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Abstract— Traditional analog-to-digital converters (ADCs)
employ dedicated analog and mixed-signal (AMS) circuits
and require time-consuming manual design process. They also
exhibit limited reconfigurability and are unable to support
diverse quantization schemes using the same circuitry. In this
paper, we propose NeuADC — an automated design approach
to synthesizing an analog-to-digital (A/D) interface that can
approximate the desired quantization function using a neural
network (NN) with a single hidden layer. Our design leverages
the mixed-signal resistive random-access memory (RRAM)
crossbar architecture in a novel dual-path configuration to
realize basic NN operations at the circuit level and exploits
smooth bit-encoding scheme to improve the training accuracy.
Results obtained from SPICE simulations based on 130nm
technology suggest that not only can NeuADC deliver promising
performance compared to the state-of-art ADC designs across
comprehensive design metrics, but also it can intrinsically
support multiple reconfigurable quantization schemes using
the same hardware substrate, paving the ways for future
adaptable application-driven signal conversion. The robustness
of NeuADC’s quantization quality under moderate RRAM
resistance precision is also evaluated using SPICE simulations.

I. INTRODUCTION

Advanced technology scaling with lower supply voltage

results in reduced intrinsic device gain, decreased signal

swing, and aggravated device mismatch, making it more

difficult to design scalable analog and mixed-signal (AMS)

circuits [1], [2], [14]. As the quintessential example of

an AMS circuit, the omnipresent analog-to-digital converter

(ADC) faces the same design challenges when migrating to

smaller highly-scaled technology nodes [2]. Traditional ADC

circuits often require significant manual design iterations and

re-spins to meet the desired performance specifications for a

new process. Previous research has explored synthesizable

and scalable ADC topologies to automate this expensive

and time-consuming design process [2], [3]. One example

is stochastic flash ADCs that make use of the intrinsic input

offsets of minimum-sized digital comparators [2]. However,

stochastic ADCs require a large number of hardware re-

sources (∼3840 comparators) and work only at relatively

modest sampling rate (∼8MS/s) and resolution (∼5.3-bit).

Another example is synthesis-friendly time-domain delta-

sigma ADCs [3], but they still require manual modifications

of a standard cell and designer knowledge for floor-planning.

In addition to the design automation challenge, ADCs also

face new demands from many emerging applications [4]–[6].

For example, in-memory computation in the analog domain

using non-volatile memory (NVM) arrays has been proposed

to accelerate neural network (NN) inference and training

for deep learning applications [5], [6], where ADCs play

a critical role at the A/D interface, yet little work specifi-

cally addresses NVM-compatible scalable ADC designs. The

ability to support a flexible quantization scheme is another

desirable ADC property that can benefit a variety of sensor

frontend interfaces [4]. For instance, image sensors require

logarithmic or square-root quantizations to realize a uniform

distribution of exposure [10], instead of the uniform linear

quantization implemented in standard ADCs. A reconfig-

urable ADC that can support different quantization schemes

obviates the need to perform Gamma correction later in

the digital domain, saving power and improving the energy

efficiency of the backend image signal processor (ISP).

In this paper, we propose NeuADC — a novel design

approach for synthesizable ADCs that addresses the afore-

mentioned imminent challenges facing the traditional ADC

design paradigm. Inspired by NN, NeuADC is founded on

a deep learning framework and implemented using mixed-

signal RRAM crossbar architecture. We consider RRAM,

a promising NVM technology [5], [6], [8], [13], a perfect

testbed to demonstrate the scalable and portable features

of our method. We reformulate the ADC design as a NN

learning problem, where the learning objective is to ap-

proximate multiple desirable quantization functions for A/D

conversion. This approach allows us to take advantage of

many training techniques developed for deep learning and

seamlessly incorporate them into ADC design automation.

Key innovations and contributions of this paper are:

• NeuADC transforms traditional ADC design into a

learning problem and enables the development of an

automated design flow to synthesize ADC circuits.

Our novel design approach opens new opportunities to

employ learning techniques in AMS design automation.

