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Abstract—A general goal of interactive learning is to
investigate broad ways of leveraging human feedback, and
understand the benefits of learning from potentially com-
plex feedback. We study a special case of linear regression
with access to comparisons between pairs of samples.
Learning from such queries is motivated by several im-
portant applications, where obtaining comparisons can be
much easier than direct labels, and/or when comparisons
can be more reliable. We develop an interactive algorithm
that utilizes both labels and comparisons to obtain a linear
estimator, and show that it only requires a very small
amount of direct labels to achieve low error. We also give
minimax lower bounds for the problem, showing that our
algorithm is optimal up to log factors. Finally, experiments
show that our algorithm outperforms label-only algorithms
when labels are scarce, and it can be practical for real-
world applications.

Index Terms—active learning, pairwise comparisons, re-
gression

I. INTRODUCTION

Interactive learning has been drawing attention from

the machine learning community, both theoretically and

practically, as it helps enrich the feedback that ML

systems can handle, and reduce the learning effort [2],

[6], [24]. Different than traditional learning and crowd-

sourcing schemes, interactive learning relies on complex

or structured feedback from the labelers, to provide

more information or more actionable information about

each sample. Another important factor of interactive

learning is being active: Instead of dealing with a fixed

dataset, interactive learning selectively chooses the most

informative questions throughout the learning process.

We investigate a special case of interactive regres-

sion that uses pairwise comparisons. In many appli-

cations [20], [23], people can provide more accurate

results when they compare the objective for two different

samples, than giving direct labels for individual samples.

Comparisons also often cost less effort for humans. For

example in clinical settings, assessing the health condi-

tion of an individual may require laborious review of

complex medical data, but comparing the relative health

status of two patients can be easier for trained clinicians

and carry less subjective bias. Another example involves

evaluating face images (e.g., estimating people’s age):

Crowdsource workers typically have difficulty giving

direct evaluations about “how old” is a person, but

they are often better at comparing two face images and

deciding who looks older. We conduct experiments on

this task in Section VI.

We consider interactive pairwise comparisons in the

special case of linear regression, one of the most im-

portant methods of statistical learning. It can be very

effective when we expect a simple relationship between

the sample and response. However, often the limited

number of labeled training data leads to overfitting

models, especially when n < d, where n is the num-

ber of labels and d is the dimensionality. In such a

case, certain sparsity or additive assumptions have been

suggested, such as LASSO [22] and SpAM [18]. We

take a different approach, showing that when we have

enough comparisons, it is possible to learn a linear

function even when n < d, without making any special

assumptions. The basic idea behind our algorithm is very

simple: we first learn to predict the comparison, which

is intrinsically linear classification; with comparison

queries we can infer the underlying weights up to scaling

transformations1. After that, we use labels to infer the

scale of the weights, and the label complexity of such

inference is independent of d. Our contributions come

in threefold:

• We develop and analyze an interactive learning

algorithm that efficiently learns a linear estimator,

using both label and comparison queries. Given n
label queries and m comparison queries, we show

that the mean squared error (MSE) of our algorithm

decays at a rate of Õ
(
1
n
+ exp(−m

d
)
)
. When suffi-

cient comparisons are available, the label complex-

ity of our algorithm is independent of dimension

1Note that we cannot learn the underlying weights perfectly with
comparisons only; for comparisons y = wT x and y = 5wT x gives
exactly the same results.
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d. This establishes that we can achieve good MSE

rate without making additional assumptions about

the underlying function.

• We give complementary lower bounds to show that

our results are almost optimal, up to log factors. In

particular, we show that the rate of O( 1
n
), and the

total number of queries, are not improvable up to

log factors.

• Finally, we conduct experiments on synthetic and

real datasets, and show that our algorithm can

outperform label-only algorithms when labels are

scarce. Experiments on real datasets demonstrate

the practicality of our algorithm.

II. RELATED WORK

Typically, the focus of current research on pairwise

comparison is to elicit a ranking from (noisy) pairwise

comparisons on a finite set of items. For instance,

[8] gives an efficient algorithm of error O( 1
n
) under

the assumption that each comparison is flipped with

a bounded probability. More recently, [17], [20] give

algorithms that work under the Bradley-Terry [7] and

Thurstone [21] models. In contrast, our goal is to elicit

a regression function from comparisons, which leads to

quite different models and methods.

Active learning [5], [9] focuses on actively selecting

questions to present to the user, but primarily focuses on

label queries only. The first part of our algorithm relies

on previous results in active learning [4], but our setting

differs from that of active learning since we introduce

comparisons.

