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Abstract—The Neural Sampling Core proposed herein offers
a spintronic device based circuit and learning mechanism uti-
lizing imprecise and stochastic components, similar to biological
brains, to realize ultra-low-power neuromorphic computations at
subthreshold voltages. Leveraging principles from Neural Sam-
pling, a biologically-plausible theory from computational neuro-
science, a spintronic stochastic spiking neuron with digital Post-
Synaptic-Potentials is proposed in conjunction with low-precision
spintronic synapses utilizing a new event-driven Probabilistic
Hebbian Plasticity Rule, and a novel homeostasis mechanism
that balances neural activity across multiple timescales and
process variation effects. The primary computational operation,
the summation of pre-synaptic potentials weighted by their
corresponding synaptic efficacy and the neuron’s homeostatic
parameters, is performed in a parallel analog fashion using
noisy and imprecise subthreshold components. It is demonstrated
herein that the Neural Sampling Core is capable of learning
orientation selectivity, much like the simple cells found in the
visual cortex, in an unsupervised fashion at 311nW per neuron
and 1.9-7.7 nW per active synapse using a 200mV supply voltage.

Index Terms—neuromorphic, process variation, spintronic, un-
supervised learning, homeostasis, subthreshold, neural sampling.

I. INTRODUCTION

RECENT research into Spiking Neural Network (SNN)
hardware has aimed to achieve computational capabili-

ties akin to biological brains, such as inference, at efficiencies
unachievable with Von-Neumann hardware [1]. Several custom
SNN ASICs, such as IBM’s TrueNorth [2] and SpiNNaker
[3] have demonstrated impressive capabilities at very low
power using standard CMOS technology. Furthermore, much
work is being done on developing neuromorphic hardware
utilizing emerging non-volatile devices, such as spintronics
and memristors, to implement primarily synapses [4]–[12], but
also neurons [8]–[13] in compact and energy-efficient designs
when compared to CMOS-only approaches.

An intriguing observation is that biological brains and
nanoscale electronic circuits share characteristics that can
provide insights towards designing circuits and architectures
that can be utilized for biologically-inspired computation with
potential power efficiency comparable to brains. First, the
primary computational structures of biological brains, neurons
and synapses, are highly heterogeneous and imprecise [14],
[15], which is akin to the fact that all manufactured nanode-
vices have behavioral variability arising from Process Variation
(PV), especially CMOS devices operating at subthreshold volt-
ages [16]. Perhaps by designing circuits and architectures that
can adapt to, and even utilize, such heterogeneity while trying

to aggressively lower supply voltages, even greater power
efficiency could be achieved compared to adhering to the strict
design margins and deterministic behaviors that VLSI circuits
are typically designed to realize. Second, the fundamental
mechanisms underlying neural activity, ion channel opening
and closing, is a stochastic process, which leads to stochastic-
ity throughout neural activity [17]. Coincidentally, a promising
framework in computational neuroscience, Neural Sampling,
has theoretically proven that a particular biologically-plausible
model of stochastically spiking neurons in cortical circuit
motifs represent samples from an underlying conditional dis-
tribution that can be used for probabilistic inference [18],
[19]. Therefore, leveraging heterogeneity and stochasticity in
neuromorphic architectures using emerging devices that are
intrinsically stochastic, such as spintronics [8], [9], [13], could
lead to more capable and efficient neuromorphic hardware.

The Neural Sampling Core (NSC) presented herein is
motivated by the ultra-low-power and robust characteristics
of biological neural networks, which utilize stochastic and
heterogeneous components with local learning rules in com-
petitive networks. The NSC is a thrust to mimic the underlying
computational principles of the brain in nanoelectronic circuits
that can realize self-adaptive and low-power neuromorphic
hardware with noisy and imprecise CMOS and spintronic
devices operating at subthreshold voltages.

The following contributions are provided:
1) a stochastic spiking neuron circuit with protracted digital

post-synaptic-potentials realizing behaviors from Neural
Sampling,

2) a low-precision hybrid spintronic-CMOS synapse circuit
with a new event-based Probabilistic Hebbian Plasticity
(PHP) unsupervised learning mechanism, and

3) a novel homeostasis mechanism regulating neural activ-
ity across multiple time-scales and process variations.

The above contributions are integrated into low-power neu-
romorphic hardware approach operating at subthreshold volt-
ages, yet remaining robust to noisy and imprecise components.

The remainder of the manuscript is organized as follows.
Section II delineates the requisite background information on
spintronics, neuromorphic hardware, and Neural Sampling,
which underlies the NSC approach. Section III presents the
NSC and its associated circuits and algorithms. Section IV
details the simulation results, analyzing the unsupervised
learning capabilities, the power consumption of each circuit,
and the effects of input noise. Section V concludes the paper
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and provides future directions towards implementing and im-
proving the NSC. The accompanying Supplementary Material
details and justifies the modeling methodology, simulation
framework, and provides the corresponding parameters which
have been used.

II. BACKGROUND
A. Spintronics

The field of spintronics aims to utilize the properties of
nanoscaled magnetic structures to realize computational and
non-volatile memory elements [20]–[22]. The most well-
developed spintronic device is the Magnetic Tunnel Junc-
tion (MTJ) shown in Figure 1a, which consists of a thin
tunneling oxide, typically MgO, sandwiched between two
magnetic layers [21]. One magnetic layer is called the fixed
layer, since its magnetic orientation remains unchanged during
its operation, and the other is called the free layer, since
its magnetic orientation is altered according to the physical
behaviors underlying the device’s switching mechanism. The
most popular switching mechanism for MTJs is Spin-Transfer-
Torque (STT), which works by passing a current of sufficient
density and duration through the device [23]. The state of
the MTJ is represented by the resistance of the device, which
changes based on the orientations of the free layer relative to
the fixed layer. The Anti-Parallel (AP) state results in a higher
resistance than the parallel (P) state, and the relative resistance
change between the two states is called the Tunneling Magne-
toresistance Ratio (TMR) [21]. A relatively recent spintronic
device, called the Spin-Hall Effect MTJ (SHE-MTJ), improves
several aspects of the standard two-terminal MTJ by placing
a heavy metal, such as Pt or β-Ta underneath the free layer,
which decouples the read and write paths as shown in Figure
1b, and can improve the energy efficiency of the write process
if properly designed [24]. For both the two-terminal MTJ and
three-terminal SHE-MTJ, the switching process is a stochastic
function of the current density and the pulse duration, whereby
deterministic implementations require large current densities
and pulse durations to ensure a very high probability of
switching [25]. Alternatively, several works, including herein,
utilize the intrinsic stochastic switching behavior, which allows
for much less current density to be used during the switching
process, and thus, less power [8], [9], [26]. A key parameter
of spintronic devices is the energy barrier (∆), which is a
function of the magnetic material properties and the shape of
the device, and it determines the retention time of the free
layer and the current density needed to switch the device for
a given pulse duration [9]. When used as a memory element,
MTJs and SHE-MTJs typically have ∆ ≥ 40kbT , where kb is
Boltzmann’s constant and T is the temperature in Kelvin. For
∆ � 40kbT , thermal agitations can stochastically switch the
device between parallel and anti-parallel states on timescales
of seconds to picoseconds, which is practically unusable for
non-volatile memory applications. However, recent work into
Probabilistic Spintronic Logic has demonstrated that very low
∆ spintronic devices are useful for realizing stochastic compu-
tations in compact circuits, which can be utilized for invertible
logic and Boltzmann Machines [27], Restricted Boltzmann
Machines [28], and stochastically spiking neural circuits [13].
One promising probabilistic spintronic device is the Embedded

