Discrete frictional- and wing-crack based damage model for salt rock
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ABSTRACT: A Discrete Frictional Wing Crack Damage (DFWCD) model is proposed to simulate the
initiation and propagation of inter-granular cracks in salt rock undergoing semi-brittle deformation at low
mean stress. Damage is defined as the integration of crack densities over the unit sphere. In order to
simulate inter-crystalline bonding, a cohesive frictional model is formulated for main cracks. Crack growth
is controlled by mode I and mode II fracture mechanics criteria. Salt crystals are rhomboids, so we assume
that wing cracks are perpendicular to the main cracks. The tensile normal stress triggers the growth of wing
cracks according to a mode I fracture mechanics criterion. The formulated DFWCD model is calibrated
against triaxial cyclic loading tests. Our model can predict the microstructure development, the non linear-
stress/strain relationship and the stiffness degradation during the cyclic loading.

1 INTRODUCTION

Salt rock is a polycrystalline material made of
bonded crystals. Due to its low permeability, low
porosity and creep properties, salt rock is usually
considered as a favorable material for geological
storage, such as CO: sequestration and nuclear
waste confinement (e.g., Waste Isolation Pilot
Plant, WIPP). Under typical geostorage stress
conditions, the initiation and propagation of
defects leads to a degradation of stiffness and a
decrease of strength in the host rock. In this paper,
a multi-scale mechanical model is proposed to
predict the development of microstructure,
stiffness, and deformation under cyclic loading.

Continuum Damage Mechanics (CDM)
provides a theoretical framework to model
damage (and the resulting loss of stiffness and
strength) in solids (Lemaitre & Desmorat, 2005).
The fundamental idea is that crack propagation
leads to a loss of potential strain energy. The
stress-strain  relationship is derived from the
postulated expression of a thermodynamic
potential, and the evolution of damage is related to
phenomenological driving forces, such as tensile
strains (Cicekli, et al., 2007; Arson & Gatmiri,
2011). Under the assumption of crack non-
interaction, the damage variable is commonly
defined as the second-order crack density tensor
(Kachanov, 1992; Zhu & Arson, 2015).

In micromechanical models, the macroscopic
effective properties are related directly to the
evolution of microscopic cracks. The mechanical
behavior of the damaged REV is calculated based
on the displacement jumps across crack faces
(Budiansky and O’Connell, 1976; Kachanov,
1992; 1993). Based on fracture mechanics
principles, the initiation, propagation, opening,
closure and frictional sliding of micro-cracks in

homogeneous media was studied in Mode I
(Krajcinovic et al., 1991), Mode II (Gambarotta &
Lagomarsino, 1993) and mixed-Mode with wing
crack development (Nemat-Nasser & Obata, 1988,
Jin & Arson 2017). Wing cracks are the tensile
microcracks that stem from frictional defects in
rock (Lehner, 1996).

The stiffness of a polycrystalline material is
less than that of a single crystal. Grain-boundary
microscopic cracks are thus more likely to initiate
and propagate than intra-granular cracks,
particularly at low mean stress for a semi-brittle
material (Ding et al., 2017). During triaxial tests at
low mean stress, the deformation and stiffness
reduction of salt rock samples are mostly due to
grain rearrangement and damage development
along grain contacts (Fig.1). In particular, wing
cracks form at the tips of pre-existing defects.

Figure 1. Microstructure map of experimentally-deformed,
granular salt rock after 2.3% axial strain. The cracks and
voids are shown in gray and red respectively (Ding et al.,

2017).

In the following, a Discrete Frictional Wing
Crack Damage (DFWCD) model is proposed,
based on micromechanics and CDM principles. In



Section 2, we give the expression of the Gibbs
free energy, and we provide the relationship
between the REV elastic stiffness and the
densities of main and wing cracks. In Section 3,
damage criteria and flow rules for both main
cracks and wing cracks are proposed to predict the
growth of micro-cracks. In section 4, the DFWCD
model is calibrated against a triaxial cyclic
loading test, and the evolution of damage is
simulated.