Interactive learning has been considered in various cir-

cumstances for different kinds of oracles. For example,

[11] considers learning from partial corrections, where

the user points out the error of prediction with respect

to certain components of the input. [25] considers fea-

ture discovery through comparison queries. Two recent

papers [15], [24] are most closely related to our work.

They consider the benefits of learning from comparisons

for active classification. However, we focus on regression

and our method is very different from theirs.

III. PROBLEM STATEMENT

We assume our samples X come from a distribution

PX on R
d. Following literature in active learning [3],

[4], we assume that PX is isotropic and log-concave;

that is, features of X are independent, centered around

0, have covariance Id; and log of the density function

of X is concave. The first assumption can be achieved

through standard preprocessing like ICA, and the latter

is true for many prevalent choices of distributions, such

as uniform and Gaussian [16]. Note that this assumption

is weaker than in several regression papers [14], which

assumes PX is independent Gaussian. In addition, let

B(v, r) denote the ball of radius r around vector v.

Following previous literature (e.g., [9]), we assume

access to a label oracle Ol, which takes a sample x ∈ R
d

and outputs a label Y ∈ R. We assume a linear relation

between the label and features: Y = (w∗)Tx + ε, with

E[ε] = 0, Var(ε) = σ2. Let r∗ = ‖w∗‖2 and v∗ =
w∗

‖w∗‖2
.

In addition to traditional label queries, we assume

access to a (potentially cheaper) comparison oracle Oc.

On each query, Oc receive a pair of samples (X,X ′) ∼
PX ×PX , and returns a random variable Z ∈ {−1,+1},

where Z = 1 indicates that the user thinks f(X) >
f(X ′), and Z = −1 otherwise. We assume an agnostic

noise2 ν for Z:

Pr(Z �= sign(w∗ ·X − w∗ ·X ′)) ≤ ν.

That is, a randomly sampled triplet (X,X ′, Z) is wrong

with probability at most ν. Note that the error for a

particular example (X,X ′) = (x, x′) can be arbitrary.

Given a (arbitrarily large) set of unlabeled instances

U = {X1, X2, ...} coming from PX , we aim to estimate

w∗ by querying Ol and Oc with samples in U , using a

label and comparison budget of n and m respectively. We

characterize the quality of any such estimator ŵ in terms

of the mean squared error (MSE) E
[(
(w∗ − ŵ)TX

)2]
,

where the expectation is taken over randomness in

estimator ŵ, oracles Ol,Oc and random sample X
respectively. We also study information-theoretic limits

of any estimator by examining the minimax risk:

M(m,n) = inf
ŵ

sup
w∗

E
[(
(w∗ − ŵ)TX

)2]
. (1)

As a final remark of this section, the classical minimax

rate for ordinary least squares(OLS) is of order O( d
n
),

where n is the number of label queries. This rate cannot

be improved by active label queries (c.f. [10]).

IV. ALGORITHM & ANALYSIS

Our algorithm is described in Algorithms 1 and 2. We

first consider comparisons as a classification problem

with samples ((X − X ′), Z), and use active linear

classification to learn an estimated v̂ ≈ v∗. The active

classification algorithm we use comes from [4], and is

presented in Algorithm 2. In each iteration, it find the

best weights that minimize the hinge loss

lτ (u,W ) =

mk∑

i=1

max(0, 1−
zi(u · (xi − x′

i))

τ
), (2)

2Our model can also be adapted to the bounded noise model case
using a different algorithm from active learning; See Section VII for
details.
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where W = {(xi, x
′
i, zi)}

mk

i=1 is the labeled dataset. This

vector is normalized and then used as the criterion for

selecting pairs. The final result of the classification is a

unit vector v̂ ≈ v∗.

After classification, we use the estimated v̂ along with

actual label queries to learn an estimated weight norm

r̂, through OLS. Combining the results we get ŵ = r̂ · v̂.

Algorithm 1 Linear Regression with Comparison

Queries

Input: comparison budget m, label budget n, compari-

son oracle Oc, set of parameters for Algorithm 2

1: Run Algorithm 2 with m,Oc and obtain v̂
2: Query random samples {(Xi, Yi)}

n
i=1

3: Let r̂ =

∑n

i=1 v̂
TXiYi∑n

i=1(v̂
TXi)2

.

Output: ŵ = r̂ · v̂.

Algorithm 2 Active-Comparison

Input: Comparison oracle Oc, comparison budget m,

sample sizes mk, sequences rk, bk, τk, precision

value κ.

1: Draw m1 pairs i.i.d. into set U and ask Oc to label

them. Obtain labeled set W = {(xi, x
′
i, zi)}

m1
i=1.

