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Abstract

In supervised learning, we leverage a labeled

dataset to design methods for function estimation.

In many practical situations, we are able to obtain

alternative feedback, possibly at a low cost. A

broad goal is to understand the usefulness of, and

to design algorithms to exploit, this alternative

feedback. We focus on a semi-supervised setting

where we obtain additional ordinal (or compar-

ison) information for potentially unlabeled sam-

ples. We consider ordinal feedback of varying

qualities where we have either a perfect ordering

of the samples, a noisy ordering of the samples or

noisy pairwise comparisons between the samples.

We provide a precise quantification of the use-

fulness of these types of ordinal feedback in non-

parametric regression, showing that in many cases

it is possible to accurately estimate an underlying

function with a very small labeled set, effectively

escaping the curse of dimensionality. We develop

an algorithm called Ranking-Regression (R2) and

analyze its accuracy as a function of size of the

labeled and unlabeled datasets and various noise

parameters. We also present lower bounds, that

establish fundamental limits for the task and show

that R2 is optimal in a variety of settings. Finally,

we present experiments that show the efficacy

of R2 and investigate its robustness to various

sources of noise and model-misspecification.

1. Introduction

Classical nonparametric regression is centered around the

development and analysis of methods that use labeled ob-

servations, {(X1, y1), . . . , (Xn, yn)}, where (Xi, yi) ∈
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R
d × R, in various tasks of estimation and inference. Non-

parametric methods are appealing in practice owing to their

flexibility, and the relatively weak a-priori structural assump-

tions that they impose on the unknown regression function.

However, the price we pay is that nonparametric methods

typically require a large amount of labeled data, scaling ex-

ponentially with the dimension, to estimate complex target

functions – the so-called curse of dimensionality. This has

motivated research on structural constraints – for instance,

sparsity or manifold constraints – as well as research on

active learning and semi-supervised learning where labeled

samples are used judiciously. We consider a complemen-

tary approach, motivated by applications in material science,

crowdsourcing, and healthcare, where we are able to supple-

ment a small labeled dataset with a potentially larger dataset

of ordinal information. Such ordinal information is obtained

either in the form of a (noisy) ranking of unlabeled points

or in the form of (noisy) pairwise comparisons between

function values at unlabeled points.

In crowdsourcing we rely on human labeling effort, and in

many cases humans are able to provide more accurate ordi-

nal feedback with substantially less effort (see for instance

(Tsukida & Gupta, 2011; Shah et al., 2015)). We investigate

a task of this flavor in Section 6. In material synthesis the

broad goal is to design complex new materials and machine

learning approaches are gaining popularity (Xue et al., 2016;

Faber et al., 2016). Typically given a setting of input param-

eters (temperature, pressure etc.) we are able to perform a

synthesis experiment and measure the quality of resulting

synthesized material. Understanding this quality landscape

is essentially a task of high-dimensional function estimation.

Synthesis experiments can be costly and material scientists

when presented with pairs of input parameters are often

able to cheaply provide noisy comparative assessments of

synthesis quality. Similarly, in clinical settings, precise as-

sessment of an individual patient’s health readings can be

difficult, expensive and/or risky, but comparing the relative

status of two patients may be relatively easy and accurate. In

each of these settings, it is important to develop methods for

function estimation that combine standard supervision with

(potentially) cheaper and abundant ordinal or comparative

supervision.
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Related Work: There is considerable work in supervised

and unsupervised learning on incorporating additional types

of feedback beyond labels. For instance, the papers (Zou

et al., 2015) and (Poulis & Dasgupta, 2017) study the bene-

fits of different types “feature feedback” in clustering and

supervised learning respectively. There is also a vast liter-

ature on models and methods for analyzing pairwise com-

parison data, like the classical Bradley-Terry (Bradley &

Terry, 1952) and Thurstone (Thurstone, 1927) models. In

this literature, the typical focus is on ranking or quality esti-

mation for a fixed set of objects. In contrast, we focus on

function estimation and the resulting models and methods

are quite different. We build on work on “noisy sorting”