2 GIBBS FREE ENERGY

21 Microscopic main cracks modes

We use a dilute scheme, in which the interaction
between main cracks is negligible. The total stress
in the REV, noted o; is the average of the stress in
the cracks (o¢) and of the stress in the matrix (om).
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Under static conditions, the cracks stress ot is
in self-equilibrium, and the stress of the matrix om
is equal to the total stress. The normal stress on
the cracks, noted a;*, is thus calculated as:

o =a:(ﬁi®ﬁi) )

where 71; is the normal direction of crack plane i.
The projection of o in the tangential direction of
the crack planes is:
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Main cracks are assumed to be embedded in a
homogeneous matrix. Based on the normal stress
and tangential stress conditions, main cracks can
develop in either mode I or mode II, according to
5 possible mechanisms. The corresponding
deformation modes are described below.

In mode 1, the normal stress is positive: g;* >
0; the shear stress o™ is smaller than the cohesion
of main cracks ¢, and /™ has never exceeded c
during the past loading history. The main crack
can open due to normal displacements, but
without shear strain.

In mode 2, o' < 0; o™ < c, and o™ has never
exceeded ¢ during the past loading history. The
main crack is closed, and shear strain does not
occur.

In mode 3, oj# >0; o/*>c, or " has
exceeded c¢ during the past loading history.
Normal and shear displacements can occur at the
faces of the main cracks.

In mode 4, 0'<0; o/ >c, or of* has
exceeded c during the past loading history, and at
the same time, the sum of g/" and frictional stress
uot is positive (in which pu is the frictional

coefficient). The main crack is compressed, and
shear strain is observed.

In mode 5, o/t <0; o/ >c, or /" has
exceeded c during the past loading history, but
o™+ uo* <0 . The main crack is under
compressive stress, and shear strain does not occur.
But the cohesion due to inter-crystal bonds is set
to zero (i.e., bonds are broken).

Cracks are assumed to be penny-shaped. We
define crack families, in which all cracks have the
same orientation (i.e. same crack plane normal
direction) 7, and same radius ai. The volume
fractions of the normal and shear displacement
jumps of the main cracks are given as follows
(Kachanov et al., 2013):

B =p's, N, (4)
7 =psT"Bo, (5)

where p" is the crack density; s, and s1 are the
normal and shear elastic compliances of the crack,
respectively; N is the normal mode coefficient;
7" is the tangential mode coefficient; B, is the
frictional mode coefficient. N, 7", and B,
depend on the deformation mode of the main
cracks as explained in Table 1. We have:
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where M; is the number of cracks in family i; Vrev
is the volume of REV.
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where v, is the Poisson ratio; E, is the Young’s
modulus (Kachanov 1992).

Table 1. Deformation mode coefficients.

Mode N T" B

1 1 0 0

2 0 0 0

3 1 1 1

4 0 1 L+ pog'/llo™||
5 0 1 0

22 Evolution of wing cracks

The propagation of wing cracks in solids under
compression  was  studied  experimentally
(Germanovich et al., 1994), numerically (Scholtes
and Donzé, 2012), and theoretically (Dyskin and
Salganik, 1987), and tensile wing cracks were
assumed to initiate at the tip of sliding cracks. The
shear force at the main cracks is thus adopted here



as the driving force for the propagation of wing
cracks. As salt crystals are typically rhomboids,
we assume that wing cracks are always
perpendicular to the main cracks, as shown in
Fig.2.

Figure 2. Wing crack propagation model.

