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ABSTRACT: A Discrete Frictional Wing Crack Damage (DFWCD) model is proposed to simulate the 
initiation and propagation of inter-granular cracks in salt rock undergoing semi-brittle deformation at low 
mean stress. Damage is defined as the integration of crack densities over the unit sphere. In order to 
simulate inter-crystalline bonding, a cohesive frictional model is formulated for main cracks. Crack growth 
is controlled by mode I and mode II fracture mechanics criteria. Salt crystals are rhomboids, so we assume 
that wing cracks are perpendicular to the main cracks. The tensile normal stress triggers the growth of wing 
cracks according to a mode I fracture mechanics criterion. The formulated DFWCD model is calibrated 
against triaxial cyclic loading tests. Our model can predict the microstructure development, the non linear-
stress/strain relationship and the stiffness degradation during the cyclic loading.  
  
 

1 INTRODUCTION 

Salt rock is a polycrystalline material made of 
bonded crystals. Due to its low permeability, low 
porosity and creep properties, salt rock is usually 
considered as a favorable material for geological 
storage, such as CO2 sequestration and nuclear 
waste confinement (e.g., Waste Isolation Pilot 
Plant, WIPP). Under typical geostorage stress 
conditions, the initiation and propagation of 
defects leads to a degradation of stiffness and a 
decrease of strength in the host rock. In this paper, 
a multi-scale mechanical model is proposed to 
predict the development of microstructure, 
stiffness, and deformation under cyclic loading. 

Continuum Damage Mechanics (CDM) 
provides a theoretical framework to model 
damage (and the resulting loss of stiffness and 
strength) in solids (Lemaitre & Desmorat, 2005). 
The fundamental idea is that crack propagation 
leads to a loss of potential strain energy. The 
stress-strain relationship is derived from the 
postulated expression of a thermodynamic 
potential, and the evolution of damage is related to 
phenomenological driving forces, such as tensile 
strains (Cicekli, et al., 2007; Arson & Gatmiri, 
2011). Under the assumption of crack non-
interaction, the damage variable is commonly 
defined as the second-order crack density tensor 
(Kachanov, 1992; Zhu & Arson, 2015). 

In micromechanical models, the macroscopic 
effective properties are related directly to the 
evolution of microscopic cracks. The mechanical 
behavior of the damaged REV is calculated based 
on the displacement jumps across crack faces 
(Budiansky and O’Connell, 1976; Kachanov, 
1992; 1993). Based on fracture mechanics 
principles, the initiation, propagation, opening, 
closure and frictional sliding of micro-cracks in 

homogeneous media was studied in Mode I 
(Krajcinovic et al., 1991), Mode II (Gambarotta & 
Lagomarsino, 1993) and mixed-Mode with wing 
crack development (Nemat-Nasser & Obata, 1988, 
Jin & Arson 2017). Wing cracks are the tensile 
microcracks that stem from frictional defects in 
rock (Lehner, 1996). 

The stiffness of a polycrystalline material is 
less than that of a single crystal. Grain-boundary 
microscopic cracks are thus more likely to initiate 
and propagate than intra-granular cracks, 
particularly at low mean stress for a semi-brittle 
material (Ding et al., 2017). During triaxial tests at 
low mean stress, the deformation and stiffness 
reduction of salt rock samples are mostly due to 
grain rearrangement and damage development 
along grain contacts (Fig.1). In particular, wing 
cracks form at the tips of pre-existing defects. 

 

 

Figure 1. Microstructure map of experimentally-deformed, 
granular salt rock after 2.3% axial strain. The cracks and 
voids are shown in gray and red respectively (Ding et al., 

2017). 

In the following, a Discrete Frictional Wing 
Crack Damage (DFWCD) model is proposed, 
based on micromechanics and CDM principles. In 



Section 2, we give the expression of the Gibbs 
free energy, and we provide the relationship 
between the REV elastic stiffness and the 
densities of main and wing cracks. In Section 3, 
damage criteria and flow rules for both main 
cracks and wing cracks are proposed to predict the 
growth of micro-cracks. In section 4, the DFWCD 
model is calibrated against a triaxial cyclic 
loading test, and the evolution of damage is 
simulated. 

2 GIBBS FREE ENERGY 

2.1 Microscopic main cracks modes 
We use a dilute scheme, in which the interaction 
between main cracks is negligible. The total stress 
in the REV, noted σ, is the average of the stress in 
the cracks (σc) and of the stress in the matrix (σm). 

              (1) 

Under static conditions, the cracks stress σc is 
in self-equilibrium, and the stress of the matrix σm 
is equal to the total stress. The normal stress on 
the cracks, noted , is thus calculated as: 

                        (2) 

where  is the normal direction of crack plane i. 
The projection of σ  in the tangential direction of 
the crack planes is:  

                    (3) 

Main cracks are assumed to be embedded in a 
homogeneous matrix. Based on the normal stress 
and tangential stress conditions, main cracks can 
develop in either mode I or mode II, according to 
5 possible mechanisms. The corresponding 
deformation modes are described below.  

In mode 1, the normal stress is positive: 
; the shear stress  is smaller than the cohesion 

of main cracks c, and  has never exceeded c 
during the past loading history. The main crack 
can open due to normal displacements, but 
without shear strain.   

In mode 2, ; , and  has never 
exceeded c during the past loading history. The 
main crack is closed, and shear strain does not 
occur. 

In mode 3, ; , or  has 
exceeded c during the past loading history. 
Normal and shear displacements can occur at the 
faces of the main cracks. 

In mode 4, ; , or  has 
exceeded c during the past loading history, and at 
the same time, the sum of  and frictional stress 

 is positive (in which  is the frictional 

coefficient). The main crack is compressed, and 
shear strain is observed. 

In mode 5, ; , or  has 
exceeded c during the past loading history, but 

. The main crack is under 
compressive stress, and shear strain does not occur. 
But the cohesion due to inter-crystal bonds is set 
to zero (i.e., bonds are broken). 

Cracks are assumed to be penny-shaped. We 
define crack families, in which all cracks have the 
same orientation (i.e. same crack plane normal 
direction)  and same radius ai. The volume 
fractions of the normal and shear displacement 
jumps of the main cracks are given as follows 
(Kachanov et al., 2013): 

                           (4) 

                          (5) 

where  is the crack density; so and s1 are the 
normal and shear elastic compliances of the crack, 
respectively;  is the normal mode coefficient; 

 is the tangential mode coefficient;  is the 
frictional mode coefficient. , , and  
depend on the deformation mode of the main 
cracks as explained  in Table 1. We have: 

                            (6) 

where Mi is the number of cracks in family i; VREV 
is the volume of REV. 

                              (7) 

                            (8) 

where  is the Poisson ratio;  is the Young’s 
modulus (Kachanov 1992).  

Table 1. Deformation mode coefficients. 

Mode    

1 1 0 0 
2 0 0 0 
3 1 1 1 
4 0 1   
5 0 1 0 

 

2.2 Evolution of wing cracks  
The propagation of wing cracks in solids under 
compression was studied experimentally 
(Germanovich et al., 1994), numerically (Scholtès 
and Donzé, 2012), and theoretically (Dyskin and 
Salganik, 1987), and tensile wing cracks were 
assumed to initiate at the tip of sliding cracks. The 
shear force at the main cracks is thus adopted here 
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as the driving force for the propagation of wing 
cracks. As salt crystals are typically rhomboids, 
we assume that wing cracks are always 
perpendicular to the main cracks, as shown in 
Fig.2. 
 

 
Figure 2. Wing crack propagation model. 

The propagation of wing cracks is triggered by 
a stress in the direction , as shown in Fig.2. This 
compression direction can be calculated as: 

                               (9) 

The normal force on a wing crack is sum of the 
shear force transferred from the main cracks and 
the projection of force in the direction of  from 
the matrix. With the assumption that the normal 
stress is uniformly distributed on the wing crack 
plane, the normal stress of the wing crack is given 
as: 

                (10) 

                        (11) 

Similarly to Eq.(4) for main cracks, the volume 
fraction of the normal displacement jumps of a 
wing crack can be calculated as  

                          (12) 

2.3 Expression of the Gibbs free energy 
The Helmholtz free energy  of the REV is the 
sum of the elastic deformation energy of the 
matrix and the energy stored in displacement 
jumps of the main and wing cracks: 

             (13) 

where εo is the strain of matrix; and εc is the strain 
of cracks. Based on Legendre transformation, the 
Gibbs free energy can be written as: 

                        (14) 

where εE =εo +εc is the elastic strain of REV. The 
expression of Gibbs energy can be rewritten as: 

 (15) 

       (16) 

                         (17) 

where εm is the strain of a main crack;  εw is the 
strain of a wing crack. According to Bazant’s 
discrete integration scheme with 72 elementary 
directions in the unit sphere (Bazant & Oh 1986), 
the Gibbs energy integrated with a distribution of 
cracks orientations can be expressed as: 

 

(18) 

The Gibbs energy accounts for the elastic 
deformation of the matrix and the displacement 
jumps of cracks, but not for the strain induced by 
crack growth (damage evolution). The inelastic 
strain εin is introduced in the expression of the 
total strain of the REV to account for the 
propagation of defects, as follows: 

                           (19) 

where  

                    (20) 

According to Eq. (18) and Eq. (20),  and  
can be calculated as: 

                 (21) 

(22) 

where 

                        (23) 

(24) 
The damage driving force Y is calculated as the 

derivative of the Gibbs energy with respect to the 
crack density: 
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                               (25) 

3 DAMAGE CRITERION AND FLOW RULE 

Both tensile stress and shear stress can lead to the 
growth of main cracks. We assume that the main 
cracks can propagate in either mode I or mode II, 
and the propagation criteri  are given as: 

                  (26) 

               (27) 

The tensile wing cracks can propagate in mode 
I, and the criterion is expressed as: 

                    (28) 

In order to account for the hardening of crack 
toughness, a hyperbolic function is used to express 
Kc (Jin & Arson, 2017): 

                                (29) 

where  and for the mode I crack 
criterion;  and  for the mode II 
crack criterion; a=aw for wing cracks; a=am for 
main cracks. 

The crack radius is updated using the 
consistency rule: 

                        (30) 

By definition of the crack density (Eq.(6)), the 
crack density of crack family i can be updated as: 

                          (31) 

Due to the deformation, initiation and 
propagation of inter-granular cracks, geometric 
incompatibilities are noted around the cracks, 
which leads to crystals rearrangement. In order to 
account for the residual inelastic strains εin, a 
discrete damage potential is introduced, as follows: 

                           (32) 

The evolution law for the inelastic strain is 
obtained based on the damage potentials. Using a 
non-associative flow rule, we have: 

              (33) 

where  and  are the inelastic Lagrange 
multipliers for the main and wing cracks of family 
i respectively. The damage variable is also a 
function of the damage potential, as follows: 

                    (34) 

where  is damage Lagrange multiplier, 
assumed to be proportional to : .  

The global damage variable is defined as a 
second order tensor, and is calculated as the sum 
of the crack density tensors obtained for each 
family of cracks, as follows: 

          (35) 

4 CALIBRATION  

The DFWCD model is calibrated against triaxial 
cyclic loading tests conducted on granular salt 
rock samples with 6% initial porosity, in dry 
conditions (Ding et al., 2017), as shown in Fig.3. 
Three loading cycles were applied to salt rock 
samples. The calibrated parameters are reported in 
Table 2. 
 

 
Figure 3. Stress-Strain curve in a triaxial cyclic loading test. 