(Braverman & Mossel, 2009) to extract a consensus ranking

from noisy pairwise comparisons. Most close in spirit to our

own work are the two recent papers (Kane et al., 2017; Xu

et al., 2017), which consider binary classification with ordi-

nal information. These works differ from ours in their focus

on classification, emphasis on active querying strategies and

use of quite different ordinal feedback models. Finally,

given ordinal information of sufficient fidelity, the prob-

lem of nonparametric regression is related to the problem

of regression with shape constraints, or more specifically

isotonic regression (Barlow, 1972; Zhang, 2002). Accord-

ingly, we leverage algorithms from this literature in our

work and we comment further on the connections in Sec-

tion 3. Some salient differences between this literature and

our work are that we design methods that work in a semi-

supervised setting, and further that our target is an unknown

d-dimensional (smooth) regression function as opposed to a

univariate shape-constrained function.

Our Contributions: We develop the Ranking-Regression

(R2) algorithm for nonparametric regression that can lever-

age ordinal information, in addition to direct labels. Theo-

retical analysis and practical experiments show the strength

of our algorithm.

• To establish the usefulness of ordinal information

in nonparametric regression, in Section 3 we con-

sider the idealized setting where we obtain a per-

fect ordering of the unlabeled set. We show that the

Mean Squared Error (MSE) of R2 can be bounded by

Õ(m−2/3 + n−2/d)1, where m denotes the number of

labeled samples and n the number of ranked samples.

To achieve an MSE of ε, the number of labeled sam-

ples required by R2 is independent of dimension. This

result establishes that sufficient ordinal information of

high quality can allow us to effectively circumvent the

curse of dimensionality.

• In Section 4 we analyze R2 when using a noisy ranking.

We show that the MSE is bounded as Õ(m−2/3+
√
ν+

1We use the standard big-O notation throughout this paper, and

use Õ when we suppress log-factors.

n−2/d), where ν is the Kendall-Tau distance between

the true and noisy ranking.

• As a corollary, we develop results for R2 using pair-

wise comparisons. If the comparison noise is bounded,

the R2 algorithm can be combined with algorithms

for ranking from pairwise comparisons (Braverman &

Mossel, 2009) to obtain an MSE of Õ(m−2/3+n−2/d)
when d ≥ 4.

• We give information-theoretic lower bounds to char-

acterize the fundamental limits of combining ordinal

and standard supervision. These lower bounds show

that our algorithms are almost optimal. In particular,

the R2 algorithm under perfect ranking, as well as un-

der bounded noise comparisons, is optimal up to log

factors.

• In our experiments, we test R2 on simulated data, on

UCI datasets and on various age-estimation tasks. Our

experimental results show the advantage of R2 over

algorithms that only use labeled data when this labeled

data is scarce. Our experiments with the age-estimation

data also show the practicality of R2.

2. Background and Problem Setup

We consider a non-parametric regression model with ran-

dom design, i.e. we suppose first that we are given access

to an unlabeled set U = {X1, . . . , Xn}, where Xi ∈ X ⊂
[0, 1]d, and Xi are drawn i.i.d. from a distribution PX . We

assume that PX has a density p(x) which is upper and lower

bounded as 0 < pmin ≤ p(x) ≤ pmax for x ∈ [0, 1]d. Our

goal is to estimate a function f : X 7→ R, where follow-

ing classical work (Györfi et al., 2006; Tsybakov, 2009)

we assume that f is bounded in [−M,M ] and belongs to a

Hölder ball Fs,L, with 0 < s ≤ 1 where:

Fs,L = {f : |f(x)− f(y)| ≤ L‖x− y‖s2, ∀ x, y ∈ X} .

For s = 1 this is the class of Lipschitz functions. We discuss

the estimation of smoother functions (i.e. the case when

s > 1) in Section 7. We obtain two forms of supervision:

1. Classical supervision: For a (uniformly) randomly

chosen subset L ⊆ U of size m (we assume throughout

that m ≤ n and focus on settings where m � n) we

make noisy observations of the form:

yi = f(Xi) + εi, i ∈ L,

where εi are i.i.d. E[εi] = 0,Var[εi] = σ2. We denote

the indices of the labeled samples as {t1, . . . , tm} ⊂
{1, . . . , n}.