• We propose a new dual-path RRAM crossbar architec-

ture to facilitate the mixed-signal vector matrix mul-

tiplication (VMM) required by NeuADC in a scaling-

compatible manner, along with an inverter voltage trans-

fer characteristics (VTC) based activation function to

implement the nonlinear activation function (NAF).

• We explore several hardware-oriented training tech-

niques to account for device and circuit level charac-

teristics and non-idealities in NeuADC design.

• We present SPICE simulation results that validate the

competitive performance of our proposed NeuADC and

its ability to support multiple reconfigurable quanti-

zation schemes. Robustness against RRAM resistance

variation is also evaluated.
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Fig. 1: Conceptual illustration of the proposed NeuADC design methodol-
ogy. (a) Conventional flash ADC architecture. (b) Proposed NeuADC hard-
ware substrate. (c) Proposed training framework that takes ideal quantization
datasets as inputs during off-line training to find the optimal set of weights
and derive the RRAM resistances in order to minimize the cost function
and best approximate the desirable quantization function.

II. DESIGN METHODOLOGY OVERVIEW

The cornerstone of our proposed design methodology is

the universal approximation theorem [7] that proves a feed-

forward NN with a single hidden layer, also known as

a multi-layer perceptron (MLP), can approximate arbitrary

complex functions. Coincidentally, an ideal ADC performs

the mathematical transformation that quantizes the input

analog value to its output bit representation. Therefore, if

a NN can be trained to approximate the same, though

highly nonlinear, input/output mapping of an ADC, then it is

possible to construct a synthesizable ADC by implementing

the trained NN in mixed-signal hardware.

Fig. 1 illustrates this basic concept and contrasts NeuADC

with the conventional design method. The architecture of a

conventional flash ADC is shown in Fig. 1(a). It relies on

ideal comparators to obtain the desirable uniform staircase

quantization function. Unfortunately, real circuits do not

behave as ideal comparators, and their designs require expert

knowledge, preventing automated synthesis. Our proposed

NeuADC overcomes these difficulties with two integrated

elements in its design methodology — a general NN hard-

ware substrate and a hardware-oriented training framework,

as illustrated in Fig. 1(b) and (c). The general NN hardware

substrate performs NN operations, such as VMM and NAF,

in the AMS domain. It is implemented using a dual-path

RRAM crossbar architecture, whereas the off-line training

framework learns the appropriate design parameters for the

NN hardware substrate to approximate the desirable quanti-

zation behavior of an ADC. The overall design process can

be summarized in four steps: 1© the behavior of the hardware

substrate is modeled as a MLP; 2© the training datasets

based on the desirable quantization function are fed to

the optimization algorithm, along with customized objective

functions and constraints to accurately reflect the hardware

characteristics of the underlying circuits; 3© NN weights are

iteratively trained through backpropagating the output errors;

4© the off-line-trained weights are used to instantiate the

corresponding design parameters in the hardware substrate.

Details of the hardware substrate design and the training

framework development are presented in Sec. III and Sec. IV.

III. HARDWARE SUBSTRATE

Fig. 2(a) presents the overall architecture of NeuADC’s

general NN hardware substrate to realize a three-layer MLP.

We use RRAM crossbar arrays and static CMOS inverters at

each layer to perform VMM and NAF operations. The input

analog signal represents the single “place holder” neuron in

MLP’s input layer, therefore the weight matrix dimensions

are 1×H between the input and the hidden layer and H×M
between the hidden and the output layer, assuming there are

H and M neurons in the hidden and output layers.

