NeuADC: Neural Network-Inspired RRAM-Based Synthesizable
Analog-to-Digital Conversion with Reconfigurable Quantization Support

Weidong Cao, Xin He, Ayan Chakrabarti and Xuan Zhang
Washington University in St.Louis

Abstract— Traditional analog-to-digital converters (ADCs)
employ dedicated analog and mixed-signal (AMS) circuits
and require time-consuming manual design process. They also
exhibit limited reconfigurability and are unable to support
diverse quantization schemes using the same circuitry. In this
paper, we propose NeuADC — an automated design approach
to synthesizing an analog-to-digital (A/D) interface that can
approximate the desired quantization function using a neural
network (NN) with a single hidden layer. Our design leverages
the mixed-signal resistive random-access memory (RRAM)
crossbar architecture in a novel dual-path configuration to
realize basic NN operations at the circuit level and exploits
smooth bit-encoding scheme to improve the training accuracy.
Results obtained from SPICE simulations based on 130nm
technology suggest that not only can NeuADC deliver promising
performance compared to the state-of-art ADC designs across
comprehensive design metrics, but also it can intrinsically
support multiple reconfigurable quantization schemes using
the same hardware substrate, paving the ways for future
adaptable application-driven signal conversion. The robustness
of NeuADC’s quantization quality under moderate RRAM
resistance precision is also evaluated using SPICE simulations.

I. INTRODUCTION

Advanced technology scaling with lower supply voltage
results in reduced intrinsic device gain, decreased signal
swing, and aggravated device mismatch, making it more
difficult to design scalable analog and mixed-signal (AMS)
circuits [1], [2], [14]. As the quintessential example of
an AMS circuit, the omnipresent analog-to-digital converter
(ADC) faces the same design challenges when migrating to
smaller highly-scaled technology nodes [2]. Traditional ADC
circuits often require significant manual design iterations and
re-spins to meet the desired performance specifications for a
new process. Previous research has explored synthesizable
and scalable ADC topologies to automate this expensive
and time-consuming design process [2], [3]. One example
is stochastic flash ADCs that make use of the intrinsic input
offsets of minimum-sized digital comparators [2]. However,
stochastic ADCs require a large number of hardware re-
sources (~3840 comparators) and work only at relatively
modest sampling rate (~8M S/s) and resolution (~5.3-bit).
Another example is synthesis-friendly time-domain delta-
sigma ADCs [3], but they still require manual modifications
of a standard cell and designer knowledge for floor-planning.

In addition to the design automation challenge, ADCs also
face new demands from many emerging applications [4]-[6].
For example, in-memory computation in the analog domain
using non-volatile memory (NVM) arrays has been proposed
to accelerate neural network (NN) inference and training

for deep learning applications [5], [6], where ADCs play
a critical role at the A/D interface, yet little work specifi-
cally addresses NVM-compatible scalable ADC designs. The
ability to support a flexible quantization scheme is another
desirable ADC property that can benefit a variety of sensor
frontend interfaces [4]. For instance, image sensors require
logarithmic or square-root quantizations to realize a uniform
distribution of exposure [10], instead of the uniform linear
quantization implemented in standard ADCs. A reconfig-
urable ADC that can support different quantization schemes
obviates the need to perform Gamma correction later in
the digital domain, saving power and improving the energy
efficiency of the backend image signal processor (ISP).

In this paper, we propose NeuADC — a novel design
approach for synthesizable ADCs that addresses the afore-
mentioned imminent challenges facing the traditional ADC
design paradigm. Inspired by NN, NeuADC is founded on
a deep learning framework and implemented using mixed-
signal RRAM crossbar architecture. We consider RRAM,
a promising NVM technology [5], [6], [8], [13], a perfect
testbed to demonstrate the scalable and portable features
of our method. We reformulate the ADC design as a NN
learning problem, where the learning objective is to ap-
proximate multiple desirable quantization functions for A/D
conversion. This approach allows us to take advantage of
many training techniques developed for deep learning and
seamlessly incorporate them into ADC design automation.