2. Ordinal supervision: For the given dataset

{X1, . . . , Xn} we let π denote the true ordering,

i.e. π is a permutation of {1, . . . , n} such that for

i, j ∈ {1, . . . , n}, with π(i) ≤ π(j) we have that

f(Xi) ≤ f(Xj). We assume access to one of the

following types of ordinal supervision:
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(1) We are given access to a noisy ranking π̂, i.e. for

a parameter ν ∈ [0, 1] we assume that the Kendall-

Tau distance between π̂ and the true-ordering is upper-

bounded as:

∑

i,j∈[n]

I[(π(i)− π(j))(π̂(i)− π̂(j)) < 0] ≤ νn2.

(1)

(2) For each pair of samples (Xi, Xj), with i < j
we obtain a comparison Zij where for some constant

λ > 0:

P(Zij = I(f(Xi) > f(Xj))) ≥
1

2
+ λ. (2)

As we discuss in Section 5 it is straightforward to ex-

tend our results to a setting where only a randomly cho-

sen subset of all pairwise comparisons are observed.

Although classical supervised learning estimates a re-

gression function with labels only and without ordinal

supervision, we note that we cannot consistently esti-

mate the underlying function with only ordinal supervi-

sion and without direct observations. In the case when

no direct measurements are available the underlying

function is only identifiable up to certain monotonic

transformations.

Our goal is to estimate f , and the quality of an estimate f̂ is

assessed using the mean squared error E(f̂(X)− f(X))2,

where the expectation is taken over the labeled and unla-

beled training samples, as well as the new test point X .

We also study the fundamental information-theoretic limits

of estimation with classical and ordinal supervision by es-

tablishing lower (and upper) bounds on the minimax risk.

Letting η denote various problem dependent parameters (the

Hölder parameters s, L and various noise parameters), the

minimax risk:

M(m,n; η) = inf
f̂

sup
f∈Fs,L

E(f̂(X)− f(X))2, (3)

provides an information-theoretic benchmark to assess the

performance of an estimator. We conclude this section re-

calling a well-known fact: given access to only classical

supervision the minimax risk M(m; η) = Θ(m− 2s
2s+d ), suf-

fers from an exponential curse of dimensionality.

3. Nonparametric Regression with Perfect

Ranking

To establish the value of ordinal information we first con-

sider an idealized setting, where we are given a perfect

ranking π of the unlabeled samples in U . We present our

Ranking-Regression (R2) algorithm with performance guar-

antees in Section 3.1, and a lower bound in Section 3.2

which shows that R2 is optimal up to log factors.

Algorithm 1 R2: Ranking-Regression

Input: Unlabeled data U = {X1, ..., Xn}, a labeled set

of size m and corresponding labels, i.e. samples

{(Xt1 , yt1), . . . , (Xtm , ytm)}, and a ranking π̂.

1: Order elements in U as (Xπ̂(1), ..., Xπ̂(n)).
2: Run isotonic regression (see (4)) on {yt1 , . . . , ytm}. De-

note the estimated values by {ŷt1 , . . . , ŷtm}.

3: For i = 1, 2, ..., n, let ĩ = tk, where π̂(tk) is the largest

value such that π̂(tk) ≤ π̂(i), k = 0, 1, ...,m, and ĩ =
? if no such tk exists. Set

ŷi =

{
ŷ̃i if ĩ 6= ?

0 otherwise.

Output: Function f̂ = NearestNeighbor({(Xi, ŷi)}ni=1).

3.1. Upper bounds for the R2 Algorithm

Our non-parametric regression estimator is described in

Algorithm 1 and Figure 1. We first rank all the samples

in U according to the (given or estimated) permutation π̂.

We then run isotonic regression (Barlow, 1972) on the la-

beled samples in L to de-noise them and borrow statistical

strength. In more detail, we solve the following program to

de-noise the labeled samples:

min
{ŷπ̂(t1),...,ŷπ̂(tm)}

m∑

k=1

(ŷπ̂(tk) − yπ̂(tk))
2

s.t. ŷtk ≤ ŷtl ∀ (k, l) such that π̂(tk) < π̂(tl)

−M ≤ {yπ̂(t1), . . . , yπ̂(tm)} ≤ M.