A. RRAM Crossbar Array

Fig. 2(b) zooms on a RRAM crossbar array of positive

path. The 1 × H complementary input vector represented

by input voltages Vi,1 to Vi,H are fed to each row on the

word lines (WL), and each element in the weight matrix

is stored as the conductance of the RRAM device in each

weight cell. The weight cell consists of one transistor and

one RRAM device (1T1R) and can operate in both compute

mode and program mode. In compute mode, the transistor is

turned on and the RRAM crossbar performs the analog VMM

computation by summing the currents on the shared bit line

(BL). In program mode [15], the conductance of the RRAM

is set to the desirable weight by the programming circuits

(PC) and the address decoders (AD-DEC). The proposed

RRAM crossbar differs from designs in previous work [5],

[6] in eliminating operational amplifiers and analog inverters;

thus it is more scalable and synthesis-friendly.

B. Dual-path Configuration

In order to accommodate negative weights, we propose a

new dual-path configuration such that each NN layer consists

of a positive path and a negative path. Each path uses a

pair of complementary voltages with opposite polarity for

signal representation and two RRAM crossbar sub-arrays to

perform VMM, which we call the upper and the lower sub-

array. We use the positive path crossbar shown in Fig. 2(b)

as an example to explain the dual-path operation. Assume

there are H pairs of complementary inputs:

V P
i,k = Vin,k, V N

i,k = VDD − Vin,k (1)

where VDD is the supply voltage, and k = 1, 2, ..., H . We

represent the output voltages at the crossbar BL on the

positive (negative) path as V P
o,j (V N

o,j), and j = 1, 2, ...,M .

Applying the Thevenin Theorem, the contribution of each

pair of inputs is superimposed to obtain the output BL

voltages:

V P
o,j =

H
∑

k=1

(WPP
kj · V P

i,k +WPN
kj · V N

i,k) (2)

where WPP
kj = gUkj/

∑

, WPN
kj = gLkj/

∑

, and
∑

=
∑H

l=1(g
U
lj+gLlj). The first superscript of WPP

kj denotes which

path the weight belongs to, and the second superscript de-

notes which complementary input the weight acts upon. The

superscript of gUkj denotes which sub-array the conductance

belongs to. By replacing V P
i,k and V N

i,k with Eq. (1), the output
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Fig. 2: NeuADC hardware implementation. (a) NeuADC Dual-path archi-
tecture; (b) Zoomed on RRAM H ×M crossbar array; (c) Inverter VTC.

voltage V P
o,j of the positive path in Eq. (2) can be derived as

V P
o,j =

∑H
k=1 W

P
kj · Vin,k + V P

off,j . Here,

WP
kj = WPP

kj −WPN
kj =

gUkj − gLkj
∑ (3)

and V P
off,j =

∑H
k=1(W

PN
kj · VDD)/

∑

. Thanks to the

complementary voltage inputs, the effective weight WP
kj is

a subtraction of two conductances and thus can be negative.

For the proposed conductance subtraction scheme to work,

we need to generate V N
o,j , the complementary version of V P

o,j ,

by flipping the input voltage pair in the negative path.

C. VTC-based Activation Function

Modern deep learning methods have shown that many

different forms of NAF can result in successfully-trained

NN [11]. To maximally simplify the circuit implementation

of our proposed NN hardware substrate, we leverage the in-

trinsic voltage transfer characteristics (VTC) curve of native

CMOS logic circuits to perform NAF in the NN computation.

As depicted in Fig. 2(c), VTC exhibits saturation at both ends

of the input range, and can be considered as a flipped-and-

shifted version of a general S-shaped curve, similar to the

commonly-used sigmoid function. To provide flexibility to

the training process, current-starved inverters are used as the

NAF function in the hidden layer, as it allows the VTC curve

to float in a range defined by VH and VL. The synthesizable

comparators implemented with a 3-input NAND gate [2],

[14] are used in the output layer to perform digitalization.

Both the inverter and the 3-input NAND comparator are

scalable and synthesizable, and thus they significantly reduce

the design complexity and facilitate design automation.

