]. Their goals are however
different from ours. Instead of finding the best small network,
they try to generate networks that can adaptively activate only
part of the network for inference on a given input. Because
each part of the generated network may be needed for some
inputs, the overall size of the generated network could be still
large. They are not designed to minimize the network to meet
the limited resource constraints on a system.

Sequitur [49] has been applied to various tasks, including
program and data pattern analysis [9, 10, 33–35, 62]. We have
not seen its use in CNN pruning.

Several studies attempt to train a student network to mimic
the output of a teacher network [5, 7, 21]. Our method of pre-
training tuning blocks is inspired by these work, but works
at a different level: rather than for training an entire network,
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Table 3. Speedups and configuration savings by composability-based pruning (when 1, 4, or 16 machines are used for both
baseline and composability-based methods as "#nodes" column indicates). Notations are at the table bottom.

Dataset α #nodes
ResNet-50 Inception-V3

thr_acc #configs time (h) model size speedup
(X) overhead thr_acc #configs time (h) model size speedup

(X) overheadbase comp base comp base comp base comp base comp base comp

Flowers102
-1%

1
4
16

0.983
500
500
500

500
500
500

2858.7
718.1
184.9

1912.7
481.0
125.5

100% 100%
1.5
1.5
1.5

0.4%
0.5%
1.8%

0.978
500
500
500

500
500
500

3018.8
756.7
194.8

2023.5
508.1
133.6

100% 100%
1.5
1.5
1.5

0.5%
0.7%
2.7%

0%
1
4
16

0.973
297
300
304

3
4
16

1639.4
412.6
103.3

16.9
5.2
4.7

45.4% 29.3%
97.0
79.3
22.0

40.4%
43.5%
48.3%

0.968
244
244
256

10
12
16

1428.6
358.2
94.8

47.3
13.9
6.5

43.2% 32.4%
30.2
25.8
14.6

23.3%
26.4%
56.4%

1%
1
4
16

0.963
6
8
16

1
4
16

31.0
10.4
5.2

8.3
3.2
2.9

29.6% 27.6%
3.7
3.3
1.8

82.8%
70.6%
78.3%

0.958
27
28
32

1
4
16

152.6
39.6
11.2

13.9
5.8
5.6

33.9% 31.0%
11.0
6.8
2.2

79.0%
63.3%
71.0%

CUB200
4%

1
4
16

0.739
323
324
336

2
4
16

1807.3
454.0
118.7

12.7
3.1
3.1

46.6% 28.5%
142.3
146.5
38.3

53.7%
74.4%
74.4%

0.720
74
76
80

3
4
16

420.2
106.4
27.6

21.9
6.7
6.0

41.4% 33.7%
19.2
15.9
4.6

49.8%
54.5%
60.6%

5%
1
4
16

0.731
297
300
304

1
4
16

1654.7
418.8
105.5

8.9
2.8
2.7

45.4% 27.6%
185.9
149.6
39.1

77.1%
81.4%
83.7%

0.710
44
44
48

1
4
16

247.8
61.7
16.4

14.1
5.4
5.2

38.5% 31.5%
17.6
11.4
3.2

77.5%
67.6%
70.6%

6%
1
4
16

0.724
154
156
160

1
4
16

840.1
214.2
53.8

8.3
2.6
2.5

38.0% 27.6%
101.2
82.4
21.5

82.6%
86.7%
89.7%

0.700
29
32
32

1
4
16

162.5
44.5
10.8

12.8
5.3
5.1

35.9% 31.0%
12.7
8.4
2.1

85.1%
68.7%
71.9%

Cars
-1%

1
4
16

0.830
500
500
500

100
100
112

2864.9
720.4
185.3

362.4
90.9
27.1

100% 35.7%
7.9
7.9
6.8

1.9%
2.5%
8.4%

0.811
271
272
272

20
20
32

1586.8
398.1
99.4

85.6
22.4
11.1

40.1% 33.5%
18.5
17.8
9.0

12.8%
16.3%
32.8%

0%
1
4
16

0.822
332
332
336

11
12
16

1848.6
461.4
115.9

44.4
12.1
5.2

46.9% 30.4%
41.6
38.1
22.3

15.4%
18.8%
44.0%

0.801
84
84
96

3
4
16

480.3
120.5
33.8

21.8
7.2
6.7

36.9% 31.3%
22.0
16.7
5.0

50.2%
50.6%
54.7%

1%
1
4
16

0.814
189
192
192

2
4
6

1026.4
259.7
65.5

12.8
4.9