(4)

We introduce the bounds {M,−M} in the above program

to ease our analysis. In our experiments, we simply set M
to be a large positive value so that it has no influence on our

estimator. We then leverage the ordinal information in π̂ to

impute regression estimates for the unlabeled samples in U ,

by assigning each unlabeled sample the value of the nearest

(de-noised) labeled sample which has a smaller function

value according to π̂. Finally, for a new test point, we use

the imputed (or estimated) function value of the nearest

neighbor in U .

In the setting where we use a perfect ranking the following

theorem characterizes the performance of R2:

Theorem 1. For constants C1, C2 > 0 the MSE of f̂ is

bounded by

E(f̂(X)− f(X))2 ≤ C1m
−2/3 log2 n logm+ C2n

−2s/d.

Before we turn our attention to the proof of this result, we

examine some consequences.

Remarks: (1) Theorem 1 shows a surprising dependency

on the sizes of the labeled and unlabeled sets (m and n).
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Figure 1. Top Left: A group of unlabeled points are ranked accord-

ing to function values using ordinal information only. Top Right:

We obtain function values of m randomly chosen samples. Mid-

dle Right: The values are adjusted using isotonic regression. Bot-

tom Right: Function values of other unlabeled points are inferred.

Bottom Left: For a new point, the estimated value is given by the

nearest neighbor in U .

The MSE of nonparametric regression using only the la-

beled samples is Θ(m− 2s
2s+d ) which is exponential in d

and makes non-parametric regression impractical in high-

dimensions. Focusing on the dependence on m, Theorem

1 improves the rate to m−2/3polylog(m,n), which is no

longer exponential in d. By using enough ordinal informa-

tion we can avoid the curse of dimensionality.

(2) On the other hand, the dependence on n (which dictates

the amount of ordinal information needed) is still expo-

nential. This illustrates that ordinal information is most

beneficial when it is copious. We show in Section 3.2 that

this is unimprovable in an information-theoretic sense.

(3) Somewhat surprisingly, we also observe that the depen-

dence on n is faster than the n− 2s
2s+d rate that would be

obtained if all the samples were labeled.

(4) In the case where all points are labeled (i.e., m = n), the

MSE is of order n−2/3 + n−2s/d, again improving slightly

on the rate when no ordinal information is available. The

improvement is largest when m � n.

(5) Finally, we also note in passing that the above theorem

provides an upper bound on the minimax risk in (3).

Proof Sketch. We provide a brief outline and defer techni-

cal details to the Supplementary Material. For a randomly

drawn point X ∈ X , we denote by Xα the nearest neighbor

of X in U . We decompose the MSE as

E

[
(f̂(X)− f(X))2

]
≤2E

[
(f̂(X)− f(Xα))

2
]
+

2E
[
(f(Xα)− f(X))2

]
. (5)

The second term corresponds roughly to the finite-sample

bias induced by the discrepancy between the function value

at X and the closest labeled sample. We use standard

sample-spacing arguments (see (Györfi et al., 2006)) to

bound this term. This term contributes the n−2s/d rate to

the final result. For the first term, we show a technical result

in the Appendix (Lemma 9). Without loss of generality sup-

pose f
(
Xt1

)
≤ · · · f

(
Xtm

)
. By conditioning on a probable

configuration of the points and enumerating over choices of

the nearest neighbor we find that roughly (see Lemma 9 for

a precise statement):

E

[
(f̂(X)− f(Xα))

2
]
≤

( log2 n logm

m

)
×

E

( m∑

k=1

((
f̂(Xtk)− f(Xtk)

)2
+
(
f
(
Xtk+1

)
− f

(
Xtk

))2))
.

(6)

Intuitively, these terms are related to the estimation error

arising in isotonic regression (first term) and a term that

captures the variance of the function values (second term).

When the function f is bounded, we show that the dominant

term is the isotonic estimation error which is on the order of

m−2/3. Putting these pieces together we obtain the theorem.