IV. TRAINING FRAMEWORK

A. Learning Objective

The input-output relationship of the NeuADC circuit is

modeled as a MLP with a single hidden layer:

h̃ = L1(Vin; θ1), h = σVTC(h̃); b̃ = L2(h; θ2), b = T (b̃) (4)

Here, Vin is the scalar input signal and b is the output bit-

vector. h̃ denotes voltages at the output of the crossbar array

before the hidden neuron, and is modeled as a linear function

L1 of Vin with learnable parameters θ1, which corresponds to

the crossbar conductances. h̃ voltages are passed through the

inverters acting as the NAF, whose input-output relationship

is modeled by VTC curve σVTC(·), to yield the vector h. The

linear function L2 models the second layer of the crossbar to

produce another vector b̃. The output bit-vector b is obtained

by zero-thresholding b̃.

The learning objective is to find optimal θ1, θ2 such

that for all values of Vin in the input range, NeuADC

yields the corresponding bit-vectors b equal or close to the

desired “ground-truth” vectors bGT. Hence, a cost function is

defined to measure the discrepancy between the predicted

b and true bGT. Note that b in Eq. (4) is non-differentiable,

which prevents propagating gradients to θ1, θ2. Therefore,

we define the differentiable cost C(b̃, bGT) in terms of the un-

thresholded bit-vector b̃. Now, given a set {V t
in, b

t
GT
}t of pairs

of signal and bit-vector values, the training can be formally

expressed as solving the following optimization problem:

[θ1,2] = argmin
∑

t

C(L2(σVTC(L1(V
t
in, θ1)), θ2), b

t
GT
) (5)

B. Circuit Model for Training

Eq. (4) and (5) provide a sketch of how the training is

formulated. To better reflect the hardware substrate behavior,

we employ a more detailed circuit model in the training

process. The first layer in our crossbar model has dual paths,

each with H outputs. We denote these outputs as vectors p̃
and ñ, with h̃ = [p̃T , ñT ]T being a 2H dimensional vector.

Then we define the linear relationship L1 between these

outputs as

p̃ = W1Vin + V1, ñ = VDD − p̃ (6)

which is equivalent to

p̃ = max(0,W1)Vin +max(0,−W1)(VDD

− Vin) + (V1 −max(0,−W1)VDD)

ñ = max(0,−W1)Vin +max(0,W1)(VDD

− Vin) + (VDD − V1 −max(0,W1)VDD)

(7)

Here, the learnable parameters are θ1 = {W1, V1}, where

W1 and V1 are both H dimensional vectors. Additionally,

since parameters in these models have real physical meanings

as voltages and conductances, they have to abide by the

following feasibility constraints on W1 and V1:

0 ≤ V1 −max(0,−W1)× VDD

≤ VDD × (1.− abs(W1))

0 ≤ VDD − V1 −max(0,−W1)× VDD

≤ VDD × (1.− abs(W1))

(8)

σVTC is linearly interpolated between the sampled points of

the VTC using SPICE simulation to ensure both the value

and the gradient exist for any input to σVTC. The L2 function

maps the inverter outputs p = σVTC(p̃) and n = σVTC(ñ)
to the un-thresholded bit vector b̃ as b̃ = max(0,W2)(p −
Vcm,o)+max(0,−W2)(n−Vcm,o)+V2. Here, the learnable

parameters are θ2 = {W2, V2}, where W2 is an M × H
matrix and V2 is an M -dimensional vector, with M the

number of the output bits. Note that the hidden activations

p and n are defined after subtracting the mid-point voltage
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Vcm,o of the inverter output range, because it leads to more

stable training.

C. Bit Encoding and Decoding Scheme

Standard binary encoding is a straightforward way to

define the “ground-truth” vectors bGT:
M
∑

i=1

2i−1 · bGTi = round

(

Vin − Vmin

Vmax − Vmin
× (2M − 1)

)

(9)

where Vmin and Vmax are the minimum and maximum

values of the scalar input signal. However, we find that

a good NN approximation for the standard binary-encoded

ADC is difficult to obtain with limited hidden neurons due

to the high-frequency target function for the LSB (least

significant bit), which must change signs 2M times in the

input range. Moreover, errors in the significant bits can cause

large deviations in the reconstructed signal.