p-bit [29] shown in Figure 1c, which consists of a MTJ with a
very low ∆, an NMOS transistor, and a CMOS inverter. The
input to the inverter is essentially a voltage-divider between the
stochastically switching MTJ and the NMOS, and therefore the
probability of the output of the inverter being high will have a
sigmoidal behavior based on the input voltage to the NMOS.
This behavior is demonstrated in greater detail in [29] and the
Supplementary Material.

Fig. 1. An overview of relevant spintronic devices. a) the two-terminal MTJ
illustrating its 3 primary layers with a shared read and write path. b) the
three-terminal SHE-MTJ with a decoupled read path through the MTJ and
the write path through the spin-hall metal. c) the embedded p-bit with a very
low ∆ MTJ and its associated CMOS circuitry.

The integration of multiple technologies on a single chip
will always increase integration complexity. However, it is
understood that the energy barrier can be manipulated by
adjusting the volume of the device as well as the in-plane
dimensions for in-plane devices [30], [31]. Thus, it is possible
to integrate low-barrier and high-barrier devices on a chip by
adjusting the length and width of the MTJs, which can be done
on the same mask, adding a minimal increase in integration
complexity.

B. Neural Sampling

Neural Sampling is a theory of brain computation from
computational neuroscience that interprets the stochastic spik-
ing behavior of biological neurons as stochastic samples of
underlying conditional distributions [18], [19]. Particularly, it
models the spiking behavior of neurons with an instantaneous
stochastic spiking rate exponentially dependent upon the mem-
brane potential, combined with a refractory period of duration
τ and a commensurately prolonged rectangular Post-Synaptic-
Potential (PSP), which approximates the PSPs found in-vivo.
Combined with a Hebbian learning rule, such a model can
realize a generative model of the input distribution [19]. This
is in contrast to typical Leaky-Integrate and Fire (LIF) spiking
neurons, which models spikes as impulses and neurons as a
leaky integration of synaptically-weighted pre-synaptic spikes
that fires if a threshold is reached and then reset [26]. For
the rest of the paper, a spike means a rectangular pulse of
τ clocks, as in Neural Sampling. Several cortically-inspired
circuit motifs have been developed utilizing Neural Sampling
that have demonstrated impressive results of unsupervised, and
reward-based learning [19], [32]. Thus, Neural Sampling pro-
vides a theoretically-accomplished and biologically-relevant
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TABLE I
COMPARISON TO PREVIOUS SPINTRONIC SPIKING NEURAL NETWORKS WITH UNSUPERVISED LEARNING

Synapse Technology Neuron Technology Learning Rule Homeostasis Key Quantitative Findings

[12] Compound MTJ Stochastic switching MTJ Simplified
Stochastic STDP None 91.27% classification

accuracy on MNIST

[26] LT-ST SHE-MTJs LIF Stochastic
STDP None 10.4 µJ to train

network on MNIST

[8] SHE-MTJ Stochastic switching SHE-MTJ Stochastic
STDP Spike count cutoff 682 nW per neuron

Herein Spin-CMOS Embedded p-bit with PSP PHP
Adaptive to

fast and slow
time-scales

311 nW per neuron
1.9-7.7 nW per synapse

framework for using stochastic neural models to achieve brain-
like computations, and we provide a detailed connection to this
work in the Supplementary Material.

C. Stochastic Neuromorphic Hardware

Several recent works have leveraged the stochastic switch-
ing properties of spintronic devices to realize unsupervised
learning in SNN neuromorphic hardware as delineated in
Table I. The work developed by Zhang et al. [12] utilized
multiple parallel MTJs to form a compound magnetoresistive
synapse with a stochastic Spike-Timing-Dependent (STDP)
learning rule in conjunction with a MTJ-based stochastic
spiking neuron to realize a SNN able to achieve respectable
accuracies on MNIST dataset. However, their work did not
evaluate the power consumption of the design, which can be
quite large for many parallel MTJs per synapse in a crossbar,
nor the effect of process variation on the CMOS circuitry
necessary for the neuron.

The long-term short-term stochastic synapse developed by
Srinivasan et al. [26] utilizes two SHE-MTJs with distinct
peripheral circuitry to realize various switching characteristics
corresponding to different STDP sensitivities, enabling one
SHE-MTJ to have sharper correlation sensitivity and greater
synaptic strength then the other, which had moderate correla-
tion sensitivity. They demonstrated that the scheme has faster
training convergence, resulting in a reduction in total training
energy consumption. However, the scheme was quite sensitive
to STDP and circuit parameters, and they did not analyze the
effect of process variations.

The all-spin stochastic SNN developed in [8] leverages
one-bit SHE-MTJ synapses with a stochastic-STDP learning
rule and SHE-MTJ based stochastic spiking neurons with a
homeostasis mechanism to realize a low-energy SNN with
online learning. However, the SHE-MTJ neuron requires write-
read-reset cycling, which adds additional timing and energy
overheads, the stochastic-STDP learning rule requires preci-
sion between the spike timing, switching probability, and write
current, the homeostasis mechanism is rather coarse since it
simply cuts off neurons that reach a certain spike count during
learning, and the effect of process variations are not analyzed.