2: Iteration counter k ← 0
3: while Comparison budget not exhausted do

4: Find uk ∈ B(vk−1, rk) that approximately min-

imize training hinge loss (2) over W , with length at

most 1:

lτk(uk,W ) ≤ min
u∈B(vk−1,rk)∩B(0,1)

lτk(u,W ) + κ/8.

5: vk ← uk

‖uk‖2
.

6: Sample another dataset U of mk unlabeled sam-

ple pairs.

7: U ′ = {(x, x′) ∈ U : |vk · (x− x′)| ≤ bk}.

8: Ask Oc to label all samples in U ′ and obtain

labeled set W .

9: Increment counter k ← k + 1

Output: Return vk.

Theorem 1. There exists some constants C,N such that

if n > N , the MSE of Algorithm 1 satisfies3

E[((w∗)TX − ŵTX)2]

≤Õ

(
1

n
+ log2 n exp

(
−

Cm

d log3(nd)

)
+ ν2

)
.

Several remarks are in order before we turn to details

of the proof.

Remarks. (1) The MSE rate for classical ordinary least

3We use Õ to represent expressions without the log log(·) terms.

square (OLS) is d
n

(see e.g., [12]). Theorem 1 reduces

this to 1
n

, which is independent of n. This is critical for

high-dimensional linear regression, where we typically

have d > n.

(2) The dependence on m, however, is dependent on d,

and we generally require m > d to obtain a low MSE.

This suggests that comparisons are most helpful when

they are ample.

(3) Somewhat surprisingly, the dependence on m
d

is

exponential, making our algorithm query efficient once

it reaches m > d. Suppose we aim at a MSE of γ for

some small γ > 2ν2, classical OLS requires O(d/γ)
labels, whereas Algorithm 2 only needs a much-less

n + m = Õ(1/γ + d log(d/γ)) queries in total. We

show in Section V that this quantity is optimal up to

log factors.

(4) Finally, we remark that Theorem 1 indicates an upper

bound on the minimax risk of (1).

The full proof is deferred to the Appendix due to space

limits; we give a sketch here.

Proof Sketch. First, using results in [4], we obtain an es-

timator ‖v̂ − v∗‖2 ≤ ε = O
(
exp

(
− m

C2d log3(nd)

)
+ ν

)

when we finish the active-comparison in Algorithm 2.

Now let Ti = v̂TXi, and we have

r̂ =

∑n

i=1 TiYi∑n

i=1 T
2
i

= r∗ +

∑n

i=1 Tir
∗(v∗ − v̂)TXi + εi∑n

i=1 T
2
i

.

And thus

(w∗)TX − (ŵ)TX

=r∗(v∗ − v̂)TX −

∑n

i=1 Tir
∗(v∗ − v̂)TXi∑n

i=1 T
2
i

v̂TX+

∑n

i=1 Tiεi∑n

i=1 T
2
i

v̂TX

The first term can be bounded using ‖v̂ − v∗‖2 ≤ ε;

for the latter two terms, using Hoeffding bounds we can

show that
∑n

i=1 T
2
i = O(n). Then by decomposing the

sums in the latter two terms, we can bound the MSE.

V. LOWER BOUNDS

Now we turn to information-theoretic lower bounds of

the minimax risk (1). We consider any active estimator

ŵ with access to the two oracles Oc,Ol, using m
comparisons and n labels, and show that the upper bound

of MSE in Theorem 1 is optimal up to log factors. Our

results come in two parts: Theorem 2 shows a lower

bound that captures dependency on n, for any ŵ using

comparisons. Then, Theorem 3 shows lower bound on

the total number of queries (m+ n).
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Theorem 2. Suppose X is uniform in [−1, 1]d, and ε ∼
N (0, σ2). Then for any (active) estimator ŵ with access

to both label and comparison oracles, there is a constant

C such that

inf
ŵ

sup
w∗

E

[(
(w∗ − ŵ)TX

)2]
≥

C

n
.

Theorem 2 shows that the O( 1
n
) term in Theorem 1

is necessary. The proof is quite standard using Le Cam’s

method for two increasing functions when d = 1, and is

included in the Appendix.

Theorem 3. For any (active) estimator ŵ with access

to n labels and m comparisons, there exists a ground

truth weight w̃ and a global constant C, such that when

w∗ = w̃ and 2m+ n < d,

E

[(
(ŵ − w∗)TX

)2]
≥ C.