Key innovations and contributions of this paper are:

e NeuADC transforms traditional ADC design into a
learning problem and enables the development of an
automated design flow to synthesize ADC circuits.
Our novel design approach opens new opportunities to
employ learning techniques in AMS design automation.

o We propose a new dual-path RRAM crossbar architec-
ture to facilitate the mixed-signal vector matrix mul-
tiplication (VMM) required by NeuADC in a scaling-
compatible manner, along with an inverter voltage trans-
fer characteristics (VTC) based activation function to
implement the nonlinear activation function (NAF).

e« We explore several hardware-oriented training tech-
niques to account for device and circuit level charac-
teristics and non-idealities in NeuADC design.

o We present SPICE simulation results that validate the
competitive performance of our proposed NeuADC and
its ability to support multiple reconfigurable quanti-
zation schemes. Robustness against RRAM resistance
variation is also evaluated.

Flash ADC

Training Framework

Ground truth datasets

c
(e}

g B [~ MsB Off-line training T2

8 . three-layer NN = £

i lRe 18- 2/8°
i Q —~LSB | T

o

(a) wy, @

Training objective

General NN
Hardware Substrate
Vin

le e
&)
S

quantization
outputs

Wi

@ model hardware substrate

Wi

!LSB' : 'MSB! (b)
Fig. 1: Conceptual illustration of the proposed NeuADC design methodol-
ogy. (a) Conventional flash ADC architecture. (b) Proposed NeuADC hard-
ware substrate. (c) Proposed training framework that takes ideal quantization
datasets as inputs during off-line training to find the optimal set of weights
and derive the RRAM resistances in order to minimize the cost function
and best approximate the desirable quantization function.

@ generate datasets and constraints

7 2
Minimize cost based on Vin
discrepancy between true
and predicted bits

® train through backpropagation

@ instantiate design

II. DESIGN METHODOLOGY OVERVIEW

The cornerstone of our proposed design methodology is
the universal approximation theorem [7] that proves a feed-
forward NN with a single hidden layer, also known as
a multi-layer perceptron (MLP), can approximate arbitrary
complex functions. Coincidentally, an ideal ADC performs
the mathematical transformation that quantizes the input
analog value to its output bit representation. Therefore, if
a NN can be trained to approximate the same, though
highly nonlinear, input/output mapping of an ADC, then it is
possible to construct a synthesizable ADC by implementing
the trained NN in mixed-signal hardware.

Fig. 1 illustrates this basic concept and contrasts NeuADC
with the conventional design method. The architecture of a
conventional flash ADC is shown in Fig. 1(a). It relies on
ideal comparators to obtain the desirable uniform staircase
quantization function. Unfortunately, real circuits do not
behave as ideal comparators, and their designs require expert
knowledge, preventing automated synthesis. Our proposed
NeuADC overcomes these difficulties with two integrated
elements in its design methodology — a general NN hard-
ware substrate and a hardware-oriented training framework,
as illustrated in Fig. 1(b) and (c). The general NN hardware
substrate performs NN operations, such as VMM and NAF,
in the AMS domain. It is implemented using a dual-path
RRAM crossbar architecture, whereas the off-line training
framework learns the appropriate design parameters for the
NN hardware substrate to approximate the desirable quanti-
zation behavior of an ADC. The overall design process can
be summarized in four steps: (D the behavior of the hardware
substrate is modeled as a MLP;) the training datasets
based on the desirable quantization function are fed to
the optimization algorithm, along with customized objective
functions and constraints to accurately reflect the hardware
characteristics of the underlying circuits; @ NN weights are
iteratively trained through backpropagating the output errors;
@ the off-line-trained weights are used to instantiate the
corresponding design parameters in the hardware substrate.
Details of the hardware substrate design and the training

framework development are presented in Sec. III and Sec. I'V.

III. HARDWARE SUBSTRATE

Fig. 2(a) presents the overall architecture of NeuADC’s
general NN hardware substrate to realize a three-layer MLP.
We use RRAM crossbar arrays and static CMOS inverters at
each layer to perform VMM and NAF operations. The input
analog signal represents the single “place holder” neuron in
MLP’s input layer, therefore the weight matrix dimensions
are 1 x H between the input and the hidden layer and H x M
between the hidden and the output layer, assuming there are
H and M neurons in the hidden and output layers.

A. RRAM Crossbar Array

Fig. 2(b) zooms on a RRAM crossbar array of positive
path. The 1 x H complementary input vector represented
by input voltages V; 1 to V; i are fed to each row on the
word lines (WL), and each element in the weight matrix
is stored as the conductance of the RRAM device in each
weight cell. The weight cell consists of one transistor and
one RRAM device (ITIR) and can operate in both compute
mode and program mode. In compute mode, the transistor is
turned on and the RRAM crossbar performs the analog VMM
computation by summing the currents on the shared bit line
(BL). In program mode [15], the conductance of the RRAM
is set to the desirable weight by the programming circuits
(PC) and the address decoders (AD-DEC). The proposed
RRAM crossbar differs from designs in previous work [5],
[6] in eliminating operational amplifiers and analog inverters;
thus it is more scalable and synthesis-friendly.