To address this problem, we propose training with more

redundant “smooth” A → B codes that replace an A-bit

binary encoding with B > A bits, where each of the 2A

levels is represented with B-bit unique codewords with two

properties: 1) only one bit changes between subsequent levels

(similar to Gray code); and 2) bit flips are minimized. This

leads to a smoother bit-encoding with fewer transitions as

shown in Fig. 3(a). Fig. 3(b) illustrates the high fidelity of

signal reconstruction achieved by NeuADC circuits trained

with the proposed smooth encoding. Given a target bit-vector

bGT for each Vin defined by the smooth encoding, our cost

function for training can be set to the cross-entropy loss

commonly used for classification:

C(b̃, bGT) = [

M
∑

i=1

bGTi log(1 + e−b̃i)+

(1− bGTi) log(1 + eb̃i)]2

(10)

We use the square of the sum of the cross-entropy losses

for individual bits to engineer a higher penalty for multiple

bit errors in the same bit-vector. We apply a decoding scheme

to calibrate deviations in the learned mapping after training,

where the learned parameters are used to compute the set

{V t
in, b

t} for a finely sampled set of values Vin. We construct

a lookup table that maps an encoded b to an estimated V ′

b

based on V ′

b = Mean{V t
in : ∀bt = b}.

D. Hardware-oriented Training

We are able to train the parameters using stochastic

gradient descent [9] following the learning objective and

the differentiable cost C(b̃, bGT) defined earlier. The parame-

ters θ1, θ2 are initialized randomly and updated iteratively

based on the gradients computed by the mini-batches of
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{(Vin, bGT)} pairs sampled from the input range. To enforce

the feasibility constraints on θ1 specified in Eq. (8), we

clip the positive and negative path biases (the third term

in Eq. (7)) to match Eq. (8), so that the final layer does

not learn to depend on an infeasible combination of inputs

in each iteration of training. Moreover, we periodically clip

values of W1 to the feasible set between [-0.5,0.5] and scale

V1 accordingly every 256 iterations.

This hardware-oriented training procedure allows us to

confine the trained weight and bias parameters within the

feasible range for circuit instantiation. To realize the precise

trained bias, we add an extra row (word line) in the RRAM

crossbar in both the hidden layer and the output layer as

illustrated in Fig. 4. We instantiate the biases in Eq. (7) by

providing the supply voltage VDD as an input, in addition

to the signal inputs Vin and VDD − Vin. For instance, for

each output of the positive path, i.e., p̃i, i ∈ {1, . . . H}, we

denote gUs,i, g
L
s,i, g

U
b,i, and gLb,i as the conductances connecting

the output to Vin, VDD − Vin, the supply VDD and GND
as illustrated in Fig. 4(a). The conductance values can be

calculated from the learned weights W1 and V1 as

gUs,j = C1 ×max(0,W1,j)

gLs,j = C1 ×max(0,−W1,j)

gUb,j = C1 × (V1 −max(0,−W1)× VDD)/VDD

gLb,j = C1 − gUs,j − gLs,j − gUb,j

(11)

where C1 = gUs,j + gLs,j + gUb,j + gLb,j is a scaling factor to

bring the RRAM conductances within a reasonable range.

The process is repeated to instantiate the conductances for

the negative path in the first layer. For the second layer, we

adopt a similar strategy by first normalizing both W2 and V2

proportionally so that the sum of the positive and negative

values across all columns is less than 1.

E. Quantization Schemes

The same training framework can be extended beyond a

normal linear uniform quantization scheme to learn parame-

ters for other quantization schemes, to reflect the desired pre-

cision for specific applications. To accommodate alternative

schemes, the only update needed is changing the definition of

bGT in Eq. (9) by using a function of Vin instead of Vin itself.

We can use Vin,log = c·log2(a·Vin+b)+d instead of Vin for

logarithmic quantization, and Vin,sq = c ·
√
a · Vin + b+d for

square-root quantization. Here, a, b, c, and d are the desired

application-specific quantization parameters.