Theorem 3 shows a lower bound on the total number

of queries in order to get low error. Combining with

Theorem 2, in order to get a MSE of γ for some γ <
C, we need to make at least O(1/γ + d) queries (i.e.,

labels+comparisons). Note that for the upper bound in

Theorem 1, we need n+m = Õ(1/γ + d log(d/γ)) for

Algorithm 1 to reach γ MSE. So Algorithm 1 is optimal

in terms of total queries, up to log factors.

The proof of Theorem 3 is done by considering an

estimator with access to n+2m noiseless labels {(xi, w
∗·

xi)}
n+2m
i=1 , which can be used to generate m comparisons

and n labels. We sample w∗ from a prior distribution in

B(0, 1), and show that the expectation of MSE in this

case is at least a constant. Thus there exists a weight

vector w̃ that leads to constant error. The full proof is

deferred to the Appendix.

VI. EXPERIMENTS

We test our algorithm through experiments to verify

its practical use. We compare Algorithm 1 with two

strong baselines in linear regression: LASSO [22] and

support vector regression. We first conduct experiments

in a controlled setting using synthetic data. After that,

we consider a practical task of estimating people’s ages

from portraits. We repeat each experiment 20 times and

report the average MSE.

A. Synthetic Dataset

For synthetic data, we set d = 50 and generate both

X and w∗ from N (0, Id), and ε ∼ N (0, 0.52). The

comparison oracle generates response using the same

noise model: Z = sign((w∗ · x + ε) − (w∗ · x′ − ε′))
for input (x, x′), with ε, ε′ ∼ N (0, 0.52). We generate

a training set of size ntrain = 4000 and test set of size

ntest = 1000. At test time we compute the empirical

MSE 1
ntest

∑ntest

i=1[(ŵ − w∗)TX test
i ]2.

(a)

(b)

Fig. 1: (a) Experiment result on synthetic dataset. (b)

Experiment result for age estimation. Best viewed in

color.

Model performances are compared in Figure 1a. We

vary the number of labels n from 5 to 100, and the

number of comparisons m in {100, 200, 500}. When the

number of labels is small, our algorithm consistently

outperforms the baselines. For larger numbers of labels,

our algorithm achieves similar performance as SVR,

when m = 500.

B. Age Estimation

In this section, we consider a practical task of estimat-

ing people’s ages from their portraits. The APPA-REAL

dataset [1] contains 7,591 images each associated with a

biological age and an apparent age. The biological age

is the person’s actual age, whereas the apparent ages are

crowdsourced by human. The images are divided into

4113 train, 1500 validation and 1978 test samples, and

we only use the train and validation samples for our

experiments. We extract the 128-dim feature for each

image using the last layer of FaceNet [19]. The features

are centralized to have zero mean and unit variance.

We consider the task of predicting biological ages;

typically it is hard to obtain direct biological labels of

people in portraits, but it is relatively easy to crowd-

source comparisons. Note that comparisons in this case

are based on apparent ages instead of biological ages.

So in our experiments, the comparison oracle Oc returns
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labels according to the apparent age, and the label oracle

Ol returns biological ages directly.

We vary the number of labels from n = 100 to

4,063 (all labels) and number of comparisons in m ∈
{1000, 2500, 5000}. Results (Figure 1b) show that our

algorithm requires fewer labels than baseline methods

to achieve low MSE. Also, the total number of queries

that our algorithm makes is smaller than that of baseline

methods. This verifies our theoretical results in Section

IV and V, and demonstrates practicality of our method.

VII. DISCUSSION AND CONCLUSION

We develop interactive learning algorithms for linear

regression with access to both label and comparison

oracles. Our results show that when comparison labels

are copious, only a very small amount of direct labels is

required to learn a linear estimator with good accuracy.

We also provide complementary lower bounds to show

the optimality of our algorithm. Experiments on both

synthetic and real-world datasets show the practicality of

our algorithm. In applications, comparisons are typically

easier to obtain than labels, and our algorithm becomes

more effort-efficient than label-only algorithms in these

cases.

We analyze our method under the assumption of

agnostic comparisons. The same results can be easily

obtained for the case where each comparison is flipped

(w.r.t. ground truth) with some probability η < 1/2,

using algorithm in [13], however that algorithm is com-

putationally inefficient. Currently the best efficient active

learning algorithm under such “bounded noise” setting

requires m ≥ O
(
d
O( 1

(1−2η)4
)
)

comparisons [3]. So it

remains open to solve such cases using around Õ(d)
comparisons. It would also be interesting to consider

other comparison models such as BTL [7] and Thurstone

[21].

Other interesting directions include extending our

method to more complex models, such as generalized

linear and graphical models. A broader goal would be to

understand the fundamental benefits and limits of utility

of a general class of indirect queries, along with their

applications.
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