Additionally, the spintronic stochastic spiking neurons in
[8], [12], [30], [33] demonstrate the utilization of high-barrier
spintronic devices for stochastic spike generation by applying
an input current pulse, which may or may not have switched
the device, then reading the state of the SHE-MTJ to determine

if it spiked, then applying a strong reset pulse. This three-phase
write-read-reset scheme requires additional timing and power
overheads that are not experienced with low-barrier p-bits.
The work in [30] also explored utilizing low-barrer telegraphic
SHE-MTJs to implement stochastic spiking neurons without
the write-read-reset overheads, but their approach utilizes the
direct output of an inverter without any event generation or
synchronization mechanism, so it does not resemble spiking
or PSP behavior, which can make it challenging for event-
based probabilistic Hebbian learning rules.

Thus, the NSC developed herein extends beyond these
promising works by developing a robust subthreshold stochas-
tic SNN approach utilizing a 3-bit hybrid spin-cmos synapse
with series and parallel SHE-MTJs, a flexible and adaptive
homeostasis mechanism, and a p-bit stochastic spiking neuron
with digital PSPs implementing neural sampling and enabling
a simple and robust event-driven unsupervised learning mech-
anism, all developed and analyzed with the effect of process
variations in both the spintronic and CMOS devices.

III. NEURAL SAMPLING CORE

The Section delineates the constituent circuits of the NSC,
such as the stochastically spiking neuron with a refractory
period and prolonged digital PSPs congruent to those utilized
in Neural Sampling’s theoretical modeling, a three-bit synapse
with event-driven probabilistic Hebbian learning rules, and a
novel homeostasis mechanism. Since an important premise
of this work is that the NSC should be able to adapt and
utilize the heterogeneity of components that emerges from
PV, we model PV in both the spintronic and CMOS devices
as described in the Supplementary Material at all stages of
development and analysis. This section is organized by first
detailing the operational principles of each circuit and then
integrating them into a cohesive mixed-signal architecture with
discussions. Although detailed later, it is worth mentioning
here that there are two reciprocating phases based on the state
of the clock; the read-phase occurs when the clock is low, and
the update-phase occurs when the clock is high.

A. Stochastic Spiking Neuron

The Stochastic Spiking Neuron circuit shown in Figure
2a consists of an embedded p-bit and a digital PSP circuit
that operates as follows. Based on the voltage applied to
IN and the state of the stochastically switching MTJ in
the embedded p-bit, p − bitOUT will either be high or low.
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If p − bitOUT is high at the positive edge of a 100 MhZ
CLK, then the output of the PSP circuit, NeuronOUT , will
go high and hold it for eight clocks, which corresponds to
a τ of eight clocks. The waveforms shown in Figure 2b is
an illustrative snapshot that shows the relevant circuit signals
obtained from SPICE simulations for the parameters given
in the Supplementary Material. A more detailed analysis of
the sigmoidal probabilistic circuit behavior with PV is also
detailed in the Supplementary Material.

Fig. 2. The stochastic spiking neuron developed herein. a) the neuron utilizes
an embedded p-bit to compute the sigmoidal probability of spiking based
on the voltage at IN and the PSP circuit senses the state of the p-bit at
the positive clock edge and holds NeuronOUT high for 8 clocks for each
spike. b) the operational waveforms for IN = 144mV , which corresponds
to a spiking probability of ∼ 0.5.

B. Hybrid Synapse with Probabilistic Hebbian Plasticity

The hybrid spintronic-CMOS synapse shown in Figure 3
and the PHP learning rule were co-designed to take advantage
of the prolonged PSP signals with the stochastic switching
behavior of spintronic devices. After extensive investigations
and examinations with alternative learning rules, PHP was
found to yield the best results for circuits with PV as shown
in Section IV. The circuit operates as follows. The synapse in
Figure 3 uses three SHE-MTJs (S1-S3) to store the synaptic
weight, one PMOS transistor (M1) that operates as a voltage-
controlled current source since the circuit is at subthreshold,
and two NMOS transistors (M2 −M3) that are used when
updating the synapse. The circuit operates during the read
phase as follows. If the pre-synaptic neuron is not active,
or has not spiked within the last τ clocks, then IN will
be at V DD, N will be at VDD, and no current will flow

TABLE II
SYNAPSE WEIGHTS

S1 S2 S3 Weight
P AP AP W0
P P AP W1
P AP P W1
P P P W2

AP AP AP W3
AP P AP W4
AP AP P W4
AP P P W5

through M1 onto SUM . If the pre-synaptic neuron has spiked
within the previous τ clocks, then IN will be at GND,
causing a voltage-divider between S1 and S2 − S3, which
determines the voltage at N , which then controls the current
through M1 into SUM . The synaptic weights determined by
the P or AP states of S1-S3 are shown in Table 2 where
W0 < W1 < W2 ∼ W3 < W4 < W5 and detailed in
the Supplementary Material. It is also worth noting that this
scheme can be amended to have a greater range of possible
weight values by increasing the number of SHE-MTJs in series
or parallel with S1-S3 for additional area overhead.

PHP modifies the synapses during the update phase in an
event-driven fashion as follows. If the post-synaptic neuron,
POST , has spiked during the previous τ clocks, then both
M2 and M3 are turned on, allowing current to flow through
the write paths of S1-S3 based on the voltages applied to
PRE and IN . If the pre-synaptic neuron has spiked within
the previous τ clocks as well, then the synapse will update
according to a synaptic potentiation event, that is, different
voltages will be applied to PRE and IN for a given pulse
duration such that S1 has a probability of switching to its
anti-parallel state and S2-S3 have a probability of switching
to their parallel states, which all have the effect of lowering the
voltage at N and increasing the current through M1 during the
read-phase. If the pre-synaptic neuron has not spiked within
the previous τ clocks, then the synapse will update according
to a synaptic depression event, that is, voltages will be applied
to PRE and IN for a given pulse duration such that S1 has a
probability of switching to its parallel state and S2-S3 have a
probability of switching to their anti-parallel states, which all
have the effect of increasing the voltage at N and decreasing
the current through M1 during the read-phase. Therefore, each
time a post-synaptic neuron spikes, all associated synapses are
probabilistically updated for τ clocks, and more coincident
pre-synaptic spiking will have a higher chance of strengthening
the synapse, while non-spiking pre-synaptic neurons will have
a chance of being depressed. More details can be found in the
Supplementary Material.