V. EXPERIMENTAL METHODOLOGY

A. Experiment Configurations

Training setup: The NeuADC NN model is trained via

related techniques in [16] and stochastic gradient descent

with the Adam optimizer [9] using TensorFlow. The batch

size is 4096, and the projection step is performed every 256

iterations. We train for a total of 5.12×104 iterations (except

for certain smooth codes that converge much faster), varying

the learning rate from 10−3 to 10−4 across the iterations.

Technology model: We use the HfOx-based RRAM de-
vice model [5], [6], [8] to simulate the crossbar array. We

consider the finite conductance/resistance resolution of the

RRAM weight cells, and present the evaluation results in

Sec. VI. The transistor model is based on a standard 130nm

CMOS technology. The inverters, output comparators, and

transistor switches in the RRAM crossbars are simulated with

the 130nm model using Cadence Spectre.

B. Synthesis Flow

Fig. 5 illustrates our automated synthesis flow for the

NeuADC circuits which consists of three phases.

Characterization phase: First, characterization at the

basic device and circuit level is performed by a SPICE sim-

ulator — Cadence Spectre in our case, to extract the CMOS

inverter and 3-input NAND comparator VTC curve and the

RRAM conductance distributions. The characterization data

are then fed to the training framework.

Training phase: The NN model of the NeuADC circuits

can be fully captured by a group of hyper-parameters (H ,

NB , NS). H denotes the number of hidden neurons. NB ,

NS denote the number of binary bits and the number of

smooth bits. Given the desired ADC resolution, the ground

truth datasets can be generated according to the desired ADC

quantization and are used to train the MLP. The training

iterations are monitored to ensure the convergence of the

learning objective, and the reconstruction quality is verified

at the end of each training. If the reconstructed signals match

well with the labeled ground-truth signals, the trained model

parameters (W1, V1, W2, V2) are saved for later verification

using SPICE simulation. Otherwise, hyper-parameters are

updated for retraining until satisfactory performance is met.

Verification phase: The SPICE netlist of NeuADC is

automatically synthesized according to the trained model

parameters (W1, V1, W2, V2). The synthesis script instan-

tiates the device/circuit design parameters, such as RRAM

conductance and inverter sizes, to perform circuit-level sim-

ulation for verification. A comprehensive sets of circuit

analysis are performed to rigorously evaluate and verify

the performance of the synthesized NeuADC circuits. In

our experiment, typical ADC metrics, such as the effective

number of bits (ENOB), differential non-linearity (DNL),

integral non-linearity (INL), and different ADC figures-of-

merit (FoM) are used for the evaluation and verification.

VI. EXPERIMENTAL RESULTS

A. Signal Reconstruction

First, we illustrate the reconstruction ability of NeuADC

under three different quantization schemes in Fig. 6(a). For

，
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Fig. 5: The automated NeuADC design flow.

each quantization scheme, we reconstruct the signal using

the decoding scheme in Sec. IV-C. The reconstructed signals

(labeled as log, square-root and linear) match well with the

original signal, shown in yellow, under different schemes,

demonstrating that NeuADC can perform high-fidelity sig-

nal reconstruction with multiple reconfigurable quantization

support using exactly the same hardware substrate.

B. ADC Metric Evaluation

Second, we evaluate the performance of our proposed

NeuADC across a range of ADC metrics and against both

state-of-the-art and alternative synthesizable ADC designs.

Table. I summarizes the ENOBs that can be obtained with

different NeuADC designs. We report ENOB based on its

standard definition ENOB=(SNDR-1.76)/6.02, where the

signal to noise and distortion ratio (SNDR) is measured from

NeuADC’s output spectrum. Note that NeuADC is able to

achieve close to ideal ENOB with a modest number of hidden

and output neurons at 6, 7, and 8-bit. We then choose a

specific NeuADC model (8→16 bits, 48 hidden units) as

an example to report other representative metrics based on

SPICE simulation. As shown in Fig. 6(b), the worst DNL and

INL are -0.42LSB and -0.81LSB, well within the range of

conventional linearity requirements. Fig. 6(c) exhibits −0.5

decibels relative to full scale (dBFS) of a 76.33MHz input

with an SNDR of 49.68dB. Fig. 6(d) shows the linear trend

of SNDR with changing input amplitude. Fig. 6(e) plots

the SNDR degradation with signal frequency, verifying the

bandwidth of the 8-bit NeuADC is well above 150MHz.