The propagation of wing cracks is triggered by
a stress in the direction 7, as shown in Fig.2. This
compression direction can be calculated as:

" €))

The normal force on a wing crack is sum of the
shear force transferred from the main cracks and
the projection of force in the direction of m from
the matrix. With the assumption that the normal
stress is uniformly distributed on the wing crack
plane, the normal stress of the wing crack is given
as:

"N+ (10)

0;7=n2i-o-n”¢i (1D

Similarly to Eq.(4) for main cracks, the volume
fraction of the normal displacement jumps of a
wing crack can be calculated as

B =p's,0, (12)
23 Expression of the Gibbs free energy

The Helmholtz free energy W, of the REV is the
sum of the elastic deformation energy of the
matrix and the energy stored in displacement
jumps of the main and wing cracks:
. 1. .
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where &, is the strain of matrix; and &° is the strain
of cracks. Based on Legendre transformation, the
Gibbs free energy can be written as:
G=0c:&"-¥ (14)

N

where & =&, +&° is the elastic strain of REV. The
expression of Gibbs energy can be rewritten as:
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where &™ is the strain of a main crack; &V is the
strain of a wing crack. According to Bazant’s
discrete integration scheme with 72 elementary
directions in the unit sphere (Bazant & Oh 1986),
the Gibbs energy integrated with a distribution of
cracks orientations can be expressed as:
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The Gibbs energy accounts for the elastic
deformation of the matrix and the displacement
jumps of cracks, but not for the strain induced by
crack growth (damage evolution). The inelastic
strain &" is introduced in the expression of the
total strain of the REV to account for the
propagation of defects, as follows:

s=¢&" +&" (19)
where
gt =00 ey g (20)
oo

According to Eq. (18) and Eq. (20), &° and &“
can be calculated as:
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(23)
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The damage driving force Y is calculated as the

derivative of the Gibbs energy with respect to the
crack density:
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3 DAMAGE CRITERION AND FLOW RULE

Both tensile stress and shear stress can lead to the
growth of main cracks. We assume that the main
cracks can propagate in either mode I or mode II,
and the propagation criteria are given as:

fi =o\7ma —K, (26)

furin:Bi‘O-
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ra' —K, 27)
The tensile wing cracks can propagate in mode
I, and the criterion is expressed as:

£ =ou[ral K, (28)

In order to account for the hardening of crack
toughness, a hyperbolic function is used to express
K. (Jin & Arson, 2017).
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where k¥ =k, and o, =0, for the mode I crack
criterion; ¥ =k, and o =o, for the mode II
crack criterion; a=a" for wing cracks; a=a™ for
main cracks.

The crack radius is wupdated using the
consistency rule:

da. =—gd0/i

" o0 oa, (30)

By definition of the crack density (Eq.(6)), the
crack density of crack family i can be updated as:

2M.a’
dp, =———da, 31
REV
Due to the deformation, initiation and

propagation of inter-granular cracks, geometric
incompatibilities are noted around the cracks,
which leads to crystals rearrangement. In order to
account for the residual inelastic strains &", a
discrete damage potential is introduced, as follows:

=Y +C, (32)

The evolution law for the inelastic strain is
obtained based on the damage potentials. Using a
non-associative flow rule, we have:

Y
E mt + 2 WI
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(33)

where 2" and A" are the inelastic Lagrange
multlpllers for the main and wing cracks of family
i respectively. The damage variable is also a
function of the damage potential, as follows:

(34)
ag, .
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where 3+ is damage Lagrange multiplier,

assumed to be proportional to A": A" =C 2.

The global damage variable is defined as a
second order tensor, and is calculated as the sum
of the crack density tensors obtained for each
family of cracks, as follows:

0 (35)
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4 CALIBRATION

The DFWCD model is calibrated against triaxial
cyclic loading tests conducted on granular salt
rock samples with 6% initial porosity, in dry
conditions (Ding et al., 2017), as shown in Fig.3.
Three loading cycles were applied to salt rock
samples. The calibrated parameters are reported in

Table 2

Differential Stress(MPa)
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Figure 3. Stress-Strain curve in a triaxial cyclic loading test.