C. Homeostasis Mechanism

The homeostasis mechanism acts to increase the activity
of under-active neurons and decrease the activity of over-
active neurons, is implemented with a number of the home-
ostatic synapses shown in Figure 4 connected to the input
of each neuron. The two homeostatic synapse designs shown
in Figure 4 utilize alternative mechanisms for implementing
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Fig. 3. The three-bit hybrid spin-cmos synapse circuit developed herein.

homeostasis on both fast and slow time-scales, where S1 has a
higher probability of switching compared to S2, and therefore
adapts on a faster time-scale. The positive-feedback effect
of synaptic plasticity needs a fast homeostasis mechanism to
balance network activity [34], [35] while a slower homeostasis
mechanism is beneficial for balancing the neuron’s excitability
in the presence of its intrinsic heterogeneity arising from PV.
Both of the designs operate similar to the regular synapse
during the read phase as follows. During the read phase BOT
is pulled to GND, causing a voltage divider between S1 and
S2, which determines the voltage at N , which then determines
the current through M1 into SUM . The weight values are
akin to the regular synapses described previously in that if
S1 is AP and/or S2 is P, then the homeostatic synapse has a
higher effective weight than vice versa, and is detailed in the
Supplementary Material. The two designs differ during the
update phase as follows. The circuit in 4a requires S1 to have
a lower ∆ than S2, which causes it to have a higher probability
of switching for the same current and pulse duration. The
circuit in 4b does not require S1 and S2 to have different ∆s,
but requires more overhead with an additional NMOS and two
horizontal wires to isolate the two devices during the update
phase, allowing different voltages and/or pulse durations to
switch the two devices with different probabilities such that S1
switches with a higher probability than S2. During the update
phase, UPDATE goes high and different voltages are applied
to TOP and BOT for Figure 4a, or TOP , TOP , BOT , and
BOT for Figure 4b, depending on the state of the connected
neuron - if the neuron is active, then a homeostatic depression
event occurs, and if the neuron is inactive, then a homeostatic
potentiation event occurs.

D. Inhibition Mechanism

Inhibitory feedback is a mechanism to ensure that only
a small number of output neurons are active at a time by
decreasing the input strength of the others, and therefore their
chances of spiking, each time one has spiked. This enforces
competition between the neurons, which enforces selectivity
[36]. Without it, it is likely for all neurons to become receptive
to all input patterns, and therefore there is no information from
the network that can be used to discern the input patterns
from one another, which is key for unsupervised learning and
probabilistic inference [36]. The exact inhibitory mechanisms
that the brain utilizes is still an active area of research, but
many SNN models utilize a fixed inhibition model such that
every time a neuron spikes, a fixed decrease in input strength is

Fig. 4. Two alternative implementations of the homeostatic synapse. a) this
implementation requires the energy barrier of S1 to be different than S2 such
that they have different switching probabilities for the same current. b) this
implementation does not require S1 to have a different energy barrier than
S2, but requires additional update circuitry to provide different current pulses
to each SHE-MTJ.

applied to all other neurons [19], [37], and the same is used for
the NSC. In order to minimize area overhead, the inhibition
mechanism is implemented with a single NMOS connected
to the SUM wire and GND. The input voltage to that
NMOS is chosen such that the effect on SUM is equivalent
to the negative of the strongest synaptic weight, W5, and its
associated distribution according to PV, as discussed in more
detail in the Supplementary Material.

E. Architectural Discussion

Figure 5 shows all of the core components of the NSC
integrated into a single layer feed-forward SNN. During the
read phase, which is when CLK is low, if POST is also
low, and therefore Mread is on, all of the synapses with
spiked pre-synaptic neurons, all of the homeostatic synapses,
and all of the inhibitory feedback with active POST signals
will source and sink current, generating a voltage at SUM
due to the resistance of Rsum and Mread, which is the
resulting parallel analog computation of weighted pre-synaptic
spikes plus the cumulative effect of the homeostatic synapses
minus any active inhibition, and is applied to the input of
the stochastic spiking neuron circuit. When CLK goes high,
the post-synaptic neuron may or may not have spiked, Mread

turns off to prevent wasted current flow, all inhibitory feedback
turns off for the same reason, and the synapse and homeostatic
update mechanisms occur according to Algorithm 1.

The event-based nature of the NSC with its non-volatile
parameters affords flexibility to its operational and greater
architectural needs. For instance, the NSC is described herein
with two phases corresponding to different states of the clock
for simplicity, but in principle, many other operations could
intermix with the two main phases, such as routing algorithms
for intra- and inter-chip communications or monitoring pro-
cesses. Additionally, the clock rate could be adjusted based on
application needs, using a slower clock when idle and a faster
clock as needed. The clock rate could also be adjusted based
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Algorithm 1: Update Phase

Input neuron state: y(t) ∈ [0, 1]
Output neuron state: z(t) ∈ [0, 1]
for zi(t) in z(t) do

// Update homeostatic synapses
if zi(t) == 1 then

homeostatic-depression(i);
else

homeostatic-potentiation(i);
end
// Update input-output synapses
if zi(t) == 1 then

for yj(t) in y(t) do
if yj(t) == 1 then

synaptic-potentiation(i,j);
else

synaptic-depression(i,j);
end

end
end

end

on as-manufactured timing considerations. Another beneficial

aspect of the non-volatile nature of the NSC is that the more

power-intensive update phases are only required during train-

ing and/or re-training. Once a desired capability is achieved,

the update phases can be much more dispersed or stopped

altogether, saving considerable power.

Another benefit of the NSC is that it is able to learn patterns

of different dimensions, as is described in the following

Section, using all the same constituent circuits and devices

with just an alteration of the number of homeostatic synapses -

smaller dimensional inputs require more homeostatic synapses.

Therefore, fixed NSC networks of a certain size could be

fabricated and then inputs and homeostatic synapses could be

turned on or off depending on the application needs. Also, this

could provide redundancy in the case of unusable components,

providing a higher potential yield.

IV. RESULTS

This Section describes the simulation results of the NSC.

The circuits of the NSC were simulated and analyzed using

SPICE and then modeled in Brian2, a SNN simulation frame-

work [38], to obtain the unsupervised learning results. Readers

are strongly recommended to refer to the Supplementary

Material regarding the details about Monte Carlo simulations

for process variation in both synapses and neurons.

A. Unsupervised Learning

The emergent unsupervised learning capabilities of the NSC

are demonstrated by learning a cortically-inspired behavior,

orientation selectivity, within a feed-forward SNN of 50 output

neurons with 60 homeostatic synapses each and 900 Poisson

spiking input neurons that each correspond to a pixel in a

30x30 stimulus window. The input pattern distribution consist

of 180 28x2 bars centered and rotated in the stimulus window

such that they cover the complete 180 degrees of rotation.