3.2. Lower bounds with Ordinal Data

To understand the fundamental limits on the usefulness of

ordinal information, as well as to study the optimality of the

R2 algorithm we now turn our attention to establishing lower

bounds on the minimax risk. In our lower bounds we choose

PX to be uniform on [0, 1]d. Our estimators f̂ are functions

of the labeled samples: {(Xt1 , yt1), . . . , (Xtm , ytm)}, the

set U = {X1, . . . , Xn} and the true ranking π. We have the

following result:

Theorem 2. For any estimator f̂ we have that for a univer-

sal constant C > 0,

inf
f̂

sup
f∈Fs,L

E

[
(f(X)− f̂(X))2

]
≥ C(m−2/3 + n−2s/d).

Comparing with the result in Theorem 1 we conclude that

the R2 algorithm is optimal up to log factors, when the

ranking is noiseless.

Proof Sketch. We establish each term in the lower bound

separately. Intuitively, for the n−2s/d lower bound we con-

sider the case when all the n points are labeled perfectly (in

which case the ranking is redundant) and show that even in

this setting the MSE of any estimator is at least n−2s/d due

to the finite resolution of the sample.

To prove the m−2/3 lower bound we construct a novel pack-

ing set of functions in the class Fs,L, and use information-

theoretic techniques (Fano’s inequality) to establish the

lower bound. The functions we construct are all increas-

ing functions, and as a result the ranking π provides no

additional information for these functions easing the analy-

sis. Figure 2 contrasts the classical construction for lower
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Figure 2. Original construction for nonparametric regression in 1-d

(above), and our construction (below).

bounds in non-parametric regression (where tiny bumps are

introduced to a reference function) with our construction

where we additionally ensure the perturbed functions are

all increasing. To complete the proof, we provide bounds

on the cardinality of the packing set we create, as well as

bounds on the Kullback-Leibler divergence between the in-

duced distributions on the labeled samples. We provide the

technical details in the Appendix.

4. Nonparametric Regression using Noisy

Ranking

In this section, we study the setting where the ordinal in-

formation is noisy. We focus here on the setting where as

in Equation (1) we obtain a ranking π̂ whose Kendall-Tau

distance from the true ranking π is at most νn2. We show

that the R2 algorithm is quite robust to ranking errors and

achieves an MSE of Õ(m−2/3+
√
ν+n−2s/d). We establish

a complementary lower bound of Õ(m−2/3 + ν2 +n−2s/d)
in Section 4.2.

4.1. Upper Bounds for the R2 Algorithm

We characterize the robustness of R2 to ranking errors, i.e.

when π̂ satisfies the condition in (1), in the following theo-

rem:

Theorem 3. For constants C1, C2 > 0, the MSE of the R2

estimate f̂ is bounded by

E[(f̂(X)− f(X))2]

≤ C1

(
log2 n logm

(
m−2/3 +

√
ν
))

+ C2n
−2s/d.

Remarks: (1) Once again we observe that in the regime

where sufficient ordinal information is available, i.e. n is

large, the rate no longer has an exponential dependence on

the dimension d.

(2) This result also shows that the R2 algorithm is inherently

robust to noise in the ranking, and the mean squared error

degrades gracefully as a function of the noise parameter ν.

We investigate the optimality of the
√
ν-dependence in the

next section.

(3) Finally, in settings where ν is large R2 can be led astray

by the ordinal information, and a standard non-parametric

regressor can achieve the (possibly faster) O
(
m− 2s

2s+d

)
rate

by ignoring the ordinal information. As we show in Ap-

pendix E a simple cross-validation procedure can com-

bine the benefits of the two estimators to achieve a rate

of Õ
(
m−2/3 + min{√ν,m− 2s

2s+d } + n−2s/d
)
. This rate

can converge to 0 if we have sufficiently many labels, even

if the comparisons are very noisy. The cross validation pro-

cess is standard and computationally efficient: we estimate

the regression function twice, once using R2 and once using

k-nearest neighbors, and choose the regression function that

performs better on a held-out validation set.

We now turn our attention to the proof of this result.

Proof Sketch. When using an estimated permutation π̂ the

true function of interest f is no longer an increasing (iso-

tonic) function with respect to π̂, and this results in a model-

misspecification bias. The core technical novelty of our

proof is in relating the upper bound on the error in π̂ to an

upper bound on this bias. Concretely, in the Appendix we

show the following lemma:

Lemma 4. For any permutation π̂ satisfying the condition

in (1)

n∑

i=1

(f(Xπ−1(i))− f(Xπ̂−1(i)))
2 ≤ 8M2

√
2νn.