All these metrics suggest good static and dynamic behaviors

of our NeuADC circuits based on SPICE simulations.

We evaluate another 6-bit NeuADC model (6→8 bits,

12 hidden units) following similar methods, and the metric

evaluation results are summarized in Table. II, together with

comparative data for previously-published ADC designs.

ISSCC14 represents the state-of-the-art manually-designed

ADC [12], and Sto1 [2], Sto2 [14] are two representative syn-

thesizable stochastic flash ADCs. NeuADC not only delivers

superior performance at much higher sampling frequencies

than the alternative synthesizable ADCs, but it can also

achieve competitive FoMs comparable to those of the state-

of-the-art ADC with an automated design flow.

C. Robustness Against Finite RRAM Precision

Previous work has shown that RRAM can be programmed

to different resistance precisions, ranging from 6-bit to 12-
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TABLE I: Learned performance of NeuADC with Smooth Encodings
measured by ENOB.

# Bits # Hidden ENOB

6→ 8 12 5.95

6→ 8 16 5.98

7→ 15 12 6.91

# Bits # Hidden ENOB

7→ 15 16 7.00

8→ 16 48 7.98

8→ 16 64 7.99

TABLE II: Performance Comparison.

ISSCC14’ [12] Sto1 [2] Sto2 [14] This work

Supply Voltage(V ) 1.1 1.3 1.2 1.2

Technology(nm) 40 180 90 130

Area(mm2) 0.052 0.43 0.18 0.005/0.04

Power(mW ) 27.4 0.631 34.8 18/30

fs(S/s) 2.2G 8M 0.21G 1G/300M
BW (Hz) 1.1G 4M 105M 0.5G/150M

Resolution(bits) 7 6 6 6/8

ENOB(bits) 5.94 5.28 5.08 5.95/7.96

FOMW (fJ/c)a 205.7 1970 3255 291/401

FOMS (dB)b 143.4 132 121 141.8/149

Auto. Synthesis? No Yes Yes Yes

Reconfigurable? No No No Yes
a FOMW = P/(2ENOB

· fs). Walden FoM. Smaller is better. P is power.
b FOMS = SNDR + 10 · log(BW/P )). Schreier FoM. Larger is better.

bit when employed in RRAM-based NN accelerators [5],

[6], [13]. Taking finite RRAM precision into consideration,

we examine how the ENOBs of different NeuADC designs

may vary with RRAM resistance precisions, as presented in

Fig. 7. We observe that generally (B+1)-bit RRAM resis-

tance precision is sufficient to achieve a target resolution of

B-bit. Another finding is that NeuADC designs using more

hidden or output neurons exhibit more robustness against

the precision degeneration, suggesting a trade-off between

robustness and resources/redundancy.

VII. CONCLUSION

We present NeuADC — a novel automated design ap-

proach for synthesizable A/D conversion with reconfigurable

quantization support using the same hardware substrate.

Inspired by NN, NeuADC is built upon a general NN

hardware substrate enabled by a novel dual-path mixed-

signal RRAM crossbar architecture. The design parameters

are “learned” through NN training. We exploit a new smooth

encoding scheme to improve the training accuracy and de-

velop hardware-oriented circuit models and constraint formu-

lations in the training process. The entire synthesis process

of NeuADC can be automated without human designers

in the loop. Comprehensive ADC performance metrics are

evaluated using circuit-level SPICE simulation. The results

demonstrate that our automatically-synthesized NeuADC can

indeed be reconfigured for different quantization schemes

with high-fidelity reconstruction and achieve performance

comparable to state-of-the-art ADCs despite limited RRAM

resistance precision.
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