The synaptic weights are initialized with S1-S3 randomly

distributed and the homeostatic synapses are initialized with

Fig. 5. The structure of NSC illustrating the integration of the synapses,
inhibitory feedback, homeostasis mechanism, and stochastic spiking neuron.

S1 in AP state and S2 in P state. Up to 10,000 randomly

chosen samples from the input distribution are presented to

the network for 100 clocks where each input neuron that the

randomly chosen bar corresponds to has a Poisson spike rate

of 75 spikes per 1,000 clocks and all others have a spike

rate of 1 spike per 1,000 clocks. In between each sample

is a brief period of 20 clocks whereby all input neurons

have a spike rate of 1 spikes per 1,000 clocks. Figure 6a

shows the temporal evolution of a random selection of output

neuron’s receptive fields, that is, the strength of their 900

synapses shaped into a 30x30 window corresponding to the

stimulus window, where a lighter color indicates a stronger

synaptic strength, illustrating the emergent specialization of

each neuron to a particular input pattern. Figure 6b illustrates

the emergent orientation selectivity in another way, where all

synapses were fixed and each input pattern was presented

to the network for 100 clocks and the spikes of all output

neurons were counted and shown for a random selection of 5

output neurons. It can be seen that the spike counts closely

resemble the tuning curves for simple cells in V1 cortex [39].

Additionally, the Supplementary Material shows the tuning

curves for all output neurons, and it can be seen that the

entire range of possible orientations are well represented by

the collection of output neurons. The NSC was also tested

using a smaller stimulus window of 20x20 and bars of 18x2,

and the only needed change was an increase in the number of

homeostatic synapses to 90.

B. Noise Analysis

The NSC is also quite robust to input noise, and is actually

able to utilize such noise for some benefit. This was tested



7

by adding a uniformly distributed random spike rate between
0 and 7.5 spikes per 1000 clocks to each input neuron for
each pixel in the stimulus window as described previously.
The noise had a regulating effect, decreasing the amount of
homeostatic synapses required to just 30 for a 30x30 stimulus
window. The NSC was still able to learn orientation selectivity
with the noise, although the receptive field was qualitatively
more noisy and the tuning curves were on average a bit
broader, as shown in the Supplementary Material.

Fig. 6. Unsupervised learning results for the NSC. a) the emergence of
orientation selectivity is illustrated here in the receptive fields for a random
selection of five neurons. Brighter colors correspond to a higher synaptic
weight. b) the tuning curves for a random selection of five neurons are
shown, illustrating their response to a narrow range of orientations. Each
color represents a different neuron.

C. Power Analysis

The average power consumption for each of the NSC
circuits was found using SPICE simulations as described in
the Supplementary Material and was found to be 310nW for
the stochastic spiking neuron with PSP circuit, 1.9-7.7nW
for each of the input synapses, depending on the synaptic
strength, and 1-3.4nW for each of the homeostatic synapses,
depending on its strength. The average power consumption of
the network during the read phase for the neurons, homeostasis
mechanism, and active synapses for the 20x20, 30x30, and
30x30 with noise test cases are shown in Figure 7. The
inhibitory mechanism was found to be negligible since very
few output neurons are ever active at one time. As shown,
the power consumption due to the output neurons are all
equal since the number of neurons does not change. The
power consumption due to the synapses increases from the
20x20 case to the 30x30 case since there are more inputs
and synapses, and the noise increases the synaptic power

consumption due to there being more active synapses as
well as a higher number of higher strength synapses. The
homeostasis power consumption is highest for the 20x20 case
since it has the fewest active input synapses, and therefore
needs on average more homeostatic input synapses to drive the
neurons to spike, and is lowest for the 30x30 with noise for the
exact opposite reason. The power consumption of the update
phase is not considered due to the NSC requiring updates only
during training or re-training, and is thus a very small fraction
of the total lifetime energy usage. Additionally, the power
consumption of the update phase depends heavily upon the
materials, dimensions, and technology of the devices used.

Fig. 7. The average power consumption for each component of the NSC
during the presentation of all 180 degrees of possible orientations for the
20x20, 30x30, and 30x30 with noise cases.

V. CONCLUSIONS

The NSC described herein provides several intriguing in-
sights to realizing ultra-low-power neuromorphic circuits and
architectures. Future directions for extending the NSC could be
to implement recurrent connections and migrate the inhibitory
mechanism to a population of inhibitory neurons, which would
more closely resemble cortical network motifs, to explore how
networks of NSCs could be connected together in deep or
hierarchical fashions to realize greater computational ability,
or to develop methodologies that can implement supervised or
reinforcement learning capabilities.
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“The 2014 magnetism roadmap,” Journal of Physics D: Applied Physics,
vol. 47, no. 33, p. 333001, 2014.

[23] A. Brataas, A. D. Kent, and H. Ohno, “Current-induced torques in
magnetic materials,” Nature materials, vol. 11, no. 5, p. 372, 2012.

[24] S. Manipatruni, D. E. Nikonov, and I. A. Young, “Energy-delay perfor-
mance of giant spin hall effect switching for dense magnetic memory,”
Applied Physics Express, vol. 7, no. 10, p. 103001, 2014.

[25] T. Devolder, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, P. Crozat,
N. Zerounian, J.-V. Kim, C. Chappert, and H. Ohno, “Single-shot
time-resolved measurements of nanosecond-scale spin-transfer induced
switching: Stochastic versus deterministic aspects,” Physical review
letters, vol. 100, no. 5, p. 057206, 2008.

[26] G. Srinivasan, A. Sengupta, and K. Roy, “Magnetic tunnel junction based
long-term short-term stochastic synapse for a spiking neural network
with on-chip stdp learning,” Scientific reports, vol. 6, p. 29545, 2016.

[27] K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta, “Stochastic p-bits
for invertible logic,” Physical Review X, vol. 7, no. 3, p. 031014, 2017.

[28] R. Zand, K. Y. Camsari, S. D. Pyle, I. Ahmed, C. H. Kim, and R. F.
DeMara, “Low-energy deep belief networks using intrinsic sigmoidal
spintronic-based probabilistic neurons,” in Proceedings of the 2018 on
Great Lakes Symposium on VLSI. ACM, 2018, pp. 15–20.

[29] K. Y. Camsari, S. Salahuddin, and S. Datta, “Implementing p-bits with
embedded mtj,” IEEE Electron Device Letters, vol. 38, no. 12, pp. 1767–
1770, 2017.

[30] C. M. Liyanagedera, A. Sengupta, A. Jaiswal, and K. Roy, “Stochastic
spiking neural networks enabled by magnetic tunnel junctions: From
nontelegraphic to telegraphic switching regimes,” Physical Review Ap-
plied, vol. 8, no. 6, p. 064017, 2017.

[31] P. Debashis, R. Faria, K. Y. Camsari, and Z. Chen, “Design of stochastic
nanomagnets for probabilistic spin logic,” IEEE Magnetics Letters,
vol. 9, pp. 1–5, 2018.

[32] D. Kappel, R. Legenstein, S. Habenschuss, M. Hsieh, and W. Maass, “A
dynamic connectome supports the emergence of stable computational
function of neural circuits through reward-based learning,” eNeuro,
vol. 5, no. 2, pp. ENEURO–0301, 2018.

[33] A. Sengupta, G. Srinivasan, D. Roy, and K. Roy, “Stochastic inference
and learning enabled by magnetic tunnel junctions,” in 2018 IEEE
International Electron Devices Meeting (IEDM). IEEE, 2018, pp. 15–6.

[34] F. Zenke, G. Hennequin, and W. Gerstner, “Synaptic plasticity in
neural networks needs homeostasis with a fast rate detector,” PLoS
computational biology, vol. 9, no. 11, p. e1003330, 2013.

[35] G. G. Turrigiano and S. B. Nelson, “Hebb and homeostasis in neuronal
plasticity,” Current opinion in neurobiology, vol. 10, no. 3, pp. 358–364,
2000.

[36] F. Jug, “On competition and learning in cortical structures,” Ph.D.
dissertation, ETH Zurich, 2012.

[37] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational
neuroscience, vol. 9, p. 99, 2015.

[38] M. Stimberg, D. F. Goodman, V. Benichoux, and R. Brette, “Equation-
oriented specification of neural models for simulations,” Frontiers in
neuroinformatics, vol. 8, p. 6, 2014.

[39] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in
the cat’s striate cortex,” The Journal of physiology, vol. 148, no. 3, pp.
574–591, 1959.

Steven D. Pyle received the M.Sc. degree in Electrical Engineering at the
University of Central Florida and is currently a Ph.D. candidate in Computer
Engineering at the University of Central Florida. His research interest lies in
bridging the multidisciplinary fields of neuromorphic hardware with emerging
devices, machine learning, computational neuroscience, and neurophysiology
to realize brain-inspired computational hardware at ultra-low-power.

Ramtin Zand received B.Sc. degree in Electrical Engineering in 2010 from
IKIU, Iran. He received his M.Sc. degree in Digital Electronics from Sharif
University of Technology, Tehran, Iran, in 2012. He is a Ph.D. Candidate in
Computer Engineering at the University of Central Florida (UCF), Orlando,
FL. His research interests include Machine Learning and Neuromorphic
Computing, Emerging Nanoscale Electronics including Spin-based Devices,
Reconfigurable and Adaptive Computer Architectures, and Low-Power and
Reliability-Aware VLSI Circuits.

Shadi Sheikhfaal received her B.Sc. degree in computer engineering from
Azad University, Ardebil, Iran, in 2012 and her M.Sc. degree in computer
engineering and computer systems architecture from Science and Research
Branch of Azad University, Tehran, Iran, in 2014. She is currently pursuing
her Ph.D. degree in computer engineering at University of Central Florida,
Orlando, FL, USA. Her current research interests include brain inspired
computing and spin-based computing.

Ronald F. DeMara (S87-M93-SM05) has been a full-time faculty member
at the University of Central Florida since 1993. His interests are in computer
architecture, post-CMOS devices, and reconfigurable fabrics with applications
to intelligent and neuromorphic systems, on which he has published 250
articles and holds one patent. He is a Senior Member of IEEE and Topical
Editor of IEEE Transactions on Computers and has been Keynote Speaker
of IEEE RAW and IEEE ReConFig conferences, and Guest Editor of IEEE
Transactions on Emerging Topics in Computing and IEEE Transactions on
Computers 2017 Special Section on Innovation in Reconfigurable Fabrics and
2019 Special Section on Non-Volatile Memories. He received the Joseph M.
Bidenbach Outstanding Engineering Educator Award from IEEE in 2008.



1

Supplementary Material
Steven D. Pyle, Student Member, IEEE, Ramtin Zand, Student Member, IEEE, Shadi Sheikhfaal, Student

Member, IEEE, and Ronald F. DeMara, Senior Member, IEEE

Abstract—Detailed results, modeling, and simulation frame-
work for the Neural Sampling Core is described. The SPICE
circuits simulations in the presence of process variation, evolution
of receptive fields, whole-system orientation selectivity, homeo-
static behavior, and average spike rate results are presented. The
simulation framework combining SPICE and a spiking neural
network simulator is delineated.

I. INTRODUCTION

THIS provides results, details, and justifications to the
results achieved for the Neural Sampling Core (NSC)

and how they were modeled and simulated.
The rest of the paper is organized as follows. Section

II illustrates the results. Section III provides an additional
discussions of the update phase.

II. RESULTS

This section delineates the SPICE simulation parameters
and results for the stochastic spiking neuron circuit, synapse
circuit, and homeostatic synapse circuits, as well as the ar-
chitectural simulation results from Brian2, a Spiking Neural
Network Simulator [1]. All MOSFET models used 7nm high
performance PTM FinFET models [2] with threshold voltages
modified by a Gaussian distribution, N (0mV, 75mV ), where
N (µ, σ) is a Gaussian distributed random variable with mean
µ and standard deviation σ, to model effects of Process
Variation (PV). All of the resistances of Magnetic Tunnel
Junctions (MTJ) were modified from their ideal values with
a Gaussian distribution with a mean of the ideal value and a
standard deviation of 20% to model PV effects. The supply
voltage was set to 200mV.

A. Stochastic Spiking Neuron

The stochastic spiking neuron as shown in Figure 2 of the
main paper was first modeled by using SPICE simulations to
obtain the spiking probabilities for all input voltages and then
that behavior was modeled in Brian2 simulations. The low-
energy barrier MTJ can be modeled by the stochastic Landau-
Lifshitz-Gilbert (s-LLG) equation below [3].

(1 + α2)dm̂/dt =− |γ|m̂× ~H − α|γ|(m̂× m̂× ~H)

+ 1/qN(m̂× ~IS × m̂)

+
(
α/qN(m̂× ~IS)

) (1)

where α is the damping coefficient of the nanomagnet, γ is the
electron gyromagnetic ratio, q is the electron charge, and ~IS
is the spin current applied to the free layer. The spin currents
polarization, P, is equivalent to the polarization of the fixed

layer, which is ẑ, and its amplitude is given by ~IS = PIcẑ,
where Ic is the charge current flowing through the MTJ. N is
the number of spins in the free layer, which is given by N =
MsVol./µB , where Ms is the saturation magnetization, µB is
the Bohr magneton, and Vol. is the volume of the nanomagnet.
The effective field for the monodomain circular magnet used
for the free layer is ~H is given as −4πMsmxx̂ + ~Hn, x̂
being the out-of-plane direction of the magnet. ~Hn is the
isotropic thermal noise field, uncorrelated in three directions:
(Hx,y,z

n )
2

= 2αkT/(|γ|MsVol.). However, simulating the
s-LLG equation in SPICE requires a significant amount of
time. Therefore, we utilized a compact Verilog-A model for
simulation speed where a resistor was modeled that stochasti-
cally switched from 0.5MΩ to 1.5MΩ with a retention time
of N (0.5ns, 0.5ns), a transition time of N (0.2ns, 0.05ns),
and a minimum retention and transition time of 0.01ns. This
provided behavior that was qualitatively similar to the results
provided by the s-LLG and described in [3]. The embedded
p-bit with the compact stochastic MTJ model was connected
to a D-Flip-Flop to estimate the probability of spiking at the
clock edge and was simulated for 100 Monte-Carlo runs with
a clock period of 10ns for input voltages ranging from 0mV to
200mV with steps of 1mV for 1000ns each, and the resulting
probability of spiking for each run is shown in Figure 1a.
Based on this result, we modeled the spiking probability, ρ(t),
of each neuron in Brian2 with equation 1

ρ(t) =
1

1 + e−αv(t)+β
(2)

Where α = 500, β = N (75, 9.75), and v(t) is the input
voltage at time t. Figure 1b shows 50 samples of equation 1
used for neurons in Brian2, which is very close to the behavior
obtained from SPICE simulations.

B. Hybrid Spin-CMOS Synapse

Modeling the hybrid spin-CMOS synapse and homeostatic
synapse circuits in Brian2 is challenging due to the com-
plexity of CMOS behavior, especially in the presence of
process variations at subthreshold voltages. Our approach is
to use 10000 monte carlo SPICE simulations for each pos-
sible synapse strength, W0-W5 for the input-output synapses
and W0-W3 for the homeostatic synapses, to fit the voltage
increase seen at SUM in Figure 5 of the main paper, Vweight,
to a gamma distribution with shape parameter a and scale
parameter b, and then model the synaptic strength in Brian2
with such a distribution. We used RSUM = 200kΩ, RP =
N (20MΩ, 4MΩ), which is the resistance of the parallel state
of the SHE-MTJs, and RAP = N (50MΩ, 10MΩ), which is
the resistance of the anti-parallel state of the SHE-MTJs. The
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Fig. 1. SPICE and sigmoidal models of the probability of spiking for the
stochastic spiking neuron. a) the probability of spiking for 100 monte carlo
SPICE simulations of 100 clock periods at 1mV increments, b) the modeled
sigmoidal probability of spiking used in Brian2.

TABLE I
SYNAPSE FITTING PARAMETERS

Weight Gamma Parameters
a b

W0 1.8496 1.50E-4
W1 1.8018 2.60E-4
W2 1.7275 4.03E-4
W3 1.8340 4.17E-4
W4 1.8008 9.19E-4
W5 1.7715 1.772E-3

resulting fitted gamma distribution parameters for the synapse
and homeostatic synapses are listed in Tables I and II. The
synaptic weights from the SPICE simulations as well as 10000
samples from a gamma distribution of the fitted parameters for
each weight are shown in Figure 2, demonstrating conformity
between the SPICE simulations and the modeled weights. The
homeostatic synapse weights had a similar conformity, and we
do not show them for brevity.

C. Unsupervised Learning

Additional figures for the unsupervised learning results are
provided for the 20x20, 30x30, and 30x30 with noise case as
described in the main text in Figures 3-5, respectively. The
distribution of average spike rates are provided for each test
case in Figure 6. Please note that all output neuron did spike

TABLE II
HOMEOSTATIC SYNAPSE FITTING PARAMETERS

Weight S1 S2 Gamma Parameters
a b

W0 P AP 1.8311 1.95E-4
W1 P P 1.8213 3.83E-4
W2 AP AP 1.8320 3.84E-4
W3 AP P 1.8232 1.181E-3

to some degree, and those with a count of 0 spikes simply had
an average spike rate between 0 and 1.

III. DISCUSSION

A. Connections to Neural Sampling

Legenstein et al. [4] built upon Neural Sampling to theo-
retically analyze cortically-inspired Spiking Neural Network
motiffs with a form of Hebbian plasticity, and demonstrated
that such networks approximate inference in a noisy-OR-
like generative model while learning through an approxi-
mation of online Expectation Maximization. They modeled
the cortically-inspired network motiff, M, with binary input
responses, ~y(t), a population of excitatory neurons binary
responses ~z(t) that have rectangular PSPs of duration τ
whenever a spike occurs and a refractory period of duration
τ , fixed inhibitory connections between neurons of weight β,
and synaptic strengths W. The resulting membrane potential
um(t) is given by

um(t) =

N∑
i

wimyi(t)−
∑
j 6=m

βzj(t) + cm (3)

where cm is the homeostatic regulation of each individual
neuron. The instantaneous Poisson spike rate is modeled by

ρ(t) =
1

τ
exp(u(t)) (4)

Buesing et al. [5] showed that for such a network, the states,
~z, can be represented by a Boltzmann distribution:

p(~z|~y,W) =
1

Z
(γ(
∑
i,m

wimyizm+

1

2

∑
m6=l

βzmzl +
∑
m

cmzm)) (5)

where Z is a normalizing constant and γ is a scaling parameter
in the neuron’s response function. Legenstein et al. [4] goes
on to show that such a distribution can be interpreted as
probabilistic inference of the current input, ~y(t), and therefore,
M has a generative model of the input distribution, p(~y|~z,W),
with a prior, p(~z), that corresponds to the network constraints,
such as the inhibition, since

p(~z|~y,W) =
p(~z)p(~y|~z,W)∑
z′ p(~y|~z′,W)