B. Dual-path Configuration

In order to accommodate negative weights, we propose a
new dual-path configuration such that each NN layer consists
of a positive path and a negative path. Each path uses a
pair of complementary voltages with opposite polarity for
signal representation and two RRAM crossbar sub-arrays to
perform VMM, which we call the upper and the lower sub-
array. We use the positive path crossbar shown in Fig. 2(b)
as an example to explain the dual-path operation. Assume
there are [pairs of complementary inputs:

Vi =V V% =Vop = Vi (D)
where Vpp is the supply voltage, and £k = 1,2,..., H. We
represent the output voltages at the crossbar BL on the
positive (negative) path as V(fj (VO{\;), and j = 1,2,..., M.
Applying the Thevenin Theorem, the contribution of each
pair of inputs is superimposed to obtain the output BL

voltages:
H

Vo =2 (WiGT Vi + WY Vi))
k=1

where W/OP = gil />0, WEN = gf/>, and 3 =
Zfil (gg + glLJ) The first superscript of W,ZP denotes which
path the weight belongs to, and the second superscript de-
notes which complementary input the weight acts upon. The
superscript of g,gj denotes which sub-array the conductance
belongs to. By replacing V;; and V;}, with Eq. (1), the output

— Positive input Positive """ Positive Path
. e i ositive SItive ral
Negative input = GBBEE
gp P Path V/,va ? % = ub-array
ositive (i o e=gl
upper
Path__ i sub-aray hesizable Vg B =
i upper i T Word line P
(-1 sub-array M 21 B vED—

WL/BL Address Decoder

;E.D..w» | B

lower
lower >y SUb-array

Vi 11 sub-arra:
o subsarray || |IP2 =
- " Conversioh mode “--Memory mode

vl upper | i @
Programming

1 sub-array |

i lower

1 sub-array | | [|L—s—M

Negative™
Path

yyyyy
sub-array.

32

a
Fig. 2: NeuAD(C) hardware implementation. (a) NeuADC Dual-path archi-
tecture; (b) Zoomed on RRAM H X M crossbar array; (c) Inverter VTC.
voltage V.F': of the positive path in Eq. (2) can be derived as
V(fj =1 Wé— Vil + VOI;J‘»J. Here,
955 — 95
2

and V), = ZkHzl(W{}N - Vpp)/ .. Thanks to the
complementary voltage inputs, the effective weight W,g is
a subtraction of two conductances and thus can be negative.
For the proposed conductance subtraction scheme to work,
we need to generate VO{Vj, the complementary version of Volfj,
by flipping the input voltage pair in the negative path.

3)

P _ /PP PN _
Wi =wWEP - whN =

C. VIC-based Activation Function

Modern deep learning methods have shown that many
different forms of NAF can result in successfully-trained
NN [11]. To maximally simplify the circuit implementation
of our proposed NN hardware substrate, we leverage the in-
trinsic voltage transfer characteristics (VTC) curve of native
CMOS logic circuits to perform NAF in the NN computation.
As depicted in Fig. 2(c), VTC exhibits saturation at both ends
of the input range, and can be considered as a flipped-and-
shifted version of a general S-shaped curve, similar to the
commonly-used sigmoid function. To provide flexibility to
the training process, current-starved inverters are used as the
NAF function in the hidden layer, as it allows the VTC curve
to float in a range defined by Vy and V. The synthesizable
comparators implemented with a 3-input NAND gate [2],
[14] are used in the output layer to perform digitalization.
Both the inverter and the 3-input NAND comparator are
scalable and synthesizable, and thus they significantly reduce
the design complexity and facilitate design automation.

IV. TRAINING FRAMEWORK

A. Learning Objective

The input-output relationship of the NeuADC circuit is
modeled as a MLP with a single hidden layer:

h= Ll(‘/z’rﬁ 01)7 h = O—VTC(h); b= LQ(h§ 92); b= T(b) 4)
Here, V;,, is the scalar input signal and b is the output bit-
vector. i denotes voltages at the output of the crossbar array
before the hidden neuron, and is modeled as a linear function
L of V;,, with learnable parameters 61, which corresponds to

the crossbar conductances. voltages are passed through the
inverters acting as the NAF, whose input-output relationship
is modeled by VTC curve oyc(-), to yield the vector h. The
linear function Ly models the second layer of the crossbar to
produce another vector b. The output bit-vector b is obtained
by zero-thresholding b.