Using this result we bound the minimal error of approximat-

ing an increasing sequence according to π by an increasing

sequence according to the estimated ranking π̂. We de-

note this error by ∆, and using Lemma 4 we show that in

expectation (over the random choice of the labeled set)

E[∆] ≤ 8M2
√
2νm.

With this technical result in place we follow the same de-

composition and subsequent steps before we arrive at the

expression in Equation (6). In this case, the first term for

some constant C > 0 is bounded as:

E

( m∑

k=1

(
f̂(Xtk)− f(Xtk)

)2) ≤ 2E[∆] + Cm1/3,

where the first term corresponds to the model-

misspecification bias and the second corresponds to

the usual isotonic regression rate. Putting these terms

together in the decomposition in Equation (6) we obtain the

theorem.
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4.2. Lower bounds with Noisy Ordinal Data

In this section we turn our attention to lower bounds in the

setting with noisy ordinal information. In particular, we

construct a permutation π̂ such that for a pair (Xi, Xj) of

points randomly chosen from PX :

P[(π(i)− π(j))(π̂(i)− π̂(j)) < 0] ≤ ν.

We analyze the minimax risk of an estimator which has

access to this noisy permutation π̂, in addition to the labeled

and unlabeled sets (as in Section 3.2).

Theorem 5. There is a constant C > 0 such that for any

estimator f̂ taking input X1, ..., Xn, y1, ..., ym and π̂,

inf
f̂

sup
f∈Fs,L

E
(
f(X)− f̂(X)

)2 ≥

C(m− 2
3 +min{ν2,m− 2

d+2 }+ n−2s/d).

Comparing this result with our result in Remark 3 following

Theorem 3, our upper and lower bounds differ by the gap

between
√
ν and ν2, in the case of Lipschitz functions (s =

1).

Proof Sketch. We focus on the dependence on ν, as the

other parts are identical to Theorem 2. We construct a

packing set of Lipschitz functions, and we subsequently

construct a noisy comparison oracle π̂ which provides no

additional information beyond the labeled samples. The

construction of our packing set is inspired by the construc-

tion of standard lower bounds in non-parametric regression

(see Figure 2), but we modify this construction to ensure

that π̂ is uninformative. In the classical construction we

divide [0, 1]d into ud grid points, with u = m1/(d+2) and

add a “bump” at a carefully chosen subset of the grid points.

Here we instead divide [0, t]d into a grid with ud points, and

add an increasing function along the first dimension, where

t is a parameter we choose in the sequel.

We now describe the ranking oracle which generates the

permutation π̂: we simply rank sample points according to

their first coordinate. This comparison oracle only makes

an error when both x, x′ lies in [0, t]d, and both x1, x
′
1 lie

in the same grid segment [tk/u, t(k + 1)/u] for some k ∈
[u]. So the Kendall-Tau error of the comparison oracle is

(td)2 × ((1/u)2 × u) = ut2d. We choose t such that this

value is less than ν. Once again we complete the proof by

lower bounding the cardinality of the packing-set for our

stated choice of t, upper bounding the Kullback-Leibler

divergence between the induced distributions and appealing

to Fano’s inequality.

5. Regression with Noisy Pairwise

Comparisons

In this section we focus on the setting where the ordinal

information is obtained in the form of noisy pairwise com-

parisons, following Equation (2). We investigate a natural

strategy of aggregating the pairwise comparisons to form

a consensus ranking π̂ and then applying the R2 algorithm

with this estimated ranking. We build on results from theo-

retical computer science, where such aggregation algorithms

are studied for their connections to sorting with noisy com-

parators. In particular, Braverman & Mossel (2009) study

noisy sorting algorithms under the noise model described

in (2) and establish the following result:

Theorem 6 ((Braverman & Mossel, 2009)). Let α > 0.

There exists a polynomial-time algorithm using noisy pair-

wise comparisons between n samples, that with probabil-

ity 1 − n−α, returns a ranking π̂ such that for a constant

c(α, λ) > 0 we have that:

∑

i,j∈[n]

I[(π(i)− π(j))(π̂(i)− π̂(j)) < 0] ≤ c(α, λ)n.