(6)

and that local learning rules can be used to find a local
minimum of the Kullback-Leibler divergence between p(~y|W)
and the actual input distribution p∗(~y).
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Fig. 2. The distribution of synaptic weights for each synapse circuit configuration obtained from 10000 monte-carlo SPICE simulations and 10000 samples
from the fitted gamma distribution used for modeling the weights in Brian2.
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Fig. 3. Relevant figures for the 20x20 test case. a) the evolution of receptive fields for a random selection of five output neurons. b) the tuning curves for a
random selection five output neurons. c) the tuning curves for all 50 output neurons. d) the temporal evolution of the number of homeostatic synapses with
potentiated long-term SHE-MTJs (bot) for a random selection of five output neurons. e) the temporal evolution of the number of homeostatic synapses with
potentiated short-term SHE-MTJs (top) for a random selection of five output neurons.
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Fig. 4. Relevant figures for the 30x30 test case. a) the evolution of receptive fields for a random selection of five output neurons. b) the tuning curves for a
random selection five output neurons. c) the tuning curves for all 50 output neurons. d) the temporal evolution of the number of homeostatic synapses with
potentiated long-term SHE-MTJs (bot) for a random selection of five output neurons. e) the temporal evolution of the number of homeostatic synapses with
potentiated short-term SHE-MTJs (top) for a random selection of five output neurons.
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Fig. 5. Relevant figures for the 30x30 test case with noise. a) the evolution of receptive fields for a random selection of five output neurons. b) the tuning
curves for a random selection five output neurons. c) the tuning curves for all 50 output neurons. d) the temporal evolution of the number of homeostatic
synapses with potentiated long-term SHE-MTJs (bot) for a random selection of five output neurons. e) the temporal evolution of the number of homeostatic
synapses with potentiated short-term SHE-MTJs (top) for a random selection of five output neurons.
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Fig. 6. The distribution of average spike rates for all 50 output neurons for
each of the test cases.

The work herein take a circuit and architecture perspec-
tive towards implementing a form of this theoretical work
by designing the stochastic spiking neuron to compute ρ(t)
and implement its associated PSP and refractory period, the
low-precision hybrid spin-CMOS synapse to realize W, the
inhibitory feedback mechanism to compute βzj(t) in equation
2, the homeostasis mechanism to realize cm, and Probabilistic
Hebbian Plasticity to learn a generative model of the input
distribution using only local information and low-precision
components.

B. Update Phase

The primary motivations and contributions of this work is
the investigation of using imprecise and stochastic components
to realize robust neuromorphic hardware that has very low
operational power. Therefore, since the stochastic switching
behavior of spintronic devices is well established [6], and yet,
highly dependent upon the device parameters and switching
mechanism, for which there is no standard SHE-MTJ foundry
process yet, determining the exact voltages and pulse durations
needed for a given probability of switching will differ from any
assumptions that could be made herein. Therefore, we model
the update mechanisms outlined in Algorithm 1 of the main
paper with a Gaussian-distributed probability of switching
listed in Table III for each of the SHE-MTJs in the synapses,
S1-S3, or the homeostatic synapses, S1-S2. Although the
unsupervised learning results herein are obtained using the
parameters listed in Table III, we also explored switching
probabilites with standard deviations of up to 500% and found
no qualitative differences in the results, illustrating that the
exact switching probabilites are not important as long as the
average behavior is similar to those in Table III, and therefore,
such a scheme should be robust to process variations. It is also
worth noting that the probability of switching for each SHE-
MTJ is very small, and thus, would yield a very low-power
update mechanism compared to approaches that would require
larger switching probabilities. Also, if the update mechanism
required too much power to update the entire NSC in parallel,
time-multiplexing could be used to update smaller portions at
a time, thanks to the non-volatility of the design.

TABLE III
SHE-MTJ SWITCHING PROBABILITY DURING EVENTS

Event SHE-MTJ PSW

Synaptic potentiation S1-S3 N (0.01, 0.0025)
Synaptic depression S1-S3 N (0.001, 0.00025)
Homeostatic potentiation

S1 N (0.0001, 0.000025)
S2 N (0.00001, 0.0000025)

Homeostatic depression
S1 N (0.01, 0.0025)
S2 N (0.001, 0.00025)

C. Integration Complexity

The integration of multiple technologies on a single chip
will always cause some increase in integration complexity.
Additionally, since low-barrier spintronic devices are still an
emerging research topic, it is not exactly understood what is
the best method for fabricating and integrating these devices at
scale. However, it is understood that the energy barrier can be
manipulated by adjusting the volume of the device as well as
the in-plane dimensions for in-plane devices [7]. Therefore,
it could be possible to integrate both low-barrier and high-
barrier devices on a single chip by adjusting the length and
width of the MTJ structures, which can be done on the same
mask, adding a minimal increase in integration complexity. It
is true that the homeostatic synapse design in Figure 4a of the
main paper utilizes SHE-MTJs with different energy barriers to
realize different switching probabilities, which would certainly
increase integration complexity to some degree, but it is a
proposed trade off for reducing area and other complexities
such as additional wires and signalling overheads. As shown
in Figure 4b of the main paper, it is also possible to utilize
SHE-MTJs with the same structures and dimensions to achieve
the same results by using additional circuitry, wiring, and
signaling overheads as discussed in the main paper.

D. Benefits of Homeostasis

Since homeostasis mechanisms are found in all biological
neurons for ensuring balanced neural activity and are critical
for realizing in circuit adaptivity to the effects of process
variations, the NSC was designed from the beginning with a
homeostatic mechanism in mind. Therefore, the input synapses
of the NSC are designed as such that they typically won’t
generate enough voltage to drive the neuron to spike without
any homeostatic synapses unless different design choices are
made, like increasing the resistance of RSUM or the width
of M1 in the synapse circuit. Although this can mitigate the
need for homeostatic synapses to elicit neuron spiking, the
adaptivity that the homeostatic mechanism provides is critical
for ensuring that all neurons participate in the network activity
even with their intrinsic heterogeneity arising from process
variation. This is demonstrated in Figure 7, that shows the
temporal evolution of the 30x30 test case described previously,
but with all homeostatic synapses fixed with S1 and S2 in the
AP state. With no homeostatic adaptations, the neurons with
intrinsically greater excitability dominate the network activity,
and due to the inhibition mechanism, prevent intrinsically less
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excitable neurons from ever spiking or learning, rendering
them to be wasted area and power.

Fig. 7. Receptive fields for a random selection of 5 output neurons in the
30x30 test case with no homeostatic updates.
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