The learning objective is to find optimal 61, 6 such
that for all values of V;, in the input range, NeuADC
yields the corresponding bit-vectors b equal or close to the
desired “ground-truth” vectors bg;. Hence, a cost function is
defined to measure the discrepancy between the predicted
b and true bg;. Note that b in Eq. (4) is non-differentiable,
which prevents propagating gradients to 61, 65. Therefore,
we define the differentiable cost C' (b, ber) in terms of the un-
thresholded bit-vector b. Now, given a set {V;! , b}, of pairs
of signal and bit-vector values, the training can be formally
expressed as solving the following optimization problem:

[01,2] = argmin Y _ C(La(ovie(L1(Vi, 01)), 02),bL,) (5)
t

B. Circuit Model for Training

Eq. (4) and (5) provide a sketch of how the training is
formulated. To better reflect the hardware substrate behavior,
we employ a more detailed circuit model in the training
process. The first layer in our crossbar model has dual paths,
each with H outputs. We denote these outputs as vectors p
and 72, with h = [p7, 7T]T being a 2H dimensional vector.
Then we define the linear relationship L; between these
outputs as

p=WiVin + V1,
which is equivalent to
p = max(0, W1)V;,, + max(0, —W1)(Vpp
— Vm) + (V1 — maX(O, *Wl)VDD>
7 = max(0, —W1) Vi, + max(0, W1)(Vbp
—Vin) + Vbp — Vi —max(0, W1)Vpp)

n=Vpp—p (6)

)

Here, the learnable parameters are 6; = {Wj,V;}, where
W1 and Vi are both H dimensional vectors. Additionally,
since parameters in these models have real physical meanings
as voltages and conductances, they have to abide by the
following feasibility constraints on W; and V;:

o<V — maX(O, *Wl) X Vpp

< Vpp x (1. — abs(W7))

0< VDD — Vi — max(O, —Wl) X VDD

<Vpp X (1 — abs(Wl))

oyrc 18 linearly interpolated between the sampled points of
the VTC using SPICE simulation to ensure both the value
and the gradient exist for any input to oyc.. The Lo function
maps the inverter outputs p = oyic(p) and n = oye(n)
to the un-thresholded bit vector b as b = max (0, Wa)(p —
Vem,o) +max(0, =W2)(n — Vem,0) + Va. Here, the learnable
parameters are 0o = {Ws,V5}, where Wy is an M x H
matrix and V5 is an M-dimensional vector, with M the
number of the output bits. Note that the hidden activations
p and n are defined after subtracting the mid-point voltage

®)

——2—2-Original singal
Reconstructed
signal

Smooth Code
(6 bits for 2“levels)

=/

012345867 8 9101112131415 Smooth Encoding: 8-16-bit,48 Hidden Units: ENOB = 7.98
(a) (b)
Fig. 3: Proposed smooth codes illustration. (a) Transition of different bits in
our proposed smooth codes; (b) Example of reconstructed waveform from
NeuADC outputs trained with smooth codes.

Vem,o of the inverter output range, because it leads to more
stable training.

C. Bit Encoding and Decoding Scheme
Standard binary encoding is a straightforward way to
define the “ground-truth” vectors bg;:

Vmin

M Vi
2i=1.p = d 2 Tmim oM g 9
; 6T roun (Vmaw - Vmin . ()) ()

where V,,;, and V., are the minimum and maximum
values of the scalar input signal. However, we find that
a good NN approximation for the standard binary-encoded
ADC is difficult to obtain with limited hidden neurons due
to the high-frequency target function for the LSB (least
significant bit), which must change signs 2™ times in the
input range. Moreover, errors in the significant bits can cause
large deviations in the reconstructed signal.