Furthermore, if allowed a sequential (active) choice of com-

parisons, the algorithm queries at most O(n log n) pairs of

samples.

Combining this result with our result on the robustness of R2

we obtain an algorithm for nonparametric regression with

access to noisy pairwise comparisons with the following

guarantee on its performance:

Corollary 7. For constants C1, C2 > 0, R2 with π̂ esti-

mated as described above produces an estimator f̂ with

MSE

E
(
f̂(X)− f(X)

)2 ≤ C1m
−2/3 log2 n logm+

C2 max{n−2s/d, n−1/2 log2 n logm}.

Remarks: (1) From a technical standpoint this result is an

immediate corollary of Theorems 3 and 6, but the extension

is important from a practical standpoint. The ranking error

of O(1/n) from the noisy sorting algorithm leads to an ad-

ditional Õ(1/
√
n) term in the MSE. This error is dominated

by the n−2s/d term if d ≥ 4s, and in this setting the result

in Theorem 7 is also optimal up to log factors (following

the lower bound in Section 3.2).

(2) We also note that the analysis in (Braverman & Mossel,

2009) extends in a straightforward way to a setting where

only a randomly chosen subset of the pairwise comparisons

are obtained.

6. Experiments & Simulations

To verify our theoretical results and test R2 in practice,

we perform three sets of experiments. First, we conduct

experiments on simulated data, where the noise in the labels

and ranking can be controlled separately. Second, we test

R2 on UCI datasets, where the rankings are simulated using

labels. We present these results in Appendix A. Finally, we







Nonparametric Regression with Comparisons

Acknowledgements

This work is supported by AFRL grant FA8750-17-2-0212,

NSF CCF-1763734, NSF DMS-1713003 and DARPA award

FA8750-17-2-0130.

References

Barlow, R. E. Statistical inference under order restrictions:

The theory and application of isotonic regression. Tech-

nical report, 1972.

Bellec, P. C. Sharp oracle inequalities for least squares

estimators in shape restricted regression. The Annals of

Statistics, 46(2):745–780, 2018.

Bellec, P. C. and Tsybakov, A. B. Sharp oracle bounds

for monotone and convex regression through aggregation.

Journal of Machine Learning Research, 16:1879–1892,

2015.

Bi, W., Wang, L., Kwok, J. T., and Tu, Z. Learning to predict

from crowdsourced data. In Uncertainty in Artificial

Intelligence, pp. 82–91, 2014.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-

plete block designs: I. the method of paired comparisons.

Biometrika, 39(3/4):324–345, 1952.

Braverman, M. and Mossel, E. Sorting from noisy informa-

tion. arXiv preprint arXiv:0910.1191, 2009.

Chaudhuri, K. and Dasgupta, S. Rates of convergence for

the cluster tree. In Advances in Neural Information Pro-

cessing Systems, pp. 343–351, 2010.

Craig, C. C. On the tchebychef inequality of bernstein. The

Annals of Mathematical Statistics, 4(2):94–102, 1933.

Diaconis, P. and Graham, R. L. Spearman’s footrule as

a measure of disarray. Journal of the Royal Statistical

Society. Series B (Methodological), pp. 262–268, 1977.

E Agustsson, R Timofte, S. E. X. B. I. G. R. R. Apparent

and real age estimation in still images with deep residual

regressors on appa-real database. In 12th IEEE Interna-

tional Conference and Workshops on Automatic Face and

Gesture Recognition (FG), 2017. IEEE, 2017.

Faber, F. A., Lindmaa, A., von Lilienfeld, O. A., and

Armiento, R. Machine learning energies of 2 million

Elpasolite(ABC2D6)crystals. Physical Review Letters,

117(13), 2016.

Györfi, L., Kohler, M., Krzyzak, A., and Walk, H. A

distribution-free theory of nonparametric regression.

Springer Science & Business Media, 2006.

Han, Q., Wang, T., Chatterjee, S., and Samworth, R. J.

Isotonic regression in general dimensions. arXiv preprint

arXiv:1708.09468, 2017.
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