4.1

40.4% 28.5%
80.2
53.0
16.0

53.4%
46.7%
55.7%

0.791
33
36
48

1
4
16

186.4
50.7
16.4

14.2
6.8
6.2

34.4% 31.0%
13.1
7.5
2.6

77.0%
54.0%
59.1%

Dogs
6%

1
4
16

0.799
500
500
500

123
124
128

2848.1
709.8
178.0

441.1
111.2
28.3

60.0% 36.9%
6.5
6.4
6.3

1.6%
2.0%
8.1%

0.776
416
416
416

201
204
208

2470.7
618.2
153.2

786.0
199.3
52.7

100% 47.9%
3.1
3.1
2.9

1.4%
1.8%
6.9%

7%
1
4
16

0.791
434
436
448

70
72
80

2445.4
606.2
149.3

251.8
63.9
18.0

51.9% 34.2%
9.7
9.5
8.3

2.7%
3.6%
12.7%

0.766
311
312
320

129
132
144

1822.2
456.1
116.2

503.2
128.0
36.4

56.0% 41.4%
3.6
3.6
3.2

2.2%
2.8%
10.0%

8%
1
4
16

0.782
297
300
304

11
12
16

1632.8
411.7
102.4

42.3
10.1
3.2

45.4% 30.4%
38.6
40.8
32.0

16.2%
22.7%
71.6%

0.756
201
204
208

82
84
96

1164.1
294.8
75.0

322.9
83.1
26.1

47.9% 39.0%
3.6
3.5
2.9

3.4%
4.4%
13.9%

* thr_acc: accuracy corresponding to an accuracy drop rate α . base: baseline approach. comp: composability-based approach.
speedup: T imebase /T imecomp ; overhead counted in T imecomp . overhead: block training time over the total time of comp.

Table 4. Speedups by composability-based pruning with dif-
ferent subspace sizes.

Dataset alpha subspace
size

ResNet-50 Inception-V3
base
time (h)

comp
time (h)

speedup
(X)

base
time (h)

comp
time (h)

speedup
(X)

Flowers102 0%

4 22.7 13.4 1.7 20.3 16.8 1.2
16 90.9 12.8 7.1 76.7 20.6 3.7
64 364.8 21 17.4 224.7 25.4 8.8
256 1460.7 13.5 108.2 809.4 40.7 19.9

CUB200 3%

4 22.8 11 2.1 23.6 26 0.9
16 93.8 11.4 8.2 83.5 30 2.8
64 369.6 15.5 23.8 292.5 29.2 10
256 1472.9 20.7 71.2 1128.9 18.1 62.4

Table 5. Extra speedups brought by improved tuning block
definitions.

Dataset α
ResNet-50 Inception-V3

thr_acc extra speedup (X) thr_acc extra speedup (X)
collection-1 collection-2 collection-1 collection-2

Flowers102
0% 0.973 1.05 0.98 0.968 1.12 1.14
1% 0.963 1.19 1.21 0.958 1.08 1.15
2% 0.953 1.06 1.14 0.949 1.15 1.23

CUB200
3% 0.747 1.04 1.08 0.737 1.00 1.03
4% 0.739 1.04 1.20 0.729 1.08 1.09
5% 0.731 1.11 1.15 0.722 1.03 1.04

geometric mean 1.08 1.12 1.08 1.11

we need to train pieces of a network. We are not aware of the
prior use of such a scheme at this level.

9 Conclusions
This work proposes a novel composability-based approach to
accelerating CNN pruning via computation reuse. It designs a
hierarchical compression-based algorithm to efficiently iden-
tify tuning blocks for pre-training and effective reuse. It fur-
ther develops Wootz, the first compiler-based software frame-
work that automates the application of the composability-
based approach to an arbitrary CNN model. Experiments
show that network pruning enabled by Wootz shortens the
state-of-the-art pruning process by up to 186X while produc-
ing significantly better pruned networks. As CNN pruning is
an important method to adapt a large CNN model to a more
specialized task or to fit a device with power or space con-
straints, its required long exploration time has been a major
barrier for timely delivery of many AI products. The promis-
ing results of Wootz indicate its potential for significantly
lowering the barrier, and hence reducing the time to market
AI products.
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