To address this problem, we propose training with more
redundant “smooth” A — B codes that replace an A-bit
binary encoding with B > A bits, where each of the 24
levels is represented with B-bit unique codewords with two
properties: 1) only one bit changes between subsequent levels
(similar to Gray code); and 2) bit flips are minimized. This
leads to a smoother bit-encoding with fewer transitions as
shown in Fig. 3(a). Fig. 3(b) illustrates the high fidelity of
signal reconstruction achieved by NeuADC circuits trained
with the proposed smooth encoding. Given a target bit-vector
ber for each V;, defined by the smooth encoding, our cost
function for training can be set to the cross-entropy loss
commonly used for classification:

M
C(b,ber) = Y beri log(1+ ")+

=1
(1 — ber;) log(1 + eb)]2

We use the square of the sum of the cross-entropy losses
for individual bits to engineer a higher penalty for multiple
bit errors in the same bit-vector. We apply a decoding scheme
to calibrate deviations in the learned mapping after training,
where the learned parameters are used to compute the set
{Vit bt} for a finely sampled set of values V;,,. We construct
a lookup table that maps an encoded b to an estimated V/
based on V;/ = Mean{V}}, : Vb* = b}.

(10)

D. Hardware-oriented Training

We are able to train the parameters using stochastic
gradient descent [9] following the learning objective and
the differentiable cost C'(b, bs;) defined earlier. The parame-
ters 01,02 are initialized randomly and updated iteratively
based on the gradients computed by the mini-batches of

Positive Path Positive Path
Voo —
% U % u % U Extra branch to
V —j— Extra branch to P o =l >y construct bias
'bD U U] % % % %
b1 9bj 9bH construct bias H
Vi g, v
Fal Vin = 5 Y > |2 VARG Fe
S| 85 %gm %gs,, %gsﬁ S.|S3 i1
53|58 53/ 53
€ £ = o = £ >
AR Vil PDo—"—w S5l 53 VEAD>——
S| 3c A a®| ac 0
=8| &g D | 28] EE i
8 8 ® Woo-Vin m 8 |38 vl m
91 gl g v ==
0 Zee Lo V'}l, : g Gskj
m i m
o 955 g\b‘,,,\‘ Extra branch to) o
construct bias 0 % L % L % &L Exira branch to
Ov1 Objj 9bm
construct bias
(a) (b)

Fig. 4: Hardware model to map with training model. (a) Crossbar array for
the first layer; (b) Crossbar array for the second layer.

{(Vin,ber)} pairs sampled from the input range. To enforce
the feasibility constraints on 6; specified in Eq. (8), we
clip the positive and negative path biases (the third term
in Eq. (7)) to match Eq. (8), so that the final layer does
not learn to depend on an infeasible combination of inputs
in each iteration of training. Moreover, we periodically clip
values of W to the feasible set between [-0.5,0.5] and scale
V1 accordingly every 256 iterations.

This hardware-oriented training procedure allows us to
confine the trained weight and bias parameters within the
feasible range for circuit instantiation. To realize the precise
trained bias, we add an extra row (word line) in the RRAM
crossbar in both the hidden layer and the output layer as
illustrated in Fig. 4. We instantiate the biases in Eq. (7) by
providing the supply voltage Vpp as an input, in addition
to the signal inputs V;,, and Vpp — V;,,. For instance, for
each output of the positive path, i.e., p;, i € {1,... H}, we
denote g;, g, gi/;, and g/, as the conductances connecting
the output to Vin, Vbp — Vm, the supply Vpp and GND
as illustrated in Fig. 4(a). The conductance values can be
calculated from the learned weights W, and V; as

95 = C1 x max(0, W1 ;)
gé:,j = Cl X max((), —Wl’j)
g{,{j =C1 X (V1 — max(O, *Wl) X VDD)/VDD

L _ U L U
9bj = C1 =955 = 95 = 9b,;

(1)

where C = ggj + gSL,j + gl[,{j + gl{jj is a scaling factor to
bring the RRAM conductances within a reasonable range.
The process is repeated to instantiate the conductances for
the negative path in the first layer. For the second layer, we
adopt a similar strategy by first normalizing both W5 and V5
proportionally so that the sum of the positive and negative
values across all columns is less than 1.

E. Quantization Schemes

The same training framework can be extended beyond a
normal linear uniform quantization scheme to learn parame-
ters for other quantization schemes, to reflect the desired pre-
cision for specific applications. To accommodate alternative
schemes, the only update needed is changing the definition of
ber in Eq. (9) by using a function of V;,, instead of V;,, itself.
We can use Vjy, 104 = c-loga(a- Vi, +b)+d instead of V;,, for
logarithmic quantization, and V;;, sq = c+/a - Vi, + b+d for
square-root quantization. Here, a, b, ¢, and d are the desired
application-specific quantization parameters.

V. EXPERIMENTAL METHODOLOGY
A. Experiment Configurations

Training setup: The NeuADC NN model is trained via
related techniques in [16] and stochastic gradient descent
with the Adam optimizer [9] using TensorFlow. The batch
size is 4096, and the projection step is performed every 256
iterations. We train for a total of 5.12x10* iterations (except
for certain smooth codes that converge much faster), varying
the learning rate from 1073 to 10~* across the iterations.

Technology model: We use the HfOx-based RRAM de-
vice model [5], [6], [8] to simulate the crossbar array. We

consider the finite conductance/resistance resolution of the
RRAM weight cells, and present the evaluation results in
Sec. VI. The transistor model is based on a standard 130nm
CMOS technology. The inverters, output comparators, and
transistor switches in the RRAM crossbars are simulated with
the 130nm model using Cadence Spectre.

B. Synthesis Flow

Fig. 5 illustrates our automated synthesis flow for the
NeuADC circuits which consists of three phases.

Characterization phase: First, characterization at the
basic device and circuit level is performed by a SPICE sim-
ulator — Cadence Spectre in our case, to extract the CMOS
inverter and 3-input NAND comparator VTC curve and the
RRAM conductance distributions. The characterization data
are then fed to the training framework.

Training phase: The NN model of the NeuADC circuits
can be fully captured by a group of hyper-parameters (H,
Npg, Ng). H denotes the number of hidden neurons. Np,
Ng denote the number of binary bits and the number of
smooth bits. Given the desired ADC resolution, the ground
truth datasets can be generated according to the desired ADC
quantization and are used to train the MLP. The training
iterations are monitored to ensure the convergence of the
learning objective, and the reconstruction quality is verified
at the end of each training. If the reconstructed signals match
well with the labeled ground-truth signals, the trained model
parameters (W1, Vi, Wa, V3) are saved for later verification
using SPICE simulation. Otherwise, hyper-parameters are
updated for retraining until satisfactory performance is met.

Verification phase: The SPICE netlist of NeuADC is
automatically synthesized according to the trained model
parameters (W1, Vi, Wa, V5). The synthesis script instan-
tiates the device/circuit design parameters, such as RRAM
conductance and inverter sizes, to perform circuit-level sim-
ulation for verification. A comprehensive sets of circuit
analysis are performed to rigorously evaluate and verify
the performance of the synthesized NeuADC circuits. In
our experiment, typical ADC metrics, such as the effective
number of bits (ENOB), differential non-linearity (DNL),
integral non-linearity (INL), and different ADC figures-of-
merit (FoM) are used for the evaluation and verification.

VI. EXPERIMENTAL RESULTS

A. Signal Reconstruction
First, we illustrate the reconstruction ability of NeuADC
under three different quantization schemes in Fig. 6(a). For

ADC
Design Goal,

Comparison
] DNLT INC

DBFS T SNDR
——| Model - _
selection

metric
(H‘NE,Ns)l

SPICE Simulator ‘ SPICE Simulator

(Cadence Spectre) 0 (Cadence Spectre)

RRAM precision

Off-line Training Trained {Hsynnesis nevit

(TensorFlow) Parameters i i
ittt Synthesis Script
{} Z : (Python)

\No Yes t
Target Met? >— SPICE
template

RRAM device| |CMOS device
model model

Characterization

Phase
Training Verification
Phase Phase

Fig. 5: The automated NeuADC design flow.

each quantization scheme, we reconstruct the signal using
the decoding scheme in Sec. IV-C. The reconstructed signals
(labeled as log, square-root and linear) match well with the
original signal, shown in yellow, under different schemes,
demonstrating that NeuADC can perform high-fidelity sig-
nal reconstruction with multiple reconfigurable quantization
support using exactly the same hardware substrate.

B. ADC Metric Evaluation

Second, we evaluate the performance of our proposed
NeuADC across a range of ADC metrics and against both
state-of-the-art and alternative synthesizable ADC designs.
Table. I summarizes the ENOBs that can be obtained with
different NeuADC designs. We report ENOB based on its
standard definition ENOB=(SNDR-1.76)/6.02, where the
signal to noise and distortion ratio (SNDR) is measured from
NeuADC'’s output spectrum. Note that NeuADC is able to
achieve close to ideal ENOB with a modest number of hidden
and output neurons at 6, 7, and 8-bit. We then choose a
specific NeuADC model (8—16 bits, 48 hidden units) as
an example to report other representative metrics based on
SPICE simulation. As shown in Fig. 6(b), the worst DNL and
INL are -0.42LSB and -0.81LS B, well within the range of
conventional linearity requirements. Fig. 6(c) exhibits —0.5
decibels relative to full scale (dBFS) of a 76.33M H z input
with an SNDR of 49.68dB. Fig. 6(d) shows the linear trend
of SNDR with changing input amplitude. Fig. 6(e) plots
the SNDR degradation with signal frequency, verifying the
bandwidth of the 8-bit NeuADC is well above 150M H z.
All these metrics suggest good static and dynamic behaviors
of our NeuADC circuits based on SPICE simulations.