Table 2. Calibrated parameters for salt rock

Elasticity Friction Cracks geometry
Eo Ec Vo C M dmo M/ VrRev
GPa GPa - MPa - mm mm
16 11 032 4 0.1 0.022 400
Damage criterion
Kic K Olc Ollc C
MPa/mm  MPa/mm MPa MPa -

15 4000 20 38 42

Fig.4 shows the stress-strain curves obtained in
the experiment and those obtained in the
numerical simulations. During the first cycle, the
stiffness is constant, until the deviatoric stress
reaches 35MPa. Then, a sharp decrease of
stiffness is observed. When the deviatoric stress
exceeds 40MPa, salt rock exhibits a ductile
behavior. Elastic stiffness decreases over the
cycles, due to the accumulation of damage in the
sample. In the proposed model, the inelastic strain
is calculated from the damage potential. We note
that the calibration of the model against
stress/strain curves tends to slightly over predict
the decrease of stiffness with damage and to



under-estimate the inelastic strain observed in the
experiments. To overcome this limitation, it would
be necessary to introduce a plastic potential,
independent from the damage potential. Fig.5
presents the relation between lateral strain and
deviatoric stress. As expected, the lateral strain
induced by Poisson’s effects is smaller than the
axial strain.
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Figure 4. Calibration of the DFWCD model.
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Figure 5. Deviatoric stress vs. Lateral strain.

The development of damage is shown in Fig.6.
Damage accumulates when main cracks and wing
cracks start to propagate. After damage initiation,
the samples exhibit an anisotropic behavior. As
shown in Fig.6(b), the damage of the main cracks
is constant under low deviatoric stress. The largest
damage of main cracks is observed in the direction
of maximum compressive principal stress.
According to Fig.6(c), two stages of wing cracks
damage evolution are observed. In stage one, the
lateral damage due to wing cracks grows faster
than the damage in the axial direction because the
compressive axial stress is constraining the
deformation of the sample. Vertical wing cracks
develop due to shear stress in the matrix. In stage
two, with the rapid growth of main cracks, the
damage of wing cracks is controlled by the
propagation of main cracks. Axial damage
becomes larger than lateral damage. The damage
stages of wing crack development are explained in
Fig. 7.
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Figure 6. Damage evolution (s is the damage in the
direction of compressive principal stress; Q1 and  are the
lateral damage components).
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Figure 7. Damage stages of wing crack development.

5 CONCLUSION

A Discrete Frictional Wing Crack Damage
(DFWCD) model is formulated to simulate the
evolution of micro-cracks and the mechanical



behavior of salt rock. The stress-strain relationship
at REV scale is related to the initiation and
propagation of defects at micro scale.

REV defects include main cracks and wing
cracks, which are assumed to be penny shaped.
The Gibbs free energy is defined as the sum of the
energy stored in the elastic matrix and in the
cracks’ displacement jumps. In order to simulate
inter-crystalline bonding, a cohesive frictional
model is used for the main cracks. The evolution
of the main cracks is controlled by mode I and
mode II fracture mechanics criteria. The growth of
wing cracks is controlled by shear stresses in the
matrix and in the main cracks, which generate
tensile stress in the wing cracks. A mode I fracture
criterion is used. The damage variable is defined
as a crack density tensor; it is calculated by
summing the crack densities obtained in 42
independent directions of space. An inelastic
strain is introduced to account for the residual
strain induced by the geometric incompatibilities
around the cracks.

A triaxial cyclic loading test is used to calibrate
the DFWCD model. The stiffness of the sample
decreases with the accumulation of damage. The
DFWCD model captures the degradation of
stiffness over the cycles. When the deviatoric
stress exceeds 40MPa, salt rock behaves as a
ductile material. Mechanical anisotropy develops
as damage accumulates.

The DFWCD model can be used to predict the
initiation  of  micro-cracks,  microstructure
development, and damage evolution in crystalline
materials. It can also be used to analyze the
mechanical response of the host rock around
geostorage facilities under complex loading paths.
Future work will focus on extending the present
model to include damage-plasticity couplings that
are likely more important in recrystallized zero-
porosity, polycrystalline rocks typical of natural
salt bodies.
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