Table 2. Calibrated parameters for salt rock 
Elasticity  Friction Cracks geometry 

Eo Ec νo c μ amo M/VREV 

GPa GPa - MPa - mm mm-3 
16 11 0.32 4 0.1 0.022 400 
Damage criterion 
KIc KIIc σIc σIIc C2 

MPa/mm MPa/mm MPa MPa - 
15 4000 20 38 42 

 
Fig.4 shows the stress-strain curves obtained in 

the experiment and those obtained in the 
numerical simulations. During the first cycle, the 
stiffness is constant, until the deviatoric stress 
reaches 35MPa. Then, a sharp decrease of 
stiffness is observed. When the deviatoric stress 
exceeds 40MPa, salt rock exhibits a ductile 
behavior. Elastic stiffness decreases over the 
cycles, due to the accumulation of damage in the 
sample. In the proposed model, the inelastic strain 
is calculated from the damage potential. We note 
that the calibration of the model against 
stress/strain curves tends to slightly over predict 
the decrease of stiffness with damage and to 
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under-estimate the inelastic strain observed in the 
experiments. To overcome this limitation, it would 
be necessary to introduce a plastic potential, 
independent from the damage potential. Fig.5 
presents the relation between lateral strain and 
deviatoric stress. As expected, the lateral strain 
induced by Poisson’s effects is smaller than the 
axial strain. 

 

 
Figure 4. Calibration of the DFWCD model. 

 
Figure 5. Deviatoric stress vs. Lateral strain. 

The development of damage is shown in Fig.6. 
Damage accumulates when main cracks and wing 
cracks start to propagate. After damage initiation, 
the samples exhibit an anisotropic behavior. As 
shown in Fig.6(b), the damage of the main cracks 
is constant under low deviatoric stress. The largest 
damage of main cracks is observed in the direction 
of maximum compressive principal stress. 
According to Fig.6(c), two stages of wing cracks 
damage evolution are observed. In stage one, the 
lateral damage due to wing cracks grows faster 
than the damage in the axial direction because the 
compressive axial stress is constraining the 
deformation of the sample. Vertical wing cracks 
develop due to shear stress in the matrix. In stage 
two, with the rapid growth of main cracks, the 
damage of wing cracks is controlled by the 
propagation of main cracks. Axial damage 
becomes larger than lateral damage. The damage 
stages of wing crack development are explained in 
Fig. 7. 

 
(a) Total damage evolution  

 
(b) Damage evolution due to main cracks 

 
(c) Damage evolution due to wing cracks 

Figure 6. Damage evolution (Ω3 is the damage in the 
direction of compressive principal stress; Ω1 and Ω2 are the 

lateral damage components). 

 

Figure 7. Damage stages of wing crack development. 

5 CONCLUSION 

A Discrete Frictional Wing Crack Damage 
(DFWCD) model is formulated to simulate the 
evolution of micro-cracks and the mechanical 



behavior of salt rock. The stress-strain relationship 
at REV scale is related to the initiation and 
propagation of defects at micro scale. 

REV defects include main cracks and wing 
cracks, which are assumed to be penny shaped. 
The Gibbs free energy is defined as the sum of the 
energy stored in the elastic matrix and in the 
cracks’ displacement jumps. In order to simulate 
inter-crystalline bonding, a cohesive frictional 
model is used for the main cracks. The evolution 
of the main cracks is controlled by mode I and 
mode II fracture mechanics criteria. The growth of 
wing cracks is controlled by shear stresses in the 
matrix and in the main cracks, which generate 
tensile stress in the wing cracks. A mode I fracture 
criterion is used. The damage variable is defined 
as a crack density tensor; it is calculated by 
summing the crack densities obtained in 42 
independent directions of space. An inelastic 
strain is introduced to account for the residual 
strain induced by the geometric incompatibilities 
around the cracks. 

A triaxial cyclic loading test is used to calibrate 
the DFWCD model. The stiffness of the sample 
decreases with the accumulation of damage. The 
DFWCD model captures the degradation of 
stiffness over the cycles. When the deviatoric 
stress exceeds 40MPa, salt rock behaves as a 
ductile material. Mechanical anisotropy develops 
as damage accumulates. 

The DFWCD model can be used to predict the 
initiation of micro-cracks, microstructure 
development, and damage evolution in crystalline 
materials. It can also be used to analyze the 
mechanical response of the host rock around 
geostorage facilities under complex loading paths. 
Future work will focus on extending the present 
model to include damage-plasticity couplings that 
are likely more important in recrystallized zero-
porosity, polycrystalline rocks typical of natural 
salt bodies. 
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