We evaluate another 6-bit NeuADC model (6—8 bits,
12 hidden units) following similar methods, and the metric
evaluation results are summarized in Table. II, together with
comparative data for previously-published ADC designs.
ISSCC14 represents the state-of-the-art manually-designed
ADC [12], and Sto1 [2], Sto2 [14] are two representative syn-
thesizable stochastic flash ADCs. NeuADC not only delivers
superior performance at much higher sampling frequencies
than the alternative synthesizable ADCs, but it can also
achieve competitive FoMs comparable to those of the state-
of-the-art ADC with an automated design flow.

C. Robustness Against Finite RRAM Precision
Previous work has shown that RRAM can be programmed
to different resistance precisions, ranging from 6-bit to 12-

104 go 5 DNL=02170.42LSB | - 0 {r.z76 saurs 2 #
Sos 4 3 w Fs=303.1MHz 40 -
_50 . JI2..) 50_3NDR=49.68dB B 50t
506 1 | |5955 50 160 180200250 © x
2041 - Digital codes 2 g
@ = —
g @ 0.5{ INL=0.02/-081LSB | &40 © 49
20.2 4 3o 2)
€| Log |5-0.5 WW
, - Sq'uare-root' - Linea}r z . T T 0 48
0 02 04 06 08 10 0 50 100 150 200 250 0.05 0.1 015 -60 -50 -40 -30 20 -10 0 0 0.15 0.3
Vin (V) Frequency (GHz) Input amplitude (dBFS) Input frequency (GHz)

Digital codes
(b)

(a)

(c) (d) (e)

Fig. 6: (a) 6—8 bits, 12 hidden units NeuADC multi-quantization example. (b)-(e) are the simulated metrics of 8—16 bits, 48 hidden units NeuADC.
(b) DNL and INL; (c) Output spectrum with a -0.5d BF'S, 76.33M Hz input, 303.1M H z sampling rate; (d) Linear SNDR trend with increasing input

amplitudes; (e) SNDR trend with increasing input frequency.

TABLE I. Learned performance of NeuADC with Smooth Encodings
measured by ENOB.
[#Bits [#Hidden | ENOB |

[#Bits [# Hidden | ENOB |

6— 8 12 5.95 7— 15 16 7.00
6— 8 16 5.98 8— 16 48 7.98
7— 15 12 6.91 8— 16 64 7.99
TABLE II: Performance Comparison.
ISSCC14’ [12] Stol [2] Sto2 [14] This work
Supply Voltage(V') 1.1 1.3 1.2 1.2
Technology(nm) 40 180 90 130
Area(mm?) 0.052 0.43 0.18 0.005/0.04
Power(mW) 27.4 0.631 34.8 18/30
fs(S/s) 22G 8M 021G 1G/300 M
BW (H=z) 1.1G 4M 105M 0.5G/150 M
Resolution(bits) 7 6 6 6/8
ENOB(bits) 5.94 5.28 5.08 5.95/7.96
FOMw (fJ/c)? 205.7 1970 3255 291/401
FOMg(dB) 143.4 132 121 141.8/149
Auto. Synthesis? No Yes Yes Yes
Reconfigurable? No No No Yes

A FOMy, = P/(2ENOB | ¢,y Walden FoM. Smaller is better. P is power.
Y FOMg = SNDR + 10 - log(BW/ P)). Schreier FoM. Larger is better.

bit when employed in RRAM-based NN accelerators [5],
[6], [13]. Taking finite RRAM precision into consideration,
we examine how the ENOBs of different NeuADC designs
may vary with RRAM resistance precisions, as presented in
Fig. 7. We observe that generally (B+1)-bit RRAM resis-
tance precision is sufficient to achieve a target resolution of
B-bit. Another finding is that NeuADC designs using more
hidden or output neurons exhibit more robustness against
the precision degeneration, suggesting a trade-off between
robustness and resources/redundancy.

VII. CONCLUSION

We present NeuADC — a novel automated design ap-
proach for synthesizable A/D conversion with reconfigurable
quantization support using the same hardware substrate.
Inspired by NN, NeuADC is built upon a general NN
hardware substrate enabled by a novel dual-path mixed-
signal RRAM crossbar architecture. The design parameters
are “learned” through NN training. We exploit a new smooth
encoding scheme to improve the training accuracy and de-
velop hardware-oriented circuit models and constraint formu-
lations in the training process. The entire synthesis process
of NeuADC can be automated without human designers
in the loop. Comprehensive ADC performance metrics are
evaluated using circuit-level SPICE simulation. The results
demonstrate that our automatically-synthesized NeuADC can
indeed be reconfigured for different quantization schemes
with high-fidelity reconstruction and achieve performance
comparable to state-of-the-art ADCs despite limited RRAM
resistance precision.

6 7 77| 8&[== se~24n80
— = —— S8-7aned
=5 =6 &7 s8~16h48 |
= 2 2
[2a] [24]
84 3s 8
& —— s6-24nag || & &5
—— s7-24h32
’ e :0e 25) DA ==l , e
—— 8 sH-15h16
6 7 8 9 10 5 6 8 9 10 5 6 7 9 10
RRAM Resistance RRAM Resistance RRAM Resistance

Precision (bits) Precision (bits) Precision (bits)
(a) (b) (c)

Fig. 7: Performance degradation for different NeuADC designs with de-
creasing RRAM resistance precision. (a) 6-bit models; (b) 7-bit models; (c)
8-bit models.

ACKNOWLEDGEMENT

This work was partially supported by the National Science
Foundation (CNS-1657562).

REFERENCES

[1] AJ. Annema et al, “Analog Circuits in Ultra-Deep-Submicron CMOS,”
IEEE JSSC, vol. 40, no. 1, pp. 132-143, 2005.

[2] S. Weaver et al, “Stochastic Flash Analog-to-Digital Conversion,”
IEEE TCAS-I, vol. 57, no. 11, pp. 2825-2833, 2010.

[3] B. Xu et al, “A scaling compatible, synthesis friendly VCO-based
delta-sigma ADC design and synthesis methodology,” in IEEE/ACM
DAC, 2017, pp. 1-6.

[4] L. Robert et al, “RedEye: Analog ConvNet Image Sensor Architecture
for Continuous Mobile Vision,” in IEEE/ACM ISCA, 2016, pp. 255-
266.

[5] P. Chi et al, “PRIME: A Novel Processing-in-Memory Architecture
for Neural Network Computation in ReRAM-Based Main Memory,”
in IEEE/ACM ISCA, 2016, pp. 27-39.

[6] B. Li et al, “RRAM-Based Analog Approximate Computing,” IEEE
TCAD, vol. 34, no. 12, pp. 1905-1917, 2015.

[71 Kurt Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Networks, vol. 4, issue. 2, pp. 251-257, 1991.

[8] H. Li et al, “A SPICE Model of Resistive Random Access Memory
for Large-Scale Memory Array Simulation,” IEEE EDL, vol. 35, no.
2, pp. 211-213, 2014.

[9] Kingma et al, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[10] E. Reinhard et al, “Color Transfer Between Images,” IEEE Computer

Graphics and Applications, vol. 21, no. 5, pp. 34-41, 2001.

B. Karlik et al, “Performance Analysis of Various Activation Functions

in Generalized MLP Architectures of Neural Networks,” IJAE, vol. 1,

no. 4, pp. 111-122, 2011.

[12] M. Miyahara et al, “A 2.2GS/s 7b 27.4mW time-based folding-
flash ADC with resistively averaged voltage-to-time amplifiers,” IEEE
ISSCC, 2014, pp. 388-389.

[13] M. Prezioso et al, “Training and operation of an integrated neuromor-
phic network based on metal-oxide memristors,” Nature, vol. 521, no.
7550, pp. 61-64, 2015.

[14] S. Weaver et al, “Digitally synthesized stochastic flash adc using only
standard digital cells,” IEEE TCAS-I, vol. 61, no. 1, pp. 84-91, 2014.

[15] F. Bedeschi et al, “A bipolar-selected phase change memory featuring
multi-level cell storage,” IEEE JSSC, vol. 44, no. 1, pp. 217-227, 2009.

[16] X. He et al, “AxTrain: Hardware-Oriented Neural Network Training
for Approximate Inference,”ISPLED, 2